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In dynamic domains, the state of the world may change in unexpected ways during the

generation or execution of plans. Regardless of the cause of such changes, they raise the

question of whether they interfere with ongoing planning efforts. Unexpected changes

during plan generation may invalidate the current planning effort, while discrepancies

between expected and actual state of the world during execution may render the executing

plan invalid or sub-optimal, with respect to previously identified planning objectives.

In this thesis we develop a general monitoring technique that can be used during both

plan generation and plan execution to determine the relevance of unexpected changes and

which supports recovery. This way, time intensive replanning from scratch in the new

and unexpected state can often be avoided. The technique can be applied to a variety of

objectives, including monitoring the optimality of plans, rather then just their validity.

Intuitively, the technique operates in two steps: during planning the plan is annotated

with additional information that is relevant to the achievement of the objective; then,

when an unexpected change occurs, this information is used to determine the relevance

of the discrepancy with respect to the objective.

We substantiate the claim of broad applicability of this relevance-based technique

by developing four concrete applications: generating optimal plans despite frequent, un-

expected changes to the initial state of the world, monitoring plan optimality during

execution, monitoring the execution of near-optimal policies in stochastic domains, and
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monitoring the generation and execution of plans with procedural hard constraints. In

all cases, we use the formal notion of regression to identify what is relevant for achieving

the objective. We prove the soundness of these concrete approaches and present empir-

ical results demonstrating that in some contexts orders of magnitude speed-ups can be

gained by our technique compared to replanning from scratch.
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Chapter 1

Introduction

1.1 Motivation

In artificial intelligence, the problem of classical plan generation is that of finding a

sequence of actions that, upon execution, will transform a given initial state of the world

into a state satisfying articulated goal conditions. In theory, if a model of the world,

describing the way actions change the world, is given, one can solve this problem in a

variety of ways, the most common of which involve some sort of bounded search through

the set of all action sequences. The resulting plan could then be executed by any agent

capable of executing the actions (e.g., a physical robot, or a human).

In practice, things can be quite different. In this thesis we study the problem of

generating and executing optimal plans in highly-dynamic environments under real-time

constraints. Such environments frequently change independent of the actions taken by

the agent, and can often only be observed partially or through noisy sensors. This makes

it hard, if not impossible, to create accurate and precise models of how the environment

evolves over time and in particular in response to the actions executed by the agent. As

a result, discrepancies between assumed and observed states of the world are frequent

during both plan generation and plan execution. During plan generation, such discrep-
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Chapter 1. Introduction 2

ancies mean that the planning effort thus far may have been invalidated. During plan

execution, they bring into question whether the executing plan remains valid (i.e., pro-

jected to reach the goal) and where relevant, optimal with respect to a given measure of

preference between possible plans.

To effectively monitor plan generation and execution, a system needs to continuously

identify relevant discrepancies, and take ameliorative action when necessary. In many

cases the ameliorative action is to replan starting in the current state, but often a signifi-

cant amount of previous planning effort can be recovered by modifying existing planning

data structures to reflect the new state.

Effective execution monitoring requires a system to quickly discern between cases

where a detected discrepancy is relevant to the successful execution of a plan and those

cases where it is not. Algorithms dating back as far as 1972 (e.g., PLANEX, the plan

execution algorithm deployed on Shakey the Robot [Fikes et al., 1972]) have exploited

the idea of annotating plans with conditions that can be checked at execution time to

confirm the continued validity of a sequential plan. In this thesis, we are interested in a

variety of more difficult and unsolved monitoring tasks, including the monitoring of plan

optimality, monitoring the generation of optimal plans in highly-dynamic environments,

and monitoring the execution of policies, executing in stochastic domains. To this end, we

generalize the existing approaches to monitoring plan validity, and formulate an abstract

monitoring approach. From this abstract approach, we then derive a number of concrete

implementations to these advanced monitoring problems. Effectively, we provide moni-

toring techniques to cover the complete life cycle of a plan, from the first moment of its

generation process, to the point of complete execution.

The type of the objective plays a major role in the implementation of appropriate

monitoring, and in practice users may have a variety of constraints the system needs to

satisfy. These objectives often go beyond classical planning, and often involve temporally

extended hard or soft constraints. System designers often wish to control their planning
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agent (e.g., a robot) in more direct ways than through the simple statement of final

state goals. Often it is desirable to prescribe or disallow certain types of behavior.

Different approaches for achieving this exist in the literature, some of which are state-

centric and often based on temporal logic (e.g., [Bacchus and Kabanza, 1998]), while

others provide a procedural language for expressing such temporally extended constraints

(e.g., [Levesque et al., 1997]). These types of control constrain the search for a plan to

only that subset of the space of all plans that conform to this control. When executing

the generated plans, however, it is necessary to verify that these constraints continue to

be met, when discrepancies occur. We provide a method that makes the developed suite

of monitoring techniques applicable to this setting as well.

Our work is motivated in part by our practical experience with the fast-paced RoboCup1

domain where teams of physical robots play soccer against each other. In RoboCup, the

state of the world is typically observed 10 times per second, each time raising the question

of whether to continue with the current plan or to replan. Verifying plan validity and

optimality must be done quickly because of the rapidly changing environment. Currently,

there are no techniques to distinguish between relevant and irrelevant discrepancies with

respect to optimality, and so replanning is frequently done unnecessarily or discrepancies

are ignored altogether, ultimately resulting in plan failure or sub-optimal performance.

In the widest sense, the described problems regard planning under uncertainty. The

common approach for dealing with uncertainty in the literature is to create conditional

plans that cover all possible contingencies (cf. Section 8.2). Contingency planning is

time intensive, and its complexity generally grows with the number of contingencies. In

particular in continuous domains the number of contingencies can be large or even infinite.

We therefore argue that increasing the robustness of plans through effective monitoring

is often a more viable alternative in these practically interesting domains. Particularly

in situations where decisions need to be made in real time, considering all contingencies

1URL: www.robocup.org

www.robocup.org
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may not be feasible. In many practical situations, the most effective approach may

therefore be a combination of contingency planning and monitoring. We implement such

an approach in Chapter 6.

In the next section we describe the larger framework in which we understand our algo-

rithms to operate. This serves the purpose of both providing the necessary context and

drawing connections to related problems that are not addressed in this thesis. Following

that, we outline the structure of this document and enumerate our contributions.

1.2 Framework

We describe a framework for plan generation and plan execution including monitor-

ing, and briefly compare it to previous framework specifications. In our framework, we

distinguish two main components, one for plan generation and execution, and one for

monitoring. This structure is depicted in Figure 1.1. The entities, all of which have

Model

State Evaluation Recovery

Monitoring

State EstimationObservations

Initial State + Goal + Constraints

Plan Generation Plan Execution

Figure 1.1: A framework for plan generation and plan execution including monitoring.

Dotted arrows indicate data flow, solid arrows control flow, which may include data as

well.

access to a model of the environment, are as follow:
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Plan Generation: Given an initial state, a goal specification, and, optionally, addi-

tional soft and hard constraints, a planner generates a plan satisfying the objective,

i.e., a plan that is expected to achieve the goal (valid), and which, if soft constraints

(preferences) are given, is optimal with respect to these. The framework is agnostic

about the precise planning paradigm, and, as we will see, the abstract monitor-

ing approach we propose is applicable to a variety of paradigms and constraint

specifications. In this thesis, we concentrate on forward search based planners.

But, again, the proposed abstract approach is conceptually not limited to this plan

generation technique.

Plan Execution: We assume that there is an agent capable of executing the actions

prescribed by the plan. This agent could, for instance be a physical robot, a software

bot acting over the semantic web, or a human. This thesis is not concerned with the

precise details of how to execute each action, and we assume that the termination

of actions is observable by the agent.

State Estimation: This is the task of estimating the actual state, based on the obser-

vation history and the model, possibly also determining a sequence of events that

produced this state. We assume a situated agent, that is, an agent performing

actions in a (dynamic) environment, thereby causing changes therein and receiving

sensory input from this environment. This input can appear in response to active

sensing requests or be delivered to the passive agent at a certain frequency, or upon

the occurrence of certain events. Typically, these observations do not reveal the

complete state of the world.

Which aspects of the current state one aims to estimate is determined by the subse-

quent steps, State Evaluation and Recovery. In the context of execution monitoring,

state estimation is typically tailored towards detecting the discrepancies between

what was predicted by the model and what was actually observed in the real world.
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We do not directly contribute to this problem in this thesis, but for completeness

provide an overview of existing approaches that are relevant to the problem of state

estimation in Section 8.3.

State Evaluation: When executing a plan, this is the task of deciding whether the

current state of the world has changed in a way that prevents the executing plan

from achieving its objective (for instance, reaching the goal in an optimal way), or

whether some sort of replanning is necessary. Similarly, during plan generation, the

task is to decide whether the current planning effort remains valid in the currently

estimated state of the world, or whether it needs to be revised.

The criteria for these decisions may vary. While in the literature almost exclusively

the continued validity of the current plan was evaluated in the current state, it is

often also desirable to decide whether the current plan is still optimal, or continues

to adhere to additional constraints. This step effectively evaluates the relevance

of any discrepancy noted between the expected state of the world and the one

determined through state estimation. In the artificial example domains found in

the planning literature, generally only those features of the world that matter to

the problem are modeled. In these cases virtually any discrepancy between the

expected and actual state of the world matters, i.e., affects the plan’s ability to

meet the objectives. But this is not so for many real-world domains. The reason is

two fold: Since modeling action outcomes precisely can be very difficult and many

state variables are real valued, it is often the case that expectations and observations

only differ slightly and in particular are qualitatively the same. Secondly, we often

face a lot of unpredictable exogenous events, most of which are unrelated to the

problem the agent is facing and thus do not matter. But since still some of these

may actually matter in certain situations, we cannot leave these details out of

consideration by pruning them from the model entirely.
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Recovery: Recovery is an alternative to replanning from scratch. It aims to modify

and reuse the results of previous planning efforts, in order to minimize the time

spent in devising a new plan that meets the objective. The questions involved here

are how this can be performed as quickly as possible and what the constraints are.

Many existing systems aim at repairing a failed plan quickly, ignoring the quality

of the plan and following the intuition that plan-repair is faster than replanning

from scratch. The adaptive plan generation method we propose generalizes from

this problem, guarantees the produced plans to be optimal rather than just valid,

and hence contributes to this problem as a special case as well. In the related work

chapter we further review existing approaches to recovery.

In this thesis, we focus on the Plan Generation, State Evaluation, and Recovery steps,

and their intimate relationships.

1.2.1 Comparison To Existing Frameworks

The monitoring component of the presented framework is similar and indeed inspired by

that of [Bjäreland, 2001]. In our framework Observations replace Bjäreland’s “Situation

Assessment” function, and we replace his “Discrepancy Detection” and “Discrepancy

Classification” steps into one State Estimation step. Bjäreland’s approach is driven by

the notion of a discrepancy between what was expected and what was observed. However,

we believe that it is not always necessary to determine the exact discrepancy and also that

often a significant amount of state estimation has to take place to determine it precisely.

Our approach seems in particular in probabilistic settings more appropriate where a

discrepancy may not be well defined. As a major difference, Bjäreland’s framework

lacks the State Evaluation step, a step we consider crucial for the overall success and

performance of the system.

In [De Giacomo et al., 1998] the authors propose a framework formalized in the sit-

uation calculus for monitoring the execution of high-level robot programs specified in
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the Golog agent programming language [Levesque et al., 1997] (also cf. Section 7.2). In

this framework the authors assume to observe exogenous actions themselves, hence not

addressing the problem of state estimation. The monitor is defined through a predicate

Monitor(δ, s, δ′, s′) and invoked after every step of the program. Intuitively, given the

currently executing program δ and currently assumed situation s, Monitor outputs a new

situation term s′ to reflect the potential occurrence of an exogenous action, and mod-

ifies the program δ as appears adequate: If another predicate Relevant(δ, s, s′) holds,

a recovery predicate is called which may modify the remaining program δ to recover

from the discrepancy. Otherwise the program remains unchanged. While the focus of

[De Giacomo et al., 1998] is on the formal specification of the framework, the authors do

propose a specific, but simple, monitor. The Relevant predicate, corresponding to the

State Evaluation step of our framework, is realized by simulating the remaining program

δ in the new situation s′. If this simulation succeeds, that is the program can successfully

be executed in the new situation, the discrepancy is irrelevant, otherwise it is relevant.

Recovery is defined as finding a shortest repair program p (sometimes called a patch (cf.

[Eiter et al., 2004])) for δ, such that the sequence of the two programs, p; δ, is expected

to successfully execute as verified by simulation (forward projection). This suggests that

all discrepancies are malignant.

Finally, [Fichtner et al., 2003] formalized a similar framework based on the fluent

calculus [Thielscher, 1998] and implemented it on a robot using the fluent calculus im-

plementation FLUX [Thielscher, 2005].

Since the focus of this thesis is not on frameworks for formalizing the problem of exe-

cution monitoring, but on methods for addressing it, we do not consider the advantages

and limitations of these frameworks in more detail.
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1.3 Outline and Contributions

We employ Reiter’s situation calculus [Reiter, 2001] to formalize our approach. Chapter

2 provides a review. Nevertheless, the majority of approaches developed in this thesis is

applicable to any action language for which regression can be defined.

We begin the technical part of this document by reviewing existing systems for mon-

itoring plan validity found in the literature, and formally characterizing a common tech-

nique deployed by these systems as goal regression (Chapter 3). We then generalize

this technique into a broadly applicable abstract approach for monitoring that can be

used to not only monitor plan validity, but plan optimality as well, forming the thesis of

this document. Intuitively, the approach prescribes to first identify what is relevant to

the achievement of the planning objective and annotate the plan with this information.

Then, when a discrepancy between the expected and the actual state of the world occurs,

this information can be used to determine the discrepancy’s relevance very efficiently, and

support recovery if needed. In subsequent chapters we substantiate this thesis by devel-

oping four concrete instances of this abstract approach for a list of advanced monitoring

problems beyond the monitoring of basic plan validity. We describe these in more detail

in the sub-section to follow. While in each of these chapters, we review previous work

that directly relates to the problem addressed in that chapter, we describe a list of work

that is more abstractly related to the general monitoring problem in Chapter 8. We

conclude in Chapter 9 and identify possible directions for future work.

1.3.1 Contributions

Monitoring plan optimality during execution (Chapter 4).

First, we apply the approach to the notion of plan optimality and propose an al-

gorithm to monitor plan optimality during execution that is sound but incomplete

with respect to our specification. Prior to execution time we annotate each step



Chapter 1. Introduction 10

of our optimal plan by sufficient conditions for the optimality of the plan. These

conditions correspond to the regression of the evaluation function (cost + heuristic)

used in planning over each alternative to the currently optimal plan. At execution

time, when a discrepancy occurs, these conditions can be reevaluated much faster

than replanning from scratch by exploiting knowledge about the specific discrep-

ancy. This corresponds to the State Evaluation step of our framework (Figure 1.1,

p. 4), and regards the decision between continuing execution, or returning to plan

generation, in case the plan has become sub-optimal or invalid. We have imple-

mented our algorithm and tested it on simulated execution failures in well-known

planning domains. Experimental results yield an average speed-up in performance

of two orders of magnitude over the alternative of replanning, clearly demonstrating

the feasibility and benefit of the approach.

Generating optimal plans in highly dynamic environments (Chapter 5).

Second, we show that the approach can also be used to monitor the plan generation

process itself, which is necessary since generating optimal plans in highly dynamic

environments is challenging as well. Plans are predicated on an assumed initial

state, but this state can change unexpectedly during plan generation, potentially

invalidating the planning effort. We make three contributions: (1) We propose

a novel algorithm for generating optimal plans in settings where frequent, unex-

pected events interfere with planning. By implementing the abstract approach of

this thesis, it is able to quickly distinguish relevant from irrelevant state changes,

and to update the existing planning search tree if necessary. This corresponds to

the Recovery step of the framework of Figure 1.1. We prove the correctness of

this approach. (2) We argue for a new criterion for evaluating plan adaptation

techniques: the relative running time compared to the amount of change. This is

significant since during recovery more changes may occur that need to be recovered

from subsequently, and in order for this process of repeated recovery to terminate,
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recovery time has to converge to zero. (3) We show empirically that our approach

can converge and find optimal plans in environments that would ordinarily defy

planning because of their high dynamics.

Monitoring policy execution in stochastic domains (Chapter 6).

Third, we demonstrate the broad applicability of the approach, by providing the

details of its use in decision-theoretic planning. In particular, we consider plan

generation and execution in stochastic domains with (a) exogenous events, (b) an

incorrect model, and/or (c) incomplete forward search (i.e., discarding low probabil-

ity outcomes). We consider forward search-based planning algorithms for Markov

Decision Processes (MDPs), exploring the reachable state space from a given initial

state. Under such circumstances, an executing policy often finds itself in an unex-

pected state, bringing into question the continued optimality of the policy being

executed (or near-optimality in the case where the optimal policy was approxi-

mated). Again, replanning in this unexpected state is a naive and costly solution,

but is often unnecessary. Using our approach we identify the subset of each ex-

pected state that is critical to the optimality of a policy. With this information in

hand, we can often avoid replanning when faced with an unexpected state. Our

analysis offers theoretic bounds on optimality in certain cases as well as empirical

results demonstrating significant computational savings compared to replanning

from scratch.

Generating and executing plans with procedural control (Chapter 7).

Finally, we show how the approach can be applied to the problem of monitoring

the continued satisfaction of procedural hard constraints during plan execution as

well.

ConGolog is a logical agent programming language and is defined in the situation

calculus. ConGolog agent control programs were originally proposed as an alterna-
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tive to planning, but have also more recently been proposed as a means of providing

domain control knowledge for planning. Unfortunately, in order to reason about

the satisfaction of the hard constraints imposed by a ConGolog program, a system

requires special-purpose machinery. This not only prevents state-of-the-art plan-

ners to easily use search control expressed in this language, but also hinders the

direct application of the abstract monitoring approach of this thesis, in order to

monitor the satisfaction of these constraints during execution.

We present a possible solution to these shortcomings. We present a compiler that

takes a ConGolog program and produces a new basic action theory of the situation

calculus whose executable situations are all and only those that are permitted by

the program. This compilation has several theoretical and practical merits, and

in particular allows systems to reason about ConGolog programs without any ad-

ditional reasoning machinery. This includes the abstract monitoring approach of

this thesis. In terms of the framework of Figure 1.1, the compilation generates

the proper input to the planner (model, initial state, goal state), expressed in a

basic action theory. Using this action theory as input, one can immediately apply

all monitoring approaches proposed above. In particular, it is possible to gener-

ate plans that satisfy the procedural hard constraints expressed by the program,

and monitor their continued satisfaction when discrepancies between expected and

actual state of the world occur during execution.



Chapter 2

Background

2.1 The Situation Calculus

The situation calculus is a family of many-sorted logical languages for specifying and

reasoning about dynamical systems. It was first proposed by McCarthy [1963] and later

significantly extended by Reiter [2001], most importantly by providing a solution to the

frame problem (see below). In this thesis we use Reiter’s situation calculus.

Its basic elements are situations, primitive actions (sort A), and fluents (sort F).

A situation is a history of the primitive actions performed from a distinguished initial

situation S0. The function do(a, s) denotes the situation resulting from performing action

a in situation s, inducing a tree of situations rooted in S0. Fluents are relations and

functions that take a situation as their last argument (e.g., F (~x, s)), and are used to

define the state of the world.

For readability, action and fluent arguments are generally suppressed. Also,

do(an, do(an−1, . . . do(a1, s))) is abbreviated to do([a1, . . . , an], s) or do(~a, s) and we de-

fine: do([ ], s)
def
= s.

13
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2.1.1 Basic Action Theories

A basic action theory in the situation calculus, D, is comprised of the following sets of

axioms [Levesque et al., 1998]:

• Σ the set of domain independent foundational axioms of the situation calculus,

including one second-order induction axiom required to properly define the tree of

situations. These axioms are as follows:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2,

(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s),

¬s ⊏ S0,

s ⊏ do(a, s′) ≡ s ⊑ s′.

Here the relation ⊏ provides an ordering on situations, and s ⊑ s′ abbreviates

s = s′ ∨ s ⊏ s′.

• Dss, successor state axioms, provide a parsimonious representation of frame and ef-

fect axioms under an assumption of the completeness of the axiomatization. There

is one successor state axiom for each fluent, F ∈ F , of the form F (~x, do(a, s)) ≡

ΦF (~x, a, s), where ΦF (~x, a, s) is a formula with free variables among ~x, a, s. ΦF (~x, a, s)

characterizes the truth value of the fluent F (~x) in the situation do(a, s) in terms

of what is true in situation s. These axioms can be automatically generated from

effect axioms, as described below.

• Dap, action precondition axioms, first-order axioms that specify the conditions un-

der which actions are possible. There is one axiom for each action a ∈ A of the

form Poss(a(~x), s) ≡ Πa(~x, s) where Πa(~x, s) is a formula with free variables among

~x, s.

• Duna, a set of unique name axioms for actions;
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• DS0
a set of sentences relativized to situation S0, specifying what is true in the

initial state.

Although any situation calculus action theory is second-order, many reasoning tasks

can be reduced to first-order theorem proving by using regression [Reiter, 2001] (also cf.

Section 2.2). Properties that hold in all executable situations can be shown by induction

over situations [Reiter, 1993].

2.1.2 The Frame Problem and A Solution for Deterministic Ac-

tions

To the user, specifying the effects of actions can be more natural when using effect

axioms. For a relational fluent F (~x, s), for example, positive and negative effect axioms

can define the conditions under which the fluent becomes true (φ+(~x, s)), respectively

false (φ−(~x, s)), after performing action a:

φ+(~x, s) ⊃ F (~x, do(a, s)),

φ−(~x, s) ⊃ ¬F (~x, do(a, s)).

These axioms describe the effects on the considered fluents, but they do not describe the

non-effects on all other fluents. Axioms describing the latter are called frame axioms.

The frame problem states the impossibility of stating and reasoning with all frame axioms

explicitly, due to their cardinality: Even apparently nonsensical assertions, like “drinking

water does not change one’s hair color” would have to be captured by a frame axiom:

haircolor(do(drinkwater, s)) = y ← haircolor(s) = y.

Ray Reiter [Reiter, 1991] proposed a solution to the frame problem based on a com-

pleteness assumption, namely that the provided effect axioms specify all possible ways

by which a fluent may change. In Reiter’s solution, the set of all effect axioms, is hence

syntactically transformed into the set of successors state axioms (one for each fluent).
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In the following we describe how Reiter’s solution applies to functional fluents, for

relational fluents the computations are similar and can be found in [Reiter, 1991]. The

effect axiom for a functional fluent f and action α has the form:

φf (~t, y, s) ⊃ f(~t, do(α, s)) = y

where ~t are terms not mentioning situation terms. Note that, unlike relation fluents, for

functional fluents there are no positive and negative effect axioms but only one axiom

explicitly stating the new value (y) of the fluent. Above formula can be rewritten to:

a = α ∧ ~x = ~t ∧ φf (~x, y, s)︸ ︷︷ ︸
Φf

⊃ f(~x, do(a, s)) = y

and this can be done for all n effect axioms for fluent f . These axioms can then be

merged into a single normal form for this fluent:

Φ
(1)
f ∨ · · · ∨ Φ

(n)
f ⊃ f(~x, do(a, s)) = y, or

γf (~x, y, a, s) ⊃ f(~x, do(a, s)) = y (2.1)

The completeness assumption expresses that if fluent f changes its value from situation

s to situation do(a, s), then φf (~x, y, a, s) must be true:

f(~x, s) = y′ ∧ f(~x, do(a, s)) = y ∧ y 6= y′ ⊃ γf (~x, y, a, s) (2.2)

Together with the assumption

¬(∃~x, y, y′, a, s).γf (~x, y, a, s) ∧ γf (~x, y
′, a, s) ∧ y 6= y′

Reiter shows that (2.1) and (2.2) are logically equivalent to:

f(~x, do(a, s)) = y ≡ γf (~x, y, a, s) ∨ (2.3)

f(~x, s) = y ∧ (6 ∃y′).γf (~x, y
′, a, s) ∧ y 6= y′

which is the successor state axiom for functional fluent f .
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2.2 Regression

The regression of a formula ψ through an action α is a formula ψ′ that holds prior to α

being performed if and only if ψ holds after α is performed. Regression was first defined

by Waldinger [Waldinger, 1977]. In the situation calculus, one step regression is defined

inductively using the successor state axiom for a fluent F (~x, s) as above:

Regr[F (~x, do(a, s))]
def
= ΦF (~x, a, s)

Regr[¬ψ]
def
= ¬Regr[ψ]

Regr[ψ1 ∧ ψ2]
def
= Regr[ψ1] ∧ Regr[ψ2]

Regr[(∃x)ψ]
def
= (∃x)Regr[ψ]

We useR[ψ, α] to denote Regr[ψ(do(α, s))], andR[ψ, ~α] to denote the repeated regression

over all actions in the sequence ~α = [α1, . . . , αn] in reverse order, i.e.,

R[ψ, ~α]
def
= Regr

(
. . .Regr

(
Regr

(
ψ(do(αn, do(αn−1, . . . , do(α1, s))))

)))
.

Note that the formula resulting from the regression has a free variable s of sort situation.

Hence, we can write R[ψ, ~α](S) to denote its instantiation in a particular situation S.

Intuitively, the result of the regression is the condition that has to hold in s in order for ψ

to hold after executing ~α (i.e., in do(~α, s)). It is predominantly comprised of the fluents

occurring in the conditional effects of the actions in ~α. Due to the Regression Theorem

[Reiter, 2001, pp.65–66] we have that D |= ψ(do(~α, s)) ≡ R[ψ, ~α] for all situations s.

As an example of regression involving functional fluents, consider a formula stating

“at Union Square and cash = $10”. Regressing this formula over an action sequence

[“take subway to Times Square”, “buy ice cream”] yields a condition “cash = $15”,

when a subway ride costs $2 and an ice cream $3, say.

Regression is a purely syntactic operation. Nevertheless, it is often beneficial to

simplify the resulting formula for later evaluation. Regression can be defined in many

action specification languages. In STRIPS [Fikes and Nilsson, 1971], regression is very
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simply achieved by systematically adding and removing propositions from a set: the

regression of a set of literals L over an action α is defined based on the add and delete

lists of α:

RSTRIPS[L, α] =






False, if L ∩Del(α) 6= ∅;

L \Add(α), otherwise.

Regression in ADL was defined in [Pednault, 1989]. ADL is also the foundation for the

Planning Domain Definition Language (PDDL) [McDermott, 1998], which is used as the

specification language in the biennial International Planning Competition. Rintanen [2008]

defined a regression operator for ground PDDL operators.

In general, the regression of a formula ψ over a sequence of actions ~α may result in a

formula whose size is exponential in the length of ~α. However, under certain restrictions,

this blow up can be prevented. Reiter [2001], p.74, proposes one such restriction, which

requires successor state axioms to be context-free. A successor state axiom for a fluent F

is context-free, roughly, if and only if the truth value of F in do(a, s) depends only on the

truth value of F in s and is independent of other fluents’ truth values. For context-free

successor state axioms, regression has at most linear complexity in the length of the action

sequence. As a special case, this restriction is satisfied by theories whose actions only

have unconditional effects, as it is the case in STRIPS. In fact, regression in STRIPS is

even simpler, since, due to the lack of conditional effects, the result of regressing a literal

l over some action can only be either true, false, or l itself.

The specification of other restrictions is subject to ongoing research. Recently,

van Ditmarsch et al. [2007] showed that, in the propositional case, formulae can be re-

gressed with only a polynomial blow-up if one is willing to introduce new atoms to replace

certain sub-formulae. Furthermore, regression in PDDL causes at most polynomial in-

crease in size when the formula is represented in circuit form [Rintanen, 2008].
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2.3 Notation and Definitions

Throughout this thesis we will use the following notational conventions and auxiliary

definitions.

Lower case letters denote variables in the theory of the situation calculus, upper case

letters denote constants. We use α to denote arbitrary but explicit actions and S to

denote arbitrary but explicit situations, that is S = do(~α, S0) for some explicit action

sequence ~α. Variables that appear free are implicitly universally quantified unless stated

otherwise. By ψ[x/y] we denote the formula resulting from substituting all occurrences

of x in ψ with y. Further, ~a · a denotes the result of appending action a to the sequence

~a.

For convenience, we define the following shortcut for talking about the preconditions

of an action sequence ~a = [a1, . . . , an]:

Poss([a1, . . . , an], s)
def
=

Poss(a1, s) ∧ Poss
(
a2, do(a1, s)

)
∧ · · · ∧ Poss

(
an, do([a1, . . . , an−1], s)

)

For two situations s, s′, such that Σ |= s ⊑ s′, we say that s is a sub-history of s′, or

s′ is a continuation of s.

We say that a situation s is executable, denoted as executable(s), if all actions in the

history of s have their preconditions satisfied in the situation where they are performed,

formally:

executable(s)
def
= (∀a, s′).do(a, s′) ⊑ s ⊃ Poss(a, s′).

We use fluents(ψ) to denote the set of all fluents occurring in formula ψ.

For convenience, for any s, s′ such that Σ |= s ⊏ s′ we use R[F (~x, s′), s] to denote the

regression of fluent F back to s, i.e.,

R
[
F (~x, do(~α, s)), s

] def
= R

[
F (~x), ~α

]
,
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and we extend this to general formulae, possibly containing different situation terms:

R[¬ψ, s]
def
= ¬R[ψ, s]

R[ψ1 ∧ ψ2, s]
def
= R[ψ1, s] ∧R[ψ2, s]

R[(∃x)ψ, s]
def
= (∃x)R[ψ, s].

If s is a free variable, then the resulting formula is again free in s. For convenience we

also define R[ψ(s), s]
def
= ψ(s).

As an example, consider the formula F1(do([α1, α2], s))∧F2(do(α1, s)) and its regres-

sion back to s:

R
[
F1(do([α1, α2], s)) ∧ F2(do(α1, s)), s

]
=

= R
[
F1, [α1, α2]

]
∧R

[
F2, [α1]

]

= Regr
[
Regr

[
F1(do([α1, α2], s))

]]
∧ Regr

[
F2(do(α1, s))

]
.
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Monitoring Plan Validity

3.1 Introduction

The contributions of this chapter are threefold. We review a list of influential existing

approaches for execution monitoring, whose commonalities we then generalize into an

abstract monitoring approach that is more broadly applicable. We then describe a first

concrete implementation of this abstract approach in the situation calculus, for mon-

itoring plan validity during execution. This realizes the State Evaluation step of the

framework of Section 1.2, for the case of plan validity.

A number of existing approaches for execution monitoring have proposed to annotate

the plan with additional information during plan generation, which can be used during

execution to determine the continued validity of the plan in case of unexpected events.

The intuitive idea is to determine what is relevant for the continued validity of a plan at

each step of plan execution, and annotate the plan with this information accordingly. We

formally characterize the technique implicitly taken by these approaches for identifying

this information as goal regression. We then generalize the approach into a more general,

abstract monitoring approach, forming the thesis of this document. This monitoring

approach, which continues to be based on relevance, allows for a broad variety of possible

21
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objectives, including that of plan optimality, and can be applied during plan generation

itself as well, rather than during plan execution only.

The approach for monitoring plan validity in the situation calculus, which we formalize

at the end of this chapter, is a first example of a concrete implementation of this abstract

approach. This formalization makes the approach usable by a large variety of planners,

instead of being planner specific. It also allows us to prove the correctness of the approach,

which has not been done in the reviewed literature inspiring the approach. Last but

not least, it assists in understanding the more advanced uses of the developed abstract

monitoring approach to more complex objectives, presented in the following chapters of

this thesis.

3.2 Characterizing Existing Approaches

In this section we review significant previous approaches to execution monitoring, which

will provide the motivation for the abstract approach we develop. We first review a

number of early approaches towards the integration of planning and execution, which,

treat the problem of execution monitoring and the sub-problem of state evaluation we are

most interested in, rather implicitly. Even though implicit, these works are suggestive of

a useful starting point towards the development of appropriate formal methods for state

evaluation and replanning. We then discuss a few approaches that exhibit a more explicit

treatment and awareness of this problem, but which are lacking concrete suggestions

regarding its solution. Finally, we generalize the distinguished advantages of the reviewed

works into a general abstract approach. This approach serves as the guiding principle for

the methods we develop in the remainder of this thesis, which can be viewed as concrete

implementations of this abstract approach to solve different problems of interest.
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3.2.1 Integrated Planning and Execution

Work on execution monitoring reaches back to the earliest deployed systems. As one of

the first Fikes et al. [1972] described, among other things, the execution system applied

on Shakey the Robot. Even though the language used for planning, STRIPS, is very

limited in expressiveness, the authors presented some interesting ideas for monitoring

the execution of plans and reacting to execution failure. The core idea is to represent

plans, which are limited to be sequential, in a way that supports monitoring by revealing

what was termed the “plan structure”. For this, the authors introduced triangle tables.

Figure 3.1 shows a triangle table for the sequential plan OP1, OP2, OP3, where OPi is

a STRIPS operator. Each cell represents a set of clauses. The cells below operator

0 1

1

2

2

3

3

4

PC1

PC2

PC3

OP1

OP2

OP3

A1

A1/2

A1/3

A2

A2/3 A3

Figure 3.1: A triangle table for representing a plan with three operators OP1, OP2, OP3,

the dashed box defines the “3rd kernel”.

OPi, contain exactly those ADD effects of OPi that persist after the execution of the

corresponding subsequent plan step. That is, A1 contains exactly those clauses that are

produced by OP1 and A1/2 contains that subset of A1 whose clauses are not deleted by

OP2. The left-most column (number 0) holds those clauses that are preconditions to
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the corresponding operators in the plan but are not produced by earlier operators in the

plan and are thus required to be established by other means prior to execution. Taken

together, these clauses (PCi) define the overall preconditions for the entire plan. Further,

Fikes et al. defined the marked clauses of a cell to be those clauses that are required by

the operator of that row. Then the ith-kernel is defined as the set of marked clauses in

the rectangle that includes the bottom left cell and row i (see the figure for an example).

The interpretation of this is that whenever the clauses of the ith-kernel are true in a given

model of the state and dynamics of the environment, then the ith-tail of the plan, starting

with operator i, is applicable and projected to reach the goal. In our terminology we say

the remaining plan is valid. Further, if the (n+1)th-kernel is true, where n is the number

of operators in the plan, the goal is already achieved.

Based on the triangle table representation of a plan, the execution strategy that Fikes

et al. proposed, called PLANEX, proceeds as follows:

1. Test the highest kernel (n+ 1).

2. If it is true, the goal is achieved, stop execution.

3. Otherwise, proceed checking lower kernels until one is found that is true and then

execute the corresponding operator.

4. If no kernel in the triangle table is true, the plan has failed and replanning is

required.

5. Otherwise, repeat.

By optimistically checking all higher kernels before executing the next operator in the

plan, this strategy has the advantage that it discovers some serendipities. It also repeats

parts of a plan that have failed to achieve their intended effects. However, this procedure

may result in an infinite loop when the failure is due to a systematic, e.g., modeling,
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error like for instance assuming that an action achieves a certain literal but simply does

not, no matter how often the action is executed.

While the applied action description language, STRIPS, is fairly limited in its ex-

pressiveness, we make the following observation that allows us to lift the benefits of this

approach to more expressive action description languages: Although the authors seem to

have been unaware of this at the time of this article or they simply miss pointing it out,

a kernel is exactly the regression of the goal (including action preconditions) through the

remaining operators of the plan. Roughly, the regression of a formula over an action is

a sufficient and necessary condition for the satisfaction of the formula following the exe-

cution of the action (cf. Section 2.2). The simplicity of the representation, merely based

on clauses of the ADD effects of operators, is due to the limitation of STRIPS to non-

negative, non-disjunctive preconditions and goals, and the required absence of conditional

effects of actions. This regression is produced by the backward-chaining based planning

algorithm deployed by the authors, and thus comes without computational overhead.

The utility of the plan structure for execution monitoring was later recognized by

others as well. In these approaches the term rationale was coined, as the authors realized

that not so much the structure of a plan but rather the rationale for the choice of

its elements is what has to be preserved. This was the case with the hierarchical SIPE

planning system [Wilkins, 1988] and the IPEM system [Ambros-Ingerson and Steel, 1988]

based on the TWEAK partial order planner. The execution monitoring strategy of the

former is described in [Wilkins, 1985]. The core idea is to represent the purpose of every

action in the plan by stating the time until when its effects have to be maintained, e.g.,

until the goal is reached or a depending action has been executed, and to explicitly mark

assumptions made during planning. These annotations are used during execution to

decide whether a discrepancy is affecting the remaining plan or not. If so, SIPE offers a

set of eight replanning rules that “often retain much of the original plan”. These rules

are incomplete in the sense that they do not necessarily produce a legal plan but rather a
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task network with some unachieved sub-goals remaining, in which case the transformed

plan is handed back to the planner.

In many applications, it is desirable to conservatively, i.e., only minimally, modify the

current plan when needed, as this is generally assumed to minimize execution costs. An

example of this is described by Myers [1998] where the SIPE approach was used to monitor

the execution of air campaigns. We, however, believe that, if there are costs involved,

these should be modeled explicitly and the monitoring be extended appropriately to

monitor continued optimality of the plan according to these costs as opposed to only

monitoring continued validity and soft-constraining the replanning implicitly through an

unspecified preference criterion as Myers does.

Similarly to SIPE, Ambros-Ingerson and Steel [1988] approached execution monitor-

ing in conjunction with the TWEAK partial order planner. They extend the set of plan

transformation rules of the planner to accommodate for unforeseen events and to inte-

grate the execution into the process. The actual execution monitoring is then performed

through the application of predefined IF–THEN rules mapping flaws to fixes (plan trans-

formation rules). A scheduler heuristically sorts the list of open flaws continuously during

execution. While the paper does not go into detail about how to efficiently detect flaws,

which is a major limitation, this work is still interesting as it shows how partial-order

planning can naturally perform plan repair upon unforeseen events during execution.

This is due to the fact that partial-order planning, much like backward-chaining, chooses

actions to add to the plan based on open preconditions and this again makes the reasons

for adding the actions, the rationale, explicit and usable for monitoring (and plan repair).

While PLANEX merely used the plan’s rationale for evaluating whether the current

plan or parts of it are still valid for achieving the goal, SIPE and IPEM also exploit this

information for replanning.

Others have approached the problem of recovering from discrepancies during execution

heuristically using predefined fault models and fixes. Beetz and McDermott [1994] de-
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scribed how XFRM, a planner based on RPL, the Reactive Plan Language, handles

discrepancies. In this framework, the model of the dynamics is probabilistic, i.e., actions

can have stochastic effects. When a discrepancy arises during the execution of a plan,

sample execution scenarios are projected to evaluate the impact of the discrepancy. This

contrasts with the earlier presented approaches which, one way or the other, all implicitly

regressed the goal to evaluate the impact of the discrepancy. Here instead the discrepancy

is progressed. Since the projection is non-deterministic, the number of sample scenarios

determines the probability of detecting a problem, but the authors do not investigate how

many samples are required depending on the situation and the domain, neither do they

provide a concise definition of a failure. When failures are projected to happen, these

are classified into a domain dependent hand-crafted taxonomy of fault models that also

maps them to plan transformation rules. The application of these transformations may

improve the plan, but is not guaranteed to do so. All in all the approach is incomplete

in at least two senses: due to the choice of samples certain future problems which are

a result of a discrepancy in the current state may remain undetected, and due to the

heuristic character of both diagnosis and replanning (plan transformation), the approach

is not guaranteed to recover from contingencies. The authors later extended the approach

to improve flexibility between planning and execution [Beetz and McDermott, 1996], but

this did not address the issues raised above.

3.2.2 Expectation-Based Monitoring

Doyle et al. [1986] were the first to explicitly state the idea of basing the monitoring

decision (continue execution or replan) on the materialization of certain plan-dependent

expectations. Doyle et al. proposed an approach to the problem of monitoring the

successful execution of a plan through the generation and use of perception requests to

verify the nominal execution of the involved actions. Given a plan and a model of the

environment, their method selects properties that need to be monitored and generates
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perception requests that can verify the materialization of these properties. The latter

are embedded into the plan. The properties are typically pre- and post-conditions of

actions, and perception requests are sensing actions together with the expected sensing

values. During execution the actual sensing values returned by the sensing actions can

be compared to the expected values to detect discrepancies. While the significance of

the actual implemented system described in the paper, called GRIPE (Generator of

Requests Involving Perception and Expectations), may be questionable, the paper is

notable for raising the awareness of relevant questions. These involve how often and

accurately assertions should be verified and how this can be done best, i.e., introducing

the problem of planning for perception requests. But first and foremost the question as

to which properties should be monitored is raised and this question today is still awaiting

a satisfactory answer and to which we contribute in this thesis. The authors propose four

criteria involved with this choice:

• the uncertainty of properties due to several reasons (incomplete initial knowledge,

stochastic action outcomes, etc.);

• the dependency of future actions on the property;

• the importance of the property; and

• the ease of recovery.

Of these four, the second has received the most attention as it was addressed, for instance,

implicitly already in PLANEX, SIPE and IPEM, as described above. Doyle et al. realized

that some action effects are irrelevant as no future action nor the goal require their

presence, while others, which are said to lie on the critical path, are relevant. But the

paper lacks a formal definition of this set. The notion of a critical path relates this work

to the triangle tables we saw earlier since “elements of the critical path” is merely a

synonym for “marked clauses in a kernel”. Doyle et al., like Fikes and his colleagues



Chapter 3. Monitoring Plan Validity 29

earlier, did not acknowledge that this is again just the regression of the goal through the

remaining actions of the plan. Characterizing this technique as goal regression allows

us to generalize this technique to other action formalisms, planning paradigms, and

preference criteria as we demonstrate in the remainder of this thesis.

Inspired by this work, Musliner et al. discussed some aspects of time in execution

monitoring for actions with durations and in particular addressed the questions of how

to verify critical assertions most effectively [Musliner et al., 1991]. By using a planner

that deploys simple depth-first backward-chaining from the goal to the initial state, they

construct the critical path. Then, at every stage in the plan where a post-condition

is established that is used in the precondition of a later action, a verification action is

inserted to monitor the condition over the required time interval. Musliner et al. argue

that these actions themselves may require planning as they have pre- and post-conditions,

and durations as well. To accommodate this, they propose to augment the theory with

models for these sensing actions. The paper however lacks formal details and leaves

certain questions open, e.g., whether and how the models for the normal actions are

modified to motivate the introduction of verification actions.

Another example of expectation-based monitoring is the work by Earl and Firby [1997].

Instead of planning from first principles, the presented “Routine Activity Management

and Analysis” system (RAMA) chooses from predefined dynamics when given a goal to

achieve. These dynamics combine actions and expectations about observations to be

made during their execution.

