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Abstract

As an alternative to planning, an approach to high-level agent control based on
concurrent program execution is considered. A formal definition in the situation
calculus of such a programming language is presented and illustrated with some
examples. The language includes facilities for prioritizing the execution of con-
current processes, interrupting the execution when certain conditions become true,
and dealing with exogenous actions. The language differs from other procedural for-
malisms for concurrency in that the initial state can be incompletely specified and
the primitive actions can be user-defined by axioms in the situation calculus. Some
mathematical properties of the language are proven, for instance, that the proposed
semantics is equivalent to that given earlier for the portion of the language without
concurrency.

Keywords: cognitive robotics; reasoning about actions; situation calculus; semantics of
programs; concurrency
1 Introduction

When it comes to providing high-level control for robots or other agents in dynamic and
incompletely known worlds, approaches based on plan synthesis may end up being too



demanding computationally in all but simple settings. An alternative approach that is
showing promise is that of high-level program ezecution [20]. The idea, roughly, is that
instead of searching for a sequence of actions that would take the agent from an initial
state to some goal state, the task is to find a sequence of actions that constitutes a legal
execution of some high-level non-deterministic program. Asin planning, to find a sequence
that constitutes a legal execution of a high-level program, it is necessary to reason about
the preconditions and effects of the actions within the body of the program. However, if
the program happens to be almost deterministic, very little searching is required; as more
and more non-determinism is included, the search task begins to resemble traditional
planning. Thus, in formulating a high-level program, the user gets to control the search
effort required.

The hope is that in many domains, what an agent needs to do can be conveniently
expressed using a suitably rich high-level programming language, and that at the same
time finding a legal execution of that program will be more feasible computationally than
the corresponding planning task. Previous work on the Golog language [20] considered
how to reason about actions in programs containing conditionals, iteration, recursion, and
non-deterministic operators, where the primitive actions and fluents where characterized
by axioms of the situation calculus. In this paper, we explore how to execute programs
incorporating a rich account of concurrency. The execution task remains the same; what
changes is that the programming language, which we call ConGolog (for Concurrent Golog)
[6], becomes considerably more expressive. One of the nice features of this language is
that it allows us to conveniently formulate agent controllers that pursue goal-oriented
tasks while concurrently monitoring and reacting to conditions in their environment, all
defined precisely in the language of the situation calculus. But this kind of expressiveness
requires considerable mathematical machinery: we need to encode ConGolog programs
as terms in the situation calculus (which, among other things, requires encoding certain
formulas as terms), and we also need to use second-order quantification to deal with
iteration and recursive procedures. It is not at all obvious that such complex definitions
are well-behaved or even consistent.

Of course ours is not the first formal model of concurrency. In fact, well developed ap-
proaches are available [17, 25, 4, 39]' and our work inherits many of the intuitions behind
them. However, it is distinguished from these in at least two fundamental ways. First,
it allows incomplete information about the environment surrounding the program. In
contrast to typical computer programs, the initial state of a ConGolog program need only
be partially specified by a collection of axioms. Second, it allows the primitive actions
(elementary instructions) to affect the environment in a complex way and such changes
to the environment can affect the execution of the remainder of the program. In con-
trast to typical computer programs whose elementary instructions are simple predefined
statements (e.g. variable assignments), the primitive actions of a ConGolog program are

1In [28, 5] a direct use of such approaches to model concurrent (complex) actions in Al is investigated.



determined by a separate domain-dependent action theory, which specifies the action pre-
conditions and effects, and deals with the frame problem. Finally, it might also be noted
that the interaction between prioritized concurrency and recursive procedures presents a
level of procedural complexity which, as far as we know, has not been dealt with in any
previous formal model.

The rest of the paper is organized as follows: in Section 2 we briefly review the situation
calculus and how it can be used to formulate the planning task. In Section 3, we review
the Golog programming language and in the following section, we present a variant of the
original specification of the high-level execution task. In Section 5, we explain informally
the sort of concurrency we are concerned with, as well as related notions of priorities
and interrupts. The section concludes with changes to the Golog specification required
to handle concurrency. In Section 6, we illustrate the use of ConGolog by going over
several example programs. Then, in Section 7, we extend such a specification to handle
procedures and recursion. Handling the interaction between the very general form of
prioritized concurrency allowed in ConGolog and recursive procedures will require a quite
sophisticated approach. In Section 8 we will show general sufficient conditions that allow
us to use a much simplified semantics without loss of generality. In Section 9, we present a
Prolog interpreter for ConGolog and prove its correctness. In Section 10, we conclude by
discussing some of the properties of ConGolog, its implementation, and topics for future
research.

2 The Situation Calculus

As mentioned earlier, our high-level programs contain primitive actions and tests that are
domain dependent. An interpreter for such programs must reason about the preconditions
and effects of actions in the program to find legal executions. So we need a language to
specify such domain theories. For this, we use the situation calculus [24], a first-order
language (with some second-order features) for representing dynamic domains. In this
formalism, all changes to the world are the result of named actions. A possible world
history, which is simply a sequence of actions, is represented by a first-order term called
a situation. The constant Sy is used to denote the initial situation, namely that situation
in which no actions have yet occurred. There is a distinguished binary function symbol
do and the term do(a, s) denotes the situation resulting from action a being performed
in situation s. Actions may be parameterized. For example, put(z,y) might stand for
the action of putting object x on object y, in which case do(put(A, B), s) denotes that
situation resulting from putting A on B when the world is in situation s. Notice that
in the situation calculus, actions are denoted by function symbols, and situations (world
histories) are also first-order terms. For example,

do(put Down(A), do(walk(P), do(pickUp(A), Sp)))



is a situation denoting the world history consisting of the sequence of actions
[pickUp(A), walk(P), put Down(A)].

Relations whose truth values vary from situation to situation, called relational fluents,
are denoted by predicate symbols taking a situation term as their last argument. For
example, Holding(r, z, s) might mean that a robot r is holding an object z in situation
s. Functions whose denotations vary from situation to situation are called functional
fluents. They are denoted by function symbols with an additional situation argument, as
in position(r, s), i.e., the position of robot r in situation s.

The actions in a domain are specified by providing certain types of axioms. First, one
must state the conditions under which it is physically possible to perform an action by
providing a action precondition aziom. For this, we use the special predicate Poss(a, s)
which represents the fact that primitive action a is physically possible (i.e. executable)
in situation s. So for example,

Poss(pickup(z), s) = Ve.—Holding(x, s) A NextTo(x,s) AN ~“Heavy(z)

says that the action pickup(x), i.e. the agent picking up an object z, is possible in
situation s if and only if the agent is not already holding something in situation s and is
positioned next to  in s and z is not heavy.

Secondly, one must specify how the action affects the state of the world; this is done
by providing effect azioms. For example,

Fragile(z, s) D Broken(x, do(drop(z, s)))

says that dropping an object x causes it to become broken provided that x is fragile.
Effect axioms provide the “causal laws” for the domain of application.

