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Abstract

In this paper we present contributions to-
wards a logical theory of diagnosis for sys-
tems that can be affected by the actions of
agents. Specifically, we examine the task of
conjecturing diagnoses to explain what hap-
pened to a system, given a theory of system
behaviour and some observed (aberrant) be-
haviour. We characterize what happened by
introducing the notion of explanatory diagno-
sis in the language of the situation calculus.
Explanatory diagnoses conjecture sequences
of actions to account for a change in system
behaviour. As such, we show that determin-
ing an explanatory diagnosis is analogous to
classical Al planning with state constraints
and incomplete knowledge. The representa-
tion scheme we employ provides an axiomatic
solution to the frame, ramification and qual-
ification problems. Exploiting this represen-
tation, we show that determining an explana-
tory diagnosis can be achieved by regression
followed by theorem proving in the database
describing what is known of the initial state
of our system. Further, we show that by ex-
ploiting features inherent to diagnosis prob-
lems, we can simplify the diagnosis task.

1 INTRODUCTION

Given a theory of system behaviour and some observed
aberrant behaviour, the traditional objective of diag-
nosis is to conjecture what is wrong with the system,
(e.g., which components of the device are behaving ab-
normally, what diseases the patient is suffering from,
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etc.). Each candidate diagnosis consists of a subset of
distinguished literals that are conjectured to be true
or false in order to account for the observation in some
way. Different criteria have been proposed for deter-
mining the space of such candidate diagnoses. Within
formal accounts of diagnosis, two widely accepted def-
initions of diagnosis are consistency-based diagnosis
(e.g., (Reiter 1987), (de Kleer et al. 1992)), and abduc-
tive explanation (e.g., (de Kleer et al. 1992), (Poole
1988), (Console and Torasso 1991), (Mcllraith 1994)).
Such research has historically focussed on static sys-
tems. Recently, some researchers have advocated ex-
tending diagnostic problem solving (DPS) to enable
reasoning about actions, under the argument that DPS
is purposive in nature and that systems operate within
and are affected by agents'.

In this paper we focus upon one aspect of diagnosing
such dynamic systems. In particular, given a theory
of system behaviour and some observation of (aber-
rant) behaviour, our concern is with the task of conjec-
turing diagnoses to explain what happened to the sys-
tem (i.e., what actions or events occurred to result in
the observed behaviour) (e.g., (Cordier and Thiébaux
1994), (Mcllraith 1994a)). Knowing or conjecturing
what happened is interesting in its own right, but it
can also help to further constrain the space of possible
states of the system. In so doing, conjecturing what
happened assists in the prediction of what is wrong
with a system, as well as predicting other relevant sys-
tem behaviour. Compared to our traditional notion of
what 1s wrong diagnoses, knowing what happened can
more accurately capture the root cause of system mal-
function rather than its manifestations, thus providing
for the identification of future preventative as well as
prescriptive actions.

In the spirit of previous foundational work in model-

!An agent could be another system, a robot, a human,
or nature.



based diagnosis (MBD) (e.g., (Reiter 1987), (Console
and Torasso 1991), (de Kleer et al. 1992)), this pa-
per presents a logical characterization of the diagnosis
task. We take as our starting point the existing MBD
research on characterizing diagnoses for static systems
without a representation of actions (e.g., (de Kleer et
al. 1992), (Console and Torasso 1991), (Reiter 1987)).
Next, we exploit a situation calculus representation
scheme previously proposed by the author (Mcllraith
1997a) that enables the integration of a representation
of action with the representation of the behaviour of
a static system. With this representation in hand, we
provide a logical characterization for the task of deter-
mining what happened to a system. The characteriza-
tion is presented in the guise of ezplanatory diagnosis.

The distinguishing features of our characterization are
afforded in great part by the richness of our rep-
resentation scheme which provides a comprehensive
and semantically justified representation of action and
change. In particular, our representation provides an
axiomatic closed-form solution to the frame and ram-
ification problems, thus capturing the direct and in-
direct effects of actions in a compiled representation.
This is critical to the ability to generate explanatory
diagnoses efficiently. Further, our representation pro-
vides a closed-form solution to the qualification prob-
lem, thus identifying the conditions underwhich an ac-
tion is possible. It is interesting to note that when we
are dealing with incomplete knowledge of our initial
state, conjecturing an action or sequence of actions
also requires conjecturing that its preconditions are
satisfied, which in many instances serves to further
constrain our search.

As we show in the sections to follow, our character-
ization establishes a direct link between explanatory
diagnosis and planning, deductive plan synthesis, and
abductive planning. As a consequence of a complete-
ness assumption embedded in our representation, we
can exploit goal-directed reasoning in the form of re-
gression (Waldinger 1977) in order to generate diag-
noses. This completeness assumption also provides for
an easy mapping of our situation calculus representa-
tion to Prolog. While explanatory diagnoses can be
mathematically characterized in an analogous fashion
to plans, an important distinction of explanatory di-
agnoses is that they can be refined to exploit features
of our diagnosis problem that have no meaning in the
context of planning. Indeed, we use diagnosis-specific
attributes to define variants of explanatory diagnosis
to deal with the challenges of incomplete knowledge
and large search spaces.