Expectations were also the basis for the method we previously proposed for monitor-

ing the execution of plans generated from Golog programs [Ferrein et al., 2004]. Roughly,

Golog is a programming language that combines explicit agent programming with plan-

ning, by allowing both deterministic as well as non-deterministic programming constructs

(cf. Section 7.2 for a more detailed review of Golog). In this approach, the produced plan

is explicitly annotated with the assumptions that were made during planning. These as-
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sumptions represent the at–planning–time projected truth values of conditions included

in the Golog program (e.g., in if–then–else constructs or while–loops). If, during execu-

tion of the plan, these assumptions are violated or the next action is not possible, the

plan is abandoned and replanning from scratch is performed. This seems to be reasonable

in a domain that is as dynamic as RoboCup, where we applied this work.1 This contrasts

with the earlier mentioned work of De Giacomo et al. [1998] as it does not monitor the

execution of the Golog program itself, but the resulting (conditional) plan after perform-

ing decision-theoretic planning over a program, maintaining the expectations involved

through the hard constraints in the original program. While the approach worked in

practice, it cannot claim any kind of correctness or optimality. For instance, it does not

anticipate failure of future actions in the plan, like others do. Nevertheless it serves as

a rare example of monitoring where the constraints underlying the construction of the

plan, which in this case were procedural hard constraints represented through a Golog

program, are taken into account in monitoring the execution of the plan. This is cru-

cial, because when the the satisfaction of these constraints change, there is no reason to

believe that the plan at hand continues to be optimal or even valid.

Consider the following “Tree Example” of Lespérance et al. [2000], which we modify

slightly for our purposes. In this domain, an agent is trying to fell a tree and carry it

home. To not faint from exhaustion she has to rest when feeling fatigue. She thus can

decide between three actions, chop, rest, and carry-tree. We can express this planning

problem including the hard constraint of resting when feeling fatigue, using the following

Golog program

(if ¬fatigue then (chop | carry-tree) else rest endIf)∗ ; tree-at-home?

where a|b denotes the non-deterministic choice between two sub-programs a and b, a; b

denotes their sequence, and δ∗ denotes the non-deterministic iteration of sub-program δ.

1We used the presented approach in several RoboCup tournaments including the world-cups of 2003
and 2004.
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A tree-chopping expert said that it usually takes five chops to fell a tree and our agent has

an idea of how much labor, chopping and carrying, she can do until she needs a rest. From

this model information and the hard constraints, a Golog interpreter may produce the

following plan: chop, chop, chop, rest, chop, chop, carry-tree. Assume, how-

ever, that when executing this plan it happens that the agent feels fatigue already after

two chops. The model was imprecise. The remaining plan is still executable but would

violate the given hard constraints and would cause the agent to faint. The problem is

that the hard constraints got lost in planning because the planner assumed correctness

of the model. To account for such modeling errors and facilitate correct replanning, the

method proposed by Ferrein et al. [2004] would produce the following annotated plan

instead: M(¬fatigue), chop, M(¬fatigue), chop, M(¬fatigue), chop, M(fatigue), rest,

M(¬fatigue), chop, M(¬fatigue), chop, M(¬fatigue), carry-tree and the proposed ex-

ecution engine discards the plan if during execution a marker (M) is encountered whose

condition fails to hold, contrary to what was expected.

While most work on monitoring is concerned with monitoring the execution of a plan,

it is also possible that even during planning itself pieces of the tentative plan become in-

valid, for example when a precondition that was true earlier becomes false. This aspect of

planning and monitoring in dynamic domains is addressed by Veloso et al. [1998] where

the resulting approach is implemented in the PRODIGY framework [Veloso et al., 1995].

In particular the authors propose to generate two kinds of monitors during planning:

plan-based monitors targeting preconditions of actions in the tentative plan, and

alternative-based monitors. The latter are relevant when preferences over different pos-

sible plans exist: during planning it may happen that the most preferred alternative is

not possible for some reason. If this reason changes and the alternative becomes avail-

able, optimality requirements demand to pursue this alternative instead, so monitoring

this reason is vital for optimality. While this presents an important aspect of generating

optimal plans in practice, which we further investigate in Chapter 5, in the described
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approach the problem is strongly simplified. It assumes that the quality of an alternative

can be decided a-priori, that is, without exploring the corresponding part in the search

tree first. It also assumes that the quality of a plan is purely determined by its compris-

ing actions and in particular independent of the traversed states. This, and its lack of a

formal foundation, are the main limitations of this approach.

3.2.3 State Evaluation

Recall that in our framework (cf. Figure 1.1) the State Estimation step is followed

by a State Evaluation step to determine the relevance of the discovered and diagnosed

discrepancy between the expected and the estimated state, to decide whether any kind

of replanning is required or advisable.

One can generalize the technique implicitly used by several of the described ap-

proaches to answer this question, as that of annotating the plan at every step with

the regression of the goal and remaining preconditions through the remainder of the

plan. When the regressed goal holds in the state actually encountered during execution,

the remainder of the plan is expected to succeed, according to the model. PLANEX

uses STRIPS as the action description language and since STRIPS allows for neither

conditional effects nor disjunctive preconditions nor uncertain action outcomes (disjunc-

tive action effects), regression is very simple. This regression is implicitly done in the

backward-chaining search performed by the planner and the annotation is part of the tri-

angle tables used for representing plans. Our generalization also applies to SIPE, which

is based on hierarchical planning, and IPEM, based on a partial-order planner. In both

approaches the choice of actions to add to the plan is based on open preconditions (sub-

goals), starting from the goal, and in both approaches the dependencies between these

sub-goals and the actions in the plan they are established by are represented in the plan.

Again these representations are used during execution to verify the continued validity of

the remaining plan and to support replanning at a basic level.
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Neither of the recent logic-based frameworks for execution monitoring

[De Giacomo et al., 1998; Fichtner et al., 2003; Bjäreland, 2001] mentions or formalizes

this matter. Both Fichtner et al. [2003] and Bjäreland [2001] lack an evaluation step

entirely. The specific monitor suggested by De Giacomo et al. [1998] performs evalu-

ation not by regression at planning time, but through projection at run-time. This

is done in the Relevant predicate (cf. Section 1.2). This is also the method used in

[Soutchanski, 2003b]. We will discuss the benefits of a regression based approach in de-

tail in later chapters of this thesis. Intuitively, though, regression exhibits the relevance

structure of the problem, which allows quick determination of the relevance of discrep-

ancies as they are observed, which can generally be done much faster than through

projection, as we will demonstrate experimentally (cf. e.g., Chapter 4).

3.3 An Abstract Monitoring Approach

The stated generalization of existing approaches for monitoring plan validity can be taken

even further, and stated as an informal, but general abstract approach for monitoring.

It can be applied to both plan generation and plan execution with respect to a variety

of objectives, including but not limited to plan validity. The approach can be described

in two stages:

1. during plan generation, annotate the planning data structures with all information

relevant to the achievement of the objective, then

2. when a discrepancy between assumed and actually estimated state of the world

occurs, use this information to determine the degree of relevance of the discrepancy.

Given this description of the general abstract monitoring approach we propose, we

can state the thesis of this document as follows:

Annotating planning data structures with additional relevance information
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during plan generation enables sound and efficient monitoring. In particular,

it allows for sound and quick determination of the degree of relevance of state

discrepancies.

As has been demonstrated in the literature, the formal notion of regression is a pow-

erful tool for determining the required relevance information. Hence, one possible and

more concrete realization of the stated approach is as follows:

1. Determine all decision criteria that affect the choice of plan. Regress these criteria

over the actions of the plan, and annotate the plan with the resulting formula.

2. To verify that the criteria continue to be met when an unexpected state is encoun-

tered, it is sufficient to verify the regressed formulae in the new state.

Hence, depending on what is being monitored (e.g., validity or optimality in terms of

certain preferences), different plan annotations are required and different algorithms are

needed in order to verify this information. In the remainder of this thesis we will de-

velop several concrete instances of this abstract approach. In each case we will begin by

identifying what needs to be included in the plan annotation, and how to exploit this

annotation when state discrepancies are detected. We consider both state evaluation,

i.e., determining whether the discrepancy is relevant to the objective, and recovery, i.e.,

the problem of adjusting existing planning data structures to the new state (cf. Section

1.2).

3.3.1 Other Uses of Relevance in Planning

Other uses of the notion of relevance in the planning literature exist, most notably in

the context of conformant planning. The problem of conformant planning is that of

devising a plan that achieves the goal for a set of possible initial states. This is necessary

when only incomplete information regarding the initial state of the world is available.

Many early approaches to this problem were based on the possible world semantics, in
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which reasoning is done with respect to all possible states. This approach does not scale

well to big problems as the set of possible states is exponentially larger than the set

of states itself. Fortunately it is not always necessary to consider all possible states,

since often certain approximations of this set are sufficient [Son and Baral, 2001]. Such

approximations, may however be incomplete, which in the context of conformant planning

means that no plan may be found, even when one exists. In addressing this issue, the

notion of relevance has proved useful. Son and Tu [2006] propose a partitioned, partial

representation of the initial belief state that achieves completeness under the particular

approximation considered by the authors. A central role in identifying the set of partial

states to consider is played by the relevance relationship between literals. For each literal

the authors identify the set of all other literals it depends on. This allows them to

reduce the set of considered partial initial states to only those that may lead to relevant

differences over the course of executing sequences of actions.

Palacios and Geffner [2006] describe an approach for compiling conformant planning

problems into classical planning problems, roughly, by means of replacing fluents with

their epistemic counterparts and adjusting action preconditions and effects accordingly.

However, again, the resulting representation is incomplete and solving the resulting clas-

sical planning problem may fail even when valid conformant plans exist. Therefore,

similar to Son and Tu, Palacios and Geffner [2007] consider an extension of their ear-

lier approach that considers relevant sub-sets of the set of all possible initial states in

the compilation, in order to gain completeness regarding a given conformant planning

problem.

Another existing use of relevance in planning aims at the simplification of the planning

problem prior to planning [Nebel et al., 1997]. The intuition is that, depending on the

goal, certain fluents and/or operators are irrelevant and can be pruned from the problem

description, which can significantly improve forward search based planning.
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3.4 Monitoring Plan Validity in the Situation Cal-

culus

In this section we formalize the notion of plan validity and provide a knowledge-level

algorithm for monitoring plan validity, which is a direct result of applying the stated

abstract approach.

Recall that a situation is simply a history of actions executed starting in S0, for

instance do([α1, . . . , αm], S0) denotes the situation reached after executing action α1

through αm in this order, starting in the initial situation S0.

Definition 1 (Plan Validity). Given a basic action theory D and a goal formula G(s),

a plan ~α = [α1, . . . , αm] is valid in situation S if

D |= G(do(~α, S)) ∧ Poss(~α, S).

As such, a plan continues to be valid if, according to the action theory and the current

situation, the precondition of every action in the plan will be satisfied, and at the end of

plan execution the goal is achieved.

Applying the abstract monitoring approach of the previous section to the problem of

monitoring plan validity provides us with the following strategy: The planner annotates

each step of the plan with a sufficient and necessary condition for the validity of the plan.

During plan execution these conditions are checked to determine whether plan execution

should continue. The conditions can be generated through goal regression. The provision

of the formal characterization of this monitoring approach makes it usable with a variety

of planners, such as very effective heuristic forward search planners, rather than being

restricted to the backward-chaining based planners which first implemented the basic

idea.

Definition 2 (Annotated Plan). Given initial situation S0, a sequential plan ~α =

[α1, . . . , αm], and a goal formula G(s), the corresponding annotated plan for ~α is a se-
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quence of tuples

π(~α) = (G1(s), α1), (G2(s), α2), . . . (Gm(s), αm)

where

Gi(s) = R
[
G(do([αi, . . . , αm], s)) ∧ Poss([αi, . . . , αm], s), s

]

That is, each step is annotated with the regression of the goal and the preconditions

over the remainder of the plan.

Proposition 1. A sequence of actions ~α is a valid plan in situation S iff

D |= R
[
G(do(~α, S)) ∧ Poss(~α, S), S

]
.

Proof: The proof is by induction using the Regression Theorem [Reiter, 2001, pp.65–66].

We can now provide a knowledge-level algorithm that characterizes the approach to

monitoring plan validity described above. It is a generalization of the algorithm defined

in [Fikes et al., 1972]. We assume that the “actual” situation of the world, denoted S∗,

is provided by the earlier state estimation step of the execution monitoring framework

described in Section 1.2. The action theory D remains unchanged. For instance, S∗ may

differ from the expected situation Si = do([α1, . . . , αi−1], S0) by containing unanticipated

exogenous actions, or variations of actions executed by the agent. To better distinguish

variables of the theory and meta-variables, used by the pseudo code, we print the latter

using bold face. We refer to our algorithm as knowledge-level because the test to

determine that a condition holds in the current state is characterized in terms of classical

entailment, i.e., D |= Gi(S
∗). We assume that each individual planning system has a

specific means of accomplishing this test, the details of which are not germane to the

algorithm itself. In STRIPS, for instance, this is simple set inclusion of literals in the set

describing the current state. For the situation calculus efficient Prolog implementations

exist.

The correctness of this approach—only valid plans are continued and whenever a plan

is still valid it is continued—is provided by the following theorem.
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Algorithm 1: Algorithm for Monitoring Plan Validity

Input: action theory D, annotated plan π(~α) of length m

begin1

obtain actual situation S∗;2

while D 6|= G(S∗) do3

i = m ;4

while D 6|= Gi(S
∗) and i > 0 do5

i = i− 1;6

if i > 0 then7

execute αi;8

else9

abort and replan;10

obtain S∗ ;11

end12

Theorem 1 (Correctness). The algorithm executes action αi in the given situation S∗

iff the goal has not yet been reached, the remaining plan [αi, . . . , αm] is valid in situation

S∗, and i is the greatest index in [1,m] with that property.

Proof: If αi is executed, D |= ¬G(S∗) holds, or else the outer while–loop would not have

been entered, and also D |= Gi(S
∗) holds, or else the inner while–loop could only have

been exited by the condition i 6> 0, but then the condition of the if–statement would

have failed to hold. Given D |= Gi(S
∗), plan validity follows by Propositions 1. On the

other hand, if the goal has not been reached yet, the outer while–loop is entered, and if

there is a maximal index i such that [αi, . . . , αm] is a valid plan in situation S∗, then by

Propositions 1 also D |= Gi(S
∗). Hence the inner while–loop terminates once this value

of i is reached, and since this value is greater than zero by assumption, the condition of

the if–statement holds. Thus αi is executed. �

As mentioned previously, this approach of annotating the plan in each step with

the regression of the goal and remaining preconditions, and exploiting this annotation

during execution to determine continued validity of the plan, has been used implicitly by

several previous execution monitoring systems. However, to the best of our knowledge,
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we are the first to formally characterize it using the notion of regression. This provision

enables its use with other planners, i.e., not only the ones used in those systems, and

it allowed us to proof its correctness. But more importantly in the context of this

thesis, the characterization provides us with a more abstract, conceptual understanding

of this monitoring approach, and allows us to generalize it and apply it to more complex

monitoring problems, as will be demonstrated by the following chapters.

Note also that the approach itself does not require complete knowledge of the initial

state of the world. As long as the annotated conditions can be evaluated, the agent is

able to verify plan validity.



Chapter 4

Monitoring Plan Optimality During

Execution

4.1 Introduction

In the previous chapter we described how the abstract monitoring approach can be used

to monitor plan validity. This effectively formalized the approach taken by a number of

existing systems implicitly. However, not only the validity of a plan, but also its optimality

may be affected by unexpected execution time discrepancies between the expected and

actual state of the world. Optimality appears in cases where the user not only specifies

a goal to define valid plans, but also wishes to discriminate between all possible valid

plans, by designating a measure of utility or preference over plans.

Monitoring optimality amounts to deciding whether, given a discrepancy, the current

plan continues being the best feasible plan according to these preferences, or whether

due to the change a different plan has become superior. Unlike the previously described

monitoring of plan validity, there are virtually no approaches for monitoring plan opti-

mality.

40
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4.1.1 Contributions

Given an optimal plan, our objective is to monitor its continued optimality, electing to

replan only in those cases where continued execution of the plan will either not achieve

the goal, or will do so sub-optimally.

In this chapter, we achieve this objective by again applying the presented abstract

monitoring approach. We begin by defining a sufficient condition for the optimality of a

given plan, i.e., a condition over situations that, if satisfied by a particular situation S,

guarantees that the plan is optimal in that situation. From this we derive a plan annota-

tion and an algorithm that can be used to verify continued optimality of the plan during

execution, and prove its correctness. We have implemented our algorithm and tested it

on simulated execution failures in well-known planning domains. Experimental results

yield an average speed-up in performance of two orders of magnitude over the alternative

of replanning, clearly demonstrating the feasibility and benefit of the approach.

While we argue that the conceptual approach developed here is broadly applicable

to a variety of planners, in this and the following chapter we focus on A∗ search based

planners and a metric function defined in terms of positive action costs. To this end, we

first briefly review A∗ search based plan generation and formalize it within the framework

of the situation calculus (also confer [Lin, 1999]).

4.2 A∗ Search Based Planning

To provide a formal characterization, we assume that the planning domain is encoded

in a basic action theory D. To keep the presentation simple, we also assume that the

goal is a fluent G(s) and can only be established by a particular action finish, contained

in the action theory. Any planning problem can naturally be translated to conform to

this by defining the preconditions of the finish action corresponding to the goal of the

original planning problem: if the original goal was described by a formula G′(s), then
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define Poss(finish, s)
def
= G′(s).

Recall that in A∗ search [Hart et al., 1968], the evaluation function is the sum of the

heuristic function and the accumulated action costs. We denote functions in relational

form. The cost c of performing action a in situation s is denoted by the relational fluent

Cost(a, c, s). The search heuristic yielding value h in s is denoted by Heur(h, s). We

require this heuristic to be monotonic, i.e., in particular admissible. Furthermore, we

assume that for all situations s these two relations hold for exactly one value c and h,

respectively. We understand this to denote a formula provided by the user, for instance

of the form

Heur(h, s)
def
= (φ1(s) ∧ h = h1)

∨(φ2(s) ∧ h = h2)

...

∨(φn(s) ∧ h = hn)

where the conditions φi partition state space. Correspondingly the A∗ evaluation relation

is specified as follows:

Value(v, do([α1, . . . , αn], s))
def
=

(∃h, c1, . . . , cn).Heur
(
h, do([α1, . . . , αn], s)

)
∧ Cost(α1, c1, s) ∧

· · · ∧ Cost
(
αn, cn, do([α1, . . . , αn−1], s)

)
∧ v = h+ c1 + · · ·+ cn

By the definition of monotonicity we know that it is non-decreasing:

D |= (∃v).Value(v, s) ⊃ (6 ∃s′, v′).s ⊏ s′ ∧ Value(v′, s′) ∧ v′ < v. (4.1)

In A∗ search, nodes that have been seen but not explored are kept in the so-called

open list, sorted by their respective values. In plan generation, the open list is ini-

tialized to the initial situation. Plan generation proceeds by repeatedly removing the

situation with the lowest value from the open list and inserting its feasible successor
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situations. Search terminates successfully when this first element, do(~α, S0), satisfies the

goal, D |= G(do(~α, S0)). The plan described by ~α is guaranteed to be optimal because

any alternative plan would be a continuation of one of the partial plans in the open list,

but by Equation (4.1) and the fact that do(~α, S0) achieves a lower value than any other

element in the open list—or else it would not have been the first element in that list—no

such plan could have lower accumulated costs than ~α.

4.3 A Sufficient Condition for Optimality

Standard goals enable a planner to distinguish between valid and invalid plans—those

that achieve the goal and those that do not. By augmenting a plan specification with

some measure of the quality of the plan, prescribed as user preferences, a utility or other

metric function, a planner can discriminate between valid plans, and can generate a plan

that is optimal with respect to this measure of quality.

Given an optimal plan, our objective is to monitor its continued optimality, electing

to replan only in those cases where continued execution of the plan will either not achieve

the goal, or will do so sub-optimally. To this end, we apply the abstract plan-annotation

based monitoring approach proposed in Chapter 3 to monitor plan optimality. This is

a critical problem for many real-world planning systems, and one that has been largely

ignored in the literature.

We begin by defining plan optimality within our framework. Recall that do(~α, S)

denotes the situation reached after performing the action sequence ~α in situation S. The

relation Pref(s, s′) is an abbreviation for a sentence in the situation calculus defining

criteria under which s is preferred to s′. We assume this formula is provided by the user.

Definition 3 (Plan Optimality). Given a basic action theory D, a goal formula G(s), and

extra-logical relation Pref(s, s′), a plan ~α is optimal in situation S if D |= G(do(~α, S)) ∧

Poss(~α, S) and there is no action sequence ~β such that D |= Pref(do(~β, S), do(~α, S)) ∧



Chapter 4. Monitoring Plan Optimality During Execution 44

G(do(~β, S)) ∧ Poss(~β, S).

As such, a plan remains optimal in a new situation S∗ when it remains valid and

there exists no other valid plan that is preferred. Hence, to monitor plan optimality, we

require two changes compared to the previously presented approach for monitoring plan

validity:

1. in addition to regressing the goal, we must regress the preference criteria to identify

conditions that are necessary to verify optimality at each step of the plan, and

2. since optimality is relative rather than absolute, we must annotate each plan step

with the regression of the preferences over alternative plans as well.

This approach can be applied to a wide range of preference representation languages

and planners. In this chapter, we restrict our attention to preferences described by

positive numeric action costs, and an A∗ search based forward planner with a monotonic

evaluation function as described above.

The preference relation for A∗ search is defined as:

PrefA∗(s1, s2)
def
= (∃v1, v2).Value(v1, s1) ∧ Value(v2, s2) ∧ v1 < v2.

By the definition of monotonicity we again know that it is non-decreasing, that is if

s1 is preferred to s2, then no continuation of s2 is preferred to s1:

D |= PrefA∗(s1, s2) ⊃ (6 ∃s′2).s2 ⊏ s′2 ∧ PrefA∗(s′2, s1). (4.2)

This property allows us to formulate a sufficient condition for the continued optimality

of a plan ~α in terms of a comprehensive set of alternative plan prefixes, rather than the

complete set of alternative plans. To do so, we can exploit the open list when search

terminates, but need to extend this list by action sequences that were previously predicted

to be impossible but are now possible (in S∗). If do(~α, S∗) is still most preferred with

respect to the resulting, updated, open list, then the plan ~α remains optimal. However,
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even after the update this is not a necessary condition. It may be the case that another

element do(~β, S∗) in the (revised) open list is preferred to do(~α, S∗), but if do(~β, S∗) is

only a plan prefix, rather than a complete plan, and hence does not satisfy the goal,

do(~α, S∗) may still turn out to be optimal. This could be the case if (i) no continuation

of do(~β, S∗) satisfies the goal, or (ii) no such continuation is preferred to do(~α, S∗). This

can occur because the heuristic value can, and generally does, increase as further actions

are performed. Formally, D |= PrefA∗(s1, s2) 6⊃ (6 ∃s′1).s1 ⊏ s′1 ∧ PrefA∗(s2, s
′
1).

Neither of these issues can be resolved without further, time consuming, planning.

For this reason, in this chapter, we limit ourselves to a tight sufficient condition, defined

in terms of the fringe.

Definition 4 (Sufficient Condition for Optimality). Let G be a goal formula, Pref a

preference relation, and ~α a valid plan for G in situation S. A sufficient condition for

the optimality of ~α in S is any condition ϕ(S) such that if ϕ(S) holds, ~α is optimal in

situation S.

In order to define a fringe, we introduce the notion of a situation cover.

Definition 5 (Situation Cover). Given an action theory D and a situation term S, a set

L of situations is a cover of S if for all S ′ such that Σ |= S ⊑ S ′ there exists S ′′ ∈ L such

that either Σ |= S ′ ⊑ S ′′ or Σ |= S ′′ ⊑ S ′. The cover is minimal if no proper subset of L

is a cover.

Definition 6 (Fringe). Given an action theory D and a goal formula G(s), a fringe of

situation S is a minimal cover L of S, such that for all S ′ ∈ L, there is no S ′′ such that

D |= S ′′ ⊑ S ′ and D |= G(S ′′).

Consider the example search tree of Figure 4.1. There both of the following two sets are
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α

α

α

α

β

β

β

βS0

do(α, S0)

do(β, S0))

do([α, α], S0)

do([α, β], S0))

do([β, α], S0))

do([β, β], S0))

do([β, α, α], S0)

do([β, α, β], S0))

1

2

3

4

5

6

7

8

9

Figure 4.1: An example search tree. Dashed lines denote impossible actions, and [α, α]

is the assumed optimal plan.

fringes of S0: 




do([α, α], S0),

do([α, β], S0),

do([β, β], S0),

do([β, α, α], S0),

do([β, α, β], S0)











do([α, α], S0),

do([α, β], S0),

do(β, S0)






The former corresponds to the nodes 4, 5, 7, 8, and 9, and the latter corresponds to the

nodes 4, 5, and 3.

Note the similarity between fringe and open list. The main difference is that a fringe

can include infeasible situations. An important property of fringes is that any plan has

exactly one prefix in any given fringe. This exhaustive character of fringes allows us to

make optimality guarantees in conjunction with a heuristic function.

Theorem 2 (Sufficiency). Let D be an action theory, G(s) a goal, S a situation, and ~α a

valid plan for G(s) in S. The existence of a fringe L of S such that for every do(~β, S) ∈ L,

D |= (∀va, vb).R
[
Poss(~β, s) ∧ Value(va, do(~α, s)) ∧ Value(vb, do(~β, s)), s

]
(S) ⊃ vb ≥ va, is

a sufficient condition for the optimality of ~α in S.1

Proof: Assume to the contrary that ~α is not optimal in S, then, by applying the Regression

1Since ~β is a particular, known action sequence, regressing over it is not a problem and our abbrevi-
ation Poss(~β, s) is well defined.
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Theorem, there is a Sb = do(~β, S) s.t. D |= (∃va, vb).Value(va, do(~α, S))∧Value(vb, Sb)∧

vb < va and D |= G(Sb)∧Poss(~β, S). By definition of a fringe, Sb is either in L or is a sub-

history or a continuation of some element in L. Since no element in L is preferred to ~α and

no sub-history of any element in L satisfies the goal, Sb has to be a continuation of some

element in L. But by definition of monotonicity (Equation (4.2)), no such continuation

can be preferred to ~α.

�

This theorem establishes sufficient conditions for determining continued plan optimal-

ity. We must now translate these conditions into plan annotations that can be quickly

checked during plan execution.

4.4 Algorithm

4.4.1 Annotation

With sufficient conditions for continued plan optimality formally characterized, we can

now define the annotations we must add to an optimal plan to monitor continued opti-

mality.

Plan annotations can be computed at plan generation time by our A∗ search forward

planner, or after plan generation is completed. We assume our planner will output an

optimal plan ~α, the open list O that remained when plan generation terminated (e.g.,

nodes 5, 7, and 8 in Figure 4.1), and a list O− containing those situation terms found

to be infeasible during plan generation. This is a list of situations do(α−, S) such that

α− is not possible in situation S, i.e., D |= ¬Poss(α−, S) (cf. node 9 in the figure). The

union {do(~α, S0)} ∪O ∪O
− is a fringe of S0.

Since monitoring optimality must be done relative to alternatives, each step of the

optimal plan is annotated with the conditions that confirm its continued validity, as well

as a list of alternative plans and their corresponding predicted evaluation function values
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relativized to that plan step. Note that in the text that follows it is the description of

the annotation, and not the annotation itself, that is defined in the situation calculus.

Definition 7 (Annotated Plan (Optimality)). Given the initial situation S0, the goal for-

mulaG(s), the evaluation relation Value(v, s), an optimal sequential plan ~α = [α1, . . . , αm],

the open list O, and the list of infeasible situations O−, the corresponding annotated plan

for ~α is a sequence of tuples

π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm)

where at each plan step i, Gi(s) is as defined in Definition 2 and Vi and Alti are defined

as follows, with ~αi = [αi, . . . , αm] the remaining plan, and Si = do([α1, . . . , αi−1], S0) the

expected situation:

Vi = (φValue

i (v, s),vi), with

φValue

i (v, s) = R
[
Value(v, do(~αi, s)), s

]
, and

vi ∈ R such that D |= Value(vi, do(~αi, Si)).

Alti is the set of all tuples

Altij =
(
~βij , φ

Poss

ij
(s),pij

, φValue

ij
(v, s),vij

)
such that do(~βij , Si) ∈ O ∪O

−,

where:

φPoss

ij
(s) = R

[
Poss(~βij , s), s

]
,

pij
=






1, if do(~βij , Si) ∈ O;

0, if do(~βij , Si) ∈ O
−,

φValue

ij
(v, s) = R

[
Value(v, do(~βij , s)), s

]
, and

vij
∈ R such that D |= Value(vij

, do(~βij , Si)).

For plan step i, Vi contains the regression of the evaluation relation over the remaining

plan ~αi and its value vi with respect to the expected situation Si. Alti represents the
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list of alternative action sequences ~βij to ~αi, together with their respective regressed

preconditions and their truth value (pij
, represented as 0 or 1) in Si, and regression of

the evaluation relation and particular value in Si (vij
).

That is, we annotate each step of the plan with the regression of the goal and pre-

conditions, and the regression of the evaluation predicate over the remaining plan as well

as over all considered alternative remaining plans βij at that point. For example, in the

search tree of Figure 4.1, ~α = [α, α] is the optimal plan, Alt1 (cf. node 1) contains tuples

for the action sequences [α, β], [β, α, α], [β, α, β], [β, β], and Alt2 (cf. node 2) contains only

one tuple for [β]. A detailed example, including the actual content of the annotation, is

discussed in Section 4.5 below.

Intuitively, the regression of the evaluation relation over a sequence of actions ~α

describes in terms of the current situation, the value the evaluation relation will take

after performing ~α. As an example, consider the task of delivering a package to a location

using a truck. Assume the heuristic yields a value h = 0 when the truck has the package

loaded and is at the right location, and h = 1 otherwise. Then, regressing the heuristic

through the action of driving the truck to the right location would yield a formula stating

(package is on the truck ∧ h = 0) ∨ (package is not on the truck ∧ h = 1).

The key benefit of our approach comes from regressing conditions to the situations

where they are relevant. Consequently when a discrepancy is detected during plan ex-

ecution and the world is in a state that is different from the one assumed during plan

generation, the monitor can determine the difference between these states and limit com-

putation to reevaluating those conditions that are affected by the discrepancy (we will

make this more precise below). This can result in significant computational savings, and

is only possible because regression has enabled the definition of relevant conditions with

respect to the situation before executing the remainder of the plan or any alternative.
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Space Complexity

We briefly study the space complexity of the annotation. We are interested in the com-

plexity of the general approach, independent of the used action specification language

and regression. We hence assume that the size of the Vi and Altij is expressed by a

constant c. Then the space required to store the annotation is not significantly larger

in the worst case than that for storing the open list itself, and in fact, asymptotically

approaches that size for increasing cardinalities of actions. Let there be n actions, and

let m denote the length of the optimal plan. In the worst case, the open list contains nm

elements, namely when the search tree is a complete tree of depth m.

Theorem 3. Let the search tree be a complete tree of depth m and branching factor n.

Then the size of the annotated search tree is in O(λnm) with λ =
n− 1

nm−1

n−1
.

Proof: Recall the format of the annotation. In the first step of the plan, Alt1 has car-

dinality nm. In the second step, Alt2 has cardinality nm−1, and so on until eventually,

|Altm| = nm−(m−1) = n. The cardinality of Vi is always equal to one. Hence, in total we

store:

cnm + cnm−1 + · · ·+ cnm−(m−1)

= cnm(1 +
1

n
+ · · ·+

1

nm−1
) = cnmn−

1
nm−1

n− 1

�

Because limn→∞ λ = 1, this means that we generally have no space requirements

above those required to store the search tree in the first place.

Of course, normally in planning, the planner only returns the plan, and not the entire

search tree. In that respect our method does require a lot more memory than a normal

executing engine that simply executes the actions of the plan in sequence. However, if

the planner was able to store the search tree at one point, the system must have ade-

quately sized memory. If nonetheless these memory requirements are impractical, then
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approximations of the proposed annotation could be explored. A variety of approxima-

tions could be devised. Rather than considering the proposed formulae completely, one

could, e.g., only consider the contained (ground) fluents. This would lead to a sufficient

condition less tight than the one we propose, but would be more economical in terms of

the required space.

4.4.2 Execution Monitoring

Assume we are given an annotated, optimal plan π([α1, . . . , αm]) and that we have exe-

cuted [α1, . . . , αi−1] for some i ≤ m and thus expect to be in situation

Si = do([α1, . . . , αi−1], S0). Given the situation estimate S∗ and the annotated plan

as described in Definition 7, our task is to decide whether execution of the remainder of

the plan, ~αi = [αi, . . . , αm], is still optimal. We will do this by reevaluating all relevant

conditions in S∗ to verify that the current plan is still valid and achieves maximal value

among all alternatives.

Recall the representation of alternative plans ~β in Alti, containing the regressed pre-

conditions, evaluation relation, and their respective values during plan generation, i.e.,

with respect to Si. Also recall that Vi = (φValue
i (v, s),vi) where φValue(v, s) is a formula

over free variables v and s, denoting the regression of the evaluation relation over ~αi. A

naive procedure for monitoring plan optimality at execution is shown in Algorithm 2.

The algorithm prescribes to continue execution as long as no feasible element from

the list of alternatives achieves a better value in S∗ than the current plan. The time cost

of this algorithm is greatly determined by the computation of the condition on line 7 as

it reevaluates all annotated formulae anew in S∗. We can significantly reduce this time

by only reevaluating those conditions that may have been affected by the discrepancy

between the predicted situation Si and actual situation S∗. The precise set of affected

conditions may be approximated in a variety of ways. We here focus on perhaps the

most straightforward way: considering all conditions that mention any affected ground
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Algorithm 2: Naive Optimality Monitoring Algorithm

Input: the annotated plan π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm)

begin1

i← 1;2

while i ≤m do3

obtain S∗ ; // obtain current situation from state estimation module4

(φValue
i (v, s),vi)← Vi ;5

// plan still valid?
if D |= Gi(S

∗) then6

// plan still optimal?

if

(
∀
(
β, φPoss

β (s),pβ , φ
Value
β (v, s),vβ

)
∈ Alti :

D |= φPoss
β (S∗) ⊃ (∀va, vb).φ

Value(va, S
∗) ∧ φValue

β (vb, S
∗) ⊃ vb ≥ va

)

7

then8

execute αi ;9

i← i + 110

else11

// plan may be sub-optimal
replan12

else13

// plan no longer valid
replan14

end15

fluent. For this approximation to work, we here assume a finite set of ground fluents

in the domain. Another possible approximation would be to only consider fluent names

(predicates and function names). This approximation is less tight, but does not require

the assumption of a finite set of ground fluents.

Let ∆F (Si, S
∗) be the set of all ground fluents which appear in any of the regressed

conditions and whose truth values differ between Si and S∗, i.e.,

∆F (Si, S
∗)

def
=
{
F ( ~X) | F ∈ fluents(π(~α)) and D |= F ( ~X, Si) 6≡ F ( ~X, S∗)

}

where fluents(π(~α)) is the set of all fluents appearing in any regressed formula in the

annotated plan π(~α). If the regressed formulae contain quantifiers over fluent arguments,

we can determine all its groundings. Only conditions mentioning any of these affected

fluents need to be reevaluated, all others remain unaffected by the discrepancy. An im-
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proved algorithm for monitoring plan optimality during execution is shown in Algorithm

3.

While the plan has not been executed to completion (line 3), the algorithm does the

following:

line 6: it verifies continued validity of the plan;

lines 7–9: if the regression of the evaluation function over the plan (φValue(v, s)) men-

tions any affected fluent, it is reevaluated, obtaining new value vnew

i
;

lines 10–19: the algorithm then checks for each alternative ~β at this point of plan exe-

cution: whether its preconditions are affected and need to be reevaluated, whether

its value is affected and needs to be reevaluated, and whether this alternative is now

possible and superior to the current plan. If an alternative has become superior,

the algorithm aborts execution and calls for replanning. Otherwise the next action

of the plan is executed.

Intuitively, the foreach loop revises relevant values—the truth of preconditions and the

value of the evaluation function—generated for Si with respect to the actual situation

S∗, aborting execution only when a viable and superior alternative is found. Line 17

is most crucial: Here the regression of the evaluation relation over alternative plan ~β is

reevaluated with respect to the actual current situation S∗, yielding a new value vnew

β

for the evaluation relation (cf. Altij in Definition 7). This reevaluation only occurs if the

regression result (formula) mentions fluents that are affected by the difference between

the expected situation Si and the actual situation S∗. Otherwise the value cannot have

changed as a result of the discrepancy and does not need to be recomputed. In the

algorithm we use fluents(φ)∩∆F (Si, S
∗) to determine whether formula φmight be affected

by the discrepancy between the expected situation Si and the actually estimated situation

S∗. When φ mentions fluents with free variables among its non-situation arguments, this

intersection checks the unifiability of the terms. For instance F (M,x, s) unifies with



Chapter 4. Monitoring Plan Optimality During Execution 54

Algorithm 3: The Monoplex algorithm

Input: the annotated plan π(~α) = (G1(s), V1, Alt1, α1), . . . , (Gm(s), Vm, Altm, αm)

begin1

i← 1 ;2

while i ≤m do3

obtain S∗ ; // obtain current situation from state estimation module4

generate ∆F (Si, S
∗) ; // determine discrepancy between expected and actual state5

// check continued plan validity
if D |= Gi(S

∗) then6

// update value of current plan if necessary

(φValue
i (v, s),vi)← Vi ;7

if fluents(φValue(v, s))∩∆F (Si, S
∗) 6= ∅ then // plan quality may be affected8

vi ← vnew

i
with vnew

i
such that D |= φValue(vnew

i
, S∗)9

// update value of all alternatives where necessary

foreach
(
β, φPoss

β (s),pβ , φ
Value
β (v, s),vβ

)
∈ Alti do10

// update truth-value of precondition if necessary
if fluents(φPoss

β (s)) ∩∆F (Si, S
∗) 6= ∅ then11

if D |= φPoss
β (S∗) then12

pβ ← 113

else14

pβ ← 015

// update value if necessary

if pβ = 1 ∧ fluents(φValue
β (v, s)) ∩∆F (Si, S

∗) 6= ∅ then16

vβ ← vnew

β with vnew

β such that D |= φValue
β (S∗,vnew

β )17

// finally, verify that the alternative remains inferior to current plan
if pβ = 1 ∧ vβ < vi then18

replan ; // plan may be sub-optimal, abort execution, replan19

// plan remains optimal, continue execution
execute αi ;20

i← i + 121

else // plan is invalid22

replan23

end24
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F (M,X, s), where M and X are constants. Again, the realization of the entailment

(D |= ϕ(s)) depends on the implemented action language. The method is in particular

not reliant on the situation calculus and can be used with any action language for which

regression can be defined.

Theorem 4 (Correctness). Whenever Monoplex executes the next step of the plan (exe-

cute αi), the remaining plan αi, . . . , αm is valid and optimal in the actual current situation

S∗.

Proof: The continued validity follows immediately from Theorem 1 and line 6 of Algo-

rithm 3.

Regarding optimality, by construction, the set K consisting of the plan ~α and the

alternatives ~βij in Alti describes a fringe of Si, meaning that the set of situations

{do(~α, Si)}
⋃

j{do(
~βij , Si)} is a fringe of Si. We show that the set K also describes a

fringe of S∗, i.e., {do(~α, S∗)}
⋃

j{do(
~βij , S

∗)} is a fringe of S∗, and if the foreach loop

terminates, we have for all ~βij that D |= (∀va, vb).R
[
Poss(~βij , s) ∧ Value(va, do(~α, s)) ∧

Value(vb, do(~βij , s)), s
]
(S∗) ⊃ vb ≥ va. The optimality then follows from Theorem 2.

Notice that if a set of action sequences C describes a minimal cover of a situation S,

i.e., L = {do(~a, S) | ~a ∈ C} is a minimal cover of S, then it also describes a minimal

cover of any other situation S ′. Hence, {do(~α, S∗)}
⋃

j{do(
~βij , S

∗)} is a minimal cover of

S∗. Recall that we assume that the only way the goal is achieved is by executing the

special action finish. Since after reaching the goal, no more actions are considered by the

planner, the set K cannot include any action sequences that include finish and mention

actions afterwards. Hence, the additional condition for the fringe-property always holds

in cases where the assumption about this finish action holds. Hence, K describes a fringe

of S∗ as well.

We further show that for each alternative β, pβ is 1 iff D |= R[Poss(~β, s), s](S∗),

and vβ is such that D |= R[Value(vβ, do(~β, s)), s](S
∗), and that vi is such that D |=

R[Value(vi, do(~α, s)), s](S
∗). The first follows from the if case of line 11: if all fluents
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occurring in the regressed preconditions φPoss

β assume the same value in both Si and

S∗, then also D |= φPoss

β (Si) ≡ φPoss

β (S∗) and hence, since by construction pβ is 1 iff

D |= φPoss

β (Si), the property holds. Otherwise, if the (truth)-values of some fluents

appearing in φPoss

β differ between Si and S∗, then the formula is reevaluated and the

variable pβ set accordingly (Line 12).

The properties regarding vβ and vi follow analogously from lines 16 and 8, respec-

tively.

�

As it is stated, the algorithm continues the execution of the current plans only if

it remains optimal. In certain situations this may not be practical and a more lenient

policy for when to abort execution and replan may be desired. Note that this can be easily

achieved, by minimally modifying the algorithm. For instance, one could slightly soften

the decision on line 18 to allow plans to continue execution as long as no alternative

has the potential of being more than, say, 10% better than the current plan. This

would be achieved by simply replacing the condition in the if–statement of this line with

pβ = 1 ∧ vβ < 0.9 · vi.

4.4.3 Exploiting the Search Tree

In the description of the algorithm we focused on what needs to be annotated and verified

during execution, but not how to do this most efficiently. Working with the fringe directly

causes a lot of redundant work. This is because many alternative action sequences share

the same prefix and so the costs and preconditions of these prefixes are annotated and

potentially reevaluated multiple times. We can avoid this by exploiting the search tree

structure in both the annotation and the algorithm. The plan annotation is then done

by annotating copies of the search tree structure and modifying the algorithm to operate

on this structure. Further, an index, mapping fluents to conditions appearing in the

annotation is used to pin-point the conditions possibly affected by a discrepancy.
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Technically, the only difference between the search tree method and the algorithms

described above is the way the open list is updated and the values of the plan and the

alternatives are changed to reflect the new, actual situation. The subsequent decision

whether to continue execution or to replan is based on the same sufficient condition as

described above, hence making the two methods equivalent in terms of this monitor-

ing decision. The experimental result shown in the next subsection are based on an

implementation which already uses these improvements.

4.5 An Illustrative Example

Consider the following simplified example from the TPP domain, where an agent drives

to various markets to purchase goods which she then brings to the depot (cf. Section

A.1 in the appendix). For simplicity, assume there is only one kind of good, two mar-

kets, and the following fluents: in situation s, at(s) = l denotes the current location l,

totalcost(s) = t denotes the accumulated costs t of all actions since S0, requested(s) = r

represents the number r requested of the good, price(m, s) = p denotes the price p

of the good on market m, and driveCost(src, dest, s) = c the cost c of driving from

src to dest. Let there be two actions: Drive(dest) moves the agent from the cur-

rent location to dest, and BuyAllNeeded purchases the requested number of goods

at the market of the current location. Assume, the planner has determined the plan

~α = [Drive(Market1), BuyAllNeeded,Drive(Depot)] to be optimal, but has as well con-

sidered ~β = [Drive(Market2), BuyAllNeeded,Drive(Depot)] as one alternative among

others. To shorten presentation, we ignore the heuristic here, i.e., assume uniform cost

search (h = 0). Then

V1 =
(
v = totalcost(s) + driveCost(at(s),Market1, s)

+
(
requested(s) · price(Market1, s)

)

+ driveCost(Market1, Depot, s), v1

)
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and similarly Alt11
=
(
~β, φPoss

11
(s),p11

, φValue
11

(v, s),v11

)
where, very similar to above,

φValue

11
(v, s) =

(
v = totalcost(s) + driveCost(at(s),Market2, s)

+
(
requested(s) · price(Market2, s)

)

+ driveCost(Market2, Depot, s)
)

where we ignore preconditions for simplicity and v1 and v11
are the respective values of

the regressed value function for the plan and the alternative with respect to the situation

where we expect to execute this plan, S0.