These types of axioms are usually insufficient if one wants to reason about change.
One must add frame axioms that specify when fluents remain unchanged by actions. For
example, dropping an object does not affect the color of things:

colour(y, s) = ¢ D colour(y, do(drop(z, s))) = c.

The frame problem arises because the number of these frame axioms is very large, in
general, of the order of 2 x A x F, where A is the number of actions and F the number
of fluents. This complicates the task of axiomatizing a domain and can make theorem
proving extremely inefficient.

To deal with the frame problem, we use an approach due to Reiter [31]. The basic idea
behind this is to collect all effect axioms about a given fluent and make a completeness
assumption, i.e. assume that they specify all of the ways that the value of the fluent may
change. A syntactic transformation can then be applied to obtain a successor state axiom



for the fluent, for example:

Broken(z, do(a, s)) =
a = drop(z) A Fragile(z, s)V
3b.(a = explode(b) A NextTo(b,z, s))V
Broken(z, s) A a # repair(z).

This says that an object z is broken in the situation resulting from action a being per-
formed in s if and only if a is dropping = and zx is fragile, or a involves a bomb exploding
next to z, or x was already broken in situation s prior to the action and a is not the
action of repairing x. This approach yields a solution to the frame problem — a parsimo-
nious representation for the effects of actions. Note that it relies on quantification over
actions. This discussion ignores the ramification and qualification problems; a treatment
compatible with the approach described has been proposed by Lin and Reiter [21].

So following this approach, a domain of application will be specified by a theory of
the following form:

e Axioms describing the initial situation, Sy.

Action precondition axioms, one for each primitive action a, characterizing
Poss(a, s).

e Successor state axioms, one for each fluent F', stating under what conditions
F(Z, do(a, s)) holds as function of what holds in situation s.

e Unique names axioms for the primitive actions.
e Some foundational, domain independent axioms.

The latter foundational axioms include unique names axioms for situations, and an in-
duction axiom. They also introduce the relation < over situations. s < s’ holds if and
only if s’ is the result of some sequence of actions being performed in s, where each action
in the sequence is possible in the situation in which it is performed; s < s’ stands for
s < 8’V s=s" Since the foundational axioms play no special role in this paper, we omit
them. For details, and for some of their metamathematical properties, see Lin and Reiter
[21] and Reiter [32].

For any domain theory of the sort just described, we have a very clean specification
of the planning task, which dates back to the work of Green [13]:

Classical Planning: Given a domain theory D as above, and a goal formula
¢(s) with a single free-variable s, the planning task is to find a sequence of
actions @ such that:

D = Legal(@, So) N ¢(do(d, So))



where do([ay, ..., ay], s) is an abbreviation for
do(an, do(ap—1,...,do(a, s)...)),
and where Legal([a1, - ., ay], s) stands for

Poss(ai,s) A ... N Poss(an, do([ay, - .., an_1], s))-

In other words, the task is to find a sequence of actions that is executable (each action
is executed in a context where its precondition is satisfied) and that achieves the goal
(the goal formula ¢ holds in the final state that results from performing the actions in
sequence).

3 Golog

As presented in [20], Golog is a logic-programming language whose primitive actions are
those of a background domain theory. It includes the following constructs (§, possibly
subscripted, ranges over Golog programs):

a, primitive action
@?, wait for a condition?
(01; 62), sequence
(61 | 02), nondeterministic choice between actions
.40, nondeterministic choice of arguments
0%, nondeterministic iteration
{proc P,(7}) 6, end;...proc P,(7,) 6, end; ¢}, procedures

In the first line, a stands for a situation calculus action where the special situation constant
now may be used to refer to the current situation (i.e. that where a is to be executed). Sim-
ilarly, in the line below, ¢ stands for a situation calculus formula where now may be used
to refer to the current situation, for example OnT able(block, now). a[s| (¢[s]) will denote
the action (formula) obtained by substituting the situation variable s for all occurrences
of now in functional fluents appearing in a (functional and predicate fluents appearing
in ¢). Moreover when no confusion can arise, we often leave out the now argument from
fluents altogether; e.g. write OnTable(block) instead of OnTable(block,now). In such
cases, the situation suppressed version of the action or formula should be understood as
an abbreviation for the version with now.

2Because there are no exogenous actions or concurrent processes in Golog, waiting for ¢ amounts to
testing that ¢ holds in the current state.



Let’s examine a simple example to see some of the features of the language. Here’s a
Golog program to clear the table in a blocks world:

{proc removeAblock
7b. [OnT able(b, now)?; pickUp(b); put Away(b)]
end;
removeAblock™;
—3b. OnTable(b, now)? }

Here we first define a procedure to remove a block from the table using the nondeter-
ministic choice of argument operator 7. wz.[6(x)] is executed by nondeterministically
picking an individual z, and for that z, performing the program §(z). The wait action
OnTable(b, now)? succeeds only if the individual chosen, b, is a block that is on the table
in the current situation. The main part of the program uses the nondeterministic itera-
tion operator; it simply says to execute removeAblock zero or more times until the table
is clear. Note that Golog’s other nondeterministic construct, (§; | d2), allows a choice
between two actions; a program of this form can be executed by performing either §; or
(52.

In its most basic form, the high-level program execution task is a special case of the
above planning task:

Program Execution: Given a domain theory D as above, and a program 4,
the execution task is to find a sequence of actions @ such that:

D = Do(4, Sy, do(a, Sy))

where Do(6, s, s') means that program § when executed starting in situation s
has s’ as a legal terminating situation.

Note that since Golog programs can be nondeterministic, there may be several terminating
situations for the same program and starting situation.

In [20], Do(4, s, s") was simply viewed as an abbreviation for a formula of the situation
calculus. The following inductive definition of Do was provided:

1. Primitive actions:
Do(a,s,s') © Poss(a[s], s) A s' = do(a[s], 5)

2. Wait/test actions:
Do(¢?,s,s") el dls]Ans =+

3. Sequence:
Do(dy; 02, s,8") def 341, Do(6y,s,8") A Do(bs, ", s")



4. Nondeterministic branch:

Do(8, | 65, 5,8") & Do(61,s,5') V Do(s, s, )
5. Nondeterministic choice of argument:
Do(rx.6(x),s,s") “f 3. Do(6(z), s, s")

6. Nondeterministic iteration:

Do(6%, s, s') “f VP.A{Vs1. P(s1,81) A\ Vs1, S2, $3.[P(s1, $2) A Do(6, s2, s3) D P(s1,83)] }
D P(s,s).

In other words, doing action § zero or more times takes you from s to s’ if and only
if (s, ') is in every set (and therefore, the smallest set) such that:

(a) (s1,s1) is in the set for all situations s;.

(b) Whenever (s1, s2) is in the set, and doing § in situation s, takes you to situation
s3, then (s1, s3) is in the set.