2 REPRESENTATION SCHEME

2.1 SITUATION CALCULUS LANGUAGE

The situation calculus language in which we axioma-
tize our domains is a sorted first-order language with
equality. The sorts are of type A for primitive actions,
S for situations, and D for everything else, including
domain objects (Lin and Reiter 1994). We represent
each action as a (possibly parameterized) first-class
object within the language. Situations are simply se-
quences of actions. The evolution of the world can
be viewed as a tree rooted at the distinguished ini-
tial situation Sy. The branches of the tree are de-
termined by the possible future situations that could
arise from the realization of particular sequences of ac-
tions. As such, each situation along the tree is simply
a history of the sequence of actions performed to reach
it. The function symbol do maps an action term and
a situation term into a new situation term. For ex-
ample, do(turn_on_pmp, Sp) is the situation resulting
from performing the action of turning on the pump in
situation Sp. The distinguished predicate Poss(a,s)
denotes that an action a is possible to perform in situ-
ation s (e.g., Poss(turn_on_pmp, Sg)). Thus, Poss de-
termines the subset of the situation tree consisting of
situations that are possible in the world. Finally, those
properties or relations whose truth value can change
from situation to situation are referred to as fluents.
For example, the fluent on(Pmp, s) expresses that the
pump is on in situation s.

The dialect of the situation calculus that we use in
this paper is restricted to primitive, determinate ac-
tions. Our language does not include functional flu-
ents, nor does it include a representation of time, con-
currency, or complex actions, but we believe the results
presented herein can be extended to more expressive
dialects of the situation calculus (e.g., (Reiter 1996)).

2.2 DOMAIN REPRESENTATION

In this section we overview the representation scheme
we use to characterize the system we will be diagnos-
ing. The scheme, proposed in (Mcllraith 1997a), in-
tegrates a situation calculus theory of action with a
MBD system description, SD (de Kleer et al. 1992).
The resulting representation of a system comprises
both domain-independent and domain-specific axioms.
The domain-independent axioms are the foundational
axioms of the discrete situation calculus, Xounq (Lin
and Reiter 1994). They are analogous to the axioms
of Peano arithmetic, modified to define the branching
structure of our situation tree, rather than the number
line. The domain-specific axioms, T' specify both the



behaviour of the static system, and the actions® that
can affect the state of the system, as well as those ac-
tions required to achieve testing and repair. Together
they define our situation calculus representation ¥ =
Efound AT.

The domain-specific axioms composing 7" result from
application of a procedure proposed in (Mcllraith
1997a) that compiles a typical MBD system descrip-
tion, SD and a set of axioms relating to the precondi-
tions and effects of actions into a representation that
provides a closed-form solution to the frame, ramifica-
tion and qualification problems. The resulting domain
axiomatization T = ng AT gomain NTss NTap ATy N a
Tpca N Ts, is described below. The representation
is predicated on an explicit causal ordering of fluents
and an a completeness assumption. The assumption
states that all the conditions underwhich an action a
can lead, directly or indirectly, to fluent F' becoming
true or false in the successor state are captured in the
axiomatization of our system.

We illustrate the representation scheme in terms of a
small portion of a power plant feedwater system (McIl-
raith 1997) derived from the APACS project (Kramer
et al. 1996). This simplified example models the fill-
ing of a vessel either by the operation of an electrically
powered (Pwr) pump (Pmp), by manual filling, or by
a siphon that was started by the pump or by manual
filling. For notational convenience, all formulae are
understood to be universally quantified with respect
to their free variables, unless explicitly indicated oth-
erwise. For a more thorough description of this rep-
resentation scheme, and for a more extensive example

please see ((Mcllraith 1997a) and (Mcllraith 1997)).

Every domain axiomatization, 7' comprises the follow-
ing sets of axioms.

T32 A Taomain A Tss ATap ANTuna ATpca ATs,

The set of state constraints relativized to situation
So, ng capture what is implicitly true about the ini-
tial dsatabase. They can be acquired from a typical
MBD system description, SD as described in (McIl-

raith 1997a). In our simple example, TSSg is as follows
-~ AB(Pwr,So) A—~AB(Pmp, So) A on(Pmp, Sp)

D filling(So) (1)

manual_fill(So) D filling(So) (2)

—(on(Pmp, So) A manual_fill(So)) (3)

The set of domain constraints, Tyomain 18 as follows.
Pwr # Pmp (4)

2 Actions can be performed by agents: a human, another
system, or nature.

The set of successor state axioms, Tgg is composed
of axioms of the following general form, one for each
fluent F'.