Assume that even before the execution of the plan begins, a discrepancy in the form

of an exogenous action e happens, putting us in situation S∗ = do(e, S0) instead of S0.

The question is, whether ~α is still optimal and in particular still better than ~β. This

clearly depends on the effects of e. If e does not affect any of the fluents occurring in

above annotated formulae, it can be ignored, the plan is guaranteed to remain optimal.

This would, for instance, be the case when e represents the event of a price change on a

market that is not considered, as that price does not appear in the regressed formulae,

which only mention relevant fluents.

But even when e affects a relevant fluent, replanning may not be necessary. As-

sume, for instance, that e represents the event of an increased demand, that is, increas-

ing the value r of requested(s), formally D |= requested(S∗) > requested(S0). Then

∆F (S0, S
∗) = {requested(s)} and we need to reevaluate the annotated conditions, as

~β may have become superior. This could be the case, for instance, if the drive cost to

Market1 is lower than to Market2, but the price at this market is higher. Then, a higher

demand may make Market2 favorable, as the drive cost is compensated more than before

by the lower price. This can quickly be determined by reevaluating the annotated con-

ditions in S∗, obtaining new values v1 for ~α and v11
for ~β. If v11

< v1 then replanning

is necessary, otherwise the plan is guaranteed to remain optimal.



Chapter 4. Monitoring Plan Optimality During Execution 59

4.6 Empirical Results

We have proved that our approach establishes conditions under which plan optimality

persists in a situation. We were interested in determining whether the approach was

time-effective—whether the discrepancy-based incremental reevaluation could indeed be

done more quickly than simply replanning when a discrepancy was detected.

To this end, we compared a preliminary implementation of our Monoplex algorithm

to replanning from scratch on 9 different problems in the metric TPP domain and two

different problems of the open stacks domain with time (durative actions) of the 5th In-

ternational Planning Competition. In each case, we solved the original planning problem,

perturbed the state of the world by changing some fluents, and then ran both Monoplex

and replanning from scratch. To maximize objectivity, the perturbations were done sys-

tematically by multiplying the value of one of the numeric fluents by a factor between

0.5 and 1.5 (step-size 0.1), or by changing the truth value of a Boolean fluent.

TPP

In the TPP domain (cf. Section A.1) this resulted in a total of 2574 unique test cases. Fig-

ure 4.2 shows the performance of both approaches on a logarithmic scale (all experiments

were run on an Intel Xeon, 2.6GHz, 1GB RAM). To enhance readability we ordered the

test cases by the running time of Monoplex . The determining factors for the running

time (cf. Figure 4.2a) are predominantly the number of states for which the evaluation

function had to be (re-)evaluated (4.2b), and the number of (re-)evaluated action pre-

conditions. The discrepancy guidance of Monoplex found that on average only 1.18% of

all preconditions evaluated during replanning were affected by the discrepancy and had

to actually be reevaluated.

The results show that although Monoplex is sometimes slower than replanning (in

8 out of 2574 cases), it generally performs much better, resulting in a pleasing average

speed-up of 209.12. In 1785 cases the current plan was asserted still optimal and therefore
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Figure 4.2: The time and number of (re-)evaluated states to determine continued plan

optimality in the TPP domain, using replanning versus using Monoplex . For readability,

the test cases were sorted by Monoplex time, and the y-axis has a logarithmic scale.

replanning unnecessary, in 105 it had become invalid. In 340 of the remaining 684 cases,

replanning found the current plan to still be optimal. Notice in Figure 4.2b that some-

times the reevaluation of states can be entirely avoided, namely when the perturbation

does not affect any relevant fluents. This happened 545 times and constitutes the greatest

time savings potential, a result of our formal characterization of the situation-dependent

relevance of fluents to the optimality of the plan.

Open stacks

Less drastic, but similar in nature are the result for the open stacks domain (described

in Section A.2 in the appendix), with an average speed-up of 139.84. Figure 4.3 shows the

fraction of running time required by Monoplex compared to replanning for two different

planning heuristics. In order to investigate the influence of the applied heuristic function

we ran the same set of experiments with two different heuristics, ’A’ and ’B’, where

’B’ is more informed than ’A’ (cf. the respective lines in the figure). Again comparing

Monoplex to replanning, we note that the performance of Monoplex improves with the

use of a more informed heuristic and that it, in particular, preserves its superiority over
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Figure 4.3: Ratio of running times “Monoplex / replanning” in open stacks domain. All

test cases were repeated for two different heuristics, A and B, where B is more informed

than A.

replanning. This meets the intuition that, like the planner, Monoplex benefits from a

more focused search, resulting in a smaller search tree.

4.7 Discussion

When executing plans in dynamic environments, discrepancies between the expected and

actual state of the world can arise for a variety of reasons. When such circumstances

cannot be anticipated and accounted for during plan generation, they bring into question

whether discrepancies are relevant, and whether they render the current plan invalid or

sub-optimal. While there are several approaches for monitoring validity, no approaches

exist for monitoring optimality. Instead it is common practice to replan when a discrep-

ancy occurs or to ignore the discrepancy, accepting potentially sub-optimal behavior.

Time-consuming replanning is impractical in highly dynamic domains and many discrep-

ancies are irrelevant and thus replanning unnecessary, but to maintain optimality we

have to determine which these are.

In this chapter we make several contributions to this problem. Starting from the

abstract monitoring approach described in the previous chapter, we derive a concrete re-
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alization of this monitoring approach for the notion of plan optimality. We have provided

a sufficient condition for optimality and an algorithm that exploits knowledge about the

actual discrepancy to quickly test this condition at execution. This approach guarantees

plan optimality while minimizing unnecessary replanning.

Relevant properties of a situation as provided in the annotation, can further serve to

focus on-line sensing when faced with limited sensing resources: the agent knows which

features to sense and which can simply be ignored as they do not influence its objective.

We implemented our algorithm and tested it on systematically generated execution

discrepancies in the TPP and open stacks domains. The results show that many discrep-

ancies are irrelevant, leaving the current plan optimal, and that our approach is much

faster than replanning, with an average speed-up of two orders of magnitude.

Theoretically, the requirements for the applicability of our method are easy to fulfill:

The used action language has to be expressive enough to represent the user’s prefer-

ences and heuristic function, and regression has to be defined. In practice however, the

requirement of a regressable heuristic function is currently the main limitation of the ap-

proach. Many heuristics that have recently been shown very successful, like the popular

FF heuristic [Hoffman and Nebel, 2001], are defined algorithmically and it is not obvious

whether they can be described in a closed form, in a way that would be practical. Identi-

fying heuristics that are regressable could hence be a promising direction for future work.

Heuristics that are based on pattern databases (e.g., [Edelkamp, 2001]) might be a good

starting point, since pattern databases in nature are static and hence more amenable to

a logical representation as a regressable formula.

There are several other possible directions for future work as well. Certainly formal-

izing the approach for other planning paradigms would be worthwhile. We exemplify this

for decision-theoretic planning in Chapter 6. One also could investigate the possibility of

regressing the rationale in its entirety into one big formula instead of maintaining the tree

structure. This formula could be brought into one of several possible normal forms, lend-
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ing itself to possibly more sophisticated indexing schemes to further reduce reevaluations.

Approximate representations of this formula may further be considered to account for

limited memory of the execution engine. The normal forms and compilation techniques

presented by [Darwiche and Marquis, 2002] may be a good starting point for this line of

research. Also, when certain fluents occur in many of the annotated conditions, it may

be feasible and beneficial to factor these fluents out, e.g., when the heuristic function is

additive, to further minimize the number of conditions that need to be reevaluated when

one of these fluents change unexpectedly.

We point out additional possible directions for future work in Section 9.3, in partic-

ular those that combine the presented approach with those developed in the remaining

chapters of this thesis.

As we have seen, the proposed abstract monitoring approach based on explicit reasoning

about relevance, can have great practical advantages during plan execution. However,

given that plan generation itself requires time, the environment may change during plan

generation as well. In the next chapter we study the problem of reacting to unexpected

changes to the assumed initial state, occurring during the plan generation process itself.

Again following the proposed abstract monitoring approach, we will devise a plan gen-

eration algorithm that is able to distinguish relevant from irrelevant state changes, and

adjust the search tree accordingly, if necessary.

In practice, it is often the case that some degree of uncertainty can be predicted and

quantified. When this is the case, a combination of conditional planning and execu-

tion monitoring seems most appropriate. We therefore continue our study of execution

monitoring approaches in Chapter 6 with an implementation of the abstract monitor-

ing approach for the execution of policies in domains with explicitly modeled stochastic

action outcomes.

The restriction to final state goals can be a limitation in practice. In many cases,
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agent designers, like robot programmers, wish to enforce or disallow certain types of

behaviors, which often have temporal character. While languages have been developed

that allow users to express such temporally extended constraints, the approach presented

in this chapter is not immediately applicable for monitoring the execution of the generated

plans. We will therefore describe a compilation approach in Chapter 7, which transform

a planning problem with procedural constraints into a normal planning problem, which

has the right format for our relevance based approach.



Chapter 5

Generating Optimal Plans in Highly

Dynamic Environments

5.1 Introduction

In highly dynamic environments the initial state assumed by the planner frequently

changes in unpredictable ways not only during plan execution, but during plan generation

itself as well. Even when no plan or plan candidate has been identified yet, this may

invalidate the current planning effort. We argue that neither boldly ignoring such changes

nor replanning from scratch every time the initial state changes is an appealing option.

While the plans produced by the former lack any guarantee of optimality or even validity,

the latter may never finish plan generation if unexpected events keep interrupting. In

this chapter, we propose an integrated plan generation and recovery algorithm which is a

result of integrating the abstract monitoring approach proposed earlier into the planner

itself. The planner is thus able to explicitly reason about the relevance and impact of

discrepancies between assumed and observed initial state. As a result, it is able to “catch

up with reality”, meaning that it is generally able to finish plan generation eventually,

while still guaranteeing optimal plans. Such an approach is particularly important in the

65
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face of noisy sensors, where the agent’s belief of the world frequently changes, though

often only by small amounts, which often makes such changes irrelevant.

As a motivating example, consider a soccer playing robot in RoboCup, which, having

the ball, deliberates about how to score. In RoboCup it is common to receive sensor

readings 10 times per second. The game environment is very dynamic, resulting in

frequent discrepancies between assumed and observed initial state. Such discrepancies

may or may not affect the current planning process. But how can the robot tell? And how

should the robot react when discrepancies are deemed relevant? For instance, assume

that at some point during plan generation the current most promising plan starts with

turning slightly to face the goal and then driving there, pushing the ball. If the ball

unexpectedly rolls 10 centimeters away while deliberating, the initial turn action may

cause the robot to lose the ball, so this discrepancy is relevant and another plan, starting

by re-approaching the ball, should be favored. But if the ball rolls closer, the original

plan remains effective and the discrepancy should be ignored and planning continued.

5.1.1 Contributions

The contributions of this chapter are three-fold:

1. We propose a novel algorithm for plan generation that monitors the state of the

world during plan generation and recovers from unexpected state changes that

impact planning. We prove that the algorithm produces plans that are optimal

with respect to the state where execution begins. It is able to distinguish between

relevant and irrelevant discrepancies, and updates the planning search tree to reflect

the new initial state if necessary. This is generally much faster than replanning from

scratch, as we demonstrate empirically, and works for arbitrary state changes that

are representable in the domain specification.

2. We introduce a new criterion for evaluating plan adaptation algorithms: their rel-
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ative running time compared to the “size” of the discrepancy. We argue that this

measure is of greater practical significance than either theoretical worst case consid-

erations or the absolute recovery time, for the following reason: In highly dynamic

domains unexpected state changes occur during plan generation as well as during

plan adaptation (recovery). In order to obtain a plan that is known to be opti-

mal when execution commences, the cycle of plan generation and recovery has to

terminate by a completed recovery before the state changes any further. This is

possible when in practice the time for recovery is roughly proportional to the size

of the change. Imagine plan generation takes 10 seconds and recovering from any

state changes that occurred during that time takes 8 seconds. If we assume that

in 8 seconds on average fewer changes happen than in 10, it seems reasonable to

expect that we can recover from those in less than 8 seconds, say on average 6.

This continues, until recovery has “caught up with reality”. We informally say

that an algorithm with this property converges. Repeated replanning from scratch

obviously does not converge, as it does not differentiate between “big” and “small”

discrepancies.

3. We show empirically that our algorithm can converge and find optimal plans in

domains that were previously not amenable to planning, due to the high dynamics

of the environment in which they are situated. Particularly “on-the-fly” recovery,

i.e., recovering immediately upon discrepancy detection, has a higher chance of

convergence than the alternative of completing the original planning task first and

recovering only afterwards.

We explicitly assume that the number and extent of discrepancies increases over

time, i.e., that greater discrepancies are incurred in longer time intervals. This seems

reasonable to us and holds for many interesting application domains. This, together with

the observation that our algorithm can recover from a few small changes faster than from

many large ones, provides the convergence of our approach. We demonstrate this and the
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resulting convergence of our approach empirically, on domain simulations which satisfy

this assumption.

5.1.2 About Optimality in Dynamic Environments

We understand optimality to be defined in terms of what is currently known, and we want

to execute plans only when they are considered optimal at the moment execution begins.

This seems rational, since future events cannot generally be predicted. Nevertheless, we

point out that this may lead to behavior that, in hindsight, is sub-optimal compared to

a seemingly worse but quickly produced plan, namely when bad or catastrophic events

in the environments can be avoided by planning and acting more quickly. We also

explicitly assume that everything that matters for optimality is modeled in the theory.

In particular, we assume that planning time itself does not directly affect optimality.

5.2 Algorithm

We continue focusing on a planner based on A∗ search that uses positive action costs

as a metric. But as before, the conceptual approach is amenable to a variety of other

forward-search based planning techniques and paradigms. We will elaborate on this in

later chapters.

Intuitively, our approach annotates the search tree with all relevant information for

determining the optimal plan. By regressing the goal, preconditions, and metric function

over all considered action sequences, this information is expressed in terms of the current

state. When unexpected events change the current state of the world, this information

allows the planner to reason symbolically about the relevance of the changes and their

potential impact on the current search tree and choice of plan—much faster then replan-

ning from scratch. In particular, irrelevant changes can be discarded and do not trigger

any kind of potentially costly replanning.
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For instance, our soccer robot from above knows from regressing the goal that the plan

[“turn”, “drive to goal”] will succeed whenever “distance to ball < 10cm” holds. Hence it

can determine the relevance of the aforementioned ball displacements, and also that, for

instance, unexpected actions of its teammates can be ignored for now. A complication

of this arises from our interest in an optimal, rather than just any valid plan. As before,

we will need to also consider alternative action sequences, and also handle impacts on

the regressed metric function.

At the highest level, the approach we present here consists of two components: A

regression-based A∗ planner, and a recovery procedure. These can be used in at least

two possible ways:

At-the-end: The planner generates an optimal plan for the assumed initial state. If

no changes to the initial state occur, the resulting plan is optimal and execution

can commence. Otherwise, the recovery procedure updates the final search tree

and open list as necessary given any observed changes to the initial state. If the

order of the open list does not change during the recovery, and hence still has the

previously found plan as its first element, the plan is known to remain optimal

and can be executed. Otherwise, the planner resumes plan generation given the

updated structures.

On-the-fly: In the absence of any changes to the assumed initial state, the planner

is proceeding in its search for an optimal plan. Whenever a change to the initial

state is observed, plan generation is interrupted and the recovery procedure updates

the current search tree and open list to reflect the changes. Plan generation then

continues.

In both cases, this alternation continues until a plan generation cycle terminates without

further interruptions, in which case the resulting plan is known to be optimal with respect

to the currently assumed initial state.
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In the next two subsections we propose a regression-based A∗ planner, which we call

RegBasA*, and the recovery procedure which exploits the annotations created during plan

generation.

5.2.1 Regression-Based A∗ planning

We present an A∗ planner which maintains a search tree annotated with any relevant

regressed formulae, and which returns not only a plan, but also the remaining open list

upon termination of search and the search tree. This planner is only a minor modification

of the A∗ search planner described in Section 4.2. The main modification lies in the fact

that all relevant formulae are regressed and stored in their respective nodes of the search

tree for later reuse, and that an index is created, which maps ground fluents to the stored

regressed formulae they appear in.

Our regression-based version of A∗ is shown in Algorithm 4. As before, we assume that

the planning domain is described by a basic action theory D, and that the user provided

a goal formula G(s), cost function Cost(a, c, s), and monotonic heuristic Heur(h, s),

and, of course, an initial state described by a situation S. As before, we assume that

the goal can only be achieved by a distinguished action finish (cf. Section 4.2). The

algorithm interacts with D to reason about the truth-values of formulae. The algorithm

takes as input the action theory D, the assumed initial situation S, the cost and heuristic

functions, Cost , Heur , an open list, and an annotated search tree, which is initially empty.

The algorithm is initially invoked as RegBasA∗(D, S,G,Cost ,Heur , [(0,∞, [ ])], nil). The

elements of the open list are tuples (g, h, ~α), where ~α = [α1, . . . , αn] is an action sequence,

g are the costs accumulated when executing this sequence in S, and h is the heuristic

value, i.e., D |= Heur(h, do(~α, S)). When an element is expanded, it is removed from the

open list and the following is performed for each agent action α′: First, the preconditions

of α′ are regressed over ~α (Line 11). If the resulting formula, stored in T (~α).P (s), holds

in S according to D (Line 12), the cost formula for α′ is regressed over ~α, the heuristic is
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Algorithm 4: RegBasA*: Regression-Based A∗ planning.

Input: D, S,G,Cost ,Heur , O, T

begin1

if O = [ ] then2

// the open list is empty, no plan found
return ([ ], T )3

else4

[(g, h, ~α) | O′]← O ; // divide open list into first element and remaining list5

if D |= G(do(~α, S)) then6

return (O, T )7

else8

foreach α′ ∈ A do9

~α′ ← ~α · α′ ; // append action to sequence10

T (~α′).P (s)← R[Poss(α′, s), ~α] ;11

if D |= T (~α′).P (S) then12

T (~α′).p← 1 ; // action currently possible13

// regress costs and heuristic
T (~α′).C(c, s)← R[Cost(α′, c, s), ~α] ;14

T (~α′).H(h, s)← R[Heur(h, s), ~α′] ;15

// get current costs and current heuristic value
T (~α′).c← c′ with c′ s.t. D |= T (~α′).C(c′, S) ;16

T (~α′).h← h′ with h′ s.t. D |= T (~α′).H(h′, S) ;17

// insert new element into open list
insert (g + c′, h′, ~α′) into O′ according to g + c′ + h′ ;18

else19

T (~α′).p← 0 ; // action currently impossible20

return RegBasA∗(D, S,G,Cost ,Heur , O′, T )21

end22

regressed over ~α ·α′, and the resulting formulae are evaluated in S yielding values c′ and

h′ (Lines 14–17). Intuitively, the regression of these formulae over ~α describes in terms

of the current situation, the values the respective functions will take after performing ~α.

Finally, a new tuple (g′, h′, ~α′) is inserted into the open list (Line 18), where g′ = g + c′.

This insertion is done according to the sum of the first two elements of the tuples in the

list (g + h) to maintain the open list’s order according to Value(v, s) (cf. Section 4.2).

A∗ keeps expanding the first element of the open list, until this element satisfies the

goal, in which case the respective action sequence describes an optimal plan. This is
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because a monotonic heuristic never over-estimates the actual remaining costs from any

given state to the goal, and we are assuming non-negative action costs. Due to the

Regression Theorem [Reiter, 2001, pp.65–66], this known fact about A∗ also holds for

our regression-based version. Similarly, the completeness of A∗ is preserved.

In service of our recovery algorithm described below, we explicitly keep the search tree,

T , and annotate its nodes with the regressed formulae for preconditions (T (~α).P (s)), costs

(T (~α).C(c, s)), and heuristic value (T (~α).H(h, s)) and their respective values according

to the (current) initial situation S (T (~α).p, T (~α).c, and T (~α).h). Roughly, when the

initial state changes due to an unexpected event e, our recovery algorithm reevaluates

T (~α).P (s), T (~α).C(c, s), and T (~α).H(h, s) in s = do(e, S), and updates their values and

the open list accordingly. However, we can gain significant computational savings by only

reevaluating those formulae actually affected by the state change. And since all formulae

are regressed, we can determine which ones are affected, by simply considering the fluents

they mention. For this purpose we create an index Index whose keys are ground fluent

atoms (e.g., distanceTo(Ball)) and whose values are lists of pointers to all stored formulae

that mention it. As in the previous chapter, the use of such an index requires us to assume

a finite set of ground fluents in the domain. Again, other approximations of the affected

conditions in the annotation exist.

5.2.2 Recovering from Unexpected Changes

While generating a plan for an assumed initial situation S, an unexpected event e, say

“distanceTo(Ball)← 20”, may occur, changing the state of the world and putting us into

situation do(e, S). When this happens, our approach consults the aforementioned index to

pinpoint all formulae affected by this change (e.g., T ([turn, driveTo(goal), finish]).P (s)).

After reevaluating these formulae in do(e, S) and updating their values, the search tree

will be up-to-date in the sense that all its contained values are with respect to do(e, S)

rather than the originally assumed initial situation S. After propagating this change
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to the open list, search can continue, producing the same result as if A∗ (or RegBasA∗)

had set out in do(e, S) (cf. Theorem 5 below). The regressed formulae never change.

Assuming that most unexpected state changes only affect a few fluents and thus often only

affect a small subset of all formulae, our annotation allows for significant computational

savings when recovering from changes compared to replanning from scratch, as we show

empirically in the next section.

Algorithm 5 shows the recovery procedure. It receives as input the basic action theory

D, the assumed initial situation S1 and actual situation S2, as well as the cost function,

heuristic function, open list O, and annotated search tree T , and the fluent index Index.

The latter contains entries of the form (~α, type), where ~α is a sequence of actions and type

is either of ‘p’, ‘c’, or ‘h’, indicating that the fluent in question is mentioned in the

regressed precondition, the regressed costs, or the regressed heuristic of the search tree

node denoted by ~α, respectively. The algorithm modifies the values of the tree and the

open list (ll. 25 and 29) to reflect their value with respect to the new situation S2 (e.g.,

do(e, S1)) rather than the originally assumed initial situation S1. If the event changes the

truth value of action preconditions, the content of the open list is modified accordingly

(ll. 10, 19). When a previously impossible action has now become possible (Line 11) the

annotation for this node is created and a new entry is added to the open list (ll. 13-19).

The function getGval(T, ~α) computes the sum of all costs (T (·).c) annotated in T along

the branch from the root to node ~α.

As said earlier, the algorithm can be used in one of at least two ways: during plan

generation (“on-the-fly”), dealing with unexpected state changes immediately, or right

after plan generation (“at-the-end”), dealing at once with all events that occurred during

plan generation. The former has the advantage that the planning effort is focused more

tightly on what is actually relevant given everything that has happened so far. This

approach can be implemented by inserting code right before Line 21 of RegBasA∗ that

checks for events and invokes Recover if necessary, changing S,O′, and T accordingly.
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Algorithm 5: Recover: the recovery procedure.

Input: D, S1, S2,Cost ,Heur , O, T, Index

begin1

∆F ←
{
F ( ~X, s) ∈ keys(Index) | D |= F ( ~X, S1) 6≡ F ( ~X, S2)

}
;2

∆←
⋃

f∈∆F
Index(f) ; // affected formulae3

sort the elements (~α, type) of ∆ by length of ~α ;4

foreach (~α, ‘p’) ∈ ∆ do // update preconditions5

if T (~α).p = 1 and D |= ¬T (~α).P (S2) then6

T (~α).p← 0 ; // action now impossible7

foreach (g, h, ~α′) ∈ O do // remove all affected elements from the open list8

if ~α is prefix of ~α′ then9

remove (g, h, ~α′) from O10

else if T (~α).p = 0 and D |= T (~α).P (S2) then11

T (~α).p← 1 ; // action now possible12

~α′ · αlast ← ~α ; // get last action in sequence13

T (~α).C(c, s)← R[Cost(αlast, c), ~α
′] ;14

T (~α).H(h, s)←R[Heur(h), ~α] ;15

T (~α).c← c′ with c′ s.t. D |= T (~α).C(c′, S2) ;16

T (~α).h← h′ with h′ s.t. D |= T (~α).H(h′, S2) ;17

g′ ← getGval(T, ~α) ;18

insert (g′, h′, ~α) into O and update Index19

foreach (~α, ‘c’) ∈ ∆ do // update accumulated costs20

get c′ s.t. D |= T (~α).C(c′, S2) ;21

offset← c′ − T (~α).c ;22

foreach (g, h, ~α′) ∈ O do23

if ~α is prefix of ~α′ then24

g ← g + offset ; // adjust accumulated costs in open list element25

T (~α).c← c′26

foreach (~α, ‘h’) ∈ ∆ do // update heuristic values27

if (∃g, h).(g, h, ~α) ∈ O then // adjust heuristic estimate in open list28

h← h′ with h′ s.t. D |= T (~α).H(h′, S2) T (~α).h← h ;29

return (sort(O), T ) ;30

end31
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The appeal of the latter (“at-the-end”) stems from the fact that recovering from a bulk of

events simultaneously can be more efficient than recovering from each event individually.

It may, however, be necessary to resume RegBasA∗ search afterwards, if, for instance,

the current plan is no longer valid in the new initial state or a new opportunity exists,

which may lead to a better plan. With both approaches, additional events may happen

during recovery, making additional subsequent recoveries necessary (cf. our discussion

about convergence in Section 5.1).

The following theorem states the correctness of Recover in terms of the “at-the-end”

approach: calling Recover and continuing RegBasA∗ with the new open list and tree,

produces an optimal plan and in particular the same as replanning from scratch in S2.

Recall that the first element of the open list contains the optimal plan. For “on-the-fly”,

correctness can be shown analogously (cf. Lemma 1 in Appendix B).

Theorem 5 (Correctness). Let D be a basic action theory, G(s) a goal formula,

Cost(a, c, s) a cost formula, and Heur(h, s) a monotonic heuristic. Then, for any two

situations S1, S2 in D we have that after the sequence of invocations:

1. (O1, T1)← RegBasA∗
(
D, S1, G(s),Cost(a, c, s),Heur(h, s), [(0,∞, [ ])], nil

)
,

2. create Index from T1,

3. (O2, T2)← Recover
(
D, S1, S2,Cost(a, c, s),Heur(h, s), O1, T1, Index

)
,

4. (O3, T3)← RegBasA∗
(
D, S2, G(s),Cost(a, c, s),Heur(h, s), O2, T2

)

the first element of O3 will be the same as in O′ of

(O′, T ′)← RegBasA∗
(
D, S2, G(s),Cost(a, c, s),Heur(s), [(0,∞, [ ])], nil

)

or both O3 and O′ are empty.

Proof: Appendix B.
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Due to the optimality of RegBasA∗, this also means that any completed plan is guar-

anteed to be optimal with respect to S2. This, in particular, works for any situation pair

S1, S2 = do(~e, S1), for any sequence of events ~e. Note that such events can produce arbi-

trary changes to the state of the world. The algorithm does not make any assumptions

about the identity or cardinality of possible events. Any fluent may assume any value at

any time.

In complex domains, many state changes are completely irrelevant to the current

planning problem, overall or at the current stage of plan generation, and others only

affect a small subset of elements in the search tree. During recovery, we exploit this

structure to gain significant speed-ups compared to replanning from scratch. Practically

more important than the mere speed-up, though, is that, on average, our algorithm

recovers from small perturbations faster than from large ones, where “large” may refer to

the number of fluents that changed or the amount by which continuous fluents changed.

This is what allows our algorithm to converge, i.e., “catch up with reality”, as we defined

informally in the introduction. We verified this empirically.

5.3 Empirical Results

We present empirical results obtained using a current implementation of our algorithm to

generate optimal plans for differently sized problems of the metric TPP and Zenotravel

domains of the International Planning Competition (described in Sections A.1 and A.3

in the appendix). We begin by showing that the time required for recovering from

unexpected state changes is roughly and on average proportional to the extent of the

change. We then show that our approach is able to find optimal plans even when the

initial state changes frequently. We compare the two mentioned recovery strategies on-

the-fly and at-the-end, showing that the former clearly outperforms the latter in terms

of likelihood of convergence. Finally, and not surprisingly, we show that our approach
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Figure 5.1: Recovery time relative to amount of change.

generally outperforms replanning from scratch. All experiments were run on an Intel

Xeon 2.66 GHz with 2GB RAM.

Figure 5.1 plots the average time the combination of Recover + continued RegBasA∗

search took to find a new optimal plan, after the value of a randomly selected continuous

fluent was randomly modified after generating an optimal plan. A deviation X% means

that the fluent was multiplied by 1± X
100

, e.g., 50% means a factor of 1±0.5.1 The graph

shows that recovering from a drastic change takes on average longer than recovering from

minor deviations. While this does not seem surprising, we present it here since it provides

the intuition for the convergence behavior of our approach, which we study next.

We assume that over longer periods of time more things change and in greater amounts

than over shorter periods of time. Recovery generally takes less time than the original

plan generation did (see below). Hence, we assume fewer or less drastic changes will hap-

pen during recovery than during plan generation. A second recovery—from the events

that occurred during the first recovery—is thus predicted to take less time than the first.

This process often continues until convergence. We studied the conditions under which

1Note that we used continuous fluents in our experiments only because they lend themselves better
to a quantitative evaluation. Our approach is equally applicable to discrepancies on discrete valued,
including Boolean, fluents.
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our algorithm converges by simulating domains with frequent changes to the initial state.

At high frequencies during plan generation and subsequent recoveries, we randomly per-

turbed some fluent by an amount of up to a certain maximum between 5-80%. We

considered the two approaches described earlier: completing the original planning task

and recovering only once a plan is found for the assumed initial state (at-the-end), fol-

lowed by further RegBasA∗ search if needed, or reacting to state changes immediately

(on-the-fly), pausing further RegBasA∗ expansion until Recover has brought the cur-

rent search tree up-to-date. In both cases, several episodes of recovery and additional

RegBasA∗ search were generally required before finding an optimal and up-to-date plan.

Their number varied strongly, as a result of some discrepancies having larger impact

than others. Table 5.1 shows the percentages of simulations in which an optimal plan

was found, i.e., the algorithm converged within the time limit, for different frequencies

and amounts of perturbation. As time limit we used 30 times the time required for solving

the respective original planning problem without perturbations and using a conventional

A∗ search planner. These were 0.52s for TPP1, 2.17s for TPP2, 3.03s for TPP3, and

0.34s, 0.82s, and 1.58s for Zenotravel 1, 2, and 3 respectively. The frequencies shown in

the table are relative to these as well. For instance, the value 100 for Zenotravel1 on-

the-fly, 5Hz, 40% states that even when every 0.34s/5 = 68 milliseconds the value of a

random fluent changed by up to 40% in the considered Zenotravel problem, the on-the-fly

approach still converged 100% of the time. This simulates a quite erratic environment,

possibly harsher than many practical application domains.

The on-the-fly recovery strategy clearly outperforms at-the-end recovery. This makes

intuitive sense, as no time is wasted continuing plan generation for an already flawed

instance. This also motivates an integrated approach like ours, showing its benefit over

the use of plan adaptation approaches which are only applicable once a first plan has been

produced (cf. Section 8.1). These approaches also generally do not guarantee optimal

plans.
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Frequency: 3Hz · planning time 5Hz · planning time 10Hz · planning time

Deviation: 5% 20% 40% 80% 5% 20% 40% 80% 5% 20% 40% 80%

TPP1 at-the-end 100 100 83 60 100 83 63 43 100 76 43 20

TPP1 on-the-fly 100 100 86 83 100 96 80 83 100 93 80 70

TPP2 at-the-end 96 60 63 43 100 51 44 34 89 34 24 10

TPP2 on-the-fly 100 86 86 83 96 75 86 82 96 86 79 82

TPP3 at-the-end 100 50 66 41 94 55 42 52 76 42 32 20

TPP3 on-the-fly 100 87 92 72 94 86 87 89 89 81 89 86

Zenotravel1 at-the-end 100 100 100 76 66 63 43 56 3 0 6 16

Zenotravel1 on-the-fly 100 100 100 100 96 100 100 86 66 70 93 93

Zenotravel2 at-the-end 66 30 26 3 30 6 6 6 10 0 0 0

Zenotravel2 on-the-fly 86 53 53 40 36 30 26 23 13 0 6 20

Zenotravel3 at-the-end 100 56 28 8 97 12 7 7 33 0 0 2

Zenotravel3 on-the-fly 100 60 56 66 90 60 30 43 43 33 25 21

Table 5.1: Percentage of test cases where our approach converged within the time limit,

by event frequencies and deviation amounts. For better visibility, the bold faced numbers

indicate which of the two usages (at-the-end, or on-the-fly) performed better.

The table also shows that convergence was much better on TPP than on Zenotravel.

Interestingly, this was predictable given Figure 5.1: since the curve for Zenotravel1 inter-

sects the y-axis at around 0.07 seconds, it seems unreasonable to expect convergence on

this problem when the initial state changes at intervals shorter than that. This explains

the low probability of convergence of the at-the-end approach when events occur at 10Hz

times planning time, i.e., every 0.034s.

Since replanning from scratch takes the same amount of time, no matter how small the

discrepancy is, assuming the problem does not get significantly easier through this, it has

no chance of ever catching up with reality when events happen at time intervals shorter

than the time required for plan generation. Our approach thus enables the application
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Figure 5.2: Run-time comparison of our approach vs. replanning from scratch on the

TPP domain.

of planning in domains where this was not previously possible. In practice, the approach

needs to be paired with an equally effective execution monitor like the one we presented

in the previous chapter of this thesis. During execution, a similar phenomenon to our

convergence behavior can be observed. Intuitively, as plan execution proceeds and we are

approaching the goal, the number of relevant domain features decreases, and so does the

probability for relevant events—less things can go wrong. This benefits our relevance-

based approach.

Not surprisingly, our approach generally outperforms replanning from scratch. To
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demonstrate this, we compared the times required by both approaches for recovering

from a single change of the initial state. The setup was as follows: We solved a planning

problem, perturbed the state of the world by randomly changing some fluent’s value, and

then ran both (a) Recover followed by further RegBasA∗ search based on the modified

open list if necessary, and (b) replanning from scratch using a conventional A∗ search im-

plementation using the same heuristic. The fluent perturbations were done on continuous

fluents only, and the amount of change was up to 50%.

Figure 5.2 shows the time both approaches require to recover from single events on

our TPP1 problem. Recall that with both approaches the resulting plan is provably

optimal. We separately show the times for cases where (a) additional RegBasA∗ was

necessary, and (b) where it was not. The latter is the case when following Recover, the

first element of the open list satisfied the goal. The average speed-up over replanning

from scratch was 10.56 in the former case, and 33.64 in the latter. In all test cases, the

simulated discrepancy was relevant in the sense that at least one formula appearing in

the annotation was affected. Hence, calling Recover was necessary in all cases – the set

∆ of Algorithm 5 was never empty.

We performed the same experiment on the Zenotravel1 problem. It is a reasonable

question to ask whether the relative speed-up of our approach is just due to the use of a

comparatively slow replanner, as it has been claimed about the empirical results of other

plan repair approaches in the literature (cf. our discussion of the SPA system, page 142).

Therefore we tested using two different, hand-coded heuristics, where the first is more

informed (i.e., better) than the second. Using the first, which we also used in the earlier

described experiments, the average recovery time was 0.14s, and the average replanning

time was 0.51s, whereas with the second heuristic recovery time averaged to 0.35s and

replanning to 1.07s. This shows that even when the planner, and thus replanner, is

improved by the use of a better heuristic, our approach is still generally superior to

replanning from scratch. This is because it equally benefits from a smaller search tree,
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resulting from the use of a better heuristic.

5.4 Discussion

Generating optimal plans in dynamic environments where the assumed initial state of the

problem frequently changes in unexpected ways is difficult. If such changes are ignored,

no guarantees can be made about the optimality or even validity of the produced plan.

But if one opts to replan from scratch every time such a change happens, the plan

generation process may never terminate, when changes are frequent and regular.

In this chapter we made three contributions:

1. We presented a novel integrated plan generation and recovery algorithm for generat-

ing optimal plans in environments where the state of the world frequently changes

unexpectedly during plan generation. At its core, the algorithm reasons about

the relevance and impact of discrepancies, allowing the algorithm to recover from

changes more efficiently than replanning from scratch.

2. We introduced a new criterion for evaluating plan adaptation approaches, called

convergence, and argued for its significance.

3. We empirically demonstrated that our approach is able to converge even under

high frequencies of unexpected state changes. Our experiments also show that an

interleaved planning-and-recovery approach which recovers from such discrepancies

on-the-fly is superior to an approach that only recovers once plan generation has

completed.

Note that the convergence of our approach depends on two assumptions: (i) that, on

average, over longer periods of time, more or more drastic changes to the state of the world

occur, and (ii) that our algorithm is indeed able to recover from less drastic changes faster

than from more drastic ones, again, on average. While it is hard to imagine environments
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where the first assumption is violated, the satisfaction of the second assumption is hard

to predict a-priori. We have hence opted to verify it empirically for the example domains

we considered (cf. Figure 5.1 and its discussion).

The problem we address in this chapter has not received much principled attention in

the literature. We review more abstractly related work in Chapter 8, and limit ourselves

here to just a few brief remarks. To the best of our knowledge, [Veloso et al., 1998] is

the only other approach for monitoring the state of the world and reacting upon changes

during plan generation. However, that approach applies only a very limited notion of

optimality, where, in particular, the quality of sub-plans is known a-priori. Further the

most characteristic distinction between ours and existing replanning approaches, which

are devised for replanning only once a complete plan has been generated, and which often

work by explicitly repairing that plan, is that:

1. our approach guaranteed optimal plans, while almost none of the other approaches

do (with the notable exception of the SHERPA system [Koenig et al., 2002] (dis-

cussed at length in Section 8.1, Page 146);

2. our approach is integrated with the planner, enabling replanning as soon as dis-

crepancies occur, and not just after plan generation has completed.

There are several possible directions for future work. The approach needs to be tested

in real-world applications for validation. It is hard to determine abstractly whether the

simulated dynamics of the world are consistent with how real application domains may

behave.

Further, the initially discussed question regarding the notion of optimality in a domain

that may change in arbitrary ways deserves a more sophisticated, theoretical analysis.

Here, insights from meta-reasoning come to mind, which we will review in Section 8.5.

This in particular holds when removing the assumption that time does not affect the

quality of the plan, which in many domains may be problematic.
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In addition, we think that the ideas behind the presented approach may be benefi-

cially applied to planning under initial state uncertainty as well, in particular when such

uncertainty ranges over continuous domains.



Chapter 6

Monitoring Policy Execution in

Stochastic Domains

While in the previous chapters we assumed that uncertainty in the environment cannot

be predicted or quantified, we now consider the case when such quantification is possible

to some extent. In particular, we consider stochastic domains, where certain actions can

have any of a finite set of defined outcomes, and where the probabilities for these outcomes

are known. Assuming that not all uncertainty is captured this way, it is still necessary

to devise an execution monitoring strategy. We again follow the abstract approach of

identifying what is relevant for the achievement of the objective—policy optimality in this

case—and then devise an algorithm to determine the degree of relevance of unexpected

state discrepancies, based on this information.

6.1 Introduction

The de-facto standard for modeling decision making in stochastic domains is Markov

Decision Processes (MDPs). In most cases, MDPs are solved off-line by creating a policy

that maps each state to an action that maximizes the expected accumulated reward over

time. With this policy in hand, an agent knows how to act optimally in any state of the

85



Chapter 6. Monitoring Policy Execution in Stochastic Domains 86

world. Unfortunately, solving an MDP in such a way is computationally intensive and

particularly difficult for large or infinite state spaces, or when time is limited. As such,

a reasonable alternative is to compute an approximately optimal policy via state-based

search from a known initial state. This generates a policy for (a subset of) the state

space that is reachable from the current state within a bounded number of actions. Two

questions arise from such an approach: how close to optimal is the resulting policy, and

how robust is it.

In this chapter we address the issue of policy robustness. Since the MDP is only

solved for a subset of the state space, an agent can find itself outside this subset during

execution of the policy. This can happen for at least two reasons: i) the initial search

ignored less likely outcomes of actions or ignored the possible occurrence of some unlikely

exogenous events, or ii) the transition function erroneously neglected the possibility of

certain outcomes or events. This is particularly true of sampling-based approaches, some-

times used to find an approximately optimal policy for a problem defined over a infinite

state space (e.g., [Kearns et al., 1999], also see Section 6.5.2). Regardless of the cause, a

discrepancy between actual and anticipated outcomes requires the agent to decide how

to proceed. A common response is to replan starting from the actual current state. We

argue that in many cases of discrepancy detection it is not necessary to replan because

the aspect of the state that is deviant has no bearing on the optimality of the remaining

policy execution.

6.1.1 Contributions

To address this problem, we develop an approach for monitoring the execution of policies

that forms yet another concrete application of the abstract monitoring approach we

formulated in Chapter 3. In Section 6.2 we review the situation calculus representation

of relational MDPs, and their solution using decision-tree search. Following the general

scheme of using our abstract monitoring algorithm, in Section 6.3 we begin by defining
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the required policy annotation, by identifying what is relevant for its optimality. We

then present an algorithm that exploits this annotation to update the search tree and

the value function estimate when discrepancies are observed during policy execution.

The approach hence covers the state evaluation and the recovery steps of the framework

of Figure 1.1, p.4, for the case of monitoring policy optimality in stochastic planning

domains.

Thereafter we analyze properties of our approach including the space complexity of

our annotation. We also consider two particular classes of MDPs: stochastic shortest-

path problems and large or infinite MDPs that are solved approximately via sampling.

We show that in both cases our algorithm can be used to verify the optimality of the cur-

rent policy or to resurrect an approximately optimal policy together with an upper bound

on the approximation error, under certain circumstances. Experiments with an imple-

mentation of our approach illustrate its potential to drastically speed-up the decision to

continue execution of a policy or to replan.