The above definition of nondeterministic iteration is the standard second-order way
of expressing this set. Some appeal to second-order logic appears necessary here
because transitive closure is not first-order definable, and nondeterministic iteration
appeals to this closure.

We have left out the expansion for procedures, which is somewhat more complex; see [20]
for the details.

4 A Transition Semantics

By using Do, programs are assigned a semantics in terms of a relation, denoted by the
formulas Do(9, s, s'), that given a program ¢ and a situation s, returns a situation s
resulting from executing the program starting in the situation s. Semantics of this form
are sometimes called evaluation semantics (see [15, 26]), since they are based on the
(complete) evaluation the program.

When concurrency is taken into account it is more convenient to adopt semantics
of a different form: the so-called transition semantics or computation semantics (see
again [15, 26]). Transition semantics are based on defining single steps of computation in
contrast to directly defining complete computations.

In the present case, we are going to define a relation, denoted by the predicate
Trans(6, s,d', s'), that associates to a given program ¢ and situation s, a new situation s’
that results from executing a primitive action or test action and a new program ¢’ that

8



represents what remains of the program after having performed such an action. In other
words, Trans denotes a transition relation between configurations. A configuration is a
pair formed by a program (the part of the initial program that is left to perform) and the
a situation (representing the current situation).

We are also going to introduce a predicate Final(d, s), meaning that the configuration
(6,s) is a final one, that is, where the computation can be considered completed (no
program remains to be executed). The final situations reached after a finite number
of transitions from a starting situation coincide with those satisfying the Do relation.
Complete computations are thus defined by repeatedly composing single transitions until
a final configuration is reached.

It worth noting that if a program does not terminate, then no final situation will
satisfy the Do relation (indeed evaluation semantics are typically used for terminating
programs), while we can still keep track of the various transitions performed by means
of Trans. Indeed, nonterminating programs do not need any special treatment within
transition semantics, while they typically remain undefined in evaluation semantics.

In general, both evaluation semantics and transition semantics belong to the family
of structural operational semantics introduced by Plotkin in [27]. Both of these forms of
semantics are operational since they do not assign a meaning directly to the programs
(as denotational semantics), but instead see programs simply as specifications of compu-
tations (or better as syntactic objects that specify the control flow of the computation).
They are abstract semantics since, in contrast to concrete operational semantics, they
do not define a specific machine on which the operations are performed, but instead only
define an abstract relation (such as Do or Trans) which denotes the possible computations
(either complete computations for evaluation semantics, or single steps of computations
for transition semantics). In addition, both such form of semantics are structural since
are are defined on the structure of the programs.

4.1 Encoding programs as first-order terms

In the simple semantics using Do, it was possible to avoid introducing programs explicitly
into the logical language, since Do(d, s, s') was only an abbreviation for a formula ®(s, s)
that did not mention the program ¢ (or any other programs). This was possible essentially
because it was not necessary to quantify over programs.

Basing the semantics on Trans however does require quantification over programs.
To allow for this, we develop an encoding of programs as first-order terms in the logical
language (observe that programs as such, cannot in general be first-order terms, since on
one hand, they mention formulas in tests, and on the other, the operator 7 in 7x.0 is a
quantifier).

Encoding programs as first-order terms, although it requires some care (e.g. intro-
ducing constants denoting variables and defining substitution explicitly in the language),



does not pose any major problem?. In the following we abstract from the details of the
encoding as much as possible, and essentially use programs within formulas as if they
were already first-order terms. The full encoding is given in Appendix A.

4.2 Trans and Final

Let us formally define Trans and Final, which intuitively specify what are the possible
transitions between configurations ( Trans), and when a configuration can be considered
final (Final).

It is convenient to introduce a special program nil, called the empty program, to denote
the fact that nothing remains to be performed (legal termination). For example, consider
a program consisting solely of a primitive action a. If it can be executed (i.e. if the action is
possible in the current situation), then after the execution of the action a nothing remains
of the program. In this case, we say that the program remaining after the execution of
action a is nil.

Trans(6, s, ¢, s') holds if and only if there is a transition from the configuration (9, s)
to the the configuration (&', s'), that is, if by running program § starting in situation s,
one can get to situation s’ in one elementary step with the program ¢’ remaining to be
executed. As mentioned, every such elementary step will either be the execution of an
atomic action (which changes the current situation) or the execution of a test (which does
not). As well, if the program is nondeterministic, there may be several transitions that
are possible in a configuration. To simplify the discussion, we postpone the introduction
of procedures to Section 7.

The predicate Trans for programs without procedures is characterized by the follow-
ing set of axioms 7 (here as in the rest of the paper, free variables are assumed to be
universally quantified):

1. Empty program:
Trans(nil,s,d',s') = False

2. Primitive actions:

Trans(a, s, d',s') =
Poss(als],s) A6 = nil A s' = do(a[s], s)

3. Wait/test actions:

Trans(¢?,s,8',8') = ¢[s|ANd =nilAs =s

30bserve that, we assume that formulas that occur in tests never mention programs, so it is impossible
to build self-referential sentences.

10



4. Sequence:

Trans(61;02,8,0', ") =
Fy.6" = (7; 62) A Trans(éy,s,7,8') V
Final(6y, s) A Trans(dz,s,6',s")

5. Nondeterministic branch:

Trans(dy | 0s,5,8',8') =
Trans(61,s,0',8") vV Trans(ds, s,d', s")

6. Nondeterministic choice of argument:

Trans(rv.0,s,8',s") = 3Fx.Trans(dy,s,d',s")

7. Tteration:

Trans(6*,s,6',8') =

Ay.(6' = 7;6%) A Trans(d, s, 7, s')

The assertions above characterize when a configuration (4, s) can evolve (in a single
step) to a configuration (¢’,s'). Intuitively they can be read as follows:

1. (nil, s) cannot evolve to any configuration.

2. (a, s) evolves to (nil, do(als], s)), provided that a[s] is possible in s. After having
performed a, nothing remains to be performed and hence nil is returned. Note
that in Trans(a, s, d’,s"), a stands for the program term encoding the corresponding
situation calculus action, while Poss and do take the latter as argument; we take
the function -[-] as mapping the program term a into the corresponding situation
calculus action a[s], as well as replacing now by the situation s. The details of how
this function is defined are in Appendix A.

3. (¢7, s) evolves to (nil, s), provided that ¢[s]| holds, otherwise it cannot proceed. Note
that the situation remains unchanged. Analogously to the previous case, we take the
function -[-] as mapping the program term for condition ¢ into the corresponding
situation calculus formulas ¢[s], as well as replacing now by the situation s (see
Appendix A for details).

4. (81; 92, s) can evolve to (01; 09, s'), provided that (4, s) can evolve to (41, s'). More-
over it can also evolve to (45, s'), provided that (4, s) is a final configuration and
(02, s) can evolve to (85, s").