Poss(a, s) D [F(do(a,s)) = OF] (5)

where ® is a simple formula® of a particular syntac-
tic form. Intuitively, a successor state axiom says the
following:
Poss(a, s) D [fluent(do(a,s)) =
an action made it true
V a state constraint made it true
V it was already true
A neither an action nor a state constraint
made it false].

The following axioms compose Tss for our example.

Poss(a,s) D [on(Pmp,do(a, s)) = a = turn_on_pmp
V (on(Pmp, s) A a # turn_of f_pmp)] (6)

Poss(a,s) D [AB(Pwr,do(a, s)) = a = pwr_failure
V (AB(Pwr, s) A a # auz_pwr A a # pwr_fiz)](7)

Poss(a,s) D [AB(Pmp,do(a,s)) = a = pmp_burn_out
v (AB(Pmp,s) Aa # pmp_fir)] (%)

Poss(a, s) D [manual_fill(do(a, s)) =
a = turn_on_manual_fill
V (manual_fill(s)
A a # turn_of f_manual_fill)] (9)

Poss(a, s) D [filling(do(a, s)) =
a = turn_on_manual_fill
V (manual_fill(s) A a # turn_of f_manual_fill)
V [(a # pwr_failure
A (mAB(Pwr,s)Va = auz_pwr
V a = pwr_fiz))
A (a # pmp_burn_out
A (mAB(Pmp,s)Va = pmp_fiz))
A (a = turn_on_pmp
V (on(Pmp,s) Aa # turn_of f_pmp))]
V' (filling(s) A a # stop_siphon)] (10)

Axiom (6) states that if action a is possible in
situation s, then the pump is on in the situation
resulting from performing action a in situation s

3A simple formula only mentions domain-specific pred-
icate symbols, fluents do not include the function symbol
do, there is no quantification over sort situation, and there
is at most one free situation variable.



(i.e., on(Pmp,do(a, s))) if and only if the action a is
turn_on_pmp, or the pump was already on in s and a
was not the action turn_of f_pmp.

The set of action precondition axioms, T4p is com-
posed of axioms of the following general form, one for
each action prototype A in the domain.

Poss(A(Z),s) =4 (11)
where Il 4 is a simple formula with respect to s, cap-
turing the necessary and sufficient conditions for pro-

totype action A(Z) to be executable in situation s.

Poss(stop_siphon, s) = (mmanual_fill(s)

A —on(Pmp,s)) (12)

Poss(pmp_fiz,s) = —on(Pmp,s) (13)
Poss(pmp_burn_out,s) = on(Pmp,s) (14)
Poss(turn_on_manual_fill, s) = —on(Pmp,s) (15)
Poss(turn_on_pmp, s) = ~manual_fill(s) (16)
Poss(turn_of f_pmp, s) = on(Pmp,s) (17)
Poss(turn_of f_manual_fill, s) = manual_fill(s) (18)
Poss(pwr_failure,s) = (19)

Poss(pwr_fiz,s) = Poss(auz_pwr, s) = true (20)

Finally, we provide a possible set of initial conditions
for our system, Ts,. These constitute the explicit as-
pect of the initial database. Note that in general we do
not have complete knowledge of the initial state of our
system. This makes the task of diagnosis all the more
challenging. In this example, we do not know initially
whether the pump and power are operating normally.
We also do not know whether the vessel was filling in
the initial state.

on(Pmp, So) A mmanual_fill(So) (21)

Tuna and Tpca are the unique names axioms for
actions and the domain closure axiom for actions, re-
spectively.

This concludes the description of our representation
scheme. Before advancing to issues of diagnosis, we
note (Reiter 1998) that our proposed situation cal-
culus representation can be viewed as an executable
specification because it is easily realized in Prolog by
exploiting Prolog’s completion semantics and simply
replacing the equivalence connectives characteristic of
axioms in Tgg and T4p by implication connectives.
The Lloyd-Topor transformation (Lloyd 1987) must
then be applied to convert this theory into Prolog
clausal form. Later in this paper, we will advocate
using Waldinger’s notion of regression to rewrite ax-
ioms of our representation and simplify computation.
This type of regression rewriting is precisely achieved
by Prolog’s backwards chaining mechanism.

3 PRELIMINARIES

With our representation in hand, we turn our attention
to the task of diagnosis. In this section we introduce
the framework for performing diagnosis relative to our
representation. For our purposes we adopt the onto-
logical and notational convention of the MBD litera-
ture and view the systems we are diagnosing as com-
prising a number of interacting components, COM PS.
These components have the property of being either
abnormal or normal in a situation. We express this
property in our situation calculus language using the
fluent AB. For example, AB(Pmp, s) denotes that the
pump component is abnormal in situation s. Note that
the use of AB is not mandatory to the contributions
of this paper. Once again, following the convention in
the MBD literature, we define our diagnoses relative
to the domain-independent concept of a system (de
Kleer et al. 1992), adapted to our situation calculus
framework.