6.2 Background

6.2.1 Representing MDPs

An MDP is described through a state space S, a set of actions A, a transition function

T , with T (s, a, ·) denoting a distribution over S for all s ∈ S, a ∈ A, a reward function

R : S → R, and a cost function C : A × S → R. The state is assumed to be fully-

observable by an agent acting in such an environment and the agent’s goal is to behave

according to a policy π : S → A that maximizes the value function defined using the

infinite horizon, discounted reward criterion, defined in terms of the expectation E :

V π(s) = E

[
∞∑

i=0

γi(ri − ci)

∣∣∣∣∣ s, π
]
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where ri is the reward obtained after performing policy π for i steps starting in s, ci is

the cost incurred by the action performed at that stage, and 0 < γ < 1 is the discount

factor. Similarly, the Q-function is defined as

Qπ(a, s) = R(s)− C(a, s) + γEs′∼T (s,a,·) [V π(s′)]

where the expectation E is over the transition probabilities T (s, a, ·). Finally, the optimal

value function and optimal Q-function are defined as V ∗(s) = supπ V
π(s) and Q∗(a, s) =

supπ Q
π(a, s) respectively. The optimal policy behaves greedily with respect to Q∗, i.e.,

π∗(s) = argmaxaQ
∗(a, s).

An MDP M = 〈S, A, T,R,C〉 can be represented through a basic action theory D

in the situation calculus as follows (cf. [Reiter, 2001; Boutilier et al., 2001]): Fluents

describe the set of states relationally, thus S is the set of all, possibly infinite, combi-

nations of fluent values. Further the user specifies for each (stochastic) action a ∈ A

a predicate Choice(a, a′i) describing a collection of primitive actions a′i that form the

unique outcomes of executing a. Preconditions are defined for a, but successor state

axioms are defined in terms of the primitive actions describing the outcomes. Using

predicate Prob(a′i, a, p, s), the user specifies the probability p for outcome a′i when a

is performed in situation s. Prob and Choice describe the transition probabilities T .

The specification is completed by two more predicates: Reward(r, s), describing the

reward r obtained in situation s, and Cost(a, c, s), describing the cost c of primitive

action a in s. The latter deviates slightly from the definitions used in [Reiter, 2001;

Boutilier et al., 2001] as it defines costs for the outcomes of stochastic actions rather

than the stochastic actions themselves. This is slightly more expressive, as it allows to

express uncertainty about action costs, and contains the alternative as a special case.

The relational representation is more efficient than simple state enumeration but more

importantly it also allows us to regress preconditions, rewards, costs, and probabilities

over actions. This is the key requirement for our algorithm.



Chapter 6. Monitoring Policy Execution in Stochastic Domains 89

6.2.2 Solving MDPs through Search

We assume we are given a decision-tree search planner, as described e.g., by

Dearden and Boutilier [1994], which operates as follows. Starting with a search tree

containing only one node labeled with situation S0, describing the current state of the

world, the planner works by repeatedly expanding nodes in the tree and adding their

successors (Figure 6.1 shows an example tree). A node labeled with situation s, denoted

N [s] and called a situation node, has successors N [ai, s], labeled with actions ai ∈ A,

called action nodes. If ai is possible in s, i.e., D |= Poss(ai, s), then N [ai, s] has suc-

cessors labeled with the possible successor situations do(a′i1, s), . . . , do(a
′
im, s) where the

a′ij are the outcomes (nature’s choices) of action ai as defined by Choice(ai, a
′
ij). The

edge between N [ai, s] and N [do(a′ij, s)] is denoted E[a′ij, s]. Situation labeled nodes N [s]

have an associated reward N [s].r as defined through Reward(r, s), edges E[a′, s] denoting

action outcomes a′ have associated costs E[a′, s].c and probabilities E[a′, s].pr, defined by

Cost(a′, c, s) and Prob(a′, a, pr, s) respectively. We make no assumptions regarding the

expansion strategy of the planner, that is, how it chooses the next node to expand, nor

about its cutoff criterion, used to determine when to stop expanding. But we do assume

the existence of a predicate V̄ (v, s) that provides a heuristic estimate v of the value of

the optimal value function (V ∗) in situation s.1 This heuristic is used to estimate the

value in all leaf nodes.

Given a tree spanned this way, we can obtain a better estimate of the real value

function for situations in the tree, by backing-up the values from the leaves to the root

1cf., e.g., [Dearden and Boutilier, 1994] for notes on how to obtain such a heuristic
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using the standard update rules:

Qi(a, s) = N [s].r +
∑

a′∈successors(N [a,s])

E[a′, s].pr
(
γ · Vi−1(do(a

′, s))− E[a′, s].c
)

Vi(s) =






maxa∈successors(N [s])Qi(a, s), if i > 0;

v such that D |= V̄ (v, s), if i = 0.

where we use successors(N [s]) and successors(N [a, s]) to informally denote the considered

actions and considered action outcomes in the tree, respectively, and i denotes the height

in the tree, with the leaves being at i = 0. This value function estimate converges to

the real value function as the search horizon increases, that is, the farther the search

is performed, the closer the approximation will be to the real values. The best action

to take in the initial situation S0 according to this function is the greedy action a∗ =

argmax a∈AQ(a, S0), and similarly for all subsequent actions. This produces a conditional

plan representing the best (partial) policy according to this value function approximation,

starting in S0, of the form

π(S0) = a;

if ϕ(a′1) then π(do(a′1, S0))

elseif ϕ(a′2) then π(do(a′2, S0))

...

elseif ϕ(a′m) then π(do(a′m, S0)) fi

where ϕ(a′i) denotes a formula that holds if and only if the outcome a′i of a has happened,

and π(do(a′i, S0)) denotes the sub-policy for this outcome. Following the assumption of

full-observability in the MDPs we consider, the formulae ϕ(·) are given and can always

be evaluated.

But what if after performing action a in S0 we do not end in either of these situations

do(a′i, S0) but in some unexpected situation S∗, or after planning we observe that some



Chapter 6. Monitoring Policy Execution in Stochastic Domains 91

exogenous event has altered the world and we are no longer in S0 but in S∗? In the highly-

dynamic RoboCup domain, for instance, where real robots play soccer against each other,

the robots’ actions generally have infinitely many possible outcomes and the occurrence of

exogenous events is practically impossible to predict. It seems one would need to perform

time consuming replanning starting from S∗ in these cases. We argue that this can often

be avoided, namely when the discrepancy between an expected state and the actual

state is irrelevant to the remaining policy. To distinguish between relevant and irrelevant

discrepancies, one can again apply the abstract monitoring approach proposed in Chapter

3, that is to regress the value function and other relevant information (including outcome

probabilities) over the policy to derive a condition for its (near-)optimality in terms of

the current situation. We assume that the planner again not only returns the policy,

but also the search tree itself. This serves our approach and also enables the planner to

further improve the remaining policy during execution.

6.3 Algorithm

Given a planner that provides a (near-)optimal policy according to the given heuristic

function as described above starting from situation S0, we assume, roughly, the general

control flow of Algorithm 6, presented in pseudo-code. Recall that the policy π is itself a

tree. By π(S) we denote the (sub-)policy rooted in the node corresponding to situation

S. That is, first the planner generates a (near-) optimal policy and also returns the

search tree. This policy is annotated by associating with each step an annotated copy

of the corresponding sub-search tree (Section 6.3.1). Then the policy is executed until

a termination condition is met, e.g., the goal is reached, if such a condition exists (cf.

the condition of the while–loop). During execution the policy may be further improved

by extending the current sub-search tree. However, if the actual current situation S∗ is

unexpected and in particular not planned for, for reasons outlined above, the algorithm
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Algorithm 6: General flow of control.

(π, T )← plan(S0) ; // generate policy and search tree1

π̂ ← annotate(π, T ) ; // annotate the policy2

while termination condition not met do3

if S∗ ∈ π̂ then // the current situation has been planned for, continue4

π̂ ← π̂(S∗) ;5

else // the current situation was unexpected6

choose S′ ∈ π̂(S) ;7

π̂ ← patch(π̂(S′), S∗) ; // patch sub-tree from S′ to S∗
8

extend(π̂) ; // (optional) plan further9

execute-next-greedy-action(π̂) ;10

first “patches” the policy from some (expected) situation S ′ included in the original

search tree to reflect this discrepancy (Section 6.3.2). We will later address the issue of

how to choose S ′, but intuitively it should be the result of one of the considered outcomes

or S itself. It turns out that patching a policy, by patching its associated sub-search tree

and extracting a new greedy policy if necessary, can generally be done much faster than

replanning from the new situation when exploiting both, the annotations we propose,

and knowledge about the discrepancy itself. This is described in Section 6.3.2.

6.3.1 Annotation

We annotate each sub-policy with an annotated copy of the sub-search tree of the cor-

responding node of the overall search tree, T , returned by the planner. These annotated

copies are described in Definition 8. Consider the example search tree of Figure 6.1.

Recall that N [s] denotes the (unique) node in the search tree labeled with situation s,

N [a, s] its successor node representing the execution of action a in s, and N [do(a′i, s)]

the node representing its ith outcome. E[a′i, s] denotes the edge between N [a, s] and

N [do(a′i, s)]. In the figure, an example policy is indicated by bold lines. Our algo-

rithm would, intuitively, annotate each of the situation nodes N [S0], N [do(a′1,1, S0)], and

N [do(a′1,2, S0)], respectively with annotated copies of the respective sub-search trees: T̂S0
,

T̂do(a′

1,1,S0), and T̂do(a′

1,2,S0), as defined below. Recall that for two situations S, S ′, such



Chapter 6. Monitoring Policy Execution in Stochastic Domains 93

N [S0]

a1

a1

a1

a2

a2

a2

E[a′1,1, S0]

E[a′1,2, S0]

E[a′2,1, S0]

E[a′2,2, S0]

N [a1, S0]

N [a2, S0]

N [do(a′1,1, S0)]

N [do(a′1,2, S0)]

N [do(a′2,1, S0)]

N [do(a′2,2, S0)]

N [a1, do(a
′
1,1, S0)]

N [a2, do(a
′
1,1, S0)]

N [a1, do(a
′
1,2, S0)]

N [a2, do(a
′
1,2, S0)]

situation nodessituation nodessituation nodes action nodesaction nodes

Figure 6.1: A sample search tree for initial situation S0, in an environment with two ac-

tions (a1, a2), each of which has two possible outcomes (a′1,1/a
′
1,2, and a′2,1/a

′
2,2, resp.). Cir-

cles denote states/situation nodes, boxes denote nature’s choices/action nodes. Dashed

lines indicate infeasible actions. An example policy is indicated by bold lines.

that S ⊏ S ′, the expression R
[
ψ(S ′), S

]
denotes the regression of ψ(S ′) back to S. For

instance, R
[
V̄
(
v, do(a′2,2, do(a

′
1,2, S0))

)
, do(a′1,2, S0)

]
is defined as the one step regression

over a′2,2, and hence denotes a formulae specifying the heuristic estimate of the value

function in the bottom-right node of the example search tree of Figure 6.1, in terms of

fluents relativized to situation do(a′1,2, S0), i.e., the situation reached after performing a1

in the initial situation S0, and observing outcome a′1,2.

Definition 8 (Annotated Search Tree). Let TS0
be the search tree for an initial situation

S0, and let S be any continuation of S0, i.e., there is a situation node N [S] in the search

tree TS0
. Let TS = (NS, ES) denote the sub-search tree rooted in that node. The
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annotated search tree T̂S = (N̂S, ÊS) for TS is defined as follows, where S ′ denotes any

continuation of S appearing in TS:

For each situation node N̂S[S ′]:

N̂S[S ′].H(h, s) = R
[
V̄ (h, S ′), S

]

N̂S[S ′].h = h such that D |= V̄ (h, S ′)





if it is a leaf node

N̂S[S ′].R(r, s) = R
[
Reward(r, S ′), S

]

N̂S[S ′].r = r such that D |= Reward(r, S ′)





if it is not a leaf node

For each action node N̂S[a, S ′]:

N̂S[a, S ′].P (s) = R
[
Poss(a, S ′), S

]

N̂S[a, S ′].p =






1 if D |= Poss(a, S ′)

0 otherwise

For each edge ÊS[a′, S ′]:

ÊS[a′, S ′].C(c, s) = R
[
Cost(a′, c, S ′), S

]

ÊS[a′, S ′].c = c such that D |= Cost(a′, c, S ′)

ÊS[a′, S ′].P r(p, s) = R
[
Prob(a′, a, p, S ′), S

]

ÊS[a′, S ′].pr = pr such that D |= Prob(a′, a,pr, S ′)

Nodes further have an associated value:

N̂S[S ′].v =






N̂S[S ′].h if leaf node

N̂S[S ′].r + maxa(N̂S[a, S ′].v) otherwise

N̂S[a, S ′].v =
∑

a′∈successors(N̂S [a,S′])

ÊS[a′, S ′].pr(γ · N̂S[do(a′, S ′)].v − ÊS[a′, S ′].c)

where a′ are all the possible outcomes of action a, as defined by Choice(a, a′).

That is, we annotate each situation-node of the tree with the regression of the heuris-

tic estimate of the real value function if it is a leaf node, or the regression of the reward
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predicate otherwise. Action nodes are annotated with the regression of their precondi-

tions, and edges with the regression of their respective cost- and probability-predicates.

In all cases, the regression is performed back to the situation labeling the root of the tree,

S, and their value according to S is stored as well. The regressed predicates are all the

information needed to determine the optimality of the policy given the search horizon,

solely based on what is true in the current situation. This allows for greatly improved

reevaluation if on-line we find ourselves in the unexpected situation S∗ rather than S:

Only those annotated conditions that mention fluents that are affected by the discrepancy

between S∗ and S need to be reevaluated. Given that most discrepancies only affect a

fraction of all fluents, this saves a lot of computation. After reevaluating the affected

conditions, the values of Q-function and value function can be updated (back-up). This

on-line behavior is subject of the next section.

Note the correspondence between N̂S[S ′].v and the value function V (S ′), and between

N̂S[a, S ′].v and the Q-function Q(a, S ′).

6.3.2 Execution Monitoring

Assume we have executed a (possibly empty) prefix a1, a2, . . . , ak of an earlier, in situation

S0, generated policy and the outcomes of these actions were a′1i1
, a′2i2

, . . . , a′kik
so that we

expect to be in situation S = do([a′1i1
, a′2i2

, . . . , a′kik
], S0), but in fact find ourselves in a

different situation S∗ that the current search tree and policy do not account for. The

naive solution is to either fall back to greedy behavior according to the heuristic estimate

of the value function or to replan from S∗. We here propose a better solution, “patching”

the search tree to reflect all values with respect to S∗ in place of S. We will do this as

outlined earlier, by reevaluating all conditions that are affected by the discrepancy and

backing-up the altered values to also update the Q-function and value function values.

Let fluents(T̂S) denote the set of ground fluents2 occurring in any of the regressed

2 As in the previous chapters, we assume a finite set of ground fluents, cf. our discussion on page 51.
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formulae appearing in the annotated tree rooted in the expected situation S, and let

∆F (S, S∗) be those such fluents whose truth values differ between S and S∗, i.e.,

∆F (S, S∗)
def
=
{
F ( ~X)

∣∣ F ∈ fluents(T̂S) and D |= F ( ~X, S) 6≡ F ( ~X, S∗)
}
.

Only conditions mentioning any of these fluents need to be reevaluated, all others remain

unaffected by the discrepancy.

Function redoSit(N̂S[S ′], T̂S, S∗)

Φ← successors(N̂S [S′]);1

if Φ = ∅ then // if leaf node2

if fluents
(
N̂S [S′].H(h, s)

)
∩∆F (S, S∗) 6= ∅ then // verify heuristic value3

N̂S [S′].h← h such that D |= N̂S [S′].H(h, S∗);4

N̂S [S′].v ← N̂S [S′].h5

else6

foreach a ∈ Φ do // recurse over all actions7

redoAction(N̂S [a, S′], T̂S)8

qmax ← maxa∈Φ(N̂S [a, S′].v);9

if fluents
(
N̂S [S′].R(r, s)

)
∩∆F (S, S∗) 6= ∅ then // verify reward10

N̂S [S′].r ← r such that D |= N̂S [S′].R(r, S∗)11

N̂S [S′].v ← N̂S [S′].r + qmax ; // update value12

Function redoAction(N̂S[a, S ′], T̂S, S
∗)

if fluents
(
N̂S [a, S′].P (S′)

)
∩∆F (S, S∗) 6= ∅ then // verify feasibility of action1

if D |= N̂S [a, S′].P (S∗) then2

N̂S [a, S′].p← 1;3

else4

N̂S [a, S′].p← 0;5

if N̂S [a, S′].p = 1 then // if it is possible6

Φ← successors(N̂S [a, S′], T̂S);7

foreach a′ ∈ Φ do // recurse over all outcomes8

redoOutcome(ÊS [a′, S′])9

// update value using update rule

N̂S [a, S′].v ←
∑

a′ ÊS [a′, S′].pr ·
(
γN̂S [do(a′, S′)].v − ÊS [a′, S′].c

)
10

else11

N̂S [a, S′].v ← −∞;12
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Function redoOutcome( ÊS[a′, S ′], T̂S), S∗ )

if fluents
(
ÊS [a′, S′].C(c, S′)

)
∩∆F (S, S∗) 6= ∅ then // verify costs1

ÊS [a′, S′].c← c such that D |= ÊS [a′, S′].C(c, S∗)2

if fluents
(
ÊS [a′, S′].P r(pr, S′)

)
∩∆F (S, S∗) 6= ∅ then // verify outcome probability3

ÊS [a′, S′].pr ← pr such that D |= ÊS [a′, S′].P r(p, S∗)4

redoSit( N̂S [do(a′, S′)], T̂S)) ; // recursively update resulting situation node5

The function redoSit together with helper functions redoAction and redoOutcome

implements the patching, using the node and edge annotation as defined above. The call

redoSit(N̂S[S], T̂S, S
∗) patches the tree T̂S from S to situation S∗, possibly making a

different action the best (greedy) choice, in which case the annotation needs to be redone.

These functions implement a rather straightforward way of reevaluating relevant for-

mulae in the search tree: They traverse the search tree in a depth-first manner, and

check for each annotated formula whether it might be affected by the discrepancy. This

is accomplished by checking whether any of the affected ground fluents unifies with any

fluent appearing in the formula. If so, the formula is reevaluated and the values anno-

tated in the tree are updated as necessary. In the traversal, the function redoSit is

used to process situation nodes, redoAction processes action nodes, and redoOutcome

processes the edges going out of action nodes and denoting possible action outcomes.

More sophisticated implementations of achieving the necessary updates can be thought

of. For instance, when only very few formulae are affected by the discrepancy, it is more

efficient to only reevaluate these, and then propagate potentially changed values up the

tree, as necessary.

Proposition 2. By construction of the algorithm we have that after calling

redoSit(N̂S[S], T̂S, S
∗), all annotated costs, rewards, probabilities, and heuristic values

are with respect to S∗ instead of S, i.e.,

• in all situation nodes, D |= V̄ (N̂S[do(~a′, S)].v, do(~a′, S∗)) if it is a leaf node, and

D |= Reward(N̂S[do(~a′, S)].r, do(~a′, S∗)) otherwise;
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a1

a2

ÊS0
[a′1,1, S0]

ÊS0
[a′1,2, S0]

ÊS0
[a′2,1, S0]

ÊS0
[a′2,2, S0]

b

b

b

b ÊS0
[b′, do(a′1,1, S0)]

ÊS0
[b′, do(a′1,2, S0)]

ÊS0
[b′, do(a′2,1, S0)]

ÊS0
[b′, do(a′2,2, S0)]S0

Figure 6.2: The annotated search tree for the root node of the example (T̂S0
). Cir-

cles denote states, boxes denote nature’s choices. The policy is marked by bold

lines. For readability we abbreviate: a1 = Drive(Market1), a2 = Drive(Market2),

a′1,1 = Drive10(Market1), a′1,2 = Drive12(Market1), a′2,1 = Drive10(Market2),

a′2,2 = Drive12(Market2), b = BuyAllNeeded, b′ = BuyAllNeededSuccess.

• in action nodes, N̂S[a, do(~a′, S)].p = 1 if D |= Poss(a, do(~a′, S∗) and

N̂S[a, do(~a′, S)].p = 0 otherwise; and

• in edges, D |= Cost
(
a′′, ÊS[a′′, do(~a′, S)].c, do(~a′, S∗)

)
, and

D |= Prob
(
a′′, a, ÊS[a′′, do(~a′, S)].pr, do(~a′, S∗)

)
.

Further, also all annotated node values (N̂S[s].v, N̂S[a, s].v) are as defined in Definition

8.

We therefore refer to the resulting annotated search tree as T̂S∗ .

6.4 An Illustrative Example

Consider the following simplified example from a modification of the previously intro-

duced TPP domain, where an agent drives to various markets to purchase goods which

she then brings to the depot (cf. Section A.1). In our modification of this domain the

drive action is stochastic. For simplicity, assume there is only one kind of good, two
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markets, and the following fluents: in situation s, at(s) = l denotes the current loca-

tion l, request(s) = q represents the number q requested of the good, price(m, s) = p

denotes the price p of the good on market m, and driveCost(src, dest, s) = c the cost

c normally incurred by driving from src to dest. Let there be two actions: Drive(dest)

moves the agent from the current location to dest, and BuyAllNeeded purchases the re-

quested number of goods at the current (market) location. The drive action is stochastic

and may result in one of two outcomes Drive10(dest), and Drive12(dest), where the

only difference is that the latter incurs a cost of 1.2 times the drive cost specified by

driveCost(src, dest, s), whereas the former only incurs the normal cost (factor 1.0). This

could, e.g., represent the risk of a traffic jam on the route. The buying action, on the other

hand, always succeeds, represented by a single possible outcome BuyAllNeededSuccess.

Assume the planner has determined the plan ~α = [Drive(Market1), BuyAllNeeded]

to be optimal, but has as well considered ~β = [Drive(Market2), BuyAllNeeded] as one

alternative among others. Note that we here simplified the representation of the plan

by collapsing the two possible outcomes of drive actions into one straight line plan, as

opposed to a conditional plan where the conditions are over the possible outcomes of the

drive actions. This is possible, because the plan-suffixes for the two outcomes are identi-

cal in our example. For simplicity we also assume no rewards, i.e., D |= (∀s).Reward(0, s).

The search tree resulting from this problem is shown in Figure 6.2. For the first step of the

policy, we annotate the search tree TS0
as follows, where for parsimony we ignore precon-

ditions, rewards, and the heuristic value function used for evaluating leaf nodes. Recall

the annotation of edges in the tree ÊS[a′, S ′].C(c, s), ÊS[a′, S ′].c, ÊS[a′, S ′].P r(pr, s), and

ÊS[a′, S ′].pr. We here only consider the annotated search tree for S = S0.
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ÊS0
[Drive10(Market1), S′] :
.C(c, s) = (c = driveCost(at(S′),Market1, S′)) .c = 381
.P r(pr, s) = (Prob(Drive10(Market1), Drive(Market1), pr, S′)) .pr = 0.8

ÊS0
[Drive12(Market1), S′] :
.C(c.s) = (c = driveCost(at(S′),Market1, S′) · 1.2) .c = 457.2
.P r(pr, s) = (Prob(Drive12(Market1), Drive(Market1), pr, S′)) .pr = 0.2

ÊS0
[Drive10(Market2), S′] :
.C(c, s) = (c = driveCost(at(S′),Market2, S′)) .c = 458
.P r(pr, s) = (Prob(Drive10(Market2), Drive(Market2), pr, S′)) .pr = 0.8

ÊS0
[Drive12(Market2), S′] :
.C(c, s) = (c = driveCost(at(S′),Market2, S′) · 1.2) .c = 549.6
.P r(pr, s) = (Prob(Drive12(Market2), Drive(Market2), pr, S′)) .pr = 0.2

ÊS0
[BuyAllNeededSuccess, do(Drive10(Market1), S′)] :
.C(c, s) = (p = price(Market1, S′) · requested(S′)) .c = 17
.P r(pr, s) = (pr = 1.0) .pr = 1.0

ÊS0
[BuyAllNeededSuccess, do(Drive12(Market1), S′)] :
.C(c, s) = (p = price(Market1, S′) · requested(S′)) .c = 17
.P r(pr, s) = (pr = 1.0) .pr = 1.0

ÊS0
[BuyAllNeededSuccess, do(Drive10(Market2), S′)] :
.C(c, s) = (p = price(Market2, S′) · requested(S′)) .c = 14
.P r(pr, s) = (pr = 1.0) .pr = 1.0

ÊS0
[BuyAllNeededSuccess, do(Drive12(Market2), S′)] :
.C(c, s) = (p = price(Market2, S′) · requested(S′)) .c = 14
.P r(pr, s) = (pr = 1.0) .pr = 1.0

Let us assume that even before we begin the execution of the plan, a discrepancy in

form of an exogenous action e happens, putting us in situation S∗ = do(e, S0) instead of

S0. How does this affect the relevant values in the search tree and, as a consequence, the

optimal policy? This clearly depends on the effects of e. If e does not affect any of the

fluents occurring in above annotated formulae, it can be ignored, the plan is guaranteed

to remain optimal. This would, for instance, be the case when e represents the event of

a price change on a market not considered (e.g., price(Market3)), as that price does not

appear in the regressed formulae, which only mention relevant fluents.

Consider, on the other hand, the case where e represents the event of an increased

demand, that is, increasing the value of request(s) (i.e., D |= request(S∗) > request(S0)).

Then we need to reevaluate all conditions that mention this fluent, that is, in our example,

the costs of all occurrences of the BuyAllNeededSuccess action. Afterwards any value

that has changed needs to be propagated up the tree, in order to determine whether the
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currently best policy has changed.

As a second example, imagine that the event e represents an update on the traffic

situation between Depot and Market1, stating that the risk of a traffic jam has increased

to 0.5, i.e.,

D |=Prob(Drive12(Market1), Drive(Market1), 0.5, S∗)

∧ Prob(Drive10(Market1), Drive(Market1), 0.5, S∗).

Then we only need to recompute the backup values for the upper two branches without

reevaluating any predicates except for these probabilities. After the backup, the currently

best policy can again be greedily read off the tree.

6.5 Analysis

Three questions come to mind when trying to evaluate our approach. First, is the an-

notation of manageable size and does it scale? Second, what kind of guarantees can

we make about the quality of the value function (approximation) derived from the res-

urrected search tree? Last but not least, how does the approach perform compared to

simple replanning from scratch, does it offer computational savings? We here address

these questions in this order.

6.5.1 Space Complexity

The space complexity of our approach is determined by the space required to store the

annotation. This looks dramatic at first, as we annotate each action of the policy with

a copy of the corresponding sub-search tree. Let there be n actions (n > 1), let m be

the maximal number of outcomes an action has, and let h be the maximal depth of the

search tree. In the worst case, the tree is uniformly expanded to depth h, each action is

possible in each situation-node, and each action has m outcomes. Then the search tree
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has size (nm)h. It turns out that the annotation is not significantly larger and is, in fact,

only constantly larger in h, despite the number of sub-tree copies at each subsequent

level of the policy.

Theorem 6 (Annotation Size). If the search tree has size (nm)h, then the size of the

annotation is in O(λ(nm)h) with λ =
n− 1

nh

n−1
.

Proof: Recall the format of the annotated policy from Section 6.3.1. In the root, T̂S has

size c(nm)h for some constant c reflecting the per node annotation. We annotate each

of the (at most) m outcomes a′ of a with a copy of the respective sub-search tree of

the remaining horizon h − 1, in total cm(nm)h−1. This goes on for h steps, eventually

annotating mh leaves with a constant size value. In total we annotate

c(nm)h +mc(nm)h−1 + · · ·+mhc(nm)h−h

= c(nm)h(1 +
1

n
+ · · ·+

1

nh
) = c(nm)hn−

1
nh

n− 1

�

Because limn→∞ λ = 1, this means that we generally have no space requirements

above those required to store the search tree in the first place.

6.5.2 Optimality Considerations

What can we claim about the quality of the resurrected value function we obtain after

patching a tree from situation S to S∗? This depends on the usage, i.e., the problem

being solved and the type of planner used. In this section we do the analysis for two

classes of MDPs.

Stochastic Shortest-Path Problems A stochastic shortest-path problem

[Bertsekas, 1995], is an MDP where all rewards are zero, all costs are positive, the dis-

count factor γ is equal to 1, and there is a distinguished set of goal states g ∈ G that
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are absorbing, i.e., T (g, a, g) = 1 for all actions a ∈ A, and C(a, g) = 0. In this type of

problem, an optimal policy is one that minimizes the expected costs of actions performed

until reaching a goal state.

In our formalization, assume the task is to devise an optimal policy for reaching a

goal in a stochastic shortest-path problem, starting from the initial situation S0, and that

we are given a monotonic heuristic function.

Assume further that the planner has found an optimal policy that reaches the goal

with probability one. Then, our algorithm can be used to verify the continued optimality

of this policy in cases where an unexpected state is reached.

Theorem 7. An optimal policy π(S0) for a stochastic shortest-path problem starting

from situation S0 and annotated with T̂S0
as in Definition 8, continues to be optimal

in S∗ if after calling redoSit(N̂S0
[S0], T̂S0

, S∗), the greedy policy for T̂S∗ coincides with

π(S0) and still reaches the goal with probability one.

The theorem follows from the monotonicity of the heuristic function and Proposition

2.

Recall the tree representation we used to represent policies. These do not refer to

actual states, but only state the actions to perform and use explicit conditions to test

which outcome of an executed stochastic action has actually occurred.

Sampling in Large MDPs Kearns et al. [1999] show that the time required to com-

pute a near-optimal action from any particular state in an infinite horizon MDP with

discounted rewards does not depend on the size of the state space. This is significant, as

it allows, at least theoretically, for the computation of near-optimal actions even in MDPs

with infinite state spaces. The authors propose a sampling based decision tree search

algorithm denoted A and prove bounds on how many samples C and what horizon H is

necessary in order for this algorithm to determine an ǫ-optimal action. The algorithm

works like the one described in Section 6.2.2, but only explores C outcomes from the set
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of outcomes of each action, where the samples are chosen according to the probability

distribution over the outcomes. The bounds C and H only depend on ǫ, the discounting

factor γ, and a bound Rmax on the absolute value of the reward function. The bound on

the horizon is H = ⌈logγ(ǫ(1 − γ)
3/(4Rmax))⌉. In the terminology of this chapter, the

algorithm runs in the initial situation S, returning a best action a. After executing a and

observing the outcome a′i, the algorithm needs to run again in do(a′i, S), because (i) the

error-bound of the value function approximation for node do(a′i, S) for any outcome a′j

of a is greater than ǫ, but more severely (ii) it is unlikely that the actual action outcome

a′i is among the C samples considered in planning.

The latter issue can in many cases be accounted for using our approach. Simple term

manipulation of the above horizon bound yields the error-bound for considered successor

situation do(a′j, S) of the initial situation as ǫ′ ≤ 4γH−1Rmax/(1 − γ)
3 (since C remains

unchanged). This error bound on the value function can be resurrected by applying

our algorithm in cases where neither action outcome probabilities nor preconditions have

been affected by the discrepancy.

Theorem 8. Let TS be the search tree as spanned by the algorithm A

[Kearns et al., 1999] with horizon H and sample width C from initial situation S, π(S)

be the greedy policy extracted from TS with best first action a, and T̂S be the annotated

search tree (cf. Definition 8). Let the execution of a yield the actual situation S∗. If there

is a node N̂S[do(a′j, S)] in T̂S such that D |= ϕ(do(a′j, S)) ≡ ϕ(S∗) for all ϕ such that

ϕ is a regressed precondition or regressed probability predicate in the annotated search

tree T̂do(a′

j ,S), then, after calling redoSit(N̂S[do(a′j, S)], T̂do(a′

j ,S), S
∗) the value function

V ′ described by T̂S∗ is such that |V ′(S∗)− V ∗(S∗)| ≤ 4γH−1Rmax/(1− γ)
3.

Proof: Since no preconditions or probabilities have changed, Proposition 2 provides that

the updated tree T̂S∗ is one of the possible trees that would be created by running the

algorithm A starting in S∗ with sample width C and horizon H−1. Further, since γ < 1,

it is obvious from the term manipulation above that ǫ′ > ǫ. Hence, following Theorem 1
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of [Kearns et al., 1999], the sampling width C ′ required to obtain such an error bound is

less or equal to C. Thus, the error bound obtained by running the algorithm in S∗ with

sample width C and horizon H − 1 is less or equal to ǫ′. �

The requirement that none of the preconditions or outcome probabilities have changed

is required to ensure that the initial choice of samples is still representative of the proba-

bility distributions after the discrepancies. If not, the error bound shown by Kearns et al.

would not necessarily apply anymore to the patched successor state.

The result is particularly useful when gaging the relevance of exogenous events. If

situation S is expected but the actual situation do(e, S) for some exogenous event e is ob-

served, then, if e does not affect any preconditions or action probabilities,

redoSit(N̂S[S], T̂S, do(e, S)) resurrects the approximation quality of the current policy

for the new situation.

6.5.3 Empirical Results

We were interested in determining whether the approach was time-effective—whether

the discrepancy-based incremental reevaluation of the search tree could indeed be done

more quickly than simply replanning when a discrepancy was detected. The intuition

was that most discrepancies only affect a small subset of all fluents and that this effect

often does not propagate to relevant values. This intuition is supported practically by

the experimental results we present next.

We compared a preliminary implementation of our redoSit algorithm to replanning

from scratch on different problems in the variant of the metric TPP domain described

above (where we changed some actions to have stochastic outcomes). In each case, we

uniformly spanned the search tree up to a particular horizon, perturbed the state of the

world by changing some fluent, and then ran both redoSit and replanning from scratch.

To maximize objectivity, the perturbations were done systematically by multiplying the

value of one of the numeric fluents (driving costs between locations, prices and number of
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Figure 6.3: Replanning vs. redoSit. To enhance readability we ordered the test cases

by the number of affected conditions in all graphs.

goods on sale on different markets, and number of requested goods) by a factor between

0.5 and 1.5 (step-size 0.1) or by redistributing 0.5 of the probability mass of some action’s

outcomes. In total we tested on 3256 cases. All experiments were run on an Intel Xeon,

2.6GHz, with 1GB RAM. Figure 6.3(a) shows from top to bottom: the number of relevant

conditions as evaluated by replanning, the number of actually affected conditions, and the

number of such conditions that are unique. The latter is the number of conditions that

actually need to be reevaluated. Values for all other affected conditions, effectively copies

of earlier seen ones, can be obtained from a cache of evaluated conditions. The number

of unique affected conditions is extremely low. On average this number was 9751 times

lower than the number of relevant conditions. This also reflects in the running-time of our

preliminary implementation (Figure 6.3(b)), and strongly motivates a patching approach

over replanning.

6.6 Discussion

We have shown how the abstract monitoring approach proposed in this thesis can be

applied to decision theoretic planning in relational MDPs, monitoring the adequacy and
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potential optimality of a policy. The approach works by annotating the policy with con-

ditions regressed to the situations where they are relevant. In so doing, the discrepancy

between an unplanned-for state and an expected state can be evaluated with respect

to the objective of an optimal (or near-optimal) policy. The intuition that this can

be significantly more efficient than replanning, should something unexpected happen, is

supported by experiments with a preliminary implementation.

We have pointed out two concrete applications. The first is in solving stochastic-

shortest path problems optimally given a monotonic heuristic estimate of the value func-

tion, where our approach can provide for a sufficient condition for continued optimality

of the policy. In the second, near-optimal policies for large, infinite horizon MDPs were

considered. Here, our approach may be used to resurrect a value function approximation

for which we can show an error bound, when otherwise replanning is the only option.

In future work we intend to perform further theoretical analysis of our approach, and

to run more experiments, in particular in continuous domains.

While so far, we have focused on the question of whether a given policy remains opti-

mal, or nearly so, it would be interesting to consider replanning as well. As demonstrated

in the previous chapter for the case of deterministic planning, it is reasonable to expect

that the computed annotations can be used to speed-up replanning as well. In the case

of the current chapter, this would amount to further extending the updated search tree,

until the termination criterion is once again met (e.g., a goal is reached with probability

one, or a desired approximation error has been achieved).

In particular with respect to the latter, the commonalities and differences of our

approach and other symbolic techniques for solving MDPs (cf. Section 8.2), should be

investigated further.

Other methods for creating robust policies under time constraints include the work

by Dean et al. [1995]. The authors consider finite horizon MDPs with an explicit goal

area and assume there is a method for creating some path with positive probability from
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the initial state to the goal. They propose to then, time permitting, extend this path to

an envelope of states by successively including additional states that are on the fringe of

the current envelope, i.e., possible successors of certain actions when executed in a state

inside the envelope. This way, successively more contingencies are added to the policy.

This approach differs from the one we presented in this chapter, as it relies on knowledge

about an accurate model of possible contingencies and their probabilities and thus does

not increase robustness against completely unforeseen courses of events.

Also Real-Time Dynamic Programming (RTDP) [Barto et al., 1995] addresses the

problem of incrementally creating a policy for the accessible region of state space given

an initial state. RTDP works by interleaving value function estimate improvement and

execution. The action executed is always the greedy one according to the current esti-

mate. Interleaved with execution, trial-based look-ahead search from the current state is

performed and the values of visited states backed-up accordingly. As with Dean et al.’s

approach, also RTDP relies on an accurate model of the possible contingencies.

The most characteristic distinction between our algorithm and these is our use of a

relational representation together with a combination of forward expansion and regression

reasoning. This constitutes a middle-ground between regression based approaches that

compute complete policies (see Page 155), and the non-relational forward search based

approaches above.



Chapter 7

Generating and Executing Plans

with Procedural Control

So far we have considered planning problems with conventional final state goals, or state-

based rewards only. In practice, however, it is often desirable to be able to enforce a par-

ticular temporally extended behavior of the agent. Such specifications could regard safety

regulations, preferred ways of achieving goals, industrial best practices, prescribed roles

in a multi-agent setting, etc. While there are languages for specifying such constraints,

and algorithms for generating plans that comply with them (e.g., [Levesque et al., 1997;

De Giacomo et al., 2000; Bacchus and Kabanza, 1998]), it is not obvious how the con-

tinued satisfaction of these constraints can be monitored during execution. We address

this problem in this chapter, by providing a compilation of planning problems with such

control information into classical planning problems without, and which are hence in

the right input format for the approaches presented earlier. Different from the previous

chapters, this chapter does not contribute to any of the bold faced steps of the frame-

work of Figure 1.1 (p. 4), but provides the means for pre-processing the input to the

planning problem, making all previously developed approaches applicable to a larger set

of problems.

109
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7.1 Introduction

ConGolog [De Giacomo et al., 2000] is a logical programming language for specifying

high-level agent control, that is defined in the situation calculus. It extends the agent

programming language Golog [Levesque et al., 1997] by concurrent program execution.

Golog’s Algol-inspired programming constructs allow a user to program an agent’s behav-

ior while leaving parts of the program under-constrained, or “open”, through the use of

non-deterministic constructs. These under-constrained regions of the program are later

filled in by a planner. Such integration of planning and programming has proved useful in

a variety of diverse applications including soccer playing robots [Ferrein et al., 2004], mu-

seum tour-guide robots [Burgard et al., 1999], and Web service composition

[McIlraith and Son, 2002].

By way of illustration, consider a simple delivery problem in which we have an (in-

finite capacity) truck and the task is to deliver packages from point A to point B. A

classical planning problem would simply specify the initial state and the goal state. Us-

ing ConGolog, we can provide the following program that constrains the space of possible

plans, while still leaving some work to the planner:

If not at point A, drive the truck to point A; while there are packages at point

A, pick a package and load it onto the truck; drive to point B; while there are

packages on the truck, pick a package and unload it from the truck.

A basic action theory of the situation calculus induces a tree of possible action se-

quences or situations. A ConGolog program further constrains the tree to those that

adhere to the program. However, in order to reason about the satisfaction of these con-

straints, a system requires special-purpose machinery – it needs to interpret the ConGolog

program. This for instance applies to planning, but also to other problems that involve

reasoning about feasible trajectories, including the problem of monitoring the continued

validity of a plan. As we have already argued on Page 29, also the execution of programs
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– or rather the plans resulting from the interpretation of programs – requires monitoring,

since also the satisfaction of the hard constraints that are implicitly represented in the

program need to be verified during execution, when unexpected world states are reached.

This is particularly important if the program was used to enforce system behavior that

conforms to given safety regulations.

7.1.1 Contributions

In this chapter we propose an algorithm for compiling ConGolog programs into basic

action theories of the situation calculus whose tree of executable situations corresponds

exactly to the one described by the program. We prove the correctness of the compilation

and show that its output is of size as most quadratic in the size of the original program.

The compiled theory allows us to reason about the executions of programs using

regression. Given an action sequence, we can “regress a program” over this sequence,

producing a necessary and sufficient condition for the sequence to be a legal execution of

the program. This allows us to once again apply the abstract monitoring approach we

propose in this thesis, in order to monitor the continued satisfaction of the procedural

hard constraints during planning and plan execution in highly-dynamic environments.

We discuss this further in Section 7.5.

The compilation is significant for a number of additional practical and theoretical

reasons. From a practical perspective, the compilation provides the mathematical foun-

dation for compiling ConGolog control knowledge into the Planning Domain Definition

Language (PDDL) [McDermott, 1998], a de facto standard planning problem specifica-

tion language. This in turn enables state-of-the-art planners to exploit powerful control

knowledge without the need for special-purpose machinery within their planners. We

have recently shown how this can be done for a subset of the language without concur-

rency and procedures [Baier et al., 2007]. The experimental results showed that state-

of-the-art planners can gain significant speed-ups from that. The current compilation of
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ConGolog (including concurrency and procedures) can be seen as an extension of this

work – though some restrictions apply when compiling into PDDL.

ConGolog has been used for a variety of purposes, all of which can now benefit

from this newly built connection to modern planners. For instance, Hierarchical Task

Networks (HTN) have been translated to ConGolog [Gabaldon, 2002]. In combination,

this translation and our compiler provide the means for compiling HTN control knowledge

into a classical planning problem. We anticipate this contribution to be of significant

interest to the planning community.

From a theoretical perspective, the compilation eliminates the need for ConGolog’s

tedious reification of programs, as well as the second-order axioms necessitated by its

transition semantics. This facilitates proving properties of programs (e.g., reachability,

invariants, termination). Further, since programs themselves can now be regressed, some

proofs can be reduced to first-order theorem proving through the use of regression.

In this chapter we focus on the high-level idea of the compilation. The actual pseudo-

code can be found in Appendix C, and experimental evidence in support of our basic

approach can be found in [Baier et al., 2007].

7.2 Background

7.2.1 Golog and ConGolog

Golog

Golog is a programming language defined in the situation calculus. It allows a user to

specify programs whose set of legal executions specifies a sub-tree of the tree of situations

of a basic action theory. From a planning point of view, it can be used to provide an

effective way of pruning the search by specifying the skeleton of a plan. Golog has an

Algol-inspired syntax extended with flexible non-deterministic constructs. Its constructs
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are shown below.

a primitive action

φ? test condition φ

(δ1; δ2) sequence

if φ then δ1 else δ2 conditional

while φ do δ′ loops

(δ1|δ2) non-deterministic choice

πv.δ non-deterministic choice of argument

δ∗ non-deterministic iteration

{P1(~t1, δ1); . . . ;Pn(~tn, δn); δ} procedures

The semantics of a Golog program δ is defined in terms of macro expansion into for-

mulae of the situation calculus. Do(δ, s, s′) is understood to denote a formula ex-

pressing that executing δ in situation s is possible and may result in a situation s′.