11



5. (61|02, s) can evolve to (¢',s'), provided that either (41, s) or (42, s) can do so.

6. (mv.d,s) can evolve to (¢, s'), provided that there exists an x such that (62, s) can
evolve to (¢',s"). Here 67 is the program resulting from ¢ by substituting v with the
variable .4

7. (6*,s) can evolve to (¢';6%,s') provided that (4, s) can evolve to (¢',s'). Observe
that (6*, s) can also not evolve at all, (6*, s) being final by definition (see below).

Final(6, s) tells us whether a program ¢ can be considered to be already in a final
state (legally terminated) in the situation s. Obviously we have Final(nil, s), but also
Final(0*, s) since §* requires 0 or more repetitions of § and so it is possible to not execute
0 at all, the program completing immediately.

The predicate Final for programs without procedures is characterized by the set of
axioms F:

1. Empty program:
Final(nil,s) = True

2. Primitive action:
Final(a,s) = False

3. Wait/test action:
Final(¢?,s) = False

4. Sequence:
Final(61;02,8) =
Final(61, s) A Final(d2, s)
5. Nondeterministic branch:
Final(6; | 62,8) =
Final(61,s) VvV Final(s,s)

6. Nondeterministic choice of argument:

Final(rv.6,s) = Fx.Final(6},s)

7. Iteration:
Final(0*,s) = True

“To be more precise, v is substituted by a term of the form name0£(x), where name0f is used to convert
situation calculus objects/actions into program terms of the corresponding sort (see Appendix A).

12



The assertions above can be read as follows:
1. (nil, s) is a final configuration.

2. (a, s) is not final, indeed the program consisting of the primitive action a cannot be
considered completed until it has performed a.

3. (#7,s) is not final, indeed the program consisting of the test action ¢? cannot be
considered completed until it has performed the test ¢?.

d1; 02, 8) can be considered completed if both (4, s) and (s, s) are final.

91|02, s) can be considered completed if either (41, s) or (d2, s) is final.

,s) is final, where Y is obtained from ¢ by substituting v with .

(
(

6. (mv.6,s) can be considered completed, provided that there exists an z such that
(O

7. (

0%, s) is a final configuration, since by 6* is allowed to execute 0 times.

In the following we denote by C be the set of axioms for Trans and Final plus those needed
for the encoding of programs as first-order terms.

4.8 Trans® and Do

The possible configurations that can be reached by a program § starting in a situation
s are those obtained by repeatedly following the transition relation denoted by Trans
starting from (4, s), i.e. those in the reflexive transitive closure of the transition relation.
Such a relation, denoted by Trans®, is defined as the (second-order) situation calculus
formula:

Trans*(9,s,8', s") S VT.[... D T(4,s,0" "]

where ... stands for the conjunction of the universal closure of the following implications:

True D T(9,s,0,s)
Trans(6,s,8",s") NT(6",s",8',s")y D T(4,s,¢,s")

Using Trans® and Final we can give a new definition of Do as:

Do(4, s, ") “o3s Trans*(8,s,0',s') A Final(8', s').
In other words, Do(6, s, s') holds if it is possible to repeatedly single-step the program 4,
obtaining a program ¢’ and a situation s’ such that §’ can legally terminate in s'.
For Golog programs such a definition for Do coincides with the one given in [20].
Formally, we can state the the following result:

13



Theorem 1: Let Do; be the original definition of Do in [20], presented in Section 3, and
Do, the new one given above. Then for each Golog program §:

C E Vs,s.Doi(d,s,8) = Doy(ds,s)

Proof: See Appendix B. O
The theorem also holds for Golog programs involving procedures when the treatment in
Section 7 is used.

Let us note that a Trans-step which brings the state of a computation from one con-
figuration (4, s) to another (&', s') need not change the situation part of the configuration,
i.e., we may have s = s'. In particular, test actions have this property. If we want to
abstract from such computation steps that only change the state of the program, we
can easily define a new relation, TransSit, that skips transitions that do not change the

situation: .
TransSit(d, s,8', s) f vI'[... D T'(4,s,¢,5")]

where ... stands for the conjunction of the universal closure of the following implications:

Trans(0,s,8',s')Ns'"#s D T'(d,s,8,5")
Trans(6, s,8",s) NT'(8",s,0',8') D T'(d,s,0",s").

5 Concurrency

We are now ready to define ConGolog, an extended version of Golog that incorporates a
rich account of concurrency. We say ‘rich’ because it handles:

e concurrent processes with possibly different priorities,
e high-level interrupts,
e arbitrary exogenous actions.

As is commonly done in other areas of computer science, we model concurrent processes as
interleavings of the primitive actions in the component processes. A concurrent execution
of two processes is one where the primitive actions in both processes occur, interleaved
in some fashion. So in fact, we never have more than one primitive action happening at
any given time. This assumption might appear problematic when the domain involves
actions with extended duration (e.g. filling a bathtub). In section 6.4, we return to this
issue and argue that in fact, there is a straightforward way to handle such cases.

An important concept in understanding concurrent execution is that of a process
becoming blocked. If a deterministic process 0 is executing, and reaches a point where
it is about to do a primitive action a in a situation s but where Poss(a, s) is false (or a
wait action ¢?, where ¢[s| is false), then the overall execution need not fail as in Golog.

14



In ConGolog, the current interleaving can continue successfully provided that a process
other than ¢ executes next. The net effect is that ¢ is suspended or blocked, and execution
must continue elsewhere.’

The ConGolog language is exactly like Golog except with the following additional
constructs:

if ¢ then 0; else 0, synchronized conditional
while ¢ do 9, synchronized loop
(61 || 62), concurrent execution
(61 )) 92), concurrency with different priorities
sl concurrent iteration
<P — 0>, interrupt.

The constructs if ¢ then 0; else J, and while ¢ do ¢ are the synchronized versions of
the usual if-then-else and while-loop. They are synchronized in the sense that testing
the condition ¢ does not involve a transition per se: the evaluation of the condition and
the first action of the branch chosen are executed as an atomic unit. So these constructs
behave in a similar way to the test-and-set atomic instructions used to build semaphores
in concurrent programming [1].

The construct (d; || d2) denotes the concurrent execution of the actions §; and 6.
(61 )) 92) denotes the concurrent execution of the actions §; and do with é; having higher
priority than d5. This restricts the possible interleavings of the two processes: d, executes
only when §; is either done or blocked. The next construct, §', is like nondeterministic
iteration, but where the instances of § are executed concurrently rather than in sequence.
Just as 0* executes with respect to Do like nil | 6 | (6;6) | (6;9;6) | ..., the program 4!
executes with respect to Do like nil | § | (6 || 6) | (6 ]| 0 || 6) | -- .- See Section 6.3 for an
example of its use.