Definition 1 (System)
A system is a quadruple (X, HIST, COMPS, OBS)

where:

e X, the background theory, is a set of situation cal-
culus sentences describing the behaviour of our
system and the actions that can affect it.

o HIST, the history, is a sequence of ground ac-
tions [a1,...,ax] that were performed starting in

So.

e COMPS, the components, is a finite set of con-
stants.

e OBSF, the observation, is a simple formula com-
posed of fluents whose only free variable is the sit-
uation variable s, and which are otherwise ground.

Example 1

In our power plant example above, X 1s our axiom-
atization Xfoung AT and COMPS = {Pmp, Pwr}.
The observation, OBSp could be filling(s), for ez-
ample. HIST could be empty, i.e., [ ], or perhaps
[turn_on_pmp].

4 EXPLANATORY DIAGNOSIS

In this section we introduce and formally character-
ize the notion of an explanatory diagnosis which con-
jectures what happened to result in some observed
(aberrant) behaviour. Given a system, (X, HIST,
COMPS, OBSF), the objective of explanatory diag-
nosis is to conjecture a sequence of actions, [a1, . . ., @)



such that our observation is true in the situation re-
sulting from performing that sequence of actions in

do(HIST, Sy).

Definition 2 (Explanatory Diagnosis)

An explanatory diagnosis for system (X, HIST,
COMPS, OBSp) is a sequence of actions E = [ay,
.., ap)] such that,

e X = Poss(HIST - E, Sp)?
AOBSp(do(HIST - F, Sp)).

Thus, £ is an explanatory diagnosis when the observa-
tion is true in the situation resulting from performing
the sequence of actions E in situation do(HI1ST, Sy),
and further that the preconditions for each action of
the action sequence HIST - E are true in the appro-
priate situations, commencing at Sy.

The problem of determining explanatory diagnoses is
an instance of temporal explanation or postdiction
(e.g., (Shanahan 1993)), and is related to the classi-
cal Al planning problem. In particular, identifying
the sequence of actions composing an explanatory di-
agnosis, F is analogous to the plan synthesis problem,
and thus is realizable using deduction on the situa-
tion calculus axioms. According to (Green 1969), a
plan to achieve a goal G(s) is obtained as a side ef-
fect of proving Azioms |= 3s.G(s). The binding for
the situation variable s represent the sequence of ac-
tions. In our case, Azioms |= 3s.G(s) is analogous to
Y = 3s.0BSp(s). Assuch, our representation enables
us to generate explanatory diagnoses deductively, just
as we could deductively generate a plan in the situation
calculus. Note that the task of generating explanatory
diagnoses is analogous to plan synthesis in the pres-
ence of state constraints — a challenging problem. Our
representation scheme eliminates the additional chal-
lenges presented by state constraints by providing a
domain axiomatization that a priori solves the frame,
ramification and qualification problems.

Example 2

Continuing with our power plant ezample, given the
system (X, [], { Pwr, Pmp}, ~filling(s)), the sequence
of actions [pwr_failure] constitutes one example of
an explanatory diagnoses for the system. Another ez-
planatory diagnosis for our system is [turn_of f _pmp].

*Notation:
HIST: F is an abbreviation for [a1, ..
do([a1,...,am],s) is an abbreviation for
do(am,(do(am—1,(do(@m—2,(..., (do(a1,s))))))))-
Finally, Poss([a1,...,axs], $) is an abbreviation
for Poss(a1,s) A Poss(az,do(a1,s)) A ...
A Poss(an,do([a1,...,an—1],$)).

By Oy ey g

Observe that for certain problems there can be an in-
finite number of sequences of actions that constitute
explanatory diagnoses. For example, the following se-
quences of actions also constitute valid explanatory
diagnoses for our example system:

[pwr_failure, pwr_fiz, pwr_failure],

[pwr_failure, auz_pwr, pwr_failure],

[turn_of f _pmp, pwr_failure, turn_on_pmp|,
and so on.

Definition 2 is not sufficiently discriminating to elimi-
nate these, clearly suboptimal explanatory diagnoses.
We must define a preference criterion. Probability
measures, even simple order of magnitude probabili-
ties have provided an effective preference criterion for
many applications of MBD (de Kleer 1991). Likewise,
in the case of determining explanatory diagnoses in
the context of the situation calculus, probabilities will
serve us well in identifying preferred explanatory di-
agnoses. Unfortunately, probability measures are not
always available and the correct treatment of probabil-
ities in our situation calculus framework is only now
being developed. In this paper, we limit our discus-
sion to what we refer to as a chronologically simple
preference criterion.

In our chronologically simple preference criterion, we
prefer diagnoses that are relativized to situations
reached without performing any extraneous actions.
Note that this preference criterion is syntactic in na-
ture, relying on the notion of a primitive action as a
unit measure.