This is defined inductively over the program constructs. For instance for a primi-

tive action a: Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s), where a[s] denotes the ac-

tion a with all its arguments instantiated in situation s, and for non-determinism:

Do(δ1|δ2, s, s
′)

def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′). While deterministic constructs enforce the

occurrence of particular actions, non-deterministic constructs define “open parts” that

are completed using planning. In particular, the non-deterministic choice of argument

πv.δ introduces a program variable v that may occur in δ. In this chapter, we restrict

program variables to only appear as action parameters or in the place of objects in con-

ditions. For instance while (∃b).OnTable(b) do πv. OnTable(v)?;Remove(v) could be a

program that removes all blocks, one-by-one from a table.

ConGolog

ConGolog adds concurrency to Golog, allowing the following additional constructs:

(δ1 ‖ δ2) concurrent execution
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(δ1 〉〉 δ2) prioritized concurrency

δ‖ concurrent iteration

Concurrency is defined as action interleaving. For example, the program (a ‖ (b; c))

admits three executions: abc, bac, and bca.

ConGolog introduced a so-called transition semantics for programs. The semantics of

a program δ is given through two predicates Trans(δ, s, δ′, s′) and Final(δ, s). The former

states that in situation s program δ can perform a step, resulting in a remaining program

δ′ and new situation s′. The latter states that the program δ can legally terminate in s.

De Giacomo et al. [2000] provide the complete axioms for the semantics; we show some

of them below.

For a primitive action we have

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

and Final(a, s) ≡ false. One important role of Final is with sequences:

Trans(δ1; δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s
′)

∨ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′).

For concurrency constructs we have:

Trans(δ1 ‖δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ ‖δ2) ∧ Trans(δ1, s, γ, s
′)

∨ δ′ = (δ1 ‖γ) ∧ Trans(δ2, s, γ, s
′)

Trans(δ1 〉〉 δ2, s, δ
′, s′) ≡

(∃γ).δ′ = (γ 〉〉 δ2) ∧ Trans(δ1, s, γ, s
′) ∨ δ′ = (δ1 〉〉 γ)

∧ Trans(δ2, s, γ, s
′) ∧ (6 ∃ζ, s′′).Trans(δ1, s, ζ, s

′′)

Trans(δ‖, s, δ′, s′) ≡

(∃γ).δ′ = (γ ‖ δ‖) ∧ Trans(δ, s, γ, s′)
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The first two programs are only “final” when both subprograms are, while the third can

be terminated at will:

Final(δ1 ‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ1 〉〉 δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ‖, s) ≡ true

A transition semantics facilitates the interleaving of program interpretation (planning)

and execution, and reasoning about sensing actions. The downside of this semantics is its

requirement to reify programs: programs are represented as terms, in order to quantify

over them. The other shortcoming is the requirement of an additional second-order

axiom for defining the transitive closure of Trans, denoted Trans∗. This axiom is needed

to define a new Do2 predicate that defines the situations that result from executing a

(ConGolog) program:

Do2(δ, s, s
′)

def
= (∃δ′).Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

We refer to the axioms defining the transition semantics as ΣConGolog. This includes the

mentioned second-order axioms and axioms required for reification of programs.

7.3 Compiling ConGolog into Basic Action Theories

In this section we describe an algorithm for compiling a given ConGolog program and

a given basic action theory into a new basic action theory. For readability, we focus

our description on the intuitions behind the algorithm. The actual pseudo code of the

algorithm can be found in Appendix C.

Our algorithm accepts as input a basic action theory D and a ConGolog program

P = {P1(~t1, δP1
); . . . ;Pn(~tn, δPn

)}; δmain containing n procedure definitions with formal

arguments ~ti and procedure body δPi
, and a main program δmain. It outputs a new
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basic action theory DP whose tree of executable situations corresponds to the sub-tree

of situations in D that are executions of P in D.

The intuition behind our compilation is to model the dynamics of a ConGolog program

as a Petri net with an infinite stack, and then represent this Petri net and the stack as

a basic action theory in the situation calculus. Roughly, a Petri net is a finite state

automaton that can be in more than one state at the same time. To reflect that, in

Petri net terminology, states are called places and active places are marked by tokens

which move from place to place using transitions. The total number of tokens can

change during execution, for instance to model concurrency. To model the dynamics

of ConGolog programs, we use a so-called colored Petri net, where tokens have unique

identifiers. We do not define the Petri net induced by a program formally, but only use

it for illustration. Intuitively, places in the Petri net represent the current position in

the execution of the program (i.e., a sort of program counter), while (labeled) transitions

specify which actions are legal at each stage during the execution. Each token represents

one of possibly several concurrently executing threads. Given a program P , our algorithm

generates the axioms required to model the underlying Petri net as a basic action theory.

To this end, we create (1) special bookkeeping predicates, to represent the Petri net and

the stack, and (2) additional actions, to represent some of the transitions in the Petri

net.

It is important to note that our algorithm operates only syntactically on the given

inputs. In particular, it does not perform any type of reasoning within the provided basic

action theory, which makes it easy to show that our algorithm has modest complexity

(see below).

The compilation proceeds in six steps.
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Step 1

For each procedure Pj(tj1 , . . . , tjkj
, δPj

) in P we compute

(axj, ij) = comp(δPj
, 0, {tj1 , . . . , tjkj

}, Pj)

where {tj1 , . . . , tjkj
} are the formal parameters of the procedure, and δPj

is the body of

Pj.
1 The function comp, defined in Appendix C.1, takes as input a ConGolog program,

an integer used as a program counter, a set of program variables, and a procedure name,

used to distinguish different contexts. It outputs a set of sentences ax, and an integer i,

intuitively denoting the value of the program counter after the program terminates. The

set of sentences is later processed further to generate the axioms of DP , but before we

get to this, we first consider the function comp in more detail.

comp is defined recursively over the structure of programs. Starting from an initial

place labeled (0,main), comp incrementally constructs the Petri net, generating new

network places as it recurses over the structure of the program. Assume comp is currently

at a place labeled with (i, p), where i is the program counter and p a procedure name,

and that it encounters a primitive action α in the program. Then, it adds a new place to

the Petri net labeled with (i + 1, p) and a transition from the current place to this new

place, labeled with α. comp generates and returns several sentences which will later be

included as axioms of DP . First, it generates a sentence about the preconditions of α. In

the described case it generates Poss(α(th), s)← Thread(th, s)∧ state(th, s) = (i, p) which

states that we can execute α in thread th if th denotes an active thread and its token is

in (i, p). (Note that we give an extra argument to each action, denoting the thread it is

being performed in.) It further generates an appropriate effect, stating that when α is

performed in (i, p), the token moves to (i+ 1, p). The sentence generated in this case is

state(th, do(α(th), s)) = (i+ 1, p)← state(th, s) = (i, p).

1For simplicity of presentation we assume that procedures do not contain additional procedure defi-
nitions.
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Figure 7.1: Two example Petri nets.

Example 1. Consider the program of Figure 7.1(a), where special test actions are used

to transition to a sub-net conditioned on a formula, and noop allows unconditional tran-

sitions.2 To keep the presentation simple, we only show the sentences produced by the

algorithm for the transitions from state 1→ 2 and 7→ 8.

For transition 1→ 2, if φ does not mention program variables, the algorithm generates

the following sentences:

Poss(test(th, 1, 2,main), s)← (Thread(th, s) ∧ φ(s)∧

state(th, s) = (1,main)),

(7.1)

state(th, do(test(th, 1, 2,main), s)) = (2,main). (7.2)

And for the transition 7→ 8 we get:

Poss(c(th), s)← (Thread(th, s) ∧ state(th, s) = (7,main)), (7.3)

state(th, do(c(th), s)) = (8,main)← state(th, s) = (7,main). (7.4)

In the remaining steps of the compilation (see below), the successor state axiom for the

2Names used for test actions in this example are simplified for clarity. Refer to the pseudo-code for
more details.
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state fluent is formed and precondition axioms are put into normal form. If in D the

precondition axiom for c was Poss(c, s) ≡ Πc(s), then the new precondition axiom in DP

is Poss(c(th), s) ≡ Πc(s) ∧ ϕ, where ϕ stands for the right-hand side of Equation 7.3. §

So far, the Petri net is equivalent to a simple automaton, since we have only been

concerned with a single token. This changes when one considers concurrency. Concur-

rency is modeled using threads, where each thread is represented by an identifiable token

in the net. For instance, the basic concurrency construct δ1 ‖ δ2 puts the current token

in the initial state of the sub-Petri net recursively generated for δ1, and creates a new

token which it puts into the initial state of δ2. These tokens are joined back together

when both programs have finished executing (Figure 7.1(b)).

The greatest challenges we faced while devising comp, were caused by the interaction

of various advanced programming constructs, in particular program variables, procedures,

and iterative concurrency. We elaborate briefly on some of these challenges.

Procedure calls are realized using two new actions call and return. The former moves

the token of the current thread to the initial place of the called procedure, while

return returns it to the next state of the current program, once the token has

reached the final state of that procedure. Since the compilation of the procedures

themselves needs to be independent from the context from which they are called,

we do not know the return state during compile time, but need to store it during

run-time instead. Since procedures can be recursive, we require a stack, contain-

ing all (recursive) return states. The stack is realized using two functional fluents

stack(th, v, s) and sp(th, s), where the former denotes the content of the stack en-

tries, and the latter is a stack-pointer, always pointing to the next free position on

top of the stack.

Concurrency is realized by using explicit thread names. Each action is given an addi-

tional parameter th, denoting the thread it is executed in. This is necessary since
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there may be situations where two threads intend to execute the same action next.

Once that action executes, we need the thread name to disambiguate which thread

actually proceeded. Thread names are also required for other purposes, like pro-

gram variables, described below. The active threads are denoted by the relative

fluent Thread(th, s), and initially only one thread, [0], is active. A new thread is

created by the spawn action, which also sets up some new data structures (fluents)

for the new thread, for instance its own procedure call stack. Two threads are

joined back by the action join.

For thread names, we use lists of numbers. The main thread is [0], and its direct

children are called [N, 0] where N is the number of the child. The k-th child of

the n-th child of the main thread is called [k, n, 0]. This is more complicated

than increasing a single thread counter, which would have been an alternative,

but has the advantage that thread names can be reused after threads terminate.

With numbers, for instance, an infinitely running program with concurrency would

require infinite numbers. This would also more severely limit the ability to compile

into PDDL.

Prioritized concurrency is governed by a new fluent Prio(th1, th2, s) which indicates

that thread th1 has priority over thread th2. A thread can only proceed when no

prioritized thread can perform an action.

Program variables as created by π constructs, are realized using the functional fluent

map(x, s), to denote their value. The parameter x is a tuple (th, y, v) where th

denotes the thread this variable was created in, y the stack position, and v is the

name as mentioned in the program (e.g., π v.δ). Thread names are required to

disambiguate in cases like (π v.δ)‖ where in each thread a new variable of the same

name is created. Similarly stack positions are required when program variables are

used in recursive procedures.
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To compile the main procedure we call

(axmain, imain) = comp(δmain, 0, ∅,main),

which yields the final program counter imain, which corresponds to a particular “final”

place of the Petri net. This will be used as a goal: if there is a token in (imain,main),

the program has executed successfully. This roughly corresponds to the Final predicate

in ConGolog.

Step 2

Thus far we have generated program-specific sentences, describing the dynamics of the

Petri net. There is also a number of program-independent sentences that we require,

which intuitively state the default dynamics of the involved bookkeeping actions (see

Appendix C.2 for details). We denote these as axcommon and define the set AX as axmain∪
⋃

j axj ∪ axcommon .

The remaining steps of the compilation aggregate the sentences in AX to produce DP ,

producing all the precondition axioms, successor state axioms, initial state axioms, and

unique names axioms.

Step 3

Recall that procedure calls require two new actions call and return. The effect axioms

for both are domain independent and thus in axcommon, and the precondition axioms for

call are generated by comp. In Step 3 we need to create the precondition axioms for

return, which is possible in all final states, i.e., for each procedure Pj compiled in Step

1, we enable return when state(th, s) = (ij, Pj).

Step 4

For each place of each Petri net, all conditions under which any action can execute in this

place and context are recorded. We generate axioms for a new fluent CanTrans(th, s),
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which indicates whether in situation s a given thread th can perform an action. This

definition is only required in conjunction with concurrency, and can be skipped if this

language feature is not used.

Step 5

For each primitive action α (including bookkeeping actions), Step 5 removes all sentences

Poss(α, s)← φ from AX and combines them into a new precondition axiom for α, by:

1. disjoining all φ’s,

2. conjoining the resulting formula with any preexisting preconditions for α, and

3. conjoining the result with the following additional condition that governs priority

among threads and allows forced execution of a selected thread:

(6 ∃t).Thread(t) ∧ t 6= th ∧ (Forced(t) ∧ ¬Parent(t, th) ∨ Prio(t, th) ∧ CanTrans(t))

where the new relational fluent Parent(th1, th2) expresses that thread th2 was spawn

from thread th1, directly or indirectly.

The latter is used to enable prioritized concurrency, explicitly prohibiting threads from

executing for which there is a thread with higher priority that can execute its next action.

This condition is also used to ensure so-called synchronized while’s and if’s. Roughly, the

latter means that testing the conditions of these constructs is not a transition by itself,

but needs to be immediately followed by a transition on its body, or otherwise one needs

to backtrack to a place before the test.

Step 6

Since all the Poss sentences have been removed, AX now only contains sentences describing

effects of actions. On these, Step 6 applies Reiter’s solution to the frame problem, to

produce successor state axioms (see Section 2.1.2).
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The result is a set of precondition and successor state axioms, describing the dynamics

of all procedures’ Petri nets. We also add the axiom state([0], S0) = (0,main), stating

that initially the main thread, denoted [0], is in the initial place of the Petri net of the

main procedure.

While our compilation makes several second-order axioms, specific to ConGolog’s

transition semantics, unnecessary, it does require second-order to define natural numbers

and lists. The former is used to address the elements of the stack, the later to give names

to threads. We assume standard definitions for these. These can be avoided when both

recursion, and the number of concurrent threads is bound by a constant. This restriction

is also required for further compilation to PDDL (see below).

Let DP be the new basic action theory resulting from compiling P into the given

action theory D. We can show the following theorems which state that the compilation

is both correct and succinct. All the proofs can be found in Appendix C.

Theorem 9. Let S ′ be any ground situation term of D. Then there is a ground situation

term S ′
P in DP such that S ′ = filter(S ′

P ,D) and

DP |= executable(S ′
P) ∧ state([0], S ′

P) = (imain,main)

iff D |= Do2(P , S0, S
′).

Here filter(S ′
P ,D) is a function that removes from the situation term S ′

P any actions

not defined in D, and also removes the additional thread argument from the remaining

actions. This removes all bookkeeping actions from S ′
P , in order to compare the sequence

of contained domain actions with S ′.

For the next theorem we define the size of a program as the number of program

constructs it contains plus the number of logical connectives mentioned in conditions.

Similarly, the size of an axiom is measured by the number of logical connectives it con-

tains.
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Theorem 10. If the size of P is n and D contains m axioms each of size ≤ k, then DP

contains O(n) +m axioms each of size O(k + n).

Theorem 11. If the size of P is n, then the time required to compute the compilation

is O(n2).

Intuitively, recursive procedure calls, while–loops, concurrency and other seemingly

problematic constructs do not incur a significant increase in the size of the output, because

of the syntactic nature of the compilation and the careful use of bookkeeping fluents and

actions to model the desired behaviors. Similarly, the requirement for second-order logic

to define loops is cast into the induction axiom included in the foundational axioms of

the situation calculus, through the use of bookkeeping fluents and actions.

7.4 Analysis

7.4.1 Theoretical Merits

To prove properties of a ConGolog program P , we now have two alternatives. We can

reason using the original transition semantics of ConGolog, represented as a fixed set of

axioms ΣConGolog, or we can use the new basic action theory DP resulting from applying

our compilation, extended with natural numbers and lists. At first glance, using ΣConGolog

may look simpler since the axioms in ΣConGolog are independent of the program. However,

we argue that reasoning itself is actually simplified when using DP .

One advantage of DP is that it defines the dynamics of a program in terms of fluents.

For example, any executable situation S for which DP |= state([0], S) = (imain,main),

with imain as defined above, is a legal execution of the program. Regressing the condi-

tion state([0], S) = (imain,main) over the actions comprising S, together with all involved

action preconditions, results in a formula over the initial situation S0. Following The-

orem 9 and Reiter’s Regression Theorem, this formula is equivalent to the question of
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whether the actions comprising S are a legal execution of the program. More generally,

using regression we can determine sufficient conditions under which a given sequence of

actions (whose parameters do not need to be ground) will satisfy a given formula while

executing the program. These queries could not be answered using regression in the

transition semantics since neither the semantics of Golog nor ConGolog were in terms

of regressable formulae3. This provides the theoretical basis for the applicability of the

abstract monitoring approach of this thesis, as we discuss in Section 7.5.

Another advantage of reasoning in DP is that the compilation eliminates the need

for ConGolog’s tedious (second-order) reification of programs, as well as the second-

order axioms found in ΣConGolog for defining the Trans and the Trans∗ predicates. As

such, proving properties of programs in DP is not much different from proving properties

in the standard situation calculus. In some cases (e.g., when proving a property of a

particular execution trace) we can apply regression. In more general cases (e.g., when

proving invariants), we can simply use induction over situations [Reiter, 1993]. In fact,

we have proved properties of simple Golog programs by representing DP in the higher-

order theorem prover PVS [Owre et al., 1992]. In PVS, situations, natural numbers,

and lists, can be easily defined as recursive data-types. We found the lack of reification

in DP together with the limited number of second-order axioms made theorem proving

less laborious and more intuitive than previous attempts to prove properties of Golog

programs in PVS [Shapiro et al., 2002].

In our translated domain it is particularly simple to prove a property about a specific

point during the program’s execution. The main reason for this is that in our compiled

theories we can refer to points in the program’s execution by referring to the states

of the Petri net that represent those points. For example, proving a property about

the situations that result from executing the program to termination reduces to prov-

ing that a certain formula is true for every situation in which we are at the Petri net

3[Reiter, 2001, p. 62] defines regressable formulae.
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place that corresponds to the end of the program. When proving these types of proper-

ties using the second-order axioms of the original ConGolog semantics, as was done by

[Shapiro et al., 2002], one is forced to effectively simulate an execution of the program

by incrementally evaluating the transitive closure of the Trans predicate. On the other

hand, in case we want to prove a property that holds during the whole execution of a

program using our compiled theory, we have to resort to induction over situations. The

course of the proof in this case is very similar to the one that would be obtained in the

framework of [Shapiro et al., 2002].

To demonstrate the feasibility of proving properties of programs using automated

theorem provers, we modeled one of the Golog example programs in the blocks world

used by [Liu, 2002]. This program consists of a while loop that non-deterministically

moves blocks until there is only one block on the table. The task is to prove that there

is a single tower in the final situation. This could be proved automatically by PVS in

fractions of a second. [Liu, 2002] also obtained a very simple proof but appealing to a

Hoare-style proof system on top of ConGolog’s semantics.

7.4.2 Practical Merits

ConGolog to PDDL

A practical consequence of the compilation is the possibility of further compiling the

resulting action theory into other action languages, like PDDL. The advantage of this

approach is the possibility of using the fastest state-of-the-art planners to accomplish the

planning needed while interpreting ConGolog programs. This is not only of interest to

the agent programming community but also for the planning community, since ConGolog

can be used to express domain control knowledge.

In previous work we have shown that it is possible to compile Golog programs with-

out procedures into PDDL [Baier et al., 2007], and shown that Golog domain control

knowledge can speed up search of standard planning benchmarks. Figure 7.2 shows an
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Figure 7.2: Run-time comparison of a heuristic search based planner solving instances of

the storage domain of the International Planning Competition, with and without Golog

search controlled compiled into the PDDL domain definition [Baier et al., 2007].

example of the obtainable speed-up for the storage domain of the International Planning

Competition.

In the compilation proposed in this paper we are considering the richer variant Con-

Golog, which allows programs with various forms of concurrency, and we also enabled the

use of possibly recursive procedures. Unfortunately, these additions all together cannot

be compiled directly into current versions of PDDL. The main reason is that PDDL does

not provide the functionality for defining unbounded data structures, which we need, for

example, for representing the stack for procedure calls.

Recent versions of PDDL support natural numbers, but these cannot be used as

arguments to predicates, since numbers are not considered objects of the domain. The

pragmatic reason for this restriction is to avoid the possibility of infinite branching factors

[Fox and Long, 2003, p. 68] since actions could take numerical arguments. Since our

compilation does not introduce infinite branching factors, we believe that PDDL could

be extended accordingly to allow the full expressiveness of ConGolog and HTNs. We

hope that our work may convince the planning community that such an extension would

lead to a significant increase in the expressiveness of PDDL.
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It is still possible to translate ConGolog into PDDL if we are willing to either disallow

recursion and iterative concurrency or limit the depth of recursion and the number of

concurrently executing threads. The second option is probably the most interesting one,

since in practical applications in which finite plans are needed, we will not require the

power of infinite recursion. The main challenge in this case is to generate a theory in

which the stack and the lists which are used to represent thread names are bounded. The

following are the main aspects that are needed to translate to PDDL.

1. All fluents that represent counters (e.g., the stack pointer fluent) are now repre-

sented by relational fluents, an argument of which corresponds to the value of the

counter. The value of the counter is represented by a PDDL object. We generate

finitely many objects for counters, and a static predicate to indicate the successor

for each counter object.

2. All other functional fluents (e.g., map and state) are represented in PDDL as rela-

tional fluents. In particular, the relational fluent for state contains one argument

for each element of the (i, c) pair.

3. Threads, which in our basic action theories are represented as lists, and which are

employed as arguments to actions are represented in PDDL as (bounded) lists of

size equal to a parameter k. Moreover, actions, instead of having a single thread

parameter, are now represented as having k additional parameters, where the i-th

parameter of the action corresponds to the i-th parameter of the thread list. We

emulate lists with fewer than k elements by using a special constant nao (not-

an-object) to represent a position of the list that is not occupied by any object.

Finally, effects of the actions spawn, and join, which modify the current thread,

can be straightforwardly modified to use this new representation.

4. The precondition of the call and spawn actions are modified such that they will not

be possible if the capacity of the stack/thread list is already at its maximum.



Chapter 7. Generating and Executing Plans with Procedural Control129

Our PDDL translation is defined for ConGolog programs, that are assumed to operate

over a preexisting PDDL domain and problem specification. Thus, we assume that,

instead of receiving a basic action theory as input, the algorithm receives a PDDL domain

and problem definition describing preconditions and effects of actions, and the initial and

goal state of the planning problem. The steps of the compilation procedure that integrate

the basic action theory with the output of the program compilation are trivially modified

for the PDDL case. Thus, new bookkeeping actions are added, and existing domain

actions receive additional parameters, preconditions and effects as necessary. More details

on the general setup of this compilation can be found in [Baier et al., 2007].

HTN to PDDL

Hierarchical Task Networks (HTNs) [Erol et al., 1994; Ghallab et al., 2004] are a popular

planning formalism used to provide domain control knowledge to a planner by represent-

ing planning solutions in a hierarchical fashion. They have broad applications, includ-

ing classical planning [Nau et al., 2003] and web service composition [Kuter et al., 2004].

The HTN formalism has been in a sense divorced from classical planning since state-of-

the-art planners do not handle HTNs. Our approach enables the compilation of HTNs

into basic action theories and – when bounding recursion – to PDDL. Compiling HTNs

to PDDL is beneficial, as it provides the means of combining their expressiveness with

modern planning techniques.

Several HTN variants have been proposed in the literature, and one particular one has

been previously translated to ConGolog [Gabaldon, 2002]. Here we consider the HTN

formalism described by [Ghallab et al., 2004], using a compelling subset of the language

for constraints allowed by the SHOP2 planner [Nau et al., 2003], which obtained a second

place in the 2002 International Planning Competition. The translation of this flavor of

HTN to ConGolog is almost trivial.

In the variant of HTN planning that we consider, we distinguish three entities, which
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are specified by the user: tasks, operators, and methods. Tasks represent parametrized

activities to perform. They can be primitive or compound. Primitive tasks are realized

by operators, actions that can be physically executed in the domain. Compound tasks

need to be decomposed using one of possibly several applicable methods. A method m is

of the form (:method head(m) p1(~v) t1(~v) . . . pn(~v) tn(~v)) where the head specifies the

task with formal arguments ~v to which this method is applicable, pi(~v) are preconditions

and each ti(~v) is a list of sub-tasks. As in SHOP2, we give an if–then–else semantics to

methods: if p1(~v) holds, then the task is decomposed into the sub-tasks t1(~v). Otherwise,

p2(~v) is tested and so on. For a method to be applicable to a given task instance, the

task’s actual parameters have to unify with the method’s formal parameters, and at least

one pi has to be satisfied. Each list of sub-tasks ti(~v) can be a nesting of :ordered and

:unordered lists, stating restrictions on the order in which these tasks can be carried

out.

A detailed description of the formal algorithm for translating these HTNs to ConGolog

is beyond the scope of this chapter, but roughly the construction proceeds as follows: For

each method m, we create a new procedure

m
(
~v, if p1(~v) then δ1 else if . . . else (pn(~v)?; δn)

)

where δi is the following program representing sub-task ti: Recursively, if ti is an :ordered

set of tasks, then δi is simply the sequence of these tasks. Otherwise, if ti is an :unordered

set, then δi is the concurrent execution of all of these. For instance, (:unordered

a (:ordered b1 b2) (:ordered c1 c2 c2)), would be translated to: (a ‖ (b1; b2) ‖

(c1; c2; c3)). Since there may be more than one method applicable to a given task, we

translate each task into a non-deterministic choice over all of its applicable procedures:

(m1|m2| . . . |mn).

An HTN represented in such a way as a ConGolog program can thus be compiled

into a basic action theory just as easily, and by limiting the recursion depth of methods,

we can again compile the resulting theory further into PDDL.
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Execution Monitoring

The ability to regress the procedural hard constraints of programs over execution traces,

allows us to again use the abstract execution monitoring idea developed in this thesis for

monitoring the execution of programs. We describe this in detail in the next section, to

put it in adequate context with the rest of the thesis.

7.5 Monitoring the Execution of ConGolog Programs

Recall our abstract monitoring approach, as stated in Chapter 3. The abstract idea

was to regress any decision critical entities over the actions of a plan, and annotate the

plan with the resulting formula. This formula could then be reevaluated at run-time to

verify the continued satisfaction of the decision criterion. Since after compilation, the

hard constraints imposed by the program are expressed as simple (bookkeeping-)fluents,

we can again apply this technique to now monitor the continued validity of a plan with

respect to the program it was produced from. Since these are hard constraints, this is

best illustrated using the approach for monitoring plan validity described in Section 3.4,

even though nothing prevents its use in conjunction with user preferences and, hence,

optimality-monitoring, as described in Chapters 4 and 5.

As a matter of fact, the approach of Section 3.4 can immediately and without further

requirements be applied to the planning problems resulting from our compilation. Recall

that the goal formula, representing the successful execution of the compiled program is

state([0], s) = (imain,main).

Hence, regressing this formula over the steps of a valid plan and annotating this plan

with the resulting formula, again provides us with the means of determining the continued

validity of the plan at run-time.

We demonstrate this once again using the example considered in the discussion of the

approach for monitoring the execution of plans resulting from Golog programs presented
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Figure 7.3: Petri-Net for tree chopping program

by [Ferrein et al., 2004], described in Section 3.2.2, page 29. Recall that the task was to

chop a tree and carry it home, but resting any time fatigue is felt. This task and hard

constraint was represented by the program:

(if ¬fatigue then (chop | carry-tree) else rest endIf)∗ ; tree-at-home?

and given the model assumptions, the Golog interpreter had determined that the sequence

of actions chop, chop, chop, rest, chop, chop, carry-tree is a legal execution,

i.e., solves the task.

Using the compilation approach of this chapter, we can compile the program together

with the original basic action theory into a new basic action theory, and use any appro-

priate planner to find a plan. Since in the resulting theory we use additional bookkeeping

actions and fluents to represent the procedural constraints of the program, a plan for the

given problem would look like this, where we omit the thread ([0]) and context argu-

ment (main) from all actions for readability, and further enumerate all actions for later

reference:
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noop(0,1)1,

test(1,2)2, noop(2,3)3, chop4, noop(4,7)5, noop(7,10)6, noop(10,1)7,

test(1,2)8, noop(2,3)9, chop10, noop(4,7)11, noop(7,10)12, noop(10,1)13,

test(1,2)14, noop(2,3)15, chop16, noop(4,7)17, noop(7,10)18, noop(10,1)19,

test(1,8)20, rest21, noop(9,10)22, noop(10,1)23,

test(1,2)24, noop(2,3)25, chop26, noop(4,7)27, noop(7,10)28, noop(10,1)29,

test(1,2)30, noop(2,3)31, chop32, noop(4,7)33, noop(7,10)34, noop(10,1)35,

test(1,2)36, noop(2,5)37, carry-tree38, noop(6,7)39, noop(7,10)40, noop(10,1)41,

noop(1,11)42, rtest(11,12)43

This plan, different from the previous one, implicitly contains the hard constraints ex-

pressed by the Golog program – in the preconditions of the (bookkeeping-)actions. This

information is used by our monitoring approach to generate explicit monitoring formulae,

stating the continued validity of the plan.

To provide more detail, assume that the original basic action theory entails the fol-

lowing:

chops remaining(do(chop, s)) = x← chops remaining(s) = x+ 1

tree down(do(chop, s))← chops remaining(s) = 1

Poss(carry-tree, s) ≡ tree down(s)

exhaustion(do(chop, s)) = x← exhaustion(s) = x− 1

fatigue(do(chop, s))← exhaustion(s) ≥ 2

¬fatigue(do(rest, s))

exhaustion(do(rest, s)) = 0

Hence, chopping reduces a counter of remaining chops, and when this counter reaches

zero, the tree is down and can be carried. Simultaneously, chopping is exhausting, in-
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creasing the level of exhaustion by one. Fatigue is felt when the exhaustion reaches a

value of three. Resting removes fatigue and resets the level of exhaustion to zero.

Applying the regression technique of Section 3.4, produces the plan annotation re-

quired to monitor continued plan validity (cf. Definition 2). The goal is state([0], s) =

(12,main), which – for ease of presentation – we abbreviate to state(s) = 12: since this

program does not utilize procedures or concurrency, the specification of a procedural

context or thread name is not necessary in this example. Regressing this goal over the

last action and conjoining it with the preconditions of the last action, we get, for in-

stance G43(s) = (state(s) = 11 ∧ tree-at-home(s)), and after a few more regression steps

G38(s) = (state(s) = 5 ∧ tree-down).

Consider again the same execution discrepancy assumed in Section 3.2.2: the agent

feels fatigue already after two chops. This could be represented by a situation term

S∗ = do(set(fatigue), Si), where Si is the expected situation (do(chop, do(chop, S0))),

and the special action set(φ) makes the fluent φ true. The condition with which the

plan is annotated after the second chop action step (10) is: G11(s) = (state(s) = 4 ∧

chops remaining = 3∧¬fatigue(s)). Hence, Algorithm 1 would determine that replanning

should be performed instead of continuing with the plan when observing that D 6|=

G11(S
∗).

Furthermore, the initial condition is G1(s) = (state(s) = 0 ∧ chops remaining(s) =

5 ∧ ¬fatigue(s) ∧ exhaustion(s) 6≥ 1). Hence, if already before execution commences the

initial state of the world unexpectedly changes to a state described by a situation S∗
2

for which D |= exhaustion(S∗
2) = 1, then the algorithm immediately calls for replanning,

before even beginning to execute the plan, since the plan is already now projected to

violate the hard constraints of the program.

While the example of step 11 achieves something very similar to what was achieves

by [Ferrein et al., 2004] by the use of explicitly generated “markers”, the second example

demonstrates one of the benefits of using the regression based technique presented in this
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thesis. However, an even greater benefit results from the ability to combine this way of

monitoring the continued satisfaction of procedural hard constraints with the monitoring

for additional soft constraints – by using the algorithm presented in Chapter 4. Further,

also the algorithm of Chapter 5 can now be applied to programs, often allowing us to

produce optimal plans that also adhere to procedural hard constraints specified through

Golog programs, even under frequent interruptions of the plan generation process through

exogenous events.

Last but not least, it is even possible to apply the technique to DTGolog pro-

grams, if the approach of Chapter 6 is applied to the compilation result. DTGolog

[Boutilier et al., 2000], which stands for decision-theoretic Golog, is a variant of Golog

in which actions can have stochastic outcomes (as described in Chapter 6). DTGolog

programs are syntactically legal Golog programs as well, and are hence handled grace-

fully by the existing compilation, and the only required modification is to ensure that

action effects are added to the primitive actions describing outcomes, while additional

preconditions are added to the stochastic actions themselves (cf. Page 88).

7.6 Related Work

There are several pieces of related work. In previous work we provided a compilation

of Golog programs without procedures into PDDL [Baier et al., 2007], showing that no-

table speed-ups can be obtained in planning benchmarks. Our current work significantly

extends the aforementioned compilation by showing how ConGolog programs (with pro-

cedures and extended with useful features like concurrency) can also be translated into

classical planning, under certain restrictions. While our previous work exploited au-

tomata in the translation, the added expressivity of ConGolog necessitated the use of

Petri nets.

Funge [1998] provided a compilation of Golog programs into Prolog, to make program
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interpretation more efficient. His approach is similar to ours in the sense that the output

can be viewed as representing a finite-state automaton. However, the output is not a

logical theory, the approach cannot handle concurrency, and there are no immediate

applications like planning.

There is also related work on the compilation of HTNs into ConGolog and PDDL.

As previously noted, Gabaldon [2002] presented a means of translating the general HTN

formalism of Erol et al. [1994] into ConGolog. We showed how the HTN formalism

[Ghallab et al., 2004] with the popular SHOP2 [Nau et al., 2003] language for constraints

could be translated into ConGolog and in turn compiled into PDDL. We limited ourselves

to SHOP2 constraints because of its practical interest; this syntax also eliminated the

need for additional predicates. Nevertheless, we could have just as easily used Gabaldon’s

more involved translation to ConGolog to compile general HTNs with bounded recursion

into PDDL. Of further note, recently Lekavý and Návrat [2007] provided a linear trans-

lation of a restricted acyclic subset of HTN into STRIPS. Their translation generates a

Turing machine with a finite tape represented in STRIPS.

Finally, there is related work on proving properties of Golog/ConGolog programs.

Shapiro et al. [2002] used PVS to prove properties of ConGolog programs appealing to a

direct representation of the Trans∗ second-order axiom, and by reifying programs. As a

result it is possible to use induction to prove properties that hold during the execution of

programs, but it is not straightforward to prove properties that hold at particular points

in the execution (e.g., at the end of the program). As we have demonstrated, in our case

proving any of these properties is done as with any property of the situation calculus.

Also of note, Liu [2002] introduced a Hoare-style proof system for proving properties of

Golog programs (without concurrency). The motivation for this approach was similar

to ours: to minimize second-order reasoning. As a consequence, proving properties is

facilitated in this formalism, too. Recently, Claßen and Lakemeyer [2008] proposed an

interesting algorithm for proving properties of non-terminating Golog programs expressed
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in a logic that resembles CTL∗. To prove such properties, they construct a characteristic

graph, which resembles our Petri nets. With our compiled domains and by using known

translations of LTL into planning goals (e.g., [Baier and McIlraith, 2006]) we could prove

similar properties, but restricted to only finite executions.

7.7 Discussion

In this chapter we proposed an algorithm for compiling arbitrary ConGolog programs into

basic action theories in the situation calculus. The size of the resulting theory is quadratic

in the size of the compiled program, and contains a simpler set of axioms, in the sense

that it avoids the need for program reification and reduces the number of second-order

axioms. The compilation presents a significant contribution for at least two reasons.

First, it provides the mathematical foundations for compiling powerful ConGolog and

HTN search control into basic action theories of the situation calculus. These can in turn

be translated into other action formalisms including, with minor restrictions, PDDL. Such

a translation enables most state-of-the-art planners to exploit powerful domain control

knowledge without the need to construct special-purpose machinery within their planner.

Second, in eliminating the need for reification, the translated theory facilitates automated

proof of program properties in systems such as PVS as well as, in some cases, enabling

properties to be proved by regression of ConGolog programs followed by (first-order)

theorem proving in the initial situation. In the context of this thesis, the latter is of

particular interest, as it once again enables the use of the abstract monitoring approach

we propose.



Chapter 8

Related Work

In Section 3.2 we have already reviewed a number of existing approaches related to exe-

cution monitoring. Our focus there was on approaches that inspired the general abstract

approach that provided the overarching technique of which we derived the solutions de-

scribed in this thesis, and on approaches that, explicitly or implicitly, addressed the

problem of state evaluation described in Section 1.2. Before concluding, we now review

less directly related work found in the literature, with a focus on breadth rather than

depth, in order to position the presented work in an adequate scientific context. Some

of these works relate to the other modules listed in the described execution monitoring

framework, particularly replanning and state estimation. We also review alternatives

to execution monitoring, and proposals that address other issues of practical execution

monitoring, not considered in this thesis (meta-reasoning, and learning).

8.1 Replanning

Recall our conceptual framework of execution monitoring described in Section 1.2. Once

we have estimated the actual state of the world, evaluated it with respect to the plan,

and asserted that the current plan has become invalid or sub-optimal, we have to decide

how to react to this. In particular we do not want to replan from scratch in the new

138
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state but should try to repair our current plan accordingly. Or not? Nebel and Koehler

[Nebel and Koehler, 1995] showed that modifying a given plan for an altered initial and

goal state has the same worst case complexity as planning from scratch. This holds

even when similarity between the planning tasks is assumed and as little as one atom1

is removed from or added to the goal while the initial state remains unchanged. The

result also holds for the reverse case of a minimally altered initial state, the common

situation in execution monitoring after a discrepancy occurred. When conservative, that

is minimal, modification of the existing plan is required, the case gets even worse. Then

plan modification can be even more complex than planning from scratch, that is, there

are cases where planning from scratch can be done in time polynomial in the size of the

problem definition, while minimally modifying an existing plan is NP-complete.

While this suggests to not even consider repairing a failed plan but to simply replan

from scratch, several people (including us) have found plan modification to be more ef-

ficient in practice [Kambhampati, 1990; Gerevini and Serina, 2000; Koenig et al., 2002;

Hanks and Weld, 1995]. We will elaborate on this further in Section 8.1.1. This raises

the question of how significant the presented theoretical worst case results are in prac-

tice. The proposed similarity measure based on the removal or addition of unspecified

atoms from or to the goal or initial state seems not very informative in this respect as

well. In Chapter 5 we have further demonstrated that in order to generate (optimal-)

plans in practice when unexpected exogenous events are frequent, not even the absolute

replanning time is most significant, but the average relative replanning time compared

to the “amount of change”.

Another reason why Nebel and Koehler’s results may not be very relevant to the prob-

lem considered in this thesis is the fact that they limit their considerations to STRIPS

planning without preferences (soft constraints) over plans. It remains to investigate

whether these results also apply to plan modification under planning with preferences.

1Nebel and Koehler base their considerations on propositional STRIPS planning.
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This raises a much broader issue regarding the available literature on execution moni-

toring and replanning in particular: In almost all approaches the objective in replanning

is to minimize the replanning effort, not to maximize the quality of the generated plan.

This was also one of the concerns of [Cushing and Kambhampati, 2005]. The authors

argue that generally plan optimality is desired and planning time is only a secondary ob-

jective, but that current replanning methods do not account for that. The naive solution

for achieving optimality is of course continuous planning, i.e., replanning from scratch

after every execution step. This strategy was for instance used in [Lazovik et al., 2003],

where the authors present a framework for planning and monitoring the execution of web

service requests.

Cushing and Kambhampati [2005] also raise concerns about the common limitation to

replanning for altered initial and/or goal states. Some changes in the world, in particular

those affecting the available operators, cannot be modeled under these assumptions.

Imagine for instance a robot who breaks her gripper and cannot lift objects anymore.

Cushing and Kambhampati propose to precede replanning with a model-adjustment step

to alter the planning operators as necessary to accommodate for this kind of discrepancies.

Not doing this implicitly assumes that a failure is never due to a systematic fault and

this ignorance can lead to the infinite repetition of such a failure. We will come back to

this issue in Section 8.1.3.

8.1.1 Plan Repair

Despite the theoretical worst-case results by Nebel and Koehler, many people have shown

plan modification more efficient than planning from scratch in practice. The motivation

for this work has not always been execution monitoring, it was also explored as a means of

more efficient planning, so-called case-based planning or planning from second principles.

Instead of planning from first principles when a planning problem arises, the idea is to

consult a library of preexisting plans, find one that matches well with the new problem,
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and then modify it according to the new requirements. The problem of replanning in

execution monitoring is a special case of this where the plan library consists of only

one plan, the current but failed plan. We here do not distinguish the presented results

by their original motivation and for those approaches rooted in case-based planning, we

ignore the methods for plan retrieval from a library.

Kambhampati [1990] describes a plan modification framework based on the hierar-

chical task network (HTN) planner PRIAR. This paper is of particular interest as it

again demonstrates the utility of the rationale, now in particular for the plan modifi-

cation/repair task. Again the plan is annotated with the rationale, the goal regressed

through the remainder of the plan. Kambhampati calls this annotation the validation

structure of the plan. As the name suggests, the validation structure serves to verify the

plan’s validity. A validation is a 4-tuple 〈E, ns, C, nd〉, where ns and nd are leaf nodes of

the HTN, i.e., primitive actions, E is an effect of ns (the source) and C is a precondition of

nd (the destination). Each node n in the HTN is annotated with (i) the schema instance

that reduced (expanded) the node, (ii) its e-conditions (external effect conditions), the

effects of any node below n in the hierarchy that support a validation outside of the n-

subtree, (iii) its e-preconditions, the preconditions of any node in this subtree supported

by a node outside of the subtree, and (iv) its p-conditions (persistence conditions). The

latter, p-conditions, are validations whose source is scheduled before, and whose destina-

tion is scheduled after the task of node n, thus requiring that the validation’s effect is not

invalidated by any node within the subtree of n. This structure serves both to evaluate

whether the plan is still valid and for replanning when it is not. A violation can be the

failing of a validation, a missing validation, or an unnecessary validation. Roughly, in

the two former cases a new sub-goal node for achieving the missing support is added to

the network, in the latter case, the unnecessary validation is removed and this removal

propagated, potentially removing any supporting actions which are no longer required.

The resulting modified HTN will be handed back to the planner, reducing potentially
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remaining new, open sub-goals. Using the blocks world domain, Kambhampati shows

that doing plan repair this way can be between 30% and 98% faster than planning from

scratch depending on the similarity of the two problem instances. The results also show

that plan modification generally seems to pay off more the more complex the problems

are, in this case measured by the number of blocks. The setup and generality of the

results were, however, questioned by [Nebel and Koehler, 1995] for two reasons:

1. all considered instances belong to a sub-class of planning problems in the blocks

world domain which are solvable in polynomial time,

2. all instances are free of “deadlocks”, meaning that it is never necessary to put a

block temporarily on the table in order to reach the goal.

Based on the SNLP partial-order planner, Hanks and Weld [1995] implemented a

plan modification system called SPA. They also annotate the steps of the plan with the

“reasons” for adding it, but they utilize this information differently: when the need for

plan modification arises, the information can be used to retract earlier additions with all

their consequences. The presented replanning algorithm then just performs search in the

space of partial plans starting from the current one. The presented empirical comparison

to PRIAR draws a mixed picture: the savings rate of PRIAR is higher, but the authors

argue that this is because PRIAR is simply slower in generative planning2, a claim also

supported by Nebel and Koehler. This criticism is countered by the theoretical intuition

that PRIAR exploits the plans annotation in more detail, which in turn could explain

its practical superiority.