Finally, <¢ — 0 > is an interrupt. It has two parts: a trigger condition ¢ and a body,
0. The idea is that the body § will execute some number of times. If ¢ never becomes
true, 0 will not execute at all. If the interrupt gets control from higher priority processes
when ¢ is true, then § will execute. Once it has completed its execution, the interrupt is
ready to be triggered again. This means that a high priority interrupt can take complete
control of the execution. For example, < True — ringBell> at the highest priority would
ring a bell and do nothing else. With interrupts, we can easily write controllers that can
stop whatever task they are doing to handle various concerns as they arise. They are,
dare we say, more reactive.

5Just as actions in Golog are external (e.g. there is no internal variable assignment), in ConGolog,
blocking and unblocking also happen externally, via Poss and wait actions. Internal synchronization
primitives are easily added.

6In [20], non-synchronized versions of if-then-elses and while-loops are introduced by defining:

if ¢ then §; else 0, = [(¢7;01) | (—¢?;82)] and while ¢ do ¢ = [(¢7;0)*;~¢?]. The synchronized

versions of these constructs introduced here behave essentially as the non-synchronized ones in absence
of concurrency. However the difference is striking when concurrency is allowed.
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We now show how Trans and Final need to be extended to handle these constructs.

(We handle interrupts separately below.) Trans and Final for synchronized conditionals
and loops are defined as follows:

Trans(if ¢ then 6, else d5,5,¢',s') =

d[s| A Trans(61,s,8',s") vV —¢[s] A Trans(ds, 5,0, s")
Trans(while ¢ do 6, s,0',s') =

3v.(6' = v; while ¢ do §) A ¢[s] A Trans(, s, 7, s')

Final(if ¢ then 6, else d5,5) =

d[s] A Final(61,s) V —¢[s] A Final(d2, s)
Final(while ¢ do §,s) =

—@[s| V Final(é,s)

That is (if ¢ then ¢; elseds, s) can evolve to (¢',s'), if either ¢[s] holds and (41, s) can
do so, or —¢[s] holds and (42, s) can do so. Similarly, (while ¢ do §,s) can evolve to
(¢'; while ¢ do 9, s'), if ¢[s] holds and (4, s) can evolve to (¢',s"). (if ¢ then ¢; else s, s)
can be considered completed, if either ¢[s] holds and (dy, s) is final, or if —¢[s] holds and

(02, s) is final. Similarly, (while ¢ do 6, s) can be considered completed if either —¢[s]
holds or (9, s) is final.

For the constructs for concurrency the extension of Final is straightforward:

Final(6 || 02, 8) = Final(61,s) A Final(ds, s)
Final(6; )) 02, ) Final(6y1, s) A\ Final(d2, s)
Final(6!, ) True.

Observe that the last clause says that it is legal to execute the § in 6! zero times. For
Trans, we have the following:

Trans(d; || 62, 8,8',8') =

Fy.0' = (v || 62) A Trans(éy, s,7,s") V

Iv.8" = (61 || v) A Trans(ds, s,7, ')
Trans(d, )) b2,8,0',8') =

Av.8" = (v ) 62) A Trans(éy, s,7,8") V

3y.6" = (61 ) v) A Trans(ds, 8,7, s") A =3¢, 8" Trans(64, s, ¢, s")
Trans(6l,s,8',s") =

.6 = (v || 1) A Trans(é, s, ~, s')
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In other words, you single step (41 || d2) by single stepping either §; or §, and leaving the
other process unchanged. The (d; )) d2) construct is identical, except that you are only
allowed to single step s if there is no legal step for §;. This ensures that ¢; will execute
as long as it is possible for it to do so. Finally, you single step ! by single stepping &, and
what is left is the remainder of 6 as well as 6! itself. This allows an unbounded number
of instances of § to be running.

Observe that with (01 || d2), if both é; and J» are always able to execute, the amount
of interleaving between them is left completely open. It is legal to execute one of them
completely before even starting the other, and it also legal to switch back and forth
after each primitive or wait action. It is not hard to define, however, new concurrency
constructs ||min and ||max that require the amount of interleaving to be minimized or
maximized respectively. We omit the details.

Regarding interrupts, it turns out that these can be explained using other constructs
of ConGolog:

<¢p—>0> %/ while Interrupts_running do
if ¢ then 0 else False?

To see how this works, first assume that the special fluent Interrupts_running is iden-
tically True. When an interrupt <¢ — 0> gets control, it repeatedly executes ¢ until ¢
becomes false, at which point it blocks, releasing control to anyone else able to execute.
Note that according to the above definition of Trans, no transition occurs between the
test condition in a while-loop or an if-then-else and the body. In effect, if ¢ becomes false,
the process blocks right at the beginning of the loop, until some other action makes ¢
true and resumes the loop. To actually terminate the loop, we use a special primitive
action stop_interrupts, whose only effect is to make Interrupts_running false. Thus, we
imagine that to execute a program § containing interrupts, we would actually execute the
program {start_interrupts; (§ )) stop_interrupts)} which has the effect of stopping all
blocked interrupt loops in 0 at the lowest priority, 7.e. when there are no more actions in
0 that can be executed.

Finally, let us consider exogenous actions. These are primitive actions that may occur
without being part of a user-specified program. We assume that in the background theory,
the user declares, using a predicate FEzo, which actions can occur exogenously. We define
a special program for exogenous events:

Sexo & (ma. Exo(a)?;a)*
Executing this program involves performing zero, one, or more nondeterministically cho-
sen exogenous events.” Then we make the user-specified program § run concurrently with
dgxo:
¢ | dexo

7Observe the use of m: the program nondeterministically chooses an action a, tests that this a is an
exogenous event, and executes it.
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In this way we allow exogenous actions whose preconditions are satisfied to asynchronously
occur (outside the control of §) during the execution of 4.

5.1 Formal properties of Trans and Final without procedures

We are going to show that the axioms for Trans and Final for the whole of ConGolog are
definitional, in the sense that they completely characterize Trans and Final for programs
without procedures.

Lemma 1: For any ConGolog program term 6(Z) containing only variables & of sort
object or action, there exist two formulas ®(Z,s,0,s') and V(&Z,s), where Z,s,0', s and
Z, s are the only free variables in ® and in ¥ respectively, that do not mention Final and
Trans, and are such that:

C E VZ,s,8,s. Trans(6(%),s,d0',s") = ®(&,s,0',s") (1)
C E V% s Find(6(Z),s) = ¥(&,s) (2)

Proof: For both (1) and (2), the proof is similar; it is done by induction on the program
structure considering as base cases programs of the form nil, a, and ¢7. Base cases: the
thesis is an immediate consequence of the axioms of Trans and Final since the right-
hand side of the equivalences does not mention Trans and Final. Inductive cases: by
inspection, all the axioms have on the right-hand side simpler program terms, which
contain only variables of sort object or action, as the first argument to Trans and Final,
hence the thesis is a straightforward consequence of the inductive hypothesis. O

It follows from the lemma that the axioms in 7 and F, together with the axioms
for encoding of programs as first-order terms, completely determine the interpretation of
the predicates Trans and Final on the basis of the interpretation of the other predicates.
That is 7 and F tmplicitly define the predicates Trans and Final. Formally, we have the
following theorem:

Theorem 2: There are no pair of models of C that differ only in the interpretation of
the predicates Trans and Final.