Definition 3 (Simpler)

Given a sequence of actions HIST = [ay,...,a,],
define ACTS(HIST) to be the set {a1,...,an}, and
LEN(HIST) to be the the length of the sequence of
actions composing HIST.

Thus, given HISTA = Jay,...,a,] and HISTB
= [by,...,by], situation Sy = do(HISTA,Sy) is
simpler than situation Sp = do(HISTB,Sy) iff
ACTS(HISTA) - ACTS(HISTB) and
LEN(HISTA) < LEN(HISTB).

Definition 4 (Chronologically Simple Diag.)

FE is a chronologically simple explanatory diagnosis
for system (X, HIST, COMPS, OBSp) iff E is
an explanatory diagnosis for the system, and there
s no explanatory diagnosis E' such that situation
s = do(HIST - EI,SO) ts simpler than situation
S =do(HIST - E,Sy).

We might further distinguish this criterion to pre-
fer chronologically simple explanatory diagnoses com-
prised solely of actions performed by nature.



Finally, observe that the characterization of explana-
tory diagnosis just presented assumes that E and
OBSp occur after HIST. While this assumption is
not critical to characterizing explanatory diagnoses, it
acts as a form of preference, facilitating computation

of E.

5 EXPLOITING REGRESSION

In the previous section, we provided a characterization
of explanatory diagnosis. We observed that comput-
ing an explanatory diagnosis for system (X, HIST,
COMPS, OBSF) is analogous to generating a plan
to achieve a goal OBSFp(s) starting with axioms X
and situation do( HIST, Sp). At first glance, the gen-
eral problem of computing explanatory diagnoses does
not look very promising for at least three reasons: the
second-order induction axiom in X¢,un4, the potential
incompleteness of the initial database, and the poten-
tially large size of the situation search space. In this
section, we show how diagnoses can be computed by
exploiting regression (Waldinger 1977). We are able to
exploit regression as a direct result of the embedded
completeness assumption inherent in our representa-
tion scheme. In this context, regression is a recursive
rewriting procedure that we use to reduce the nest-
ing of the do function in situation terms, or to elimi-
nate the Poss predicate. We show that generating ex-
planatory diagnoses reduces to regression followed by
entailment with respect to the initial database. Com-
putationally, the merit of regression is that it searches
backwards through the situation space from the obser-
vation rather than searching forward from the initial
database. Under the assumption that the observation
consists of fewer literals than the initial database, re-
gression will make for more efficient search. Observe
that Prolog’s backwards chaining mechanism achieves
the substitution performed by regression.

Following directly in the spirit of previous work by Re-
iter ((Reiter 1991), (Reiter 1992)) and more recently
(Reiter 1998) on the exploitation of regression for plan-
ning and query answering, we first define two regres-
sion operators, R* and Rposs.

Definition 5 (Regression Operator R*) Given «
set of successor state axioms, Tss composed of az-
ioms of the form Poss(a,s) D [F(do(a,s)) = @p],
R*[¥], the repeated regression of formula U with re-
spect to successor state axioms Tsg 1s the formula that
1s obtained from W by repeatedly replacing each fluent
F(do(a,s)) in ¥ by ®p, until the resulting formula
makes no mention of the function symbol do.

For example,
R*[on(Pmp, do(turn_on_manual_fill, do(turn_on_pmp, Sp))]
R*[(turn_on_manual_fill = turn_on_pmp)
(on(Pmp, do(turn_on_pmp, Sp))

> < |l

(turn_on_manual_fill # turn_of f_pmp))]

R*[false V (on, (Pmp, do(turn_on_pmp, So)) A true)]

= R*[(turn_on_pmp = turn_on_pmp)

V (on(pmp, So)) A (turn_on_pmp # turn_of f_pmp))]

= ftrue

We can similarly define a Poss regression operator over
the set of action precondition axioms, T4p. This re-
gression operation rewrites each occurrence of the lit-
eral Poss(a,s) by 14 as defined in the action precon-
dition axioms.

Definition 6 (Regression Operator Rp,s;)

Given a set of action precondition axioms, Tap com-
posed of axioms of the form Poss(A(Z),s) = Mg,
R poss W] is the formula obtained by replacing each oc-
currence of predicate Poss(A(¥),s) by M4. All other
literals of W remain the same.

Reiter proved soundness and completeness results for
regression applied to a theory with no state constraints
(Theorem 1, Theorem 2, (Reiter 1992)). In the the-
orem below, we prove soundness and completeness
results for our representation scheme which includes
state constraints. The theory ¥;,;; mentioned in the
theorem below is a subset of ¥ containing only infor-
mation about the initial situation, and no information
about successor situations. It also excludes the induc-
tion axiom of Xound.