Another partial-order planner based approach is the GPG system of

Gerevini and Serina [2000], based on planning graphs [Blum and Furst, 1995]. The mod-

ification of a plan for altered initial and/or goal sets of atoms is driven by inconsistencies

2Both replanning systems are compared to their own generative planner to determine their relative
savings.
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in the plan. An inconsistency is either an open precondition, an open goal condition, or

two parallel actions that are mutually exclusive. The main algorithm (ADJUST-PLAN)

processes these inconsistencies one by one starting with those of least time index. A win-

dow around the inconsistency is cut out of the plan and replanned, using the set of true

fluents at the beginning of the window and the set of preconditions of actions at the end

of the window as initial and goal states. If there is no plan for the current window, the

window is increased. Replanning for one inconsistency may introduce new inconsisten-

cies later in the plan. These are dealt with as the considered time index proceeds. The

replanning algorithm is clearly sound and complete since in the worst case it eventually

performs replanning from scratch, namely once the size of the replanning window has

been increased to the point where it is spanning the entire plan. Surely, only replanning

for the preconditions of the actions immediately to follow the window is not enough, as

goal conditions may be affected by the replanning if e.g., an action inside the window

that achieved a goal condition is not re-added and not compensated for otherwise. This

insight led Gerevini and Serina to what they call the Backward Ω-goal set, which in fact

is again nothing more than the regression of the goal over the remainder of the plan. Ide-

ally one would use this set as the sub-goal to plan for when cutting a window instead of

just using the preconditions of actions immediately after. In the considered partial-order

setup this set can however not be computed when there are still inconsistencies in the

remainder of the plan in which case GPG approximates the set. Experimental results

on slightly modified logistics, rocket, and gripper example problems show that this

technique can again be much faster than planning from scratch, sometimes four orders

of magnitude.

An even more efficient and fairly universal approach to plan repair was presented by

van der Krogt and de Weerdt [2005]. The idea is to reuse the heuristic used by a compet-

itive planner to guide plan modification. The motivation for this is that replanning is not

essentially different from generative planning, but still most available replanning systems
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do not use a competitive planner. Roughly, the idea is to non-deterministically remove

actions from the plan and then add new actions, where the choice of actions to remove

or add is guided by the heuristic. The presented approach is universally applicable with

all heuristic search based planners but requires that the heuristic is capable of evaluating

arbitrary partial plans. While this is not generally the case, as most heuristic search

based planners deploy forward-search and their heuristics are designed accordingly, van

der Krogt and de Weerdt propose the following method to overcome this problem: after

removing an action from the plan, divide the remainder into pieces, so-called cuts, in

such a way that no two actions in the same cut were previously connected by a removed

action.3 Then, create a macro-action from each cut and add it to the theory. After that,

evaluating the empty plan, or, in heuristic forward-search terminology, evaluating the

initial state, provides the required heuristic information for the partial plan that was cre-

ated from removing actions. An empirical comparison with GPG on problems of slightly

modified initial states or goals shows that the presented approach can be anywhere be-

tween two to four times faster on some domains and twice as slow on others, while the

plan quality, defined as the length, remains comparable. While the idea of lifting the

planning heuristic to replanning is certainly an interesting new perspective, the auto-

matic creation of macro actions from plan fragments is not always trivial depending on

the action description language, raising questions about the universality of the approach.

One of the results of Nebel and Koehler [1995] was that plan reuse, and therefore also

plan repair, can be even less efficient than plan generation in the worst case when mini-

mality of changes, so-called conservative plan modification, is required. Also this concern

was addressed empirically: Fox et al. [2006] presented a thorough empirical comparison

of plan repair and plan generation on problems from the International Planning Compe-

tition, using the LPG planner, a local search heuristic planner similar to the earlier used

3This is always the case in totally-ordered plans, but in the exemplified partial-order setting (using
the VHPOP planner) plans can be graphs as actions can be performed concurrently and then this
requirement makes sense.
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GPG system. Fox et al. define the distance between two plans as the cardinality of ac-

tions appearing in either plan but not their intersection and speak of greater plan stability

when one replanning strategy produces a new plan of a smaller distance to the old plan

than another replanning strategy. To maintain high plan stability, they extend LPG’s

heuristic by a term penalizing the addition or removal of actions increasing this distance.

Unsurprisingly the modified system achieves greater plan stability on replanning tasks

than planning from scratch, while also being faster in most cases. However, Fox et al.

use a different notion of conservative modification than the one underlying the results of

Nebel and Koehler. Nebel and Koehler distinguished several ways of modifying a plan

and were only able to show that conservative modification can be more complex than

planning from scratch for modifications where not only the cardinality of the actions the

two plans have in common is maximal, but also their order is preserved. This restriction

is not present in the work by Fox et al..4

In contrast Sapena and Onaindia [2002] adopt a strategy where actions can only be

deleted at the front of a plan. The objective in this work is to find a plan suffix that is

executable from a state which is reached after executing a minimal number of actions in

the current (actual) state.5 The presented experimental results show that this approach

is faster than planning from scratch on problems with minor changes to the initial state

while slower on problems with major changes.

In the robotics community search techniques based on the A∗ algorithm dominate

approaches used to address the navigation problem. This is the problem of navigating

a robot through a dynamic environment without colliding with any objects. Due to the

dynamics it is often the case that the presence or position of obstacles change6 while a

4The modification strategy of Fox et al. corresponds to the MODMIX strategy of Nebel and
Koehler for which they were not able to show above worst case results (cf. the footnote on page 9
of [Nebel and Koehler, 1995]).

5This is subsumed by the MODDEL strategy of Nebel and Koehler.
6more specifically the agent’s belief about obstacles changes
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robot is executing a navigation plan and then the robot needs to replan its trajectory.

This is a special case of the general replanning problem we are concerned with where

only the applicability of actions in the search tree change, or, in search terminology,

edges and states are removed from or added to the search tree or the costs assigned to

edges change. Despite these limitations the more advanced research results along these

lines can serve as inspiration for the more general replanning problem. These techniques

all guarantee optimality7 of the plan modification result and also other aspects have

been addressed and now include, for instance, an anytime algorithm for this sort of

“replanning” [Ferguson et al., 2005]. Koenig et al. [2002] describe how the techniques

can be lifted to symbolic replanning (in a system called SHERPA), unfortunately without

lifting the limitation to cases where only the applicability of actions (in the search tree!)

have changed. While this is certainly too limited from our perspective, the guaranteed

optimality of the resulting plan still makes this interesting for us. It is important though

to understand the complexity of the limitation. If none of the edges in the search tree is

affected, the algorithm will do nothing and claim optimality of the current plan. However

it is easy to construct examples where this fails, that is, cases where optimality is claimed

but replanning from scratch would find a better plan. One is in settings with conditional

effects: a discrepancy may not affect the preconditions or costs of any action in the plan,

yet what the plan produces is not in accordance with what was planned for. Another way

to confuse this approach is when the heuristic value depends on the available operators

and their costs, as opposed to being a simple mapping from states (or state features)

to numbers. In fact the heuristic functions most commonly used satisfy this criterion

as they span a relaxed forward search graph to estimate a distance from the current

state to the goal. During heuristic search planning, parts of the search space are pruned

when, roughly, the heuristic function states that no plan of a better quality than x can

be found in this part of the search space and there are candidates of quality better than

7with respect to all possible plans in the current state
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x. But this information may change when the costs of operators in these pruned parts

change, potentially making earlier pruned parts now more attractive. It is thus not

enough to limit oneself to the edges in the originally spanned search tree, but the impact

of discrepancies on the heuristic function has to be considered as well.

We have formally addressed this issue in Chapter 4 by taking the conditions relevant

in computing the heuristic function into account. We have shown that regressing these

conditions, among others, enables us to derive sufficient conditions for the continued

optimality of the current plan which can be evaluated in the actual state encountered

during plan execution. The regression further enables us to determine the impact of

a discrepancy on these conditions, avoiding a complete reevaluation of these conditions

when only a subset of these conditions is affected. While our approach and SHERPA

share the requirement to retain the search tree and/or the open list, our approach does

not suffer from the limitation to changes that affect the costs or applicability of actions

only, but works for arbitrary changes to the state. As we have shown, action costs can

be easily represented by fluents, enabling our approach to handle changes to action costs

as well.

8.1.2 Backtracking

As an alternative to modifying the remainder of the current plan, some have considered

the possibility of on-line backtracking to previous points in the plan from where an

existing alternative plan could be executed. This makes particular sense in conjunction

with conditional planning. When a condition that decides between possible sub-plans is

evaluated in a wrong belief about the actual state of the world, it may be beneficial to

backtrack to this point of plan execution when later noticing the mistake, so that the

correct sub-plan can be followed instead.

In [Golden et al., 1996] the motivation for backtracking is that under time constraints,

on-line systems may start executing a plan prefix while the plan has not been worked out
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completely yet. Backtracking to a previous choice point then becomes necessary when it

turns out that the executed plan candidate does not reach the goal. Unfortunately, this

paper, whose focus is the description of the XII planning system, only outlines the benefits

and problems with backtracking. The work by Eiter et al. [2004] is more elaborate. The

authors propose the off-line generation of backtracking libraries that can be used as

patch-plans upon execution failure to lead the system back to a diagnosed point of failure

from where an alternative plan to reach the goal may be found. The key contribution

of this paper is that of formulating the problem of finding pairs of action sequences

and reverse plans as a conformant planning problem. From there, the authors show

several complexity results by reduction from evaluation of Quantified Boolean Formulae

(QBFs). In particular they show that determining whether a given action sequence has

a reverse action or a reverse plan is Σp
2 hard or Σp

3 hard respectively (for the considered

propositional action representation framework). In this work, a reverse action (resp.

reverse plan) for an action sequence AS is, roughly, any action (resp. sequence of actions)

such that for any two states S, S ′ for which executing AS in S produces S ′ it is the case

that the reverse action (resp. plan) executed in S ′ always leads to S if it is executable in

S ′. This paper is only of theoretical interest: computing a reverse plan for every possible

action sub-sequence of a plan prior to executing it does not seem practical considering

the demonstrated complexity.

Soutchanski ([Soutchanski, 2003a], [Soutchanski, 2003b, p.122]) has proposed an ex-

tended recovery predicate involving backtracking. Unlike the recovery predicate of

De Giacomo et al. [1998], this predicate is not required to find a repair (patch) plan with

which the current remaining program can be prefixed to make it executable again but

instead also considers backtracking to an earlier program state (recorded in a so-called

program state history) from where alternative execution branches exist. The backtrack-

ing is realized through planning on-line. Again we note that Soutchanski’s focus is on

formalizing the problem in the situation calculus. In particular, the time efficiency of the



Chapter 8. Related Work 149

applied planning algorithms used to implement the specified predicates do not compare

to other state of the art planning techniques.

8.1.3 Learning

In all approaches described above the premise is that planning from scratch in the new,

unexpected situation would produce a plan that is valid and optimal and which, in fact,

is taken as measure for any replanning algorithm in terms of quality and speed. This

premise also applies to the approaches proposed in this thesis. But what if the discrepancy

that occurred is due to a systematic error and will thus repeat itself? This is for instance

the case when the agent applies an incorrect model of its own actions during planning.

Consider the following example of a soccer robot equipped with a kicking device8: The

user provided the robot with a model describing that kicking will make the ball travel

in a straight line until it hits an obstacle. Unfortunately, during the game a fuse blows,

causing the kicking device to fail entirely. Assume the robot has intercepted the ball and

is in a good position to score a goal by either kicking or pushing the ball into the goal.

Since kicking is usually faster this is the preferred option, as it has a higher probability

of success. Hence the robot triggers a kick action, but nothing happens, because of the

hardware defect. The robot realizes that something went wrong when observing that the

ball is still right in front of it, as this observation is inconsistent with the model. But

planning anew in the new situation will not do any good since the best plan will still

be to kick instead of pushing the ball – according to the erroneous model. None of the

approaches we have described so far would ever get out of this loop and the robot would

miss its chance of scoring. What is missing is a model adjustment step before replanning

to account for modeling faults.

In this section we review replanning approaches where this problem has been ad-

dressed. We will elaborate on the obvious relation of this problem to reinforcement

8We have indeed encountered such a scenario in our RoboCup experience.
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learning in the next section where we discuss other related fields of research.

McNeill et al. [2003] consider the problems arising in the execution of agent plans

in a multi-agent setting due to faulty ontologies. Their approach prescribes that before

executing a plan, the plan is “deconstructed” in order to annotate it with the assumptions

made during planning. These annotations are then used when a discrepancy arises, to

pinpoint possible causes of the fault. Intuitively these annotations state why the agent

thought the plan-elements would work, that is, why it thought each precondition was

satisfied. If the action then fails at execution, one can conjecture what went wrong in

the past, i.e., which past action failed to produce its required effect (compare this to the

diagnosis task and in particular the work by [Iwan, 2000], described in Section 8.3). The

authors make a strong assumption namely that the reason why an action fails is given

to the agent already as a condition: if an action A fails, the system is informed that this

is because a – possibly previously unknown – precondition φ of A was not satisfied. The

authors propose to then correct the systems ontology. This may involve either changing

facts in the theory, corresponding to changing the belief about the state of the world, or

modifying the signature of the ontology itself. Unfortunately the paper does not suggest

ways of deciding what has to actually be changed and how this change can be done

automatically.

Less original but more principled and detailed is the proposal of Bjäreland [1999].

This paper begins by formalizing the problem in the situation calculus and distinguishes

between two sources for discrepancies exogenous actions (EA) and violation of ontological

assumptions (VOA). The paper makes one critical assumption: the system is always able

to tell whether an action has been executed completely or not by reading internal sensors.

This is used to determine whether an EA or a VOA has caused a discrepancy: if no action

has been executed but a discrepancy occurs it is assumed to be due to an EA, otherwise

it is due to a VOA (combinations are not considered). When an EA occurs there is no

need to adjust the model of the dynamics, instead only the knowledge about the current
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situation is modified. This is done by replacing the axioms describing the initial situation

S0 with axioms describing the values of all ground fluents in the observed new state of the

world. This is only possible in the face of complete knowledge about the initial situation.

If the discrepancy is deemed to be due to a VOA, four cases are distinguished, two where

the truth value of a fluent unexpectedly changed (positively or negatively), and two where

it unexpectedly did not change (positively or negatively). In these cases the suggestion

is to extend the successor state axioms, describing how fluents change in response to the

execution of actions in the domain, according to the action that was performed and the

discrepancy that was observed. This is done in a straightforward way: the conditions

under which a fluent changes when the action in question is executed are either restricted

by adding conjuncts or relaxed by adding disjuncts to the existing conditions. This does

not seem to be a very favorable approach from the machine learning perspective as it

does not perform any sort of generalization. While this may not be so critical with toy

domains which can be modeled propositionally, in real-world systems the fluents of the

model often involve many real-valued numbers, e.g., a position, and restricting learning

to instances of these numbers will not be of any help in improving the model, as it is

unlikely that the exact same state will be visited repeatedly. The assumption of perfect

actuators, that is, assuming that the system always knows whether an action has been

executed completely, is problematic, too. Some actions have indirect effects that only

become observable sometime after the actual action was performed, but these effects

would here be classified as exogenous and the system would thus never learn about their

cause.

Wang [1994] is concerned with learning planning operators by observing the actions

of an expert agent and “practicing” the newly acquired operators in the real-world to

refine the model.9 Observations consist of the state prior and the state after a named

9In fact, the author does not propose to practice in the real-world but a simulation thereof. This
seems unreasonable though, because any simulation requires a model of the world itself. Thus if it is
possible to implement and run such a simulator, the model learning problem has already been solved
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action is executed. The system is learning in a specific-to-general manner by generalizing

preconditions and effects. A number of assumptions are made: operators and states are

deterministic, sensors are noise-free, the state is fully observable, preconditions are con-

junctions of literals, and actions do not have conditional effects. In order to refine learned

operators, the author proposes to solve practice problems in the environment to obtain

more observations. While the paper does not elaborate on how to choose these practice

problems, it does address the problem of planning using potentially over-constrained plan

operators. When during planning the agent is uncertain about a conjectured but not yet

verified precondition, the corresponding action may be considered applicable even when

the conjectured precondition is not satisfied, in order to test the conjecture. A plan re-

pair strategy that plans for open preconditions handles the potentially resulting execution

failures.

Pasula et al. [2004] have addressed the same problem but in the presence of uncer-

tainty about action outcomes. Given a set of (pre-state, action, post-state) examples,

(s, a, s′), they greedily search for a best set of operators where the quality measure to

maximize is the likelihood of the data given the operators, minus a term penalizing com-

plex operator sets as determined through the number of preconditions and outcomes of

all operators. The actual search is divided into three functions of which LearnRules is

the main function. It initializes the search by creating operators for each tuple (s, a)

and then performs the search by specializing or generalizing these operators. Each time

it creates a new operator it calls the second function InduceOutcomes. This function

adds the specification of the outcomes (conjunctions of literals) to the operator. It again

applies search to maximize the score (likelihood of data minus complexity) by merging

compatible outcomes and removing redundant ones. Finally, the LearnParameters func-

tion adjusts the probabilities of these outcomes using a gradient method for optimization

and the simulator model could be adopted by the agent. Fortunately, for the purpose of our review it is
irrelevant whether the practice happens in the real world or a simulation thereof.
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with respect to the score. While no theoretical properties like convergence guarantees or

complexity are analyzed, the authors compare the approach to a learning method for Dy-

namic Bayesian Networks (DBNs) showing that the presented approach learns the true

distribution of outcomes better than DBNs for all considered training set sizes. They

also demonstrate that relational operators, i.e., operators with variable arguments, are

learned faster than purely propositional (ground) ones.

Pasula et al.’s approach can be classified as learning from specific-to-general. Alterna-

tively, one can learn from general-to-specific as demonstrated, for the purpose of learning

planning operators under partial observability, by Amir [2004] (also see [Amir, 2005]).

There the approach is to start out with the set of all possible transition systems and filter

this set by a given sequence of action-observation tuples, only keeping those transition

systems consistent with the observations. Dealing with the explicit set of all possible

transition systems (called the transition belief state) is not feasible as it is doubly ex-

ponential in the number of domain features and the number of actions. Instead, Amir

represents the transition belief more compactly as a formula of propositional logic. The

actual learning of plan operators is then defined as the progression of this transition belief

formula through the actions in the given sequence and the filtering by conjunction with

the made observations. This approach is, however, not likely to be applicable to the

problem of model adjustment in the context of replanning. In model adjustment one

starts with a specific transition system, the one used in planning, and it is unclear how

one could generate a larger set of possible transition systems from that in order to make

the described filtering approach applicable.

8.2 Contingency Planning

An alternative to the planning and execution monitoring approach we presented, is to

pre-plan for all possible contingencies before beginning execution.
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A desire for reactivity was the driving force for so called universal plans, proposed

by Schoppers [1987]. The idea is simple: starting from the goal, the planner performs

backward-chaining search until in each branch either a contradiction is produced or no

open sub-goal (precondition of some action in the tree) has support, i.e., there is no

action whose effects satisfy any of these open sub-goals. This produces a decision tree

that dictates which action to perform in which state in order to reach the goal. The

approach is indeed universal in the sense that for any state for which there exists a plan

of getting to the goal, this plan can readily be read off the tree. This way, whatever

goes wrong during execution of a plan, the system instantly knows how to react if it is

possible to reach the goal from the new state.

Unfortunately, the price for this is high and makes the approach intractable: in the

worst case, the time and space complexity is linear in the size of the domain, which, if

not infinite, is exponential in the number of domain features. This approach strongly

resembles the computation of policies in Markov Decision Processes, with a factored state

space: In decision theory, one is concerned with optimally choosing actions in systems

of stochastic state transitions in order to maximize a given utility function. The de-

facto standard for representing these systems are Markov Decision Processes (MDPs)

(see, e.g., [Puterman, 1994; Boutilier et al., 1999]), when the state is fully observable,

and Partially-Observable Markov Decision Processes (POMDPs), when the state is only

partially observable. Solving an MDP (resp. POMDP) amounts to generating a policy,

a control rule mapping states (resp. belief states) to actions in a way that maximizes

the expected accumulated reward received from the states visited when following this

rule. Policies are universal. Since they map every state to an action, an agent executing

the policy always knows what to do next and this choice will be optimal and so no

execution monitoring for dealing with run-time discrepancies is required, except for state

estimation in the case of POMDPs. But the price for this is high: as with Schopper’s

Universal Plans the enumeration of all states makes the approach generally infeasible for
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large or infinite domains.

The forward decision-tree search planner underlying our discussion in Chapter 6 is

one way of avoiding this problem, by limiting the policy computation to (a subset of) the

states reachable from a known initial state. In Section 6.6 we further reviewed a number

of related methods for creating robust policies under time constraints.

Strongly related to our approach is the work on solving first-order MDPs by

Boutilier et al. [2001] and more recently Sanner and Boutilier [2005]. This work proposes

first-order decision-theoretic regression (FODTR) to solve First-Order MDPs exactly for

all states, as opposed to a particular initial state. The approach works, roughly, by

repeatedly regressing the value function and rewards, both represented as first-order for-

mulae of a particular form, over stochastic actions, providing an improved value function

for abstract states, where the abstraction is induced by the regression. There are certain

practical limitations to this approach, in particular it does not generally allow for con-

tinuous domains. In real-world systems it further seems beneficial to follow a forward

search approach to focus on the reachable subset of state space. As such our approach of

Chapter 6 explores a middle-ground between this and plain decision-tree forward search.

When there remains uncertainty about the model applied in planning, there is a

trade-off to be made. Either one exploits the current model, that is, tries to maximize

the reward by behaving optimally according to it, or one can explore the environment in

order to improve the model and benefit from this information gain in the future. This

problem has been formalized and addressed in decision theory, reinforcement learning,

and adaptive control (see for example [Duff, 2002, Chapter 2], for a survey). While the

approaches have their appeal because of their rigorous mathematical foundation, they

are limited in their expressiveness by using a transition function that maps ground states

and ground actions to new states. For instance, a system performing action pickup(a)

1000 times does not learn anything about pickup(b). This contrasts with the approaches

presented in Section 8.1.3.
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8.3 State Estimation

In this section we review selected previous work relevant to the problem of state estima-

tion in the context of execution monitoring. We will first briefly review early work on

static model-based diagnosis and then relate this to the problem of state estimation and

the diagnosis of dynamical systems.

Model-based diagnosis was first described by Ray Reiter ([Reiter, 1987]). In Reiter’s

approach the system description, SD, is a finite set of first-order sentences and in this

system a set of components, COMP = {c1, . . . , cn}, exists, each of which may either

perform abnormally (Ab(ci)) or nominally (¬Ab(ci)). Given SD and COMP , an obser-

vation OBS, represented as another finite set of first-order sentences, conflicts with the

assumption that all components work correctly if SD∪{¬Ab(c1), . . . ,¬Ab(cn)}∪OBS is

inconsistent. The problem of diagnosis is then to find a subset ∆ of the components such

that assuming these components abnormal and the rest to work nominally, consistency

of the union with SD and OBS is reestablished. The subset ∆ is called a diagnosis.

Generally there are several possible diagnoses in which case one is generally preferred

over the others. In Reiter’s approach this preference is defined through minimality, that

is, a diagnosis ∆ is preferred over another diagnosis ∆′ if and only if ∆ ⊂ ∆′. The

preference for minimal diagnosis also makes sense from a probability point of view. As-

suming that correct behavior of a component is more likely than its failure and that

component failures happen independent of each other, minimal diagnoses are also most

likely diagnoses.

[Witteveen et al., 2005] have used this approach to diagnose abnormal events during

the execution of agent plans. The system description models the dynamics of the domain,

in particular the effects of the agent’s actions, and the components are the agent’s actions

themselves. In this setup the independence of component failures is not given anymore,

as the failure of one action can cause others to fail to. The authors accommodate for this

fact by introducing the notion of pareto minimal causal diagnosis. Roughly, the original
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diagnoses are reduced to their causes when a subset of components in the diagnosis causes

the failure of other components in the set. Minimality is then determined based on the

reduced sets.

Reiter later extended his original work with de Kleer and Mackworth to allow for fault

models and exoneration axioms, which violate the assumption implicitly made in the orig-

inal work that also every super-set of a diagnosis is a diagnosis itself [de Kleer et al., 1992].

The main approach presented in this paper was based on the notion of prime implicants

and the diagnoses defined from that were called kernel diagnoses.

Another way of defining the most probable diagnosis is the introduction of explicit

numeric failure probabilities. The generation of candidate diagnoses can then be focused

to the most likely ones [de Kleer, 1991].

The task of state estimation is arguably similar in nature to the above described problem

of diagnosis: given some observation that gives rise to the suspicion that the actual

current state is not the one we expected, we would like to identify the actual state as

best we can. As such the above described diagnosis is a special case of state estimation

where the incompleteness of knowledge is limited to the abnormality of the components.

It is also limited as it does not provide for dynamics in the system, that is, it is only

possible to talk about what holds or does not hold now but not what may have happened

in the past to reach the current state.

McIlraith addressed this misfit in [McIlraith, 1997]. She combined above work with

the situation calculus to model action dynamics and introduced the notion of explana-

tory diagnosis. Given a basic action theory in the situation calculus Σ, a history of

actions HIST that is known to have happened since the initial state S0, and an obser-

vation OBS, an explanatory diagnosis is a sequence of actions E = α1; . . . ;αn such that

Σ |= Poss(HIST ;E, S0)∧OBS(do(E, do(HIST, S0))). That is, an explanatory diagno-

sis is a sequence of actions that may have happened following HIST and explains the

observations. These actions are assumed to be exogenous, that is, not under the control
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of the monitored agent. McIlraith shows that the problem of finding an explanatory

diagnosis coincides with the problem of planning: The system dynamics are described by

the action theory Σ, the initial state is the state resulting from executing HIST in the

initial state S0, do(HIST, S0), and the goal is described by the observations OBS.

McIlraith’s work was extended by [Iwan, 2000; Iwan and Lakemeyer, 2003]. Iwan

argued that in order to explain the observations, it is sometimes not enough to conjecture

the occurrence of exogenous actions after the given history of actions HIST but that in

order to explain the observations one has to assume the occurrence of exogenous actions

in between the given action history and/or that some actions in this sequence were not

performed as expected. Iwan also addressed the problem of characterizing and computing

the most preferred diagnosis using explicit probabilities for the occurrence of events, much

like [de Kleer, 1991] proposed for the static case. The computation is based on best-first

forward search.

One shortcoming of these approaches is their limited applicability to real-world sys-

tems involving continuous evolutions of real valued features, like for instance the three-

dimensional position coordinates of a helicopter in operation. Consequently, the majority

of deployed robotic systems described in the literature approach the problem of state es-

timation differently. The main difference is the representation of the dynamics: instead

of sets of logical sentences for representing states and some kind of effect axioms for

describing the effects of actions in the domain, these systems describe the state by the

numeric values of certain properties and control values, and use algebraic or differential

equations to describe the impacts these properties have on each other depending on the

current mode of operation. This way not only continuous values and continuous time

becomes manageable, but also continuous probability distributions can be modeled to

capture the uncertainty of the domain.

This approach was used in [McIlraith, 2000] and [de Freitas et al., 2004]. In both

these papers the system to be diagnosed was modeled as a hybrid system, that is, using a
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state representation that has both a discrete and a continuous part. The continuous part

generally describes the dynamics, whereas the discrete part describes the operational

modes. The latter induce different dynamics in the continuous part, for instance the

direction of travel of a robot. Faults are defined through fault modes in the discrete part

and cause the dynamics of the continuous part to change. Observations, on the other

hand are generally only made in the continuous part, except for deliberate control mode

changes. The task then is generally to infer if and when a faulty mode has materialized

and reasoning is generally based on the belief state, that is, a probabilistic distribution

over possible system states.

In [McIlraith, 2000], McIlraith casts the problem of diagnosing a hybrid system as a

Bayesian model tracking and selection problem. To efficiently track multiple models si-

multaneously, she proposes the use of particle filters. One major problem with the use of

particle filters for diagnosis is that they focus on the most likely models, that is the nom-

inal behavior, while fault modes are unlikely and can therefore slip the attention of the –

approximate – filter. McIlraith overcomes this problem by biasing the samples towards

the results of a separate, qualitative diagnosis as it is described in [McIlraith et al., 2000].

The paper makes a single-fault assumption.

Particle filters now are a very common approach to approximate the distribution of the

state variables. These can also be integrated with exact methods like for instance Kalman

filters into so called Rao-Blackwellised particle filter (see, e.g., [de Freitas et al., 2004]).

[Verma et al., 2002] combine particle filters with Partially Observable Markov Decision

Processes (POMDP) for controlling a system: a policy for the POMDP is computed

off-line while particle filters are used on-line to track the belief state. Particle filters

can also be used for approximate inference in Dynamic Bayesian Networks (see, e.g.,

[Russell and Norvig, 2003], pp. 565–568).

Depending on the way the system is modeled and on the available observations, diagnosis

may not be required or can be trivial. This is for instance the case when the state can
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be sensed completely, or when it can be sensed partially and the observations coincide

exactly with the predictions of the model. Since then there is no discrepancy, there is

no reason to believe that the actual state is any different from the predicted one. In any

case, the situation-dependent need and requirements for diagnosis should be guided by

its purpose, that is, in the case of execution monitoring, it should be determined with

respect to the following steps, state evaluation and replanning. If, for instance, state

evaluation is able to specify a sub-set of states in all of which the current plan should

be continued, then there is no need to disambiguate between two candidate diagnoses

when both candidates belong to this sub-set. This is in fact achieved, for instance, by the

explicit annotation of a sufficient and necessary condition for the continued plan validity,

as described in Chapter 3.

[Boutilier, 2000] described a decision-theoretic model of monitoring the preconditions

of actions in a plan during execution to determine whether or not the current plan should

be continued, and proposed heuristic methods to make this otherwise intractable problem

tractable for more than just very short plans. This was motivated by three drawbacks

with existing approaches10: (i) they generally ignore the monitoring cost, (ii) they do not

account for monitoring errors (noisy sensors), (iii) they ignore the fact that a previously

false precondition of an action later in the plan may be reestablished at the time when

this action is to be executed (e.g., hearing about a traffic jam on a route that won’t

be reached for several hours). To address these concerns Boutilier modeled the decision

of continuing or abandoning the plan as a POMDP. The state space of this POMDP

is the set of vectors of truth values for all preconditions in the plan. At every stage of

plan execution the POMDP can choose for each precondition in the remainder of the

plan whether to monitor it or not, and after monitoring is done, whether to continue

executing the current plan or to abandon it in favor of adopting the best alternative at

this point.

10including approaches that replan whenever an unexpected state is reached
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The approach requires the availability of certain information, part of which may be

difficult to obtain in practice:

• For any point in the plan the value of the best alternative plan at that point has

to be known, since it will be used as the value for abandoning the current plan.

This is not generally known as common planners do not provide this information

since that would incur greater planning time costs. Many, in particular currently

popular heuristic search based planners, would provide an upper bound on this

value however.

• The probability of possible failures has to be known. Although these probabilities

certainly exist, estimating them may be difficult. This assumption also implies that

the agent is aware of all possible faults and this again is not generally the case in

the real world.

• A monitoring (e.g., sensor) model has to provide the likelihood for a particular

sensor reading for the case that a particular precondition has failed, and for the

case that it has not failed. This is to allow for monitoring errors (e.g., noisy sensors).

The general POMDP defined this way is too complex to be tractably solvable. Instead

Boutilier proposed decomposition and approximation techniques. These make the plan

monitoring problem solvable in a reasonable amount of time, even for long plans involving

hundreds of steps, while compromising only little on quality as shown by experiments.

Boutilier assumed away many complicating factors to keep the presentation simple.

It is clear that the approach generalizes to cases where these assumptions do not hold,

but it is unclear how that would affect the complexity. For instance are all preconditions

assumed to be established prior to plan execution, i.e., the system does not have to

reason about which actions are establishing preconditions of later ones and adjust the

monitoring decisions accordingly. Also are conditional effects left out of the picture

this way, but it is generally not enough to just monitor the preconditions of actions,
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but also the conditions under which certain desired or required effects are produced are

relevant. Another limitation is the fact that alternative plans are not monitored. This is

problematic because if during execution an alternative becomes better than the current

plan, we should adopt it. Also if the best alternative decreases in value, this should affect

our decisions as it may no longer be advisable to adopt the current alternative plan just

yet when some future precondition of the current plan is expected to fail. Overall,

Boutilier addresses the question “whether” and “when” to monitor relevant conditions,

but he does not cover the question “which” conditions are relevant. By assumption

the set of relevant conditions is already given. The regression based approach we have

presented in this thesis, may be used to ameliorate this issue and identify what needs to

be monitored, including ramifications due to conditional effects.

8.4 External Monitoring

There are a number of approaches of what might be best described as “external monitor-

ing”, where the monitoring and the executing entity are independent, meaning that the

monitor watches the agents behavior by means of certain sensors, but does not have ac-

cess to the agents internal state. In particular the monitor is not informed of the actions

being executed but can only try to infer this information from observing the actions’ ef-

fects. Although this was proposed in the literature to enable one agent to monitor other

agents, this work may still be of interest even in frameworks like ours where we do not

separate these two entities, as these approaches also provide insight into the diagnostic

problem of deciding “what happened”. But in contrast to the approaches in Section 8.3,

the approaches presented here also evaluate the found diagnoses.

The Autominder system [Pollack et al., 2003] is a cognitive orthodic helping people

with memory impairment by issuing personalized reminders to help the client accomplish

her daily agenda. The system observes the client’s actions to infer whether a reminder is
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necessary or not. The authors of the system argue that since sensory input is noisy and

the action in the client’s plan (agenda) can have complex temporal constraints, reasoning

under uncertainty and reasoning with quantitative temporal relationships between events

has to be integrated for this task. For this purpose they introduce Quantitative Temporal

Dynamic Bayesian Networks (QTDBNs; [Colbry et al., 2002]), an integration of Time

Nets and Dynamic Bayesian Networks (DBN). The Time Net component models the

relationship of the time intervals client actions occur in, representing the probability

that an event occurs in a certain time interval, while the DBN reasons about actions,

sensors, and domain properties within any such time interval. The DBN is updated with

the arrival of new information, i.e., sensory input, while the Time Net is updated only

as the actual time crosses a time interval boundary. At these time changes two interface

functions pass information from the DBN to the Time Net and back. Experimental results

show that for sufficiently small tasks, QTDBNs achieve their purpose of monitoring the

execution of another agent’s plan – here the client’s agenda –, but the required Bayesian

reasoning, which is known to be NP-hard, causes a time complexity exponential in the

number of modeled actions.

To monitor the execution of a multi-agent system, [Dix et al., 2003] investigate an

approach that could be described as meta-planning. Again unaware of the internal states

of the participating agents in the system, the authors propose to create a set of intended

plans off-line in a meta-theory that reasons about messages passed between the individual

agents partially revealing the executed actions. On-line, these intended plans are filtered

based on the messages actually passed between agents. That is, when a new message

is observed, the set of intended plans is reduced to those plans compatible with this

observation. The system raises an alert to the user if the set becomes empty, to indicate

that according to the meta-theory there is no way the monitored system is going to

achieve its objectives, or when no message has arrived for a specified time, indicating

that the system is stuck. Hence, instead of proving that the monitored system performed
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nominally, the approach here is to try to prove the opposite and assume nominal operation

as long as there is at least one possible way of reaching the goal, i.e., at least one

compatible intended plan. This approach demonstrates that monitoring is possible even

when the applied models in the execution system and the monitoring system are different,

which contrasts to the approach in Autominder, where the client’s plan is known precisely

and taken into account for monitoring. Instead, the monitoring system here merely bases

its decisions on the objectives of the agents being monitored and a rough indication on

which actions are being performed, perceivable from the passed messages. It also allows

monitored agents to change their plans, as long as there remains a way of reaching the

goal. Hence the goal and not the plan is used to determine failure.

8.5 Meta-reasoning

In the face of limited computational resources, a rational agent interleaving planning

and execution in a dynamic world should also be aware that deliberation itself impacts

the state of the world. This is because the world evolves while the agent deliberates.

In many applications it may thus be sometimes beneficial to commit to a seemingly

sub-optimal plan quickly, because determining the optimal plan may cost11 more than

the potential gain, namely when time directly or indirectly affects the preferences of

the agent. Reasoning about the agent’s own reasoning process and capabilities is called

meta-reasoning ([Russell and Wefald, 1991]). In the context of execution monitoring we

may be faced with questions of meta-reasoning when monitoring plan optimality: It may

be that the current plan, while still valid, has been found to be sub-optimal. Then it

may still be optimal (in the meta sense) to continue its execution, namely when replan-

ning will cost more than the potential gain. Another aspect of meta-reasoning concerns

the evaluation step itself: if the evaluation incurs costs, e.g., by interrupting the exe-

11We use the terms “cost” and “gain” loosely here and understand them to stand for any negative,
resp. positive, impact on the agents preference criteria.
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cution, it may be beneficial to omit evaluation and any subsequent replanning entirely.

[Russell and Wefald, 1991] suggest two main applications for meta-reasoning: (a) en-

abling the agent to decide on-line which computations to perform and which not, but

also (b) analyzing the rationality of a system design. The latter may be used in future

work to study approaches like the one of Chapter 5, in terms of their overall optimality.

8.6 Control Theory

The high-level objective of control theory – “control a system such that it behaves in a

particular way” – is very similar to ours. The main difference between control theory and

AI planning and execution monitoring approaches are the applied mathematics (cf., e.g.,

[Dean and Wellman, 1991]). Typically in control theory states are represented through

the values of continuous variables, and “control laws” map the current state and current

time to control values, much like policies do in decision theoretic planning. While the

dynamics of the controlled system can generally be characterized by algebraic, often

differential, equations, the use of an explicit model is uncommon. Often the error, e(t),

the difference between the current state and the desired state at time t, is used directly to

control the system. The very popular proportional-integral-derivative (PID) controller,

for example, defines the control value to take in terms of a linear combination of the

error itself, e(t), the accumulated error,
∫

t
e(t), and the error’s gradient, de(t)

dt
. Apart

from the difference in applied techniques, research in control theory is also generally

concerned with other questions such as the controllability, stability, or diagnosability of a

system. Similarities exist in so-called optimal control which is concerned with optimizing

the systems behavior with respect to some “cost index”, the counterpart to preferences

in AI planning. Finally, adaptive control techniques address the problem of refining

the controller automatically, by adjusting the control parameters during operation as

necessary.
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Conclusion

9.1 Summary

When executing plans in dynamic environments, discrepancies between the expected and

actual state of the world can arise for a variety of reasons, including imprecise models,

noisy sensors, or exogenous events not under the control of the agent. When such cir-

cumstances cannot be anticipated and accounted for during planning, they bring into

question whether discrepancies are relevant, and whether they render the current plan

invalid or sub-optimal. While there are several approaches for monitoring validity, no

approaches exist for monitoring optimality. Instead it is common practice to replan when

a discrepancy occurs or to ignore the discrepancy, accepting potentially sub-optimal be-

havior. Time-consuming replanning is impractical in highly dynamic domains and many

discrepancies are irrelevant and thus replanning unnecessary, but to maintain optimality

one has to determine which these are.

In practice, this problem may not only occur during execution, but during planning

as well. Even while no plan has been found yet and before execution begins, the state of

the world may change in unexpected ways. This again raises the question of how to react,

as the planning effort up to this point may or may not be invalidated by the discrepancy.

166
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This question is not well studied in the literature.

9.2 Contributions

This thesis contributes to these problems in several ways. Using the formal notion of goal

regression, we were able to summarize a number of existing approaches for monitoring

plan validity during execution. From this we abstracted a general abstract approach

for monitoring more general objectives, including plan optimality with respect to given

user preferences. This approach is based on annotating the plan with conditions for the

continued satisfaction of the objectives, which are checked during execution. We then

showed the broad applicability and benefit of this approach by developing five concrete

applications of this abstract approach. A central intuition behind our approach is that

many discrepancies are completely irrelevant, while others only affect small parts of the

plan or search tree. Exploiting this structure allowed us to gain significant computational

speed-ups in several practically interesting cases.

Monitoring plan validity. The provision of the formal characterization of the existing

approaches for plan validity as goal regression (Section 3.4) enables its exploitation

with other planners, such as very effective heuristic forward search planners. It

further allowed us to formally prove the correctness of the approach.

Monitoring plan optimality during execution. We showed how the abstract ap-

proach can be beneficially extended to the significantly more difficult problem of

monitoring plan optimality (Chapter 4). Since optimality is relative rather than

absolute, this required us to regress over plan alternatives as well, and in order

to measure the relative quality of alternatives, the evaluation function had to be

regressed, too. We derived a sufficient condition for optimality, given an admissible

heuristic, and proved its correctness. From this we derived plan annotations and an

algorithm that can be used during plan execution to verify the continued optimality
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of the plan. We proved that the algorithm makes sound decisions regarding this

optimality. Our empirical results show that a significant speed-up can be gained by

our approach compared to replanning from scratch in order to make this decision.

Generating optimal plans in highly dynamic environments. In practice, in

highly-dynamic environments it is necessary to monitor the state of the world dur-

ing planning itself as well. The question of how to react when the state of the world

unexpectedly changes during planning has been largely ignored in the literature.

In Chapter 5 we made three contributions regarding this problem:

1. We showed that the abstract monitoring approach we propose can be ap-

plied to devise a planner that is able to monitor the environment for relevant

changes, while planning. The basic idea is to use regression to reason about

all relevant entities, including accumulated action costs and heuristic function,

and to annotate the search tree with this information. Then, when discrepan-

cies occur, this information can be used to pinpoint possibly affected search

nodes, whose formulae can then be reevaluated as necessary to update the

search tree according to the events. We proved that this update is correct, in

the sense that when planning is continued from the updated data structures,

the produced plan is optimal with respect to the new initial state of the world.

2. We introduced a new criterion for evaluating plan adaptation approaches—the

relative replanning time compared to the amount of change—and argued for

its practical significance.

3. Finally, we presented empirical results that demonstrate that our approach is

able to produce optimal plans in cases where repeated replanning would fail,

due to the high frequency of expected state changes.

Monitoring policy execution in stochastic domains. Since in practice certain ac-

tions may be known to have stochastic outcomes, it is often advisable to deploy some
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form of conditional planning, where planning is performed for several possible evo-

lutions of the world. In Chapter 6 we demonstrated that also for decision-theoretic

planning using forward search from a known initial state, the proposed abstract

monitoring approach can be used to (partially) compensate for unpredictable state

changes. We again developed the annotation and recovery algorithm required to

update an existing search tree when discrepancies occur. We proved that the anno-

tation does not significantly increase the memory required to store the search tree.

We also demonstrated the use of the approach in two concrete MDP applications:

stochastic shortest-path problems, and sampling-based forward search solutions for

MDPs with large or infinite state spaces. Finally, experimental results demonstrate

that the proposed update of the search tree can indeed be done significantly faster

than the alternative of re-spanning the search tree through replanning from scratch.