Proof: By contradiction. Suppose that there are two models M; and M, of C that agree
in the interpretation of all non-logical symbols (constant, function, predicates) other than
either Trans or Final. Let’s say that they disagree on Trans, i.e. there is a tuple of domain
values (3, 3,0, §') such that (5, 8,8, §') € Trans™™ and (5, 5,0, §') ¢ Trans™?. Considering
the structure of the sort programs (see Appendix A), we have that for every value of the
domain of sort programs & there is a program term §(Z), containing only variables & of
sort object or action, such that for some assignment o to ¥, §M17 = §M27 = 6. Now let us
consider three variables s,4’, s’ and an assignment ¢’ such that ¢'(Z) = o(%), o'(s) = §,
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0'(8") = ¢, and o'(s') = §. By Lemma 1, there exists a formula ® such that neither Trans
nor Final occurs in ® and:

M;, o' = Trans(d,s,d', ') iff M;, 0’ = ®(Z,s,d,s") 1=1,2.

Since, My, o' = ®(&,s,d',s') iff My, o' = ®(Z,s,0',s'), we get a contradiction. O

6 Some Examples

6.1 Two Robots Lifting a Table

Our first example involves a simple case of concurrency: two robots that jointly lift a
table. Test actions are used to synchronize the robots’ actions so that the table does not
tip so much that objects on it fall off. Two instances of the same program are used to
control the robots.

e Objects:
Two agents: Vr. Robot(r) =7 = Rob; V r = Robs.
Two table ends: Ve. TableEnd(e)=e = End; V e = End,.

Primitive actions:
grab(rob, end)
release(rob, end)
vmove(rob, z) move robot arm up or down by z units

Primitive fluents:
Holding(rob, end, s)
vpos(end, s) = z height of the table end

Initial state:
Vr, e. =Holding(r, e, Sp)
Ve. vpos(e, Sp) =0

Precondition axioms:
Poss(grab(r,e),s) = Vr'.—~Holding(r', e, s) AVe'.—=Holding(r, €', s)
Poss(release(r, e), s) = Holding(r, e, s)
Poss(vmove(r, z), s) = True

Successor state axioms:
Holding(r,e,do(a, s)) =
a = grab(r,e) vV Holding(r, e, s) A\ a # release(r, e)
vpos(e,do(a,s)) =p =
Ar, z.(a = vmove(r, z) A Holding(r, e, s) A p = vpos(e, s) + z) V
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dr.a = release(r,e) Ap=0V
p = vpos(e, s) A =3r, z.(a = vmove(r, z) A Holding(r, e, s)) A
—3r.a = release(r, e)

The goal here is to get the table up, but to keep it sufficiently level so that nothing falls
off. We can define these as follows:

TableUp(s) ©f vpos(Endy,s) > H A vpos(Ends,s) > H

(both ends of the table are higher than some threshold H)

Lewvel(s) wf lvpos(Endy, s) — vpos(Ends, s)| < Tol
(both ends are at the same height to within a threshold Tol).

So the goal is
Goal(s) & TableUp(s) A Vs'.s' < s O Level(s')

and the claim is that this goal can be achieved by having Rob; and Robs each concurrently
execute the same procedure ctrl defined as:

proc ctri(rob)
me.[TableEnd(e)?; grab(rob,e)l;
while —T'ableUp(now) do
SafeToLift(rob, now)?;
vmove(rob, Amount)
end

where Amount is some constant such that 0 < Amount < Tol, and SafeToLift is defined
by

SafeToLift(rob, s) ' Jeel. e # e N TableEnd(e) A TableEnd(e') A
Holding(rob, e, s) N vpos(e) < vpos(e') + Tol — Amount.

Here, we use procedures simply for convenience and the reader can take them as abbre-
viations. A formal treatment for procedures will be provided in section 7.
So formally, the claim is:®

CUD k= Vs.Do(ctrl(Rob,)||ctrl(Roby), So, s)D Goal(s).

Here is an informal sketch of a proof. Do holds if and only if there is a finite sequence
of transitions from the initial configuration (ctrl(Rob,)||ctrl(Robs), Sp) to a configuration
that is Final. A program involving two concurrent processes can only get to a Final

8 Actually, proper termination of the program is also guaranteed. However, stating this condition for-
mally, in the case of concurrency, requires additional machinery, since 3s.Do(ctrl(Rob; )||ctrl(Robz), So, s)
is too weak.
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configuration by reaching a configuration that is Final for both processes. The processes
in our program involve while-loops, which only reach a final configuration when the loop
condition becomes is false. So the table must be high enough in the final situation.

It remains to be shown that the table stayed level. Let v; stand for the action
vmove(rob;, Amount). Suppose to the contrary that the table went too high on End;
held by Rob;, and consider the first configuration where this became true. This situation
in this configuration is of the form do(v;, s) where

vpos(Endy, do(v1, s)) > vpos(Ends, do(vy, s)) + Tol.

However, at some earlier configuration, we had to have SafeToLift(Rob;,s") with no
intervening actions by Rob;, otherwise the last v; would not have been executed. This
means that we have

vpos(Endy, s') < vpos(Ends, s') + Tol — Amount.

However, if all the actions between s’ and s are by Robs, since Robs can only increase the
value of vpos(Ends), it follows that

vpos(Endy, s) < vpos(Ends, s) + Tol — Amount,

that is, that SafeToLift was also true just before the final v; action. This contradicts
the assumption that v; only adds Amount to the value of vpos(End;).

6.2 A Reactive Multi-Elevator Controller

Our next example involves a reactive controller for a bank of elevators; it illustrates the
use of interrupts and prioritized concurrency. The example will use the following terms
(where e stands for an elevator):

e Ordinary primitive actions:

goDown(e) move elevator down one floor
goUp(e) move elevator up one floor
buttonReset(n) turn off call button of floor n
toggleFan(e) change the state of elevator fan
ringAlarm ring the smoke alarm

e Exogenous primitive actions:

reqElevator(n) call button on floor n is pushed
changeT emp(e) the elevator temperature changes
detectSmoke the smoke detector first senses smoke
reset Alarm the smoke alarm is reset
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e Primitive fluents:

floor(e,s) =n the elevator is on floor n, 1 <n < 6
temp(e,s) =t the elevator temperature is ¢
FanOn(e, s) the elevator fan is on
ButtonOn(n, s) call button on floor n is on
Smoke(s) smoke has been detected

e Defined ﬂuentds:
TooHot(e, s) kf temp(e,s) > 1

TooCold(e, s) Ef temp(e, s) < —1
We begin with the following basic action theory for the above primitive actions and fluents:

e Initial state:
floor(e,Sp) =1 —FanOn(S,) temp(e,So) =0
ButtonOn(3,S,) ButtonOn(6,Sp)

e Exogenous actions:
Va.Ezo(a) = a = detectSmokeV a = resetAlarmV
a = changeTemp(e) V In.a = reqElevator(n)

e Precondition axioms:

Poss(goDown(e), s) floor(e,s) # 1

Poss(goUp(e),s) = floor(e,s) # 6

Poss(buttonReset(n),s) = True

Poss(toggleFan(e),s) = True

Poss(ringAlarm) = True

Poss(reqFElevator(n),s) = (1<n <6) A —ButtonOn(n, s)
Poss(changeTemp,s) = True

Poss(detectSmoke,s) = —Smoke(s)

Poss(resetAlarm,s) = Smoke(s)

e Successor state axioms:

floor(e, do(a,s)) =n =
(a = goDown(e) An = floor(e,s) — 1) V
(a = goUp(e) An = floor(e,s) +1) V
(n = floor(e,s) A a # goDown(e) A a # goUp(e))

temp(e, do(a, s)) =t
(a = changeTemp(e) A FanOn(e,s) ANt = temp(e,s) — 1) V
(a = changeTemp(e) A ~FanOn(e,s) Nt = temp(e,s) +1) V
(t = temp(e, s) A a # changeTemp(e))

FanOn(e, do(a,s)) =
(a = toggleFan(e) AN —=FanOnf(e,s)) V
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(FanOn(e, s) A\ a # toggleFan(e))
ButtonOn(n, do(a,s)) =

a = reqElevator(n) V

(ButtonOn(n, s) A a # buttonReset(n))
Smoke(do(a,s)) =

a = detectSmoke V

(Smoke(s) A a # reset Alarm)

Note that many fluents are affected by both exogenous and programmed actions. For
instance, the fluent ButtonOn is made true by the exogenous action reqElevator (i.e.
someone calls for an elevator) and made false by the programmed action buttonReset (i.e.
when an elevator serves a floor).

Now we are ready to consider a basic elevator controller for an elevator e. It might be
defined by something like:

while 3n.ButtonOn(n) do
mn.{ Best Button(n)?; serveFloor(e,n)};
while floor(e) # 1 do goDown(e)

The fluent BestButton would be defined to select among all buttons that are currently
on, the one that will be served next. For example, it might choose the button that has
been on the longest. For our purposes, we can take it to be any ButtonOn. The procedure
serveFloor(e,n) would consist of the actions the elevator would take to serve the request
from floor n. For our purposes, we can use:

proc serveFloor(e,n)
while floor(e) < n do goUp(e);
while floor(e) > n do goDown(e);
buttonReset(n)

end

We have not bothered formalizing the opening and closing of doors, or other nasty com-
plications like passengers.

As with Golog, we try to prove an existential and look at the bindings for the s. They
will be of the form do(@, So) where @ are the actions to perform. In particular, using this
controller program ¢, we would get execution traces like

CuD ): D0(5 || 5EX(),S(),dO([U,U,b3,’U,’U,U,b6,d, dada d’d]aSO))
CuD ): D0(6 || 6EX0750ado([uar4auab3auab4auauar2ab6ada da da da b2ad]aSO))

where u = goUp(e), d=goDown(e), b, =buttonReset(n), r, =reqFElevator(n), and D is
the basic action theory specified above. In the first run there were no exogenous actions,
while in the second, two elevator requests were made.
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This controller does have a big drawback, however: if no buttons are on, the first loop
terminates, the elevator returns to the first floor and stops, even if buttons are pushed on
its way down. It would be better to structure it as two interrupts:

< 3In.ButtonOn(n) —
nmn.{BestButton(n)?; serveFloor(e,n)} >

< floor(e) # 1 — goDown(e) >

with the second at lower priority. So if no buttons are on, and you’re not on the first
floor, go down a floor, and reconsider; if at any point buttons are pushed exogenously,
pick one and serve that floor, before checking again. Thus, the elevator only quits when
it is on the first floor with no buttons on.

With this scheme, it is easy to handle emergency or high-priority requests. We would

add
< 3In.EButtonOn(n) —

7n.{ EButtonOn(n)?; serveEFloor(e,n)} >

as an interrupt with a higher priority than the other two (assuming suitable additional
actions and fluents).
To deal with the fan, we can add two new interrupts:

<TooHot(e) N =FanOn(e) — toggleFan(e)>
<TooCold(e) N FanOn(e) — toggleFan(e)>

These should both be executed at the very highest priority. In that case, while serving a
floor, whatever that amounts to, if the temperature ever becomes too hot, the fan will be
turned on before continuing, and similarly if it ever becomes too cold. Note that if we did
not check for the state of the fan, this interrupt would loop repeatedly, never releasing
control to lower priority processes.

Finally, imagine that we would like to ring a bell if smoke is detected, and disrupt
normal service until the smoke alarm is reset exogenously. To do so, we add the interrupt:

< Smoke — ringAlarm >

with a priority that is less than the emergency button, but higher than normal service.
Once this interrupt is triggered, the elevator will stop and ring the bell repeatedly. It will
handle the fan and serve emergency requests, however.
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Putting all this together, we get the following controller:

(<TooHot(e) N =FanOn(e) — toggleFan(e)> ||
<TooCold(e) N FanOn(e) — toggleFan(e)>) )
< 3In.EButtonOn(n) —

mn.{ EButtonOn(n)?; serveEFloor(e,n)} >)
< Smoke — ringAlarm> )
< 3n.ButtonOn(n) —

mn.{ Best Button(n)?; serveFloor(e,n)} >))
< floor(e) # 1 — goDown(e) >

Using this controller d,, we would get execution traces like

CuD ): DO(&T || 6EX07507do([uauab37u7u7u7b67d7 d7 d7 d, T5,U,U,U,b5,d, d7 da d]aSO))
CUD [ Do(é || dexo,So, do([u, u, bs, u, 2, a, a,a,a, h,u,u,bs, d,d,d,d,d],S))
CUD ‘: Do(dr || 5EXOaSOado([uatauab3)uata fauatatauata bﬁadata fa datada dad]aSO))

where z = detectSmoke, a = ringAlarm, h = resetAlarm, t = changeTemp, and f =
toggleFan. In the first run, we see that this controller does handle requests that come in
while the elevator is on its way to retire on the bottom floor. The second run illustrates
how the controller reacts to smoke being detected by ringing the alarm. The third run
shows how the controller reacts immediately to temperature changes while it is serving
floors. Note that this elevator controller uses 5 different levels of priority. It could have
been programmed in Golog without interrupts, but the code would have been a lot messier.