Theorem 1 (Soundness & Completeness)
Gen

® Yinit, a subset of the situation calculus theory X,
such that X;,;: = Yuns A TSO A TSSE A Taomain N\
Tuna,
where Yyns ts a subset of Xiouna containing the
set of unique names axioms for situations.

e a sequence of ground actions, s_HIST such that
Yinit AN R* [Rposs [Poss(s-HIST, Sp)]] is satis-
fiable.

o (Q(s), a simple formula whose only free variable is
the situation variable s.

Suppose S = do(s_HIST, Sy), then

o ¥ = Q(do(s-HIST, Sy)) iff
Em“ |: R* [Q(dO(S_HIST, So))],

o X = Poss(s-HIST, Sy) iff
Yinit |E R*[Rposs[Poss(s_-HIST, Sp)]],



e YAPoss(s_HIST, So)ANQ(do(s_-HIST, Sy)) is sat-
isfiable iff Tinit AR*[Rposs[Poss(s-HIST, Sp)]] A
R*[Q(do(s_-HIST, Sy))] is satisfiable.

Thus, assuming situation s is a possible situation and
exploiting regression, (s) holds at situation s iff its
regression is entailed in the initial database. The
beauty of Theorem 1 is that it enables us to gener-
ate explanatory diagnoses via regression followed by
theorem proving in the initial database, without the
need for the second-order induction axiom in X¢,ung4.
i, From these results, we can characterize explanatory
diagnosis with respect to regression.

Corollary 1 (Expl. Diagnosis w/ Regression)
The sequence of actions F = [ay,...,ar] is an ez-
planatory diagnosis for system (X, HIST, COMPS,
OBSF) iff

o Yinit = R¥[Rposs[Poss(HIST - E, Sp)]]
A R*[OBSp(do(HIST - E, Sp))].

6 EXPLOITING THE TASK

In the previous section we showed that we could ex-
ploit regression to simplify the computation of ex-
planatory diagnoses. A remaining source of difficulty
in generating explanatory diagnoses is that our search
space may be large and our initial database may be in-
complete. An incomplete initial database both under-
constrains our search problem, and precludes us from
using certain planning machinery, such as STRIPS
(Fikes and Nilsson 1971), that assumes a complete or
near-complete initial database (Lin and Reiter 1995).
In this section we show how to exploit features of di-
agnosis problems to further assist in the generation of
explanatory diagnoses. In particular, we propose to
1) make assumptions regarding our domain, 2) relax
our criteria for explanatory diagnoses, and 3) verify
rather than generate diagnoses. An additional means
of simplifying our computational task is to use likeli-
hoods of actions and action sequences to focus search
for explanatory diagnoses. Detailed discussion of this
option is beyond the scope of this paper.

6.1 ASSUMPTION-BASED DIAGNOSES

In diagnostic problem solving it is common to make
further assumptions that are consistent with what we
know of the world. For example, we may assume that
in the absence of information to the contrary, com-
ponents are operating normally, or certain properties
hold of the world. To support such assumption-based
reasoning, we define the notion of an assumption-based
explanatory diagnosis.

Definition 7 (Assumption-based Expl. Diag.)
Given an assumption H(S) relativized to ground sit-

uation S such that

o Sy <*S<do(HIST - E,Syp),

o Y AH(S) is satisfiable, and

e YAH(S) [ Poss(HIST, Sy).
An assumption-based explanatory diagnosis for system
(X, HIST, COMPS,OBSF) under assumption H(S)

is a sequence of actions E = [ay, ..., ag] such that,

e YA H(S) = Poss(HIST - E,Sp)
A OBSp(do(HIST - F,Sp)).

In Example 2 of the previous section, we did not have
complete information about the initial state of our sys-
tem. It could actually have been the case that obser-
vation —filling was true in Sp, i.e., = filling(Sp), but
since it was not entailed by X, the empty action se-
quence was not proposed as a valid explanatory diag-
nosis, and we were forced to conjecture a sequence of
actions to account for our observation. If we assume
= filling(Sy), then the empty sequence of actions is
indeed an assumption-based explanatory diagnosis.

In generating explanatory diagnoses, we may want
to make a priori assumptions about the world, con-
join these assumptions to our theory and then try
to compute our explanatory diagnoses. For exam-
ple, we may wish to assume that all components
are operating normally in Sy. This would be
achieved by making H(S) in our definition above
equal to A cconmps 7AB(¢, So) (ie., ~AB(Pmp, So)
A = AB(Pwr, Sp)). Similarly, we may wish to assume
that the observation, OBSF is true in do(HIST, Sy).
In our example above, this would mean assuming
= filling(So). In other instances, we might want H(S)
to equal a what s wrong diagnosis that we are cur-
rently entertaining, relativized to a previous situation,

e.g., AB(Pmp, Sp).

In still other instances, we may not want to fix our
assumptions a priori but rather make the minimum
number of assumptions necessary to generate a chrono-
logically simple explanatory diagnosis. Such assump-
tions might be limited to a distinguished set of literals
which the domain axiomatizer considers to be legiti-
mately assumable (e.g., AB fluents). There might also
be a partial ordering on such assumables fluents.