Generating and executing plans with procedural control. In practice, the user

may desire to control the behavior of the agent in a procedural way. This has proved

useful in several practical applications and ConGolog has been demonstrated to be

a well suited language to express such control. However, special purpose machinery

is required to reason about ConGolog programs, both in planning and execution

monitoring. In Chapter 7 we proposed a compilation approach that takes a basic

action theory of the situation calculus and a ConGolog program, and produces a

new basic action theory whose tree of situations describes exactly the subset of exe-

cutable situations of the original theory which are permitted by the program, which

we formally proved. The compilation result is at most quadratic in the size of the

program and can be computed in quadratic time. Since the resulting theory is an

ordinary basic action theory, a number of reasoning tasks that can be performed on

these can now be done over programs as well. One such task is plan generation, but

also the proposed abstract monitoring approach benefits from this. In particular,

the approach can now be used to monitor the execution of plans resulting from the
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interpretation of ConGolog programs, in order to verify the continued satisfaction

of the hard constraints described by the program.

A key feature of the monitoring approach proposed in this thesis, is its ability to

handle any perturbation to the fluents describing the state of the world, rather than being

limited to some pre-defined set of contingencies, and its running time is independent of

the cardinality of possible events. This makes it attractive for real-world applications,

where the set of all possible contingencies is hard to determine or simply too big to plan

for—in continuous domains, e.g., there may be infinitely many such contingencies.

Relevant properties of a situation, as provided in the annotation, can further serve to

focus on-line sensing when faced with limited sensing resources: the agent knows which

features to sense and which can simply be ignored as they do not influence its objective.

The requirements for the applicability of our method are easy to fulfill: The used

action language has to be expressive enough to represent the user’s preferences and re-

gression has to be defined. However, in order to be used with heuristic search, the

heuristic function needs to be represented as a regressable formula (cf. [Reiter, 2001,

Definition 4.5.1,p.62] for a definition of regressable formulae in the situation calculus).

This does not seem immediately possible for some heuristics that have recently been

popular in the planning community, since these heuristics are often defined algorithmi-

cally rather than by a closed form formula. Finding and applying successful heuristics

that are compatible with our approach is a topic of future work. One such heuristic

might be pattern databases (see, e.g., [Edelkamp, 2001]). Heuristics which are themselves

based on some form of regression (e.g., [McDermott, 1999; Bonet and Geffner, 2001] and

[Refanidis and Vlahavas, 2001]) may also be more amenable to our approach.

In practice, the memory requirements of our approach may be a bottleneck, when the

regressed formulae cannot be represented compactly (cf. Section 2.2). At least for the

majority of the domains of the International Planning Competition, however, this does

not seem to be the case, since these domains are described in STRIPS, which, as dis-
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cussed, guarantees succinct regression results. This also applies to a possible comparison

to incremental heuristic search methods, which are generally only applicable to simple

planning domain descriptions and search problems. In such problems, we conjecture the

memory requirements of our approach to not be problematic from a practical point of

view either.

While in our exposition we focus on optimal plan that are generated using a monotone

heuristic in conjunction with A∗ search, our approach can equally be used in conjunction

with non-monotone heuristics (e.g., weighted A∗ [Pohl, 1970]), which are often found to

speed up planning at the cost of optimality. The resulting plans are guaranteed to be no

more sub-optimal than a certain bound which depends on the degree of inadmissibility

of the heuristic. In this context, the presented monitoring approach can be used to verify

the continued satisfaction of this bound on sub-optimality, given unexpected changes in

the environment.

9.3 Future Work

We have already pointed out a number of possible directions for future work in each

chapter. We here list more general directions, in particular those that are shared by all

the pieces, and those that apply to the thesis as a whole.

Since the thesis is concerned with issues that arise in practice, and aims at contributing

to their solution, these solutions should be evaluated on applications in highly dynamic

real-world domains, too. Such domains could, for instance, be the mentioned robotic

soccer domain (RoboCup) or the high-level control of Unmanned Aerial Vehicles. We

believe success in RoboCup in particular, may strongly benefit from our approach, as we

anticipate it will drastically improve successful generation and execution of plans, i.e.,

goal scoring. Also the focusing of sensing activities bears potential in this domain, an

aspect we want to investigate further.
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An optimized version of our implementation may be required for some of these appli-

cations. All current implementations are in Prolog and immediately amenable for inte-

gration with existing on-line Golog interpreters (e.g., Readylog [Fritz, 2003]). However,

since most current state-of-the-art planners deploy progression to solve the projection

problem, our use of regression may be an obstacle for easy integration of our methods

with those planners. There may however be ways of exploiting regression also to improve

planning itself (for one possibly interesting such direction see [Fritz, 2008]), in which

case the issue would lose significance. In this context it would also be interesting to

study popular, existing heuristics in terms of their regressability—which is a prerequisite

shall our method be used with heuristic search. Also related work in decision-theory

(e.g., [Boutilier et al., 2001], see Section 8.2) may benefit from such an investigation.

As mentioned previously, in this regard heuristics based on pattern databases (e.g.,

[Edelkamp, 2001]) could prove to be a good starting point.

Even after contributing possible solutions to a number of problems regarding the use of

planning technology in practical applications, there remain a number of open questions.

For some of these, an adequate solution may again be derived from the techniques pre-

sented in this thesis. One such problem is that of how to decide whether an action has

executed completely and successfully. Since many actions in the real-world have dura-

tions which are generally very difficult to predict, it is necessary to device a monitor

that determines the completion of actions. In practice, this decision is often based on

the materialization of expected post-conditions (effects). However, as we argued in this

thesis, unexpected events may jeopardize these effects, invalidating this approach of de-

termining action completion. Indirectly, we already made a first immediate contribution

to this problem in Chapter 3, which is suggestive of a method for deciding action comple-

tion, based on the satisfaction of the annotated condition. However, also then a question

would remain: how long should the monitor wait? When has an action ultimately failed?



Chapter 9. Conclusion 173

This problem becomes even harder when monitoring plan optimality, and the lack of a

closed form necessary condition for continued plan optimality in our approach limits its

use.

Some researchers argue that in practice it is often the so-called wall-clock time that

needs to be minimized, i.e., the absolute time that it takes to both generate and execute a

plan successfully. When optimality is defined in terms of the temporal length of the plan,

our method may again have merits in this context, as it allows one to determine bounds

on the degree of sub-optimality of an executing plan when unexpected changes happen.

If an estimate exists on how long it would take to find a better plan, this information

can be used to make a decision as to whether to continue with the sub-optimal plan, or

whether replanning would reduce wall-clock time to completion.

Another problem, not addressed in this thesis, but of great practical relevance, is that

of changing goals, including the arrival of new goals, during both planning and execution.

While our approach is able to handle changes in the state of the world, which can also

be used to model changes in the feasibility and cost of actions, it is not obvious how this

might be extended to handle changing goal specifications as well. However, if instead

of forward search, backward search was deployed, then a counterpart of our approach in

this setting—based on progression instead of regression—may again be beneficial.

Finally, as we have pointed out earlier in the context of related replanning approaches,

our approach does not improve its model of the dynamics of the world when unexpected

changes happen, in order to explain and avoid these changes in the future. This provides

another interesting direction of future research and we have discussed some promising

approaches that could be built on in Section 8.1.3.

Our discussion on Chapter 5 shows that the notion of optimality is not trivial to define in

domains where unexpected changes may occur and real-time constraints exist. This links

to the explore-exploit trade-off investigated in decision-theory, and the problem of meta-
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reasoning. The difficulty of arriving at a satisfactory definition of optimality seems to

stem from the fact that this is technology dependent: depending on the abilities of the (re-

)planner, the optimal strategy may be a different one. We hope that our considerations

regarding replanning-convergence in that chapter may add to this discussion, but believe

that further theoretical study of the problem is necessary.

We conjecture that the ideas behind the presented approach may be beneficially applied to

planning under initial state uncertainty, in particular when such uncertainty ranges over

continuous domains. Since our approach relies on the identification of what is relevant

in the assumed current state of the world for plan success, it is conceivable that this

information can be used as well, to build a sampling based approach for planning under

incomplete knowledge about the initial state: After planning for one possible initial state,

our approach may be used to generalize from this state to a larger set. If an appropriate

sampling strategy can be found, this may help in covering large parts of the initial belief

state more quickly.

Further, as pointed out earlier and above, the relevance information may benefit other

decisions as well. In particular the decision of a situated agent on what to sense, can be

greatly alleviated. This may be extended to the more general problem of deciding sensor

placement, or which sensing results to transmit in a sensor network, given a particular

monitoring task. The latter may be interesting, since such networks generally need to

economize on the energy expended in order to transmit sensing results back to the station.

Hence it is desirable to limit sensing to only relevant features.

Finally, a number of related application domains may require similar monitoring

techniques as the ones presented in this thesis. For instance, the execution of business

processes or work-flows is prone to execution discrepancies. This again suggests a mon-

itoring approach that is able to determine the relevance of these discrepancies. In this

context, the monitoring of ConGolog programs discussed in Chapter 7 may again prove
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useful, as ConGolog has recently been suggested to be particularly well suited for the

modeling, planning, and execution of business processes [de Leoni et al., 2007].
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Appendix A

Description of Domains Used in

Experiments

The example domains we used to evaluate our algorithms were taken from the set of

domains used in the International Planning Competition, and the problems we tested

on were variations of problems used in previous competitions. Both, the domain and

problem definitions were manually converted to situation calculus representations, taken

as input by our planners.

As explained in the text, we required the used heuristic functions to be expressed in

terms of regressable formulae. We therefore opted to hand-code simple domain specific

heuristics.

A.1 TPP

In the TPP domain an agent travels to various markets to purchase goods and brings

them back to a depot. The goal is to fill the number of requested goods. At different

markets, goods are sold at different prices and are available in different quantities.

The available actions are: “drive(destination)”, for driving to a given destination

(a market, or the depot); “buyallneeded(good, market)”, for purchasing the remaining
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requested quantity of a good at the said market (which needs to be the market of the

current location); “buyall( good, market)”, for buying the complete quantity of a good

that is available at a market; and, as explained, “finish”.

The actions have their intuitive preconditions and effects, and purchasing goods incurs

the cost of quantity times price. In addition, driving between different locations incurs

different predefined costs. An optimal plan is one that fills the requests while minimizing

costs.

As heuristic, we simply used the costs of driving from the current location back to

the depot.

The perturbations to the initial state affected the drive costs, the prices or available

quantities of goods on the various markets, or the number of requested goods. Again,

these perturbations where done systematically, by multiplying these values by a factor

between 0.5 and 1.5.

A.2 Open Stacks

In the open stacks domain, the task is to fill orders consisting of a list of requested

products, which need to be produced. After producing a product, an arbitrary number

of instances of that product is available for inclusion in orders, but there cannot be more

than a certain number of open orders at a time, each of which occupies one of a limited

number of available stacks. Furthermore, the production of a product cannot start before

all orders requiring that product have been started.

Orders can be started, and shipped when ready. Likewise the production of a product

can be started and ended. The time required for the production of various products varies.

An optimal plan is one that ships all requested orders, while minimizing the overall time.

The two heuristics used in this domain, denoted ’A’ and ’B’ in the text, were the

zero-heuristic (’A’) and the maximum of the make-times of all remaining products (’B’).
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Our perturbations in this domain regarded the production time of one or more prod-

ucts (simultaneously), the status of orders (not-started/started) and productions (not-

making/making/made), and the composition of orders (which products to include). The

latter is particularly interesting, as it emulates a certain degree of goal-changing dis-

crepancies. Such perturbations are also easy to imagine in practice, say at an Internet

retailer’s order fulfillment center, where clients may request changes to existing orders

while these are already being processed.

A.3 Zenotravel

The Zenotravel domain is a simple logistics domain, where there are various cities, per-

sons, and planes, and the task is to use the plans to fly the persons to their desired

destination cities.

The available actions are the boarding and debarking of a person to/from a plan,

flying a plane to a given city, “zooming” a plane to a given city, which means flying with

higher fuel consumption, and refueling a plane (and again “finish”).

The distances between cities vary and the required fuel, naturally, increases with

distance. Further, all actions incur a fixed time cost. An optimal plan is one that takes

all persons to their respective destination cities, while minimizing a linear combination

of time cost and fuel cost.

The two, hand-coded, heuristics we used were defined as the fuel cost factor times

the sum of the distances of a sub-set of all persons to their respective target locations.

This number was multiplied by a factor of 1.0 for the less-informed heuristic, and by

the slow-flying fuel burning rate for the most informed, more accurate heuristic. The

considered persons, their origins, and their destinations were chosen as to ensure that

these heuristics would be monotonic.

Our perturbations in this domain affected the distances between cities, the fuel level
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and fuel capacity of planes, the rate at which fuel is burned, the time cost constant and

the fuel cost factor.
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Proof of Theorem 5

Definition 9. Given a situation S, a goal G, a cost formula Cost(a, c), an admissible

heuristic Heur(h), and a list L of tuples (g, h, ~α), we call L a consistent open list w.r.t.

S,G,Cost, and Heur if w.r.t. S

(i) L contains no infeasible action sequences;

(ii) any feasible action sequence is either itself contained in L, or a prefix or extension

of it is, however, for any feasible sequence that satisfies G, either itself or a prefix

is contained (but not an extension);

(iii) every element (g, h, [α1, α2, . . . , αn]) ∈ L is such that h is indeed the heuristic value

for [α1, α2, . . . , αn] according to S, i.e. D |= Heur(h, do([α1, α2, . . . , αn], S)); and

(iv) the accumulated costs g are such that

D |= (∃c1, . . . , cn).Cost(α1, c1, S) ∧ Cost(α2, c2, do(α1, S))∧

· · · ∧ Cost(αn, cn, do([α1, α2, . . . , αn−1], S)) ∧ g = c1 + · · ·+ cn.

Proposition 3. Any open list output by A∗, and hence RegBasA∗, is consistent w.r.t.

to the given initial situation, goal, cost-, and heuristic function.
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Lemma 1. In the sequence of invocations of Theorem 5, O2 is a consistent open list

w.r.t. S2, G,Cost , and Heur .

Proof: We prove each item of Definition 9 in turn.

Proof of (i): Let (g, h, [α1, α2, . . . , αn]) ∈ O2 and assume to the contrary that

[α1, α2, . . . , αn] is infeasible in S2, i.e. there is an 1 ≤ i ≤ n such that

D 6|= Poss(αi, do([α1, . . . , αi−1], S2)). It must be the case that [α1, α2, . . . , αn] was either

element of O1, or it was introduced by Recover. We lead both cases to a contradiction.

In the former case the preconditions of αi have different truth values in S1 and S2,

since they must have been true in S1, or else the sequence wouldn’t have been included

in O1. Hence, there must be at least one fluent F mentioned in Poss(αi, s) for which we

have that D |= F (S1) 6≡ F (S2). Then, however, by definition of Recover (Lines 2, 3),

([α1, . . . , αi], P ) was included in ∆′. Since D |= Poss(αi, do([α1, . . . , αi−1], S1)) at that

point, following the definition of RegBasA∗ (Lines 11, 12, 13), T ([α1, . . . , αi]).p = true and

D 6|= Poss(αi, do([α1, . . . , αi−1], S2)) (due to T ([α1, . . . , αi]).P (s) =

R[Poss(αi), [α1, . . . , αi−1]] (definition of RegBasA∗), and the Regression Theorem

[Reiter, 2001]), and the fact that [α1, . . . , αi−1] is a prefix of [α1, . . . , αn],

(g, h, [α1, α2, . . . , αn]) would be removed from the open list, concluding the contradic-

tion for this case.

In the latter case, i.e. Recover introduced this element, we get a contradiction just

as easily. The only place where recover inserts new elements into O is in Line 19, i.e.

in the body of an elseif statement with condition T (~α).p = false ∧ D |= T (~α).P (S2).

This condition is violated by the assumption that D 6|= Poss(αi, do([α1, . . . , αi−1], S2))

(again, due to the Regression Theorem and the definition of RegBasA∗ stating that

T ([α1, . . . , αi]).P (s) = R[Poss(αi), [α1, . . . , αi−1]). Hence, Line 19 is never reached for

this sequence, and thus Recover cannot have inserted this element. Hence, no infeasible

action sequence is contained in O2.

Proof of (ii): Assume again to the contrary that there is an action sequence
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[α1, α2, . . . , αn] which is feasible in S2, but neither itself, nor a prefix or extension of

it is included in O2. This sequence (like any other) is either feasible in S1, or infeasible

in S1. We lead both cases to a contradiction.

By Proposition 3, O1 is consistent. Hence, Recover must have removed an appropriate

sequence. However, as already seen above, Recover only removes sequences that have a

prefix whose last action is not feasible in the corresponding situation in S2, and hence

the entire sequence [α1, α2, . . . , αn] wouldn’t be feasible in S2, a contradiction.

Otherwise, if [α1, α2, .., αn] is not feasible in S1, there is a minimal 1 ≤ i ≤ n such

that D 6|= Poss(αi, do([α1, .., αi−1], S1)), and we have T ([α1, .., αi]).p = false, by Line 20

of RegBasA∗. However, by assumption, D |= Poss(αi, do([α1, .., αi−1], S2)) and thus also

D |= T ([α1, .., αi]).P (S2), by definition of RegBasA∗ and the Regression Theorem. Hence,

the condition on Line 11 is satisfied for the sequence [α1, .., αi], as there must be a fluent

mentioned in R[Poss(αi), [α1, .., αi−1]] with opposite truth values in S1 and S2, so that

this sequence is included in ∆′. Following the condition on Line 11 the action sequence

[α1, .., αi] is added to the open list, concluding the second contradiction.

Now let’s turn to the second part of (ii). Assume there was an element

(g, h, [α1, α2, . . . , αn]) ∈ O2 such that there exists a minimal index 1 ≤ i < n with

D |= G(do([α1, . . . , αi], S2)). Since we assume that the goal can only be achieved through

the action finish, and when this action can execute it will always produce the goal, we

know that αi = finish. Then however, the element (g, h, [α1, α2, . . . , αn]) cannot be in O1

since otherwise also D |= G(do([α1, . . . , αi], S1)), because RegBasA∗ does not introduce

infeasible action sequences into the open list, and since this sequence would satisfy the

goal, it would not have been expanded further (cf. Proposition 3). Also, the sequence

cannot have been introduced by Recover, since Recover only introduces sequences for

whose last action the preconditions differ between S1 and S2 (but i < n). This concludes

the contradiction for this part.

Proof of (iii): There are two possible cases: (a) Either (g, h, [α1, α2, . . . , αn]) was
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added by Recover, or (b) it was added by the first RegBasA∗. Case (a) leads easily to

a contradiction, since due to Lines 17, 19 of Recover only elements with correct values

according to S2 are added to the open list. Also, this element cannot be changed in

further iterations of Recover as it cannot be member of ∆′. In case (b) we have that

D |= Heur(h, do([α1, α2, . . . , αn], S1)) 6= Heur(h, do([α1, α2, . . . , αn], S2)) and hence there

must be a fluent mentioned inR[Heur(h), [α1, α2, . . . , αn]] on whose truth value S1 and S2

disagree. Therefore, the sequence [α1, α2, . . . , αn] is included in ∆′ in Recover and Lines

28–29 executed for it. Since this element is part of the open list, the elseif-condition

holds and its new value according to S2 is determined. This value is written back into

the entry of the open list 29 (and also into the tree annotation 29). This concludes the

contradiction of this case, that the h value for any element of the open list O2 is wrong

w.r.t. S2.

Proof of (iv): There are again the two possible cases: (a) (g, h, [α1, α2, . . . , αn]) was

added by Recover, or (b) it was added by the first RegBasA∗.

In case (a) the new value for g is computed by getGval on Line 18 of Recover. This

value is either accurate according to S2, namely when all annotated costs for actions in

the sequence are already with respect to S2, in which case the contradiction is immediate,

or some of them are still with respect to S1 and are going to be fixed subsequently. In

the later case, there must be actions in the sequence for which the costs according to S1

and S2 disagree. In each of these cases there are disagreeing fluents mentioned in the

corresponding regressed cost formulae that trigger the treatment in Line 20, which will

adjust g accordingly (also cf. case (b)). Hence, this cases contradicts the assumption

that the value is incorrect with respect to S2.

In case (b) there again must be a fluent F mentioned in R[Cost(αi, c), [α1, . . . , αi−1]]

for at least one 1 ≤ i ≤ n such that D |= F (S1) 6≡ F (S2), or else the accumulated cost

values for S1 and S2 would be the same. Hence, Lines 20–26 are executed for all such i’s.

In each case, the correct costs for αi according to S2 are computed and the offset from the
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previous value (w.r.t. S2) is added to any element of the open list which has [α1, . . . , αi]

as a prefix (a sequence has trivially itself as a prefix), and in particular [α1, α2, . . . , αn].

Hence, after the foreach loop terminates, there are no more nodes along the branch to

[α1, α2, . . . , αn] which show a Cost value that is not according to S2, and value g reflects

their sum. This completes the last contradiction. �

Proof of Theorem 5: Let us first consider the case where there is a plan for S3, i.e. the

two open lists O3 and O′ aren’t empty. Let the first element in O′ be (g′, 0, ~α′), i.e. ~α′

is an optimal plan for G, for the initial state S2 and g′ is its overall cost. The heuristic

value for this element is, of course, 0, since the action sequence is a plan.

We need to show that the first element of O3, let’s call it (g3, 0, ~α3), is exactly the same.

Since we assume that any open list output by RegBasA∗ or Recover is sorted according

to Value, it suffices to show that there is a member in O3 whose action sequence is ~α′,

no other element (g′3, h
′
3, ~α

′
3) ∈ O3 is such that g′3 + h′3 < g3 (we assume that tie breaking

is done the same way every time an open list is sorted, and omit these details here), and

that g3 = g′. Again, since it is output by RegBasA∗, the heuristic value can only be zero.

All this follows from Lemma 1, and the completeness and optimality of A∗ and hence

RegBasA∗, based on the admissibility of the heuristic function.

Now to the case where O′ is empty, i.e. no feasible action sequence to reach the goal.

We show that also O3 is empty. Assume to the contrary that there is an element

(g, h, [α1, α2, . . . , αn]) ∈ O3. This sequence satisfies the goal (ignoring preconditions),

or else RegBasA∗ would not have returned it. But then O2 must have already contained

an element whose action sequence was a prefix [α1, α2, . . . , αi] of [α1, α2, . . . , αn], i ≤ n,

since RegBasA∗ itself is assumed correct and never introduces infeasible action sequences

into the open list. The contradiction now follows again from Lemma 1 (Case (i)). �
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Definitions and Proofs of Chapter 7

C.1 Definition of comp

We here provide the pseudo-code for the comp function of Step 1 of our compilation.

It takes four inputs: a program δ, an integer i used as a program counter, a set e of

program variables (introduced using the π-construct, see below), and the name of the

procedure this program belongs to, c. It outputs a set of first-order sentences and a new

integer. We will further process the sentences in the subsequent steps of the compilation,

eventually producing the axioms of the new theory. The integer represents the value of

the program counter at the end of the program. The definition of comp is given on

pages 198 and 199. The following glossary is to provide some intuition about the used

bookkeeping fluents and actions. For parsimony we omit situation arguments:

Fluents:

Thread(th): Thread th exists/is active.

state(th) = y: Thread th is in state y, where y = (i, c) for some integer i (program

counter), and some procedure name c (“context”).

stack(th, p) = y: A stack for storing procedure call return addresses: p is the stack posi-
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tions, and y the content.

sp(th) = y: The stack pointer for thread th, pointing to the top of the stack.

map(th, p, v) = y: The program variable v has value y in thread th on stack position p.

Note that thread names and stack positions are required, since the same program

variable name (v) may be used simultaneous in different threads, and in recursive

procedures.

childp(th) = y: For modeling concurrency: the number of children thread th has.

Parent(th1, th2): Thread th1 is an ancestor of thread th2.

Forced(th): Thread th and its descendants, have exclusive execution rights.

Prio(th1, th2): Thread th1 has priority over thread th2. Note that it may still temporarily

be the case that Forced(th2) is true, in which case th2 is still forced to execute before

th1.

final(th): Thread th has executed completely.

blockeds(th, p, i, c): Thread th on stack position p may not move to state (i, c), for in-

stance, because that branch has been tried before and a backtrack action (see

below) has been executed.

blocked(th, p, i, c, x): Similarly, a π construct that transitions into (i, c) in thread th on

stack position p may not chose value x.

backtp = y: A pointer to positions in a backtracking stack. The stack itself contains so-

called “shadowed” versions of all relevant bookkeeping fluents X, named s X, see

below.

Actions:
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test(th, i, c, i′): Under a certain condition, compiled into the preconditions of this action,

thread th may move from state i to i′, in context c.

rtest(th, i, c, i′): The same as above, but corresponding to an actual transition in the

program. Used for the φ? constructs only.

noop(th, i, c, i′): Just like test, but unconditional.

rnoop(th, i, c, i′): An unconditional transition, just like the previous, but only for cases

where no backtracking information needs to be recorded.

spawn(th, c, i′, i1, i2): Creates two new threads (tokens in the Petri net) and sets the

first thread to state i1, the second to i2, and the current thread to i′.

join(th, c, i): Joins the child threads back into their parent.

π(th, v, x, c, i): Chose object x for program variable v.

call(th, p, c, i): Call procedure p.

return(th): Return from a procedure call: look up return address on the stack, and move

to the stated program position.

backtrack(th): Backtrack to the last backtracking point.

finalize(th): Mark thread th as final.

In the algorithm we use the auxiliary functions test, rtest,noop, rnoop to create

additional transitions in the generated Petri net, which may be conditional (test) or

unconditional (noop). In these algorithms φ(s)|V denotes the formula resulting from

substituting each occurrence of v by xv for every pair (v, xv) ∈ V.

The following condition, bindProc, is required for handling program variables in the

positions of procedure calls. The variables ti serve as actual parameters and xi as formal
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Function comp(δ, i, e, c) – Part 1 of 2

Output: a tuple (ax, i′) with ax a set of sentences, i′ an integer
switch δ do1

case nil2

return (∅, i)3

case A(t1, . . . , tn) (where A(x1, . . . , xn) is an action)4

ax = {Poss(A(th, x1, . . . , xn), s)← Thread(th, s) ∧ state(th, s) = (i, c)∧5 ∧
j s.t. tj 6∈e

xj = tj ∧
∧

j s.t. tj∈e
map(th, sp(th, s), tj, s) = xi,6

state(th, do(A(th, ~x), s)) = (i+1, c)← state(th) = (i, c)};7

return (ax, i+1)8

case (φ?)9

return (rtest(φ, i, i+1, e, c), i+1)10

case (δ1; δ2)11

(ax1, i1) = comp(δ1, i, e, c);12

(ax2, i2) = comp(δ2, i1, e, c);13

return (ax1 ∪ ax2, i2)14

case (δ1|δ2)15

(ax1, i1) = comp(δ1, i+1, e, c);16

(ax2, i2) = comp(δ2, i1+1, e, c);17

ax = { noop(i, i+1, c),noop(i, i1+1, c),noop(i1, i2+1, c),noop(i2, i2+1, c)};18

return (ax ∪ ax1 ∪ ax2, i2+1)19

case (if φ then δ1 else δ2)20

(ax1, i1) = comp(δ1, i+1, e, c);21

(ax2, i2) = comp(δ2, i1+1, e, c);22

ax = {test(φ, i, i+1, e, c), test(¬φ, i, i1+1, e, c),noop(i1, i2, c)};23

return (ax1 ∪ ax2 ∪ ax, i2)24

case (while φ do δ′)25

(ax, i1) = comp(δ′, i+2, e, c);26

return ({test(¬φ ∨ blockeds(th, sp(th), i+2, c), i+1, i1+1, e, c),27

rnoop(i, i+1, c), test(φ, i+1, i+2, e, c), rnoop(i1, i+1, c)} ∪ ax, i1+1)28

case (δ′∗)29

(ax, i1) = comp(δ′, i+1, e, c);30

return (ax ∪ {noop(i, i+1, c),noop(i+1, i1+1, c),noop(i1, i+1, c)}, i1+1)31

case (π(v, δ))32

(ax1, i1) = comp(δ, i+1, e ∪ {v}, c);33

ax = {Poss(pi(th, v, x, c, i+1), s)← Thread(th, s) ∧ state(th, s) = (i, c)};34

return (ax ∪ ax1, i1)35

case P (t1, . . . , tn) (where P (x1, . . . , xn) is a procedure)36

ax = {Poss(call(th, P, i+1, c), s)← Thread(th, s) ∧ state(th, s) = (i, c)}37

∪ bindProc(e, [t1, . . . , tn], [x1, . . . , xn], call(th, P, i+1, c));38

return (ax, i+1)39

otherwise see Part 2 on next page40
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Function comp(δ, i, e, c) – Part 2 of 2

switch δ do1

case (δ1 ‖ δ2)2

(ax1, i1) = comp(δ1, i+1, e, c);3

(ax2, i2) = comp(δ2, i1+1, e, c);4

ax = {Poss(spawn(th, c, i2+1, i+1, i1+1), s)←5

Thread(th, s) ∧ state(th, s) = (i, c),6

Poss(join(th, c, i2+1), s)← Thread(th, s) ∧ state(th, s) = (i2+1, c)∧7

final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),8

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),9

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧10

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};11

return (ax1 ∪ ax2 ∪ ax, i2+2)12

case (δ‖)13

(ax1, i1) = comp(δ, i+1, e, c);14

ax = {noop(i, i1+1, c),15

Poss(spawn(th, c, i1+1, i, i+1), s)← Thread(th, s) ∧ state(th, s) = (i, c),16

Poss(join(th, c, i1+1), s)← Thread(th, s) ∧ state(th, s) = (i1+1, c)∧17

final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),18

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),19

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧20

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};21

return (ax1 ∪ ax, i1+2)22

case (δ1 〉〉 δ2)23

(ax1, i1) = comp(δ1, i+1, e, c);24

(ax2, i2) = comp(δ2, i1+1, e, c);25

ax = {Poss(spawn(th, c, i2+1, i+1, i1+1), s)←26

Thread(th, s) ∧ state(th, s) = (i, c),27

Poss(join(th, c, i2+1), s)← Thread(th, s) ∧ state(th, s) = (i2+1, c)∧28

final([childp(th, s)–1|th], s) ∧ final([childp(th, s)–2|th], s),29

state(th, do(join(th, c, i2+1), s)) = (i2+2, c),30

Prio(th1, th2, do(spawn(th, c, i2+1, i+1, i1+1), s))←31

th1 = [childp(th, s) + 1|th] ∧ th2 = [childp(th, s) + 2|th],32

¬Prio(th1, th2, do(join(th, c, i2+1), s))←33

th1 = [childp(th, s) + 1|th] ∧ th2 = [childp(th, s) + 2|th],34

Poss(finalize(th), s)← Thread(th) ∧ ¬final(th)∧35

state(th, s) = (i1, c) ∨ state(th, s) = (i2, c)};36

return (ax1 ∪ ax2 ∪ ax, i2+2)37
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Function test(φ, i1, i2, e, c)

V = {(v, xv) | v ∈ e ∧ φ mentions v} ; // xv a new var.1

return {Forced(th, do(test(th, i1, i2, c), s)),2

¬Forced(th′, do(test(th, i1, i2, c), s))← Thread(th′, s) ∧ th′ 6= th,3

state(th, do(test(th, i1, i2, c), s)) = (i2, c),4

Poss(test(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c)∧5

(
∧

(v,xv)∈V map(th, sp(th, s), v, s) = xv) ∧ φ(s)|V ∧ ¬blockeds(th, sp(th, s), i2, c)} ∪6

shadow(test(th, i1, i2, c),¬Forced(Th, s))7

Function rtest(φ, i1, i2, e, c)

V = {(v, xv) | v ∈ e ∧ φ mentions v} ; // xv a new var.1

return {¬Forced(th′, do(rtest(th, i1, i2, c), s))← Thread(th′, s),2

state(th, do(rtest(th, i1, i2, c), s)) = (i2, c),3

Poss(rtest(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c)∧4

(
∧

(v,xv)∈V map(th, sp(th, s), v, s) = xv) ∧ φ(s)|V}5

Function noop(i1, i2, c)

return {Poss(noop(th, i1, i2, c), s)←1

Thread(th, s) ∧ state(th, s) = (i1, c) ∧ ¬blockeds(th, sp(th, s), i1, c),2

Forced(th, do(noop(th, i1, i2, c), s)),3

state(th, do(noop(th, i1, i2, c), s)) = (i2, c)}4

∪ shadow(noop(th, i1, i2, c), true)5

Function rnoop(i1, i2, c)

return {Poss(rnoop(th, i1, i2, c), s)← Thread(th, s) ∧ state(th, s) = (i1, c),1

state(th, do(rnoop(th, i1, i2, c), s)) = (i2, c)}2
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parameters. Also note that we apply call-by-value by evaluating all actual parameters

which are not program variables before passing them to the procedure.

bindProc(e, [t1, . . . , tn], [x1, . . . , xn], a)
def
=

⋃

j s.t. tj∈e

{map(th, sp(th, s)+1, xj, do(a, s)) = map(th, sp(th, s), tj, s)}

∪
⋃

j s.t. tj 6∈e

{map(th, sp(th, s)+1, xj, do(a, s)) = tj(s)}

The following function (shadow) creates axioms which are required for a limited form

of backtracking. This is occasionally required to realize synchronized while’s and if’s.

Consider the program (if φ then a else b) ‖ c, and imagine that initially φ is false,

but that c makes it true. Then still, the sequence [c, a] is not permitted: testing φ

and executing the next action has to be atomic and may not be interrupted by other

threads. In our compilation we realize this through the use of a particular Forced(th, s)

fluent, stating that only thread th may execute next. Usually this fluent is false, but

bookkeeping-actions make it true. This way, after performing the test action for φ, only

a may execute next. However, imagine a is not executable. We need to lift the force, and

allow other threads to execute, but in order to implement synchronized if’s correctly, we

need to backtrack the thread to a state before the test first. In the example above, this is

because after executing c, the else-case of the conditional must be executed. Backtracking

is realized by keeping a stack of previous configurations of bookkeeping fluents, to which

the system can revert to when necessary. The following axioms implement the pushing of

backtracking information onto the stack. The backtrack(th) action, see below, implements

the restoration, i.e. popping from the stack.

shadow(a, ψ)
def
= {

S Thread(b, x, do(a, s))← b = backtp(s) ∧ Thread(x, s) ∧ ψ,

¬S Thread(b, x, do(a, s))← b = backtp(s) ∧ ¬Thread(x, s) ∧ ψ,

s state(b, x, do(a, s)) = v ← b = backtp(s) ∧ state(x, s) = v ∧ ψ,

s stack(b, x, y, do(a, s)) = v ← b = backtp(s) ∧ stack(x, y, s) = v ∧ ψ,
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s sp(b, x, do(a, s)) = v ← b = backtp(s) ∧ sp(x, s) = v ∧ ψ,

s map(b, t, p, x, do(a, s)) = v ← b=backtp(s) ∧map(t, p, x, s)=v ∧ ψ,

s childp(b, x, do(a, s)) = v ← b = backtp(s) ∧ childp(x, s) = v ∧ ψ,

S Prio(b, x, y, do(a, s))← b = backtp(s) ∧ Prio(x, y, s) ∧ ψ,

¬S Prio(b, x, y, do(a, s))← b = backtp(s) ∧ ¬Prio(x, y, s) ∧ ψ,

S Forced(b, x, do(a, s))← b = backtp(s) ∧ Forced(x, s) ∧ ψ,

¬S Forced(b, x, do(a, s))← b = backtp(s) ∧ ¬Forced(x, s) ∧ ψ,

S blockeds(b, x, p, y, c, do(a, s))← b = backtp(s) ∧ blockeds(x, p, y, c, s) ∧ ψ,

S blocked(b, x, p, y, c, x, do(a, s))← b = backtp(s) ∧ blocked(x, p, y, c, x, s) ∧ ψ,

backtp(do(a, s)) = v ← v = backtp(s) + 1 ∧ ψ }

C.2 Program-Independent Axioms

The default dynamics of the involved bookkeeping actions, which are program indepen-

dent, are described by the following axioms (cf. Step 2 of the compilation described in

Section 7.3).

For procedure calls:

axprocs
def
= { sp(th, do(call(th, x1, x2, x3), s)) = y ← y = sp(th, s)+1,

state(th, do(call(th, P, x1, x2), s)) = y ← y = (0, P ),

stack(th, v, do(call(th, x1, i, c), s))=y ← y=(i, c) ∧ v = sp(th, s)+1,

Forced(th, do(call(th, x1, x2, x3), s)) = y ← true,

state(th, do(return(th), s) = y ← y = stack(th, sp(th, s), s),

sp(th, do(return(th), s)) = y ← y = sp(th, s)–1 }

For concurrency:

axconc
def
= {

Thread(th′, do(spawn(th, c, x1, x2, x3), s))←
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th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s)+1|th],

childp(th, do(spawn(th, c, x1, x2, x3), s))=y←y=childp(th, s)+2,

sp(th′, do(spawn(th, c, x1, x2, x3), s)) = y ←

y = 0 ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

childp(th′, do(spawn(th, c, x1, x2, x3), s)) = y ←

y = 0 ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

Parent(t̄h, th′, do(spawn(th, c, x1, x2, x3), s))←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]) ∧ (t̄h = th ∨ Parent(t̄h, th)),

state(th, do(spawn(th, c, i, x1, x2), s)) = y ← y = (i, c),

state(th′, do(spawn(th, c, x1, i, x2), s)) = y ← y = (i, c) ∧ th′ = [childp(th, s)|th],

state(th′, do(spawn(th, c, x1, x2, i), s)) = y ← y = (i, c) ∧ th′ = [childp(th, s) + 1|th],

map(th′, p, v, do(spawn(th, c, x1, x2, i), s)) = x←

map(th, p, v, do(spawn(th, c, x1, x2, i), s)) = x ∧ th′ = [childp(th, s)|th],

Prio(th′, x, do(spawn(th, c, x1, x2, x3), s))←

Prio(th, x) ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

Prio(x, th′, do(spawn(th, c, x1, x2, x3), s))←

Prio(x, th) ∧ (th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

backtp(th′, do(spawn(th, c, x1, x2, x3), s)) = 0←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s) + 1|th]),

¬final(th′, do(spawn(th, c, x, y, z), s))←

(th′ = [childp(th, s)|th] ∨ th′ = [childp(th, s)+1|th]),

¬Thread(th′, do(join(th, x1, x2), s))←

childp(th, s) > 1 ∧ (th′ = [childp(th, s)–1|th] ∨ th′ = [childp(th, s)–2|th]),

childp(th, do(join(th, x1, x2), s)) = y ← childp(th, s) > 1 ∧ y = childp(th, s)–2,

Forced(th, do(join(th, x1, x2), s))← Forced([childp(th, s)|th],

final(th, do(finalize(th), s))← true}
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For program variables:

axπ
def
= { state(th, do(pi(th, v, x, c, i), s)) = y ← y = (i, c),

Forced(th, do(pi(th, v, x, c, i), s)) = y ← true,

map(th, p, v, do(pi(th, v, x, c, i), s)) = x← p = sp(th, s) }

The following axioms realize the backtracking described earlier, i.e. the restoration of an

earlier configuration of the bookkeeping fluents. This is only required when concurrency

is used.

axbacktrack

def
= {

¬Thread(x, do(backtrack(th), s))← ¬S Thread(backtp–1, x, s),

Thread(x, do(backtrack(th), s))← S Thread(backtp–1, x, s),

state(x, do(backtrack(th), s)) = v ← s state(backtp–1, x, s) = v,

stack(x, y, do(backtrack(th), s)) = v ← s stack(backtp–1, x, y, s) = v,

sp(x, do(backtrack(th), s)) = v ← s sp(backtp–1, x, s) = v,

map(t, p, x, do(backtrack(th), s)) = v ← s map(backtp–1, t, p, x, s) = v,

childp(x, do(backtrack(th), s)) = v ← s childp(backtp–1, x) = v,

Prio(x, y, do(backtrack(th), s))← S Prio(backtp–1, x, y, s),

¬Prio(x, y, do(backtrack(th), s))← ¬S Prio(backtp–1, x, y, s),

Forced(x, do(backtrack(th), s))← S Forced(backtp–1, x, s),

¬Forced(x, do(backtrack(th), s))← ¬S Forced(backtp–1, x, s),

blockeds(th, p, i, c, do(backtrack(th), s))← S blockeds(backtp–1, th, p, i, c, s),

¬blockeds(th, p, i, c, do(backtrack(th), s))← ¬S blockeds(backtp–1, th, p, i, c, s),

blocked(th, p, i, c, x, do(backtrack(th), s))← S blocked(backtp–1, th, p, i, c, x, s),

¬blocked(th, p, i, c, x, do(backtrack(th), s))← ¬S blocked(backtp–1, th, p, i, c, x, s),

backtp(do(backtrack(th), s) = v ← v = backtp–1,

blockeds(th, p, i, c, do(noop(th, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(noop(th, c, i), s))← p = sp(th, s) ∧ b = backtp,
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blockeds(th, p, i, c, do(test(th, i′, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(test(th, i′, c, i), s))← p = sp(th, s) ∧ b = backtp,

blocked(th, p, i, c, x, do(pi(th, i′, x, c, i), s))← p = sp(th, s),

S blocked(b, th, p, i, c, x, do(pi(th, i′, x, c, i), s))← p = sp(th, s) ∧ b = backtp,

blockeds(th, p, i, c, do(join(th, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(join(th, c, i), s))← p = sp(th, s) ∧ b = backtp,

blockeds(th, p, i, c, do(call(th, i′, c, i), s))← p = sp(th, s),

S blockeds(b, th, p, i, c, do(call(th, i′, c, i), s))← p = sp(th, s) ∧ b = backtp}

∪ shadow(do(call(th, i′, c, i), s),¬Forced(th))

∪ shadow(do(join(th, c, i), s),¬Forced(th))

∪ shadow(do(π(th, i′, x, c, i), true)

∪ {Poss(backtrack(th), s)← backtp(s) > 0 ∧ Thread(th) ∧

Forced(th) ∧ ¬CanTrans(th) ∧ (6 ∃t).Parent(th, t) ∧ Thread(t) ∧ CanTrans(t)}

Intuitively, above blocking effects ensure that after backtracking not the same pseudo

actions are performed, and thus creating a cycle. The unblocking effects of real actions

(see below), imply that a bookkeeping action can be repeated after a real action has taken

place – and thus, the state of the world may have changed. Backtracking is only possible,

when a forced thread cannot execute any other action, and none of its descendant threads

can either (cf. Step 4).

The following axioms describe some of the values of above used bookkeeping fluents

in the initial situation S0:

axS0

def
= { Thread([0], S0)← true,

state([0], S0) = (0, ’main’)← true,

sp([0], S0) = 0← true,

stack([0], 0, S0) = ’final’← true,

childp([0], S0) = 0← true }

We further have the following additional bookkeeping effects for real actions, where A
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denotes the set of all domain actions, i.e. primitive actions of the original theory D :

axreal
def
= { ¬blockeds(th, p, i, c, do(α, s)),

¬blocked(th, p, i, c, x, do(α, s)),

¬final(th, do(α, s)),

¬Forced(th, do(α, s)) }α∈A∪{rtest}

The union of these sets forms the set of common, program independent axioms:

axcommon
def
= axprocs ∪ axconc ∪ axπ ∪ axbacktrack ∪ axS0

∪ axreal
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C.3 Proof of Theorem 9

C.3.1 Definitions

We use the following auxiliary definitions for the proofs.

• If D is a basic action theory, then we denote by Dδ,i,e,c,i′ the basic action theory

resulting from computing (ax, i′) = comp(δ, i, e, c) and performing steps 2 to 6

of the compilation on ax. When i is omitted, we mean i = 0. Similarly, if e is

omitted, we assume e = ∅.

• As mentioned earlier, in action theories resulting from a compilation, all actions take

a thread name as their first argument, i.e. domain actions (defined in the original

theory D) receive an additional argument in the compiled theories. In the proof

below we sometimes refer to situation terms in compiled theories containing action

terms without this additional thread argument. We interpret these – in the context

of a compiled theory – as macros, expanding into action terms with a dummy

thread [−1] as their first argument (e.g. A(t1, . . . , tn) becomes A([−1], t1, . . . , tn)).

Even though the implied situation term is not executable in the respective theory

(since that dummy thread is never active), it serves our purposes, as the action

still has its intended effects on the state of the world, i.e. on all non-bookkeeping

fluents. This convention ensures that all situation terms of the original theory D

are also situation terms in any new theory, resulting from the compilation of some

program, and represent the same state of the world.

• For two situation terms S and S ′ = do(~a, S), we refer to the action sequence ~a by

S ′ − S. We denote the concatenation of two action sequences ~a,~b by ~a ·~b.

• We call a situation S ′ a continuation of another situation S, if Σ |= S ⊑ S ′. We

call a continuation proper if σ = S ′ − S is non-empty. We say that a continuation
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is in thread th to express that all actions in σ are executed in thread th, i.e. their

first argument is th.

• For two situations s, s′ with Σ |= s ⊏ s′, we write exec(s, s′) to state that the part

of s′ that extends s is executable, formally:

exec(s, s′)
def
= (∀a, s∗).s ⊏ do(a, s∗) ⊑ s′ ⊃ Poss(a, s∗).

Similarly, execth(s, s
′) denotes that all actions in the part of s′ that extends s that

are in thread th or any of its descendants, are executable. Formally:

execth(s, s
′)

def
=

(∀a, th′, ~x, s∗).s ⊏ do(a(th′, ~x), s∗) ⊑ s′ ∧ Suffix(th, th′) ⊃ Poss(a(th′, ~x), s∗).

where Suffix(L1, L2) holds if L1 and L2 are lists and the former is a suffix of the

latter.

• We call domain actions and rtest actions real actions, and call all other bookkeeping

actions pseudo actions.

We define a new predicate, T̂rans, which is just like Trans but allows the execution

of arbitrary actions at any point during program execution. These actions are marked,

so that later it can be distinguished whether they are the result of executing program

steps or whether they were injected. This is to formalize the notion of executability of a

program, conditioned on the execution of other actions in concurrently executing threads.

Definition 10. Let D be any basic action theory whose set of actions is A. Then D̂

is just like D, except that the set of actions is A ∪ Â where Â = {â | a ∈ A}, and the

effects and preconditions of â are equal to those of a.

We define:

T̂rans(δ, s, δ′, s′)
def
= Trans(δ, s, δ′, s′) ∨ (δ′ = δ ∧ (∃â).s′ = do(â, s)).
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and define T̂rans
∗

just like Trans∗ but for T̂rans instead of Trans. Further, pure(s)

denotes the situation obtained by replacing any marked action in s by its unmarked

counterpart.

In order to compare two situation terms Ŝ in D̂ and Sδ in a compiled theory Dδ, we

define Sδ =̂th Ŝ as follows:

do(a(th′, ~x), s) =̂th do(a(~x), s
′) if s =̂th s

′ and a ∈ A and (th′ = th or Suffix(th, th′))

do(a(th′, ~x), s) =̂th do(â(~x), s
′) if s =̂th s

′ and a ∈ A and th′ 6= th and ¬Suffix(th, th′)

do(a(th′, ~x), s) =̂th s
′ if s =̂th s

′ and a 6∈ A

s =̂th s

That is, the actions are matched in order, where each domain action executed in th or its

descendants matches an action in D, each domain action executed in any other thread

matches an inserted action, and all non-domain actions are ignored.

C.3.2 Lemmata

We use the following auxiliary lemma.

Lemma 2. All precondition axioms in Dδ,i,c,i′ are conjunctions where one of the con-

juncts is either of the form state(th, s) = (i1, c1) ∨ · · · ∨ state(th, s) = (in, cn), or false,

and i ≤ ij < i′ for all 1 ≤ j ≤ n, and another conjunct is Thread(th, s).

Further, let s be any situation in Dδ,i,c,i′ such that Dδ,i,c,i′ |= Thread(th, s)∧state(th, s) =

(i, c). Then there is no continuation s′ of s and an integer i′′ > i′ such that Dδ,i,c,i′ |=

execth(s, s
′) ∧ state(th, s′) = (i′′, c).

Proof: The theorem follows by construction of the compilation. �

Intuitively, the first part of the lemma states that all action preconditions in the

compiled theory explicitly enumerate all state’s in which the action can execute, these

states are within the parameters input and output by the compilation algorithm, and
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that only active threads can execute. The second part says that executable actions do

not result in states whose number is beyond the final state, defined by the compilation.

As a consequence of this lemma we have that if in a situation s a thread th is in a state

i∗ of some context c (i.e. state(th, s) = (i∗, c)), then the only actions that might be

executable in s in th are those listed in ax of (ax, i′) = comp(δ, i, ∅, c) for some i ≤ i∗

and some i′ > i∗.

The following is going to be our main lemma. The theorem is going to follow as a

special case of it. The lemma indeed states something stronger than the actual theorem,

namely, intuitively, that the compiled theory and the original semantics admit the same

set of future situations, irrespective of whether these situations denote complete program

execution or can be extended into one. This is needed in order to make the induction

work.

Lemma 3. Let δ be any ConGolog program, and S any ground situation term in D.

Then:

“⇒” 1. for any thread name th, integer i, and situation Sδ in Dδ,i,c,i′ such that

filter(Sδ,D) = S and Dδ,i,c,i′ |= Thread(th, Sδ) ∧ state(th, Sδ) = (i, c), if

there exists a continuation S ′
δ of Sδ such that Dδ,i,c,i′ |= execth(Sδ, S

′
δ) then

there is a program δ′ and a continuation Ŝ ′ of S in D̂ such that S ′
δ =̂th Ŝ

′ and

D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ ′); and

2. if further Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c), then also D̂ |= Final(δ′, Ŝ ′).

“⇐” 1. if there is a program δ′ and a continuation Ŝ ′ of S in D̂ such that D̂ |=

T̂rans
∗
(δ, S, δ′, Ŝ ′) then, for any thread name th, integer i, and situation

Sδ in Dδ,i,c,i′ such that filter(Sδ,D) = S and Dδ,i,c,i′ |= Thread(th, Sδ) ∧

state(th, Sδ) = (i, c), there exists a continuation S ′
δ of Sδ such that S ′

δ =̂th Ŝ
′

and Dδ,i,c,i′ |= execth(Sδ, S
′
δ); and

2. if further D̂ |= Final(δ′, Ŝ ′), then also Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c).
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Note that as a special case of this, if Ŝ ′ does not mention any marked actions, then also

S ′
δ does not mention any actions not in thread th or its descendants, and vice versa.

Proof of Lemma 3 for programs without the π construct:

The proof proceeds by induction over the structure of program δ. We refer to the defini-

tion of Trans and Final of [De Giacomo et al., 2000].

The induction has several base cases:

δ = nil :

⇒:

By definition of comp, we have that comp(δ, i, ∅, c) = (∅, i). Since ax is empty, so

is the disjunction of φ’s (preconditions) in Step 5 of the compilation (cf. Lemma 2).

Since an empty disjunction is equivalent to false, no action is ever possible. Hence,

the new action theory Dδ,i,c,i′ has no executable situations which are proper contin-

uations of Sδ and which mention domain actions in th. Since D |= (∀s)Final(nil , s),

the second implication trivially holds for S = filter(Sδ).

⇐:

By definition, D |= (∀s 6 ∃δ′, s′)Trans(nil , s, δ′, s′). Hence, Ŝ ′ cannot contain any

unmarked actions. Any situation S ′
δ such that S ′

δ =̂th Ŝ
′, hence does not contain

any actions in th. Since by construction the only domain actions that can change

the state of thread th are those in th itself, we get that any such S ′
δ satisfies:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i, c)

and hence the thesis for this case.

δ = A(t1, . . . , tn) where A is a primitive domain action:

⇒:
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By construction of comp for this case and due to Lemma 2, the only poten-

tially executable action in Sδ in Dδ,i,c,i′ in thread th is A(th, x1, . . . , xn), where,

by definition of comp, xi = ti(Sδ) (recall that e = ∅). It is possible, only if

A’s original preconditions are satisfied as well. By definition of comp this ac-

tion causes state(th, do(A(th, x1, . . . , xn), Sδ)) = (i′, c), and hence does not admit

any further actions in thread th, due to Lemma 2. By definition of Trans it fol-

lows that D |= Trans(A(t1, . . . , tn), S, nil , do(A(t1(S), . . . , tn(S)), S)), and obviously

do(A(th, x1, . . . , xn), Sδ) =̂th do(A(t1(S), . . . , tn(S)), S) from the above, and the as-

sumption that filter(Sδ,D) = S.

Further, by definition, D |= Final(nil , do(A(t1(S), . . . , tn(S)), S)), hence the thesis

for this case (Ŝ ′ = do(A(t1(S), . . . , tn(S)), S)).

⇐:

By definition of Trans, Ŝ ′ = do(A(t1(S), . . . , tn(S)), S) is the only continuation of

S such that there exists a program δ′ such that D |= Trans(A(t1, . . . , tn), S, δ′, Ŝ ′),

and hence the only continuation in D̂ mentioning only unmarked actions such that

D̂ |= T̂rans(A(t1, . . . , tn), S, δ′, Ŝ ′). Hence, any continuation S ′
δ such that S ′

δ =̂th Ŝ
′

containing A(th, t1(S), . . . , tn(S)) as its only action in th and not containing any

pseudo-actions, satisfies the condition. It hence follows, as before:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i′, c).

δ = φ?:

⇒:

By definition of comp and due to Lemma 2, the only potentially possible action

in situation Sδ in thread th, is rtest(th, i, i′, c), and after that no more actions are

possible in th. Also note that i′ = i+1. Hence, we can assume that S ′
δ only contains

this action in th. Let σ, σ′ be such that S ′
δ = do(σ′, do(rtest(th, i, i′, c), do(σ, Sδ))),
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i.e. the sequences of actions (in other threads) before and after this action. The

action is, by construction, only possible if Dδ,i,c,i′ |= φ(do(σ, Sδ)) (recall, e =

∅). Since φ cannot mention any of the bookkeeping fluents introduced by the

compilation, we have Dδ,i,c,i′ |= φ(do(σ, Sδ)) iff D |= φ(filter(do(σ, Sδ),D)). Let

Ŝ ′ be any continuation of S such that S ′
δ =̂th Ŝ

′. By definition of =̂th we have

that there is a situation Ŝ ′′ such that Σ |= S ⊏ Ŝ ′′ ⊏ Ŝ ′ and which satisfies

do(σ, S) =̂th Ŝ
′′. It follows by definition of Trans that D̂ |= T̂rans(φ, Ŝ ′′, nil , Ŝ ′′),

and hence D̂ |= T̂rans
∗
(φ, S, nil , Ŝ ′)

As before, D |= (∀s).Final(nil , s) and hence the thesis.

⇐:

By definition of Trans, Ŝ ′ = S is the only (improper) continuation of S such that

there exists a program δ′ such that D |= Trans(φ, S, δ′, Ŝ ′), and hence the only con-

tinuation in D̂ mentioning only unmarked actions such that D̂ |= T̂rans
∗
(φ, S, δ′, Ŝ ′).

Hence, any situation S ′
δ such that S ′

δ =̂th Ŝ
′ containing no actions in th and not con-

taining any pseudo-actions, satisfies the condition. It hence follows, as before:

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) ∧ state(th, S

′
δ) = (i′, c)

The induction steps regard all other programming constructs and are as follows:

(δ1; δ2):

⇒:

There are two cases to distinguish: (a) S ′
δ is such that the integer i∗ such that

Dδ,i,c,i′ |= state(th, S ′
δ) = (i∗, c) is ≤ i1, where i1 is as defined by comp for

this case, or (b) i∗ ≥ i1. In case (a) the thesis follows immediately by induction

hypothesis. We hence only need to consider case (b).

By Lemma 2 and definition of comp there is a prefix σ1 of S ′
δ − Sδ, such that

Dδ,i,c,i′ |= execth(Sδ, do(σ1, Sδ)) ∧ state(th, do(σ1, Sδ)) = (i1, c)
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where i1 is the integer defined in comp for this case. By induction hypothesis,

there hence is a continuation Ŝ ′
1 of S in D̂ and a program δ′ such that D̂ |=

T̂rans
∗
(δ1, S, δ

′, Ŝ ′
1) ∧ Final(δ′, Ŝ ′

1).

Furthermore, since Dδ,i,c,i′ |= state(th, do(σ1, Sδ)) = (i1, c), induction hypothesis

also applies to do(σ1, Sδ) and δ2: Since S ′
δ is a continuation of do(σ1, Sδ) which, by

the initial assumption, satisfies Dδ,i,c,i′ |= execth(do(σ, Sδ), S
′
δ) it follows that there

also exists a ground continuation Ŝ ′
2 of filter(do(σ1, Sδ),D) in D̂ such that there

is δ′ such that D̂ |= T̂rans
∗
(δ2, filter(do(σ1, Sδ),D), δ′, Ŝ ′

2). Hence Ŝ ′ = do(S ′
2 −

filter(do(σ1, Sδ),D), do(Ŝ ′
1 − S, S)) satisfies, by definition of Trans for sequences:

D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ ′).

Further by induction hypothesis, if Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c) then also D̂ |=

Final(δ′, Ŝ ′). Hence the thesis.

⇐:

In analogy to above, we can again distinguish the two cases: (a) there is no situation

Ŝ ′′ in D̂ such that Σ |= S ⊏ Ŝ ′′ ⊏ Ŝ ′ and D̂ |= T̂rans
∗
(δ, S, nil ; δ2, Ŝ

′′), or (b) there

is. In case (a) the thesis again follows immediately by induction hypothesis. In the

following we show case (b).

By definition of T̂rans
∗

there is a prefix σ of Ŝ ′ − S such that

D̂ |= T̂rans
∗
(δ1; δ2, S, nil ; δ2, do(σ, S)). Hence, by induction hypothesis, there is

a continuation S ′
δ1

for any Sδ, where the latter is as described in the lemma, such

that S ′
δ1

=̂th do(σ, S) and

Dδ1,i,c,i1
|= execth(Sδ, S

′
δ1

) ∧ state(th, S ′
δ1

) = (i1, c)

for i1 as defined by comp.

We can once again apply induction hypothesis on the second sub-program, using

the situation S ′
δ1

, since it satisfies the constraints. The situation Ŝ ′ is a contin-

uation of pure(do(σ, S)) in D̂ that satisfies D̂ |= T̂rans
∗
(δ2, pure(do(σ, S)), δ′, Ŝ ′).
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Hence, there exists a continuation S ′
δ of S ′

δ1
such that S ′

δ =̂th Ŝ
′ and Dδ2,i1,c,i′ |=

execth(S
′
δ1
, S ′

δ). It follows by definition of execth that also Dδ,i,c,i′ |= execth(Sδ, S
′
δ).

Further by this second application of induction hypothesis, we get that if D̂ |=

Final(δ′, Ŝ ′), then also Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c).

(δ1 ‖ δ2):

⇒:

By definition of comp and Lemma 2, the first action in σ = S ′
δ−Sδ in thread th can

only be spawn(th, c, i+ 1, i1 + 1) where i1 is an integer defined in the compilation.

By axcommon the reached situation S1 = do(spawn(th, c, i2 + 1, i + 1, i1 + 1), Sδ) is

such that two new threads exist which we here denote th1, th2, one in state i + 1

and another in i1 + 1 of the same context.

We consider both cases of the lemma separately.

1. By definition of execth and Lemma 2 it follows that S ′
δ satisfies both Dδ1,i,c,i1

|=

execth1
(S1, S

′
δ) and Dδ2,i1+1,c,i2

|= execth2
(S1, S

′
δ), and also filter(S1,D) = S.

Hence, by induction hypothesis, there are programs δ′1, δ
′
2 and respective con-

tinuations Ŝ ′
1 and Ŝ ′

2 of S in D̂ such that S ′
δ =̂th1

Ŝ ′
1, S ′

δ =̂th2
Ŝ ′

2,

D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′
1), and D̂ |= T̂rans

∗
(δ2, S, δ

′
2, Ŝ

′
2).

It is easy to show from the definition of =̂th that all unmarked actions of Ŝ ′
1

then also appear marked in Ŝ ′
2 in the same order, and vice versa, and that all

other marked actions are shared. Hence, pure(Ŝ ′
1) = pure(Ŝ ′

2). Construct Ŝ ′

as follows: take Ŝ ′
1 and unmark all actions that appear unmarked in Ŝ ′

2. It

is easy to see from the definition of =̂th that S ′
δ =̂th Ŝ

′. Similarly, from the

definition of T̂rans it follows that D̂ |= T̂rans
∗
(δ1 ‖ δ2, S, δ

′
1 ‖ δ

′
2, Ŝ

′).

2. If further Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c), then by definition of comp the

last action of S ′
δ in thread th can only be join(th, c, i2 + 2), which in turn
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can only occur after executing finalize(th1) and finalize(th2). These actions

are only possible in a situation s where Dδ1,i,c,i1
|= state(th1, s) = (i1, c)

and Dδ2,i1+1,c,i2
|= state(th2, s) = (i2, c) respectively. Hence, by induction

hypothesis also D̂ |= Final(δ′1, Ŝ
′
1) and D̂ |= Final(δ′1, Ŝ

′
1). Hence, by definition

of Trans, D̂ |= Final(δ′1 ‖ δ
′
2, Ŝ

′).

⇐:

We again consider the two parts:

1. By the definition of T̂rans
∗

the situation Ŝ ′ can be transformed into two situa-

tions Ŝ ′
1 and Ŝ ′

2 such that D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′
1) and D̂ |= T̂rans

∗
(δ2, S, δ

′
2, Ŝ

′
2)

for some δ′1, δ
′
2, by marking the actions executed in the respectively other sub-

program.

We hence get by induction hypothesis that for any situation S∗
δ which satisfies

filter(S∗
δ ,D) = S and Dδ1,i,c,i1

|= Thread(th1) ∧ state(th1, S
∗
δ ) = (i + 1, c) and

Dδ2,i1+1,c,i2
|= Thread(th2) ∧ state(th2, S

∗
δ ) = (i1 + 1, c), for any i, i1, that

there exist continuations S ′
δ1
, S ′

δ2
of S∗

δ such that S ′
δ1

=̂th Ŝ
′
1 and S ′

δ2
=̂th Ŝ

′
2, and

Dδ1,i,c,i1
|= execth1

(S∗
δ , S

′
δ1

) and Dδ2,i1+1,c,i2
|= execth2

(S∗
δ , S

′
δ2

).

It is easy to show that S1 = do(spawn(th, c, i2 + 1, i + 1, i1 + 1), Sδ) satisfies

the above conditions for any Sδ satisfying the conditions in the lemma. By

definition of comp, the action spawn(th, c, i2 + 1, i + 1, i1 + 1) is executable

in Sδ in Dδ,i,c,i′ , following the assumptions about this situation.

Construct a new situation S ′′
δ as follows: Iterate concurrently through S ′

1 and

S ′
2 (remember they are essentially the same, ignoring the marking): if the next

unmarked action is in S ′
1 then move all actions S ′

δ1
up to and including this

action to S ′′
δ . Otherwise, do the same using S ′

δ2
. Since the domain actions

are the same and have not changed compared to S ′
δ1

and S ′
δ2

it follows that

S ′
δ = do(S ′′

δ − Sδ, do(spawn(th, c, i2 + 1, i+ 1, i1 + 1), Sδ)) satisfies: Dδ,i,c,i′ |=
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execth1
(Sδ, S

′
δ) and Dδ,i,c,i′ |= execth2

(Sδ, S
′
δ), and hence, by definition of execth

also Dδ,i,c,i′ |= execth(Sδ, S
′
δ). Further, by construction, S ′

δ =̂th Ŝ
′ (note that

spawn is not in A).

2. If further D̂ |= Final(δ′, Ŝ ′), then, by definition of Final for concurrency, also

D̂ |= Final(δ′1, Ŝ
′
1) and D̂ |= Final(δ′2, Ŝ

′
2). It hence follows by induction

hypothesis that also Dδ1,i,c,i1
|= state(th, S ′

δ1
) = (i1, c) and Dδ2,i1+1,c,i2

|=

state(th, S ′
δ2

) = (i2, c), with i1, i2 as defined in the compilation.

Let S ′′
δ be as constructed above, but if after iterating over S ′

1/S
′
2 a sequence

of (pseudo-)actions σ1 remains in S ′
δ1

in th1 and/or σ2 in S ′
δ2

in th2, then

create S ′′′
δ = do(σ1·[finalize(th1), backtrack(th1)]·σ2·[finalize(th2), join(th, c, i2+

2)], S ′′
δ ). This situation is such that Dδ,i,c,i′ |= execth(Sδ, S

′′′
δ ) by the above,

definition of comp for concurrency, and axbacktrack, and it satisfies: Dδ,i,c,i′ |=

state(th, S ′′′
δ ) = (i′, c).

(δ1|δ2):

⇒:

By Lemma 2 and definition of comp, the first action in thread th in σ = S ′
δ −Sδ is

either noop(th, i, i+ 1, c) or noop(th, i, i1 + 1, c). We here only show the thesis for

the first case, as the second follows analogously. The resulting situation S1 satisfies

Dδ1,i,c,i1
|= state(th, S1) = (i + 1, c).

1. First consider the case where Dδ,i,c,i′ 6|= state(th, S ′
δ) = (i′, c). Then by

Lemma 2 and definition of comp, S ′
δ is a continuation of S1 such thatDδ,i,c,i′ |=

execth(S1, S
′
δ) and hence, by induction hypothesis, then there is a program δ′1

and a continuation Ŝ ′ of S in D̂ such that S ′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′).

Hence, by definition of Trans also D̂ |= T̂rans
∗
(δ1|δ2, S, δ

′
1, Ŝ

′).

2. Otherwise, if Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c), then the last action in thread

th in S ′
δ can only be noop(th, i1, i2 + 1, c), by definition of comp and Lemma
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2. This action is only possible if for S ′
δ1

such that S ′
δ = do(noop(th, i1, i2 +

1, c), S ′
δ1

) we have that Dδ1,i,c,i1
|= state(th, S ′

δ1
) = (i1, c). Hence, by induction

hypothesis and definition of =̂th , D̂ |= Final(δ′1, Ŝ
′).

⇐:

1. By definition of Trans either D̂ |= T̂rans
∗
(δ1, S, δ

′, Ŝ ′) or D̂ |= T̂rans
∗
(δ2, S, δ

′, Ŝ ′).

Without loss of generality we here assume the first case.

Then, by induction hypothesis, for any Sδ1 such that filter(Sδ1 ,D) = S and

Dδ1,i+1,c,i1
|= Thread(th, Sδ1)∧state(th, Sδ1) = (i+1, c) there is a continuation

S ′
δ1

such that S ′
δ1

=̂th Ŝ
′ and Dδ1,i+1,c,i1

|= execth(Sδ1 , S
′
δ1

). Let σ = S ′
δ1
− Sδ1 .

The situation S∗
δ1

= do(noop(th, i, i + 1, c), Sδ) satisfies above conditions for

any situation Sδ which is as described in the lemma. Since noop(th, i, i+1, c) is

executable in Sδ, by definition of comp we get: Dδ,i,c,i′ |= execth(Sδ, do(σ, S
∗
δ )).

2. if D̂ |= Final(δ′, Ŝ ′), then, by induction hypothesis, Dδ1,i+1,c,i1
|= state(th, S ′

δ1
) =

(i1, c). Hence, S ′
δ = do(noop(th, i1, i2 + 1, c), do(σ, S∗

δ )) is such that both

Dδ,i,c,i′ |= execth(Sδ, S
′
δ) and Dδ,i,c,i′ |= state(th, S ′

δ) = (i′, c), and obviously

still S ′
δ =̂th Ŝ

′.

(while φ do δ1):

⇒:

By Lemma 2 and definition of comp the first action of σ = S ′
δ−Sδ in thread th can

only be noop(th, i, i + 1, c). Thereafter, if (a) Dδ,i,c,i′ 6|= φ(do(noop(th, i + 1, i +

2, c), Sδ)) or Dδ,i,c,i′ |= blockeds(th, sp(th, Sδ), i+2, c, Sδ) then the next action in th

is test(th, i + 1, i1 + 1, c). Otherwise, (b) it is test(th, i + 1, i + 2, c).

We show the thesis for this case by induction over the cycles of the loop (we refer

to this as the inner induction). There are two base cases: case (a) above, and case

(b) with zero cycles – intuitively the situation “ends in δ1”. For the inner induction
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step we assume (b) and that one cycle less remains. Such in induction is possible,

since we assume finite situation terms.

(a) In this case we immediately get that D |= ¬φ(S) and hence

D |= Final(while φ do δ1, Ŝ
′) for any Ŝ ′ not mentioning any unmarked ac-

tions (this also implies, trivially D̂ |= T̂rans
∗
(δ, S, δ, Ŝ ′)). Since, Dδ,i,c,i′ does

not admit any further actions in th and the above are not domain actions, we

have S ′
δ =̂th Ŝ

′ for any such situation.

(b) zero cycles left: Let S∗
δ = do(test(th, i+1, i+2, c), do(noop(th, i, i+1, c), Sδ)).

Then filter(S∗
δ ,D) = S, since test and noop are not domain actions, and, by

construction, Dδ1,i+2,c,i1
|= Thread(th, S∗

δ )∧ state(th, S∗
δ ) = (i+2, c). Let σ′ =

S ′
δ−S

∗
δ . Then, S ′

δ is a continuation of S∗
δ such that Dδ1,i+2,c,i1

|= execth(S
∗
δ , S

′
δ).

Hence, by induction hypothesis, there is a program δ′1 and a continuation Ŝ ′
1

of S in D̂ such that S ′
δ =̂th Ŝ

′
1 and D̂ |= T̂rans

∗
(δ, S, δ′1, Ŝ

′
1). Hence, by def-

inition of Trans and the above assumption that D |= φ(S), it follows that

D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′
1).

By assumption, Dδ,i,c,i′ 6|= state(th, S ′
δ) = (i′, c), hence, the second implication

holds trivially in this case.

(b) induction step: In the inner induction case, there is a prefix σ1 of S ′
δ −

do(test(th, i + 1, i + 2, c), do(noop(th, i, i + 1, c), Sδ)) such that for S ′
δ1

=

do(σ1, do(test(th, i+1, i+2, c), do(noop(th, i, i+1, c), Sδ))) we haveDδ1,i+2,c,i1
|=

state(th, S ′
δ1

) = (i1, c). Hence, by outer induction hypothesis there is a pro-

gram δ′1 and a continuation Ŝ ′
1 of S in D̂ such that S ′

δ1
=̂th Ŝ

′
1 and D̂ |=

T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′
1) and D̂ |= Final(δ′1, Ŝ

′
1).

Hence, we get by definition of T̂rans that

D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, S

′
1)
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and since D̂ |= Final(δ′1, Ŝ
′
1) further

D |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, S

′
1) ≡

T̂rans
∗
(while φ do δ1, S,while φ do δ1, S

′
1).

Applying inner induction hypothesis we get that there is also a program δ′ and

a continuation Ŝ ′ of S in D̂ such that S ′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δ, S, δ′, Ŝ ′).

Further, again from inner induction hypothesis (in particular if case (a) was

used to terminate the induction) if Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c), then also

D̂ |= Final(δ′, Ŝ ′).

⇐:

By definition of T̂rans, there is either Ŝ ′ and δ′ such that

D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′)

or D̂ |= Final(while φ do δ1, S).

In the second case, by definition D |= ¬φ(S) and hence, as above, Dδ,i,c,i′ |=

execth(Sδ, do([noop(th, i, i+ 1, c), test(th, i+ 1, i1 + 1, c)], Sδ)), and by definition of

comp (and test in particular), Dδ,i,c,i′ |= state(th, do([noop(th, i, i+1, c), test(th, i+

1, i1 + 1, c)], Sδ)) = (i′, c), since i′ = i1 + 1.

The first case is again shown by induction over the cycles of the loop. We will again

refer to this induction as the inner induction.

1. In the base case, D̂ |= T̂rans
∗
(while φ do δ1, S, δ

′
1;while φ do δ1, Ŝ

′) im-

plies that D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′). Hence, by outer induction hypothesis

we get that for any thread name th, integer i + 2, and situation Sδ1 in

Dδ1,i+2,c,i1
such that filter(Sδ1 ,D) = S and Dδ1,i+2,c,i1

|= Thread(th, Sδ1) ∧

state(th, Sδ1) = (i + 2, c), there exists a continuation S ′
δ1

of Sδ1 such that
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S ′
δ1

=̂th Ŝ
′ and Dδ1,i+2,c,i1

|= execth(Sδ1 , S
′
δ1

) and if D̂ |= Final(δ′1, Ŝ
′), then also

Dδ1,i+2,c,i1
|= state(th, S ′

δ1
) = (i1, c).

For any Sδ as described in the lemma, we can hence choose S ′
δ = do(S ′

δ1
−

Sδ1 , do([noop(th, i, i + 1, c), test(th, i + 1, i + 2, c)], Sδ)).

If D̂ |= Final(δ′, Ŝ ′), which is the case when D̂ |= Final(δ′, Ŝ ′) and D̂ |= ¬φ(Ŝ ′),

then we extend S ′
δ by the action sequence [noop(th, i1, i + 1, c), test(th, i +

1, i1 + 1, c)], which is executable in any situation s for which Dδ,i,c,i′ |=

state(th, s) = (i1, c)∧¬φ(s). The former is provided by the above application

of (outer) induction hypothesis, and the latter is true, since S ′
δ =̂th Ŝ

′, which in

particular means that these two situations contain the same domain actions

(in the same order, ignoring marking), since pseudo-actions by construction

do not affect domain fluents, and since φ cannot mention any bookkeeping

fluents.

2. In the inner induction case, there is a shortest prefix σ of Ŝ ′ − S such that

D̂ |= T̂rans
∗
(δ1, S, δ

′′
1 , do(σ, S)) and D̂ |= Final(δ′′1 , do(σ, S)).

Then, by outer induction hypothesis, as above, for any thread name th, in-

teger i + 2, and situation Sδ1 in Dδ1,i+2,c,i1
such that filter(Sδ1 ,D) = S and

Dδ1,i+2,c,i1
|= Thread(th, Sδ1) ∧ state(th, Sδ1) = (i + 2, c), there exists a con-

tinuation S ′
δ1

of Sδ1 such that S ′
δ1

=̂th Ŝ
′ and Dδ1,i+2,c,i1

|= execth(Sδ1 , S
′
δ1

) ∧

state(th, S ′
δ1

) = (i1, c). Consider the situation S ′′
δ = do(noop(th, i1, i + 1, c),

do(S ′
δ1
− Sδ1 , do([noop(th, i, i + 1, c), test(th, i + 1, i + 2, c)], Sδ)). This situa-

tion is executable in Dδ,i,c,i′ as argued above regarding the ’Final’ case, and

it is such that Dδ,i,c,i′ |= state(th, S ′′
δ ) = (i + 1, c). Hence, by inner induction

hypothesis there is a continuation S ′
δ of this situation such that S ′

δ =̂th Ŝ
′ and

Dδ,i,c,i′ |= execth(Sδ, S
′
δ). And if D̂ |= Final(δ′1;while φ do δ1, Ŝ

′) then also

Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c). Hence the thesis.
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P (t1, . . . , tn) where P (x1, . . . , xn) is a procedure:

Following the steps of the compilation, we assume that any procedure P ′(x1, . . . , xn)

has been compiled into Dδ,i,c,i′ and the returned integer was iP ′ . Note also that

we do not consider nested procedure definitions. 1

The treatment of actual procedure parameters is done the same as for program

variables. Effectively, when a procedure is called, the parameters are evaluated and

stored in the map fluent. Each time an action or condition refers to the formal

parameters, reference is made to this map instead (more details can be found in

the proof for programs with program variables below).

⇒:

The thesis is shown by induction over the recursions of P (we call this induction

again the inner induction, to distinguish it from the outer induction over the struc-

ture of programs).

In the base case, the currently executing procedure does not actually call other

procedures nor itself. This case follows immediately by (outer) induction hypothesis

(it is just a regular program without procedures).

In the induction case, we are assuming that the property holds for situation terms

that contain n procedure calls, and show it for n+ 1. By Lemma 2 the only action

possible in Dδ,i,c,i′ in th in Sδ is call(th, P, i + 1, c). By definition of axcommon,

this action stores the return address on the stack and establishes the state (0, P ).

Hence, S ′
δ is such that DδP ,0,P,iP

|= execth(do(call(th, P, i + 1, c), Sδ), S
′
δ). Hence,

by inner induction hypothesis there is a program δ′ and a continuation Ŝ ′ of S

in D̂ such that S ′
δ =̂th Ŝ

′ and D̂ |= T̂rans
∗
(δP (t1,...,tn), S, δ

′, Ŝ ′). By definition of

1While it would be more descriptive to refer to the resulting theory, here and above, as
D{P1( ~x1,δP1

);...;Pn( ~xn,δPn
)};δ,i,c,i′ , we choose to still refer to it as Dδ,i,c,i′ for parsimony and readability,

and understand that all referred procedures have been compiled as well. Note that this is not a problem,
since the compilation is purely syntactic and in particular, the order of compiling the procedures does
not depend on their semantic dependencies.
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Trans we then also get D̂ |= T̂rans
∗
(P (t1, . . . , tn), S, δ′, Ŝ ′). Further, if Dδ,i,c,i′ |=

state(th, S ′
δ) = (i′, c) then the last action in thread th in S ′

δ can only be return(th),

due to the definition of comp. This action, is only possible in situations s where

Dδ,i,c,i′ |= state(th, s) = (iP , c) (cf. Step 3 of the compilation). Since then also

DδP ,0,P,iP
|= state(th, S ′

δ) = (iP , P ) we get again by inner induction hypothesis

that also D̂ |= Final(δ′, Ŝ ′).

⇐:

We again show this, by induction over the number of recursive procedure calls.

The base case, where the currently executing program does not actually mention

procedure calls, is again trivially given by outer induction hypothesis.

In the induction step we assume that there is a program δ′ and a continuation Ŝ ′

of S in D̂ such that D̂ |= T̂rans
∗
(P (t1, . . . , tn), S, δ′, Ŝ ′). By definition of Trans it is

hence the case that D̂ |= T̂rans
∗
(δP (t1,...,tn), S, δ

′, Ŝ ′). Since there hence remain one

less procedure call in the trail of configurations from 〈δP (t1,...,tn), S〉 to 〈δ
′, Ŝ ′〉, we get

by inner induction hypothesis that for any thread name th, integer i, and situation

SδP
in DδP ,0,P,iP

such that filter(SδP
,D) = S and DδP ,0,P,iP

|= Thread(th, SδP
) ∧

state(th, SδP
) = (0, P ), there exists a continuation S ′

δP
of SδP

such that S ′
δP

=̂th Ŝ
′

and DδP ,0,P,iP
|= execth(SδP

, S ′
δP

).

The situation do(call(th, P, i + 1, c), Sδ) satisfies this condition for any Sδ as de-

scribed in the lemma, and by definition of comp call(th, P, i + 1, c) is possible in

any such Sδ. Hence, S ′
δ = do(S ′

δP
− SδP

, do(call(th, P, i + 1, c), Sδ)) is such that

S ′
δ =̂th Ŝ

′ and Dδ,i,c,i′ |= execth(Sδ, S
′
δ).

Further, also by inner induction hypothesis, if D̂ |= Final(δ′, Ŝ ′), then the mentioned

situation S ′
δP

is such that DδP ,0,P,iP
|= state(th, S ′

δP
) = (iP , c). In that case, we can

append the action return(th) to it, which is executable in that situation in Dδ,i,c,i′ ,

due to Step 3 of the compilation, and which has the effect of establishing the state
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denoted by the highest stack position. Following the definition of axprocs, the action

call(th, P, i+1, c) had the effect of establishing the value (i+1, c) for this. Hence,

Dδ,i,c,i′ |= state(th, do(return(th), S ′
δ)) = (i + 1, c), i.e. the thesis, since i′ = i + 1.

We only outline the remaining cases, since they are all quite similar to one of the above.

(δ′∗):

This case follows in close analogy to the case of while–loops, just replacing the test

actions by noop actions.

(if φ then δ1 else δ2):

This case follows in close analogy to the case of non-deterministic choice of sub-

programs (a|b), but replacing the initial noop actions with test actions.

(δ‖):

This case follows by induction over the number of concurrent iterations, where the

base case is that of not actually executing δ even once, and the induction step is

provided by the (outer) induction step for normal concurrency.

(δ1 〉〉 δ2):

⇒:

This case follows in analogy to the normal concurrency case (δ1 ‖ δ2). If δ1 is

executed until completion before any actions are executed in δ2, the case is just

like for ‖. On the other hand, if actions are performed in th2 before then, then by

definition of comp and Step 4 of the compilation, no actions were possible in that

situation in th1. From the latter, by induction hypothesis for the ⇐ direction, it

follows that also there don’t exist δ′1, Ŝ
′ such that Ŝ ′−S contains unmarked actions

and D̂ |= T̂rans
∗
(δ1, S, δ

′
1, Ŝ

′). Hence, by definition of Trans, there is a program

δ′2, Ŝ
′ such that D̂ |= T̂rans

∗
(δ1 〉〉 δ2, S, δ1 〉〉 δ

′
2, Ŝ

′).
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The remainder is again analogous to the ‖ case.

⇐:

Again, the case where the first transition is over δ1 is analogous to the ‖ case. If

δ2 executes, then D |= (6 ∃δ′1, S
′).Trans(δ1, S, δ

′
1, S

′), by definition of Trans. Hence,

again by induction hypothesis of the ⇒ direction, there is no executable continu-

ation whose first domain action is in th1, hence allowing actions in th2 to execute

(either directly, or after executing a number of pseudo-actions first, followed by the

backtrack(th) action). The remaining reasoning is as in the ‖ case.

�

Proof of Lemma 3 for programs with the π construct:

Our solution for treating programs with the π construct and hence program variables

is similar to Skolemization. In ConGolog, π(v, δ) is interpreted as the execution of the

program δ where all occurrences of the constant v are substituted by a new existentially

quantified variables. This method is not possible in our compilation, since π can appear in

loops, whose body we only want to consider once during compilation. Instead, we replace

these existentially quantified variables with functional fluents. Similar to Skolemization,

these functions need to be relative to the context the variable appears in, namely the

stack position (for πs in recursive procedures) and the thread (for πs inside of the δ‖

construct, or inside a procedure which is called in two concurrent threads).

By definition of comp, a π construct causes the execution of the pi(th, v, x, c, i)

action, whose effect due to axπ is that map(th, p, v) = x, where p is the current value of

the stack pointer. Note that x is a free parameter – not mentioned in the preconditions.

It can hence be any object. Since the π action is the only action affecting the map

fluent, this value in map pertains until the same construct is visited again. Note that

we disallow redefinitions of program variables, i.e. for instance π(v, A(v);π(v,B(v))) is

not allowed in the original program. This is not a restriction, since any such program
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could be transformed to be free of such redefinitions, by simply renaming the program

variables.

The thesis then follows by inspection and induction over the nesting depth of program

variables. Recall that program variables can only occur in places of action parameters

and in conditions. In both, as provided by comp for primitive actions and procedure

calls and by the test and rtest functions for conditions, these occurrences are forced to

be equal to the values stored in map.

The base case of the induction is for the case of a program without program variables

and is immediately provided by the above proof for such programs.

For the induction step, let δ be a program with n program variables. Then by above

considerations, induction hypothesis, and the fact that pi is a pseudo-action and hence

filtered out by filter: for any ground situation term S, for program π(v, δ), there is

an object O, a situation Ŝ ′, and a program δ′ such that D̂ |= T̂rans
∗
(δ|v/o, S, δ

′, Ŝ ′) if

and only if there is a sequence of ground action terms σ in Dδ,i,c,i′ such that S ′
δ =

do(σ, do(pi([0], v, O,main, 1), Sδ)) such that Dδ,i,c,i′ |= execth(Sδ, S
′
δ) and S ′

δ =̂th Ŝ
′ for any

situation term Sδ as described in the lemma. And further, if D̂ |= Final(δ′, Ŝ ′) then

also Dδ,i,c,i′ |= state(th, S ′
δ) = (i′, c). Hence the thesis holds for programs with n + 1

program variables and hence, by induction, for any program with any number of program

variables. �

C.3.3 Proof of the Theorem

The theorem follows from Lemma 3 for the special case of S = S0, th = [0], i = 0, and

c = main: Since S ′
P cannot mention any actions not in [0] or its descendants, we have

that execth(S0, S
′
P) implies executable(S ′

P). Further, by definition of =̂th also Ŝ ′ cannot

mention any marked actions, and hence, following Lemma 3

DP |= executable(S ′
P) ∧ state([0], S ′

P) = (imain,main)
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iff there exists a program δ′ such that for S ′ = filter(S ′
P ,D) we have that

D |= Trans∗(P , S0, δ
′, S ′) ∧ Final(δ′, S ′)

which by definition is equivalent to D |= Do2(P , S0, S
′). �

C.4 Proofs of Theorems 10 and 11

These two theorems both rely on the fact that the compilation visits each program

construct and logical connective mentioned in a condition exactly once, and that each

time a constantly bounded number of additional axioms are introduced, each of size at

most n. This is shown in the following lemma.

Lemma 4. Let δ be any ConGolog program of size n, whose set of free program variables

e has size k, and let i be any integer, and c any procedure name. Let further be l the

maximal cardinality of formal parameters of all the procedures that are called in the

program. The invocation of comp(δ, i, e, c) makes at most n − 1 recursive calls to

comp, and each invocation adds at most a constant number of sentences to the set of

returned sentences, each of size at most O(max(k, l)).

Proof: By inspection. It is easy to see from the definition of comp that the sum of the

sizes of all sub-programs appearing as parameters in the recursive invocations is less or

equal to n − 1. Further, the cardinality of the set of sentences added to the eventually

returned set ax is bound by a constant in all cases, since all auxiliary functions return

only a constant number of sentences. The size of each such sentence is in O(max(k, l)),

since the only parametrized connective appearing in the definitions is
∧

Ψ, where Ψ is a

set of cardinality ≤ max(l, k). �

Proof of Theorems 10 and 11: Let as before be P = {P1(~t1, δP1
); . . . ;Pn(~tn, δPn

); δmain},

and let m be the size of P . Then the sum of the number of occurrences of π constructs
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k, and the maximal cardinality of formal procedure parameters l must be < m. Hence,

by Lemma 4, the set AX (see Step 2, p. 121) is of size O(m2). Since both the time and

the space complexity of each remaining step of the compilation is linear in the size of AX,

we get the thesis. �
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