*Notation: The transitive binary relation < defined
in Yjfouna further limits our situation tree by restricting
the actions that are applied to a situation to those whose
preconditions are satisfied in the situation. Intuitively, if
s < sl, then sand s are on the same branch of the tree with
s closer to So than sl. Further, sl can be obtained from s
by applying a sequence of actions whose preconditions are
satisfied by the truth of the Poss predicate.



The distinction regarding when we make our assump-
tions affects the machinery by which we compute
assumption-based explanatory diagnoses. If assump-
tions are made prior to computation we simply conjoin
the regression of the assumption to the initial database
and use regression and theorem proving as we would
for generating normal explanatory diagnoses. When
assumptions are interleaved with computation, gener-
ating an assumption-based explanatory diagnosis re-
quires abduction.

In a theorem prover, abduction is generally imple-
mented as proof-tree completion, i.e., by resolving
dead-ends of proof trees with abducible literals. To
generate an explanatory diagnosis, an abductive the-
orem prover would attempt to prove OBSp(s). If an
attempted proof failed because it dead-ended on a lit-
eral or literals that were assumable, then these would
be abduced and the proof continued. We have not yet
implemented such an abduction engine for our situa-
tion calculus system. It is interesting to note that in
the context of planning, (Shanahan 1997) has used ab-
duction to implement a partial order planner for the
event calculus. In contrast to the deductive approach
of the situation calculus, this planner abduces actions
and the relative order of certain actions.

6.2 POTENTIAL DIAGNOSES

In addition to making assumptions to help complete
our theory, we can also facilitate computation by relax-
ing the criteria for defining an explanatory diagnosis.
To this end, we observe that the requirement in Def-
initions 2 and 7 that ¥ | Poss(HIST - E, Sg) may
be too stringent in the case of an incomplete initial
database. That is, it may not be reasonable to require
that we know that an action is possible in a situa-
tion that is incompletely specified. We may prefer to
consider explanatory diagnoses, where the theory al-
lows us to consistently assume that the preconditions
for HIST or for HIST - E hold, but not necessarily
that they are entailed by our theory. To this end, we
propose the following alteration to our definition of
explanatory diagnoses, Definition 2. A comparable re-
finement can be made to our definition of assumption-
based explanatory diagnosis, Definition 7.

Definition 8 (Potential Explanatory Diagnosis)

A potential explanatory diagnosis for system (I,
HIST, COMPS, OBSF) is a sequence of actions F
= [a1,. .., ax] such that,

e X A Poss(HIST - FE,5Sp) is satisfiable, and

e X A Poss(HIST - F,5S) E
OBSp(do(HIST - E,Sp)).

Note that H ST is a sequence of actions that we know
to have been performed.Thus, the preconditions for
each of the actions in HIST are true in the correspond-
ing situations. This provides us with further informa-
tion concerning the truth values of fluents at various
situations, helping to constrain our search.

6.3 VERIFYING LIKELY DIAGNOSES

To further address the problem of generating explana-
tory diagnoses, we propose exploiting domain infor-
mation and maintaining a library of (assumption-
based) explanatory diagnoses, indexed by observations
and/or situation histories. With candidate diagnoses
in hand, the problem of computing explanatory diag-
noses reduces to a verification problem, rather than
a generation problem. Given a system (X, HIST,
COMPS, OBSF), and a candidate diagnosis F, such
that S = do(HIST-FE,Sy), we are interested in verify-
ing that E is indeed a diagnosis of the system. Verify-
ing a candidate diagnosis is simply a query evaluation
problem. It can be accomplished by regression and
theorem proving in the initial database, as per Theo-
rem 1 above.

Example 3

Given the system (X, [ ], {Pwr, Pmp}, —filling(s)),
and the candidate diagnosis E=[pwr_failure], E can
be verified to be an explanatory diagnosis with respect
to the system by evaluating the query

R*[Rposs[Poss(do(pwr_failure, Sp))]]
A R* [~ filling(do(pwr_failure, Sp))]

with respect to the initial database, Xinit.

7 RELATED WORK

This work has been influenced by formal character-
izations of diagnosis for systems without an explicit
representation of actions (e.g., (de Kleer et al. 1992),
(Reiter 1987), (Console and Torasso 1991)) and by Re-
iter’s work on the frame problem and the problem of
temporal projection (Reiter 1992) and (Reiter 1998).
Aside from previous work by the author (e.g., (McIl-
raith 1997), (Mcllraith 1997a)), research to date has
not explicitly addressed the problem of integrating a
rich representation of actions into diagnostic reason-
ing. As such, there is little related work that exploits
a comprehensive representation of action.

A recent notable exception is Thielscher’s work on dy-
namic diagnosis (Thielscher 1997). Thielscher’s basic
representation is similar in spirit to ours, though he
does not use the situation calculus and he does not



exploit an axiomatic solution to the frame, ramifica-
tion and qualification problems. Like us, he adopts the
basic MBD ontology, employs an action theory to rep-
resent actions, and represents certain state constraints
causally to capture the indirect effects of actions as dic-
tated by the system description of the device. Where
he differs is in the actual task he is performing, and
the assumptions he makes. To use terminology dis-
cussed here, he is computing what is wrong diagnoses.
Given an action history and some observed aberrant
behaviour, Thielscher conjectures that certain compo-
nents must be abnormal to account for the observed
behavior. He is not conjecturing actions. To simplify
computation, he assumes that all components are ini-
tially normal, and he uses a priori likelihood of fail-
ure to select most likely candidate diagnoses. While
his paper examines what is wrong diagnoses, rather
than what happened diagnoses, clearly the two are in-
timately related. (Mcllraith 1997) discusses the inter-
relationship between these two types of diagnosis in
the context of the situation calculus framework de-
scribed here.

The research on temporal diagnosis and diagnosis of
dynamic systems originating in the diagnosis research
community (e.g., (Brusconi et al. 1995), (Console et
al. 1994), (Hamscher 1991), (Friedrich and Lackinger
1991), (Lackinger and Nejdl 1991), (Dressler 1994))
and in particular (Cordier and Thiébaux 1994) is also
loosely related. (Brusconi et al. 1995) recently pro-
vided a characterization of temporal abductive diag-
nosis together with algorithms for computing these di-
agnoses under certain restrictions. Building on ear-
lier work (Console et al. 1994), they decouple atem-
poral and temporal diagnoses, using SD to represent
the behaviour of the atemporal components and tran-
sition graphs to represent the temporal components.
The later work uses temporal constraints to represent
the temporal components. Also related is the work
on event-based diagnosis by (Cordier and Thiébaux
1994). Their work is similar in motivation to our work
on explanatory diagnosis, viewing the diagnosis task
as the determination of the event-history of a system
between successive observations. While this work is
related, the representation of action i1s impoverished.
It does not provide a comprehensive representation of
the preconditions for and the effects of actions, nor
does it address the frame, ramification and qualifica-
tion problems. In particular, their notion of actions
is simply an explicit transition systems. This is suffi-
ciently expressive for their application but the lack of
a compact representation proves problematic.

In the area of reasoning about action, research on tem-
poral explanation and postdiction has an interesting

relationship to this work (e.g., (Crawford and Ether-
ington 1992), (Baker 1991)). Of particular note is
Shanahan’s research (Shanahan 1993). While Shana-
han also proposes the situation calculus as a repre-
sentation language for axiomatizing his domain, he
does so without an axiomatic solution to the frame
and ramification problems. As such these problems
must be addressed coincidentally with generating ex-
planatory diagnoses. In contrast, our characterization
of explanatory diagnosis, with its axiomatic solution to
the frame and ramification problems, enables simpler
characterization and computation of temporal expla-
nation.

8 SUMMARY

The results in this paper provide contributions to
model-based diagnosis and knowledge representation.
Our concern in this paper was, given a system that
affects and can be affected by the actions of agents,
and given some observed (aberrant) behaviour, how
do we capture the notion of what happened, 1.e., how
do we go about conjecturing a sequence of actions that
account for the behaviour we have observed.

We addressed this problem by providing a mathemati-
cal characterization of the notion of explanatory diag-
nosis in the context of a rich situation calculus repre-
sentation, proposed in (Mcllraith 1997a). Our char-
acterization made apparent the direct relationship of
explanatory diagnosis to the planning task, and in par-
ticular to Green’s notion of deductive plan synthesis.
However, generating explanatory diagnoses is actually
akin to planning in the face of state constraints and
a potentially incomplete initial database. Our repre-
sentation scheme addressed the challenges presented
by state constraints by providing an axiomatic a pri-
ori solution to the frame, ramification and qualifica-
tion problems. This enabled us to extend Reiter’s re-
sults on the soundness and completeness of regression
and to show that we can generate explanatory diag-
noses by regression followed by theorem proving in
the initial database. A remaining difficulty was that
our initial database is often incomplete. Exploiting
features of diagnosis problems, we proposed the no-
tions of assumption-based and potential explanatory
diagnosis, to allow for the conjectured sequences of
actions that constitute a diagnosis to be predicated on
some other assumptions we choose to make about the
world.  Finally, we proposed exploiting a library of
precomputed likely diagnoses, indexed by context and
observations. This enabled us to verify, rather than
generate explanatory diagnoses.

In our dissertation work (McIlraith 1997), we have also



addressed the complementary problem of conjecturing
what is wrong diagnoses. In future work we examine
the application of GOLOG procedures (Levesque et al.
1997) to diagnostic problem solving.
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