Now let us suppose that we would like to write a controller that handles two inde-
pendent elevators. In ConGolog, this can be done very elegantly using (d; || d2), where
07 is the above program with e replaced by Elevator; and 9§, is the same program with e
replaced by Elevators. This allows the two processes to work completely independently
(in terms of priorities).? For n elevators, we would use (61 || - -+ || dn)-

6.3 A Client-Server System

In some applications, it is useful to have an unbounded number of instances of a process
running concurrently. For example in an FTP server, we may want an instance of a
manager process for each active FTP session. This can be programmed using the §!
concurrent iteration construct.

Let us give a high-level sketch of how this might be done. Suppose that there is an
exogenous action newClient(cid) that occurs when a new client with the ID cid first

90f course, when an elevator is requested on some floor, both elevators may decide to serve it. It is
easy to program a better strategy that coordinates the elevators: when an elevator decides to serve a
floor, it immediately makes a fluent true for that floor, and the other elevator will not serve a floor for
which that fluent is already true.
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requests service. Also assume that a procedure serve(cid) has been defined, which imple-
ments the behavior required for the server for a given client. To set up the system, we
run the program:
[7 cid. acquire(cid); serve(cid)]!;
—3cid. (ClientW aiting(cid))?

Here, we assume that when the exogenous action newClient(cid) occurs, it makes the
fluent ClientW aiting(cid) true. Then, the only way the computation can be completed
is by generating a new process that first acquires the client by doing acquire(cid), and
then serves it. We formalize this as follows:

Poss(acquire(cid), s) = ClientW aiting(cid)

ClientW aiting(cid, do(a, s)) =
a = newClient(cid) V ClientW aiting(cid, s) A a # acquire(cid)]

Then, only a single process can acquire a given client, since acquire is only possible
when ClientW aiting(cid) is true and performing it makes this fluent false. The whole
program can only reach a final configuration if it forks exactly the right number of server
processes: at least one for each client because a server can only acquire one client, and no
more than one for each client because servers can be activated only if they can acquire a
client.

6.4 Actions with Extended Duration

One possible criticism of our approach to concurrency is that it does not work when we
consider actions that have extended duration. Consider singing while filling the bathtub
with water, for example. If one of the actions involved is “filling the bathtub,” and the
other actions are “singing do,” “singing re,” and “singing mi,” say, then there are exactly
four possible interleavings,

[filling ; do ; re; mi],

[do; filling ; re; mi],

[do; re; filling ; mi],

[do; re; mi; filling],
but none of them capture the idea of singing and filling the tub at the same time. More-
over, the prospect of replacing the filling action by a large number of component actions
(that could be interleaved with the singing ones) is even less appealing.

To deal with this type of case, we recommend the following approach (see [33] for a
detailed presentation): instead of thinking of filling the bathtub as an action or group of
actions, think of it as a state that an agent could be in, extending possibly over many
situations. The idea is that the agent can be in many such states simultaneously, including
listening to the radio, walking, and chewing gum. For each such state, we need two
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primitive actions and a fluent; for the bathtub, they are startFilling, which puts the agent
into the state, and endF'illing, which terminates it, as well as the fluent F'illingTub, which
holds in those situations where the agent is filling the tub. Formally, we would express
this with a successor state axiom as follows:

FillingTub(do(a, s)) =
a = startFilling V FillingTub(s) A\ a # endFilling.

Since the startF'illing and endF'illing actions can be taken to be instantaneous, the
interleaving account is once again plausible. If we define a complex action

FillTheTub [starthllmg endF'illing|
and run it concurrently with the singing, then we get these possible interleavings:

[startFilling ; endFilling ; do; re;

bl

[startFilling ; do ; endFilling ; ; mil,
[startFilling ; do ; re; enszllmg mi|,
[startFilling ; do ; re; enszllmg ,
[do ; startFilling ; re; enszllmg mil,
[do; startFilling ; re; ; endFilling)|,

[do; re; startFilling ; enszllmg mi|,
[do; re; startFilling ; mi; endFilling],

mi]
]
]
]
[do ; startFilling ; enszllmg ; mi),
]
]
]
]
[do; re; mi; startFilling ; endFilling].

A better model would be something like

FillTheTub [startFilling ; (waterLevel > H)? ; endF'illing]

which would rule out interleavings where the filling stops too soon. The most natural way
of modeling the water level is as a continuous function of time: [ = Ly + R X t, where Ly
is the initial level, R is the rate of filling (taken to be constant), and ¢ is the elapsed time.
One simple way to accommodate this idea within the situation calculus is to assume that
every action has a duration dur(a) (which we could also make dependent on the situation
the action is performed in). Actions such as startF'illing can have duration 0, but there
must be some action, if only a timePasses, with a non-0 duration. We then describe the
water Level functional fluent by:

water Level(do(a, s)) = water Level(s) + water Rate(s) x dur(a)

water Rate(do(a, s)) = if FillingTub(s) then R else 0.

So as long as a situation is in a filling-the-tub state, the water level rises according to the
above equation. In terms of concurrency, the result is that the only allowable interleavings
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would be those where enough actions of sufficient duration occur between the startFilling
and stopF'illing.

Of course, this model of the continuous process of water entering the bathtub does
not allow us to predict the eventual outcome, for example, the water overflowing if a tap
is not turned off, etc. A more complex program, typically involving interrupts, would be
required, so that suitable “trajectory altering” actions are triggered under the appropriate
conditions.

7 Extending the Transition Semantics to Proce-
dures

We now extend the transition semantics introduced above to deal with procedures. Be-
cause a recursive procedure may do an arbitrary number of procedure calls before it
performs a primitive action or test, and such procedure calls are not viewed as transi-
tions, we must use a second-order definition of Trans and Final. In doing so, great care
has to be put in understanding the interaction between recursive procedures and the very
general form of prioritized concurrency allowed in ConGolog

Let proc P;(%;)6; end;...; proc P,(7,)d, end be a collection of procedure definitions.
We call such a collection an environment and denote it by Env. In a procedure definition
proc P;(7;)0; end, P; is the name of the i-th procedure in Env; @; are its formal pa-
rameters; and ¢; is the procedure body, which is a ConGolog program, possibly including
both procedure calls and new procedure definitions. We use call-by-value as the parameter
passing mechanism, and lexical (or static) scope as the scoping rule.

Formally we introduce three program constructs:

e P(f) where P is a procedure name and ¢ actual parameters associated to the pro-
cedure P; as usual we replace the situation argument in the terms constituting ¢
by now. P(f) denotes a procedure call, which invokes procedure P on the actual
parameters ¢ evaluated in the current situation.

e {Env; 6}, where Env is an environment and ¢ is a program extended with procedures
calls. {Enwv;d} binds procedures calls in ¢ to the definitions given in Env. The usual
notion of free and bound apply, so for e.g. in {proc Pi() a end; P»(); Pi()}, P is
bound but P, is free.

e [Env : P(t)], where Env is an environment, P a procedure name and £ actual
parameters associated to the procedure P. [Env : P(t)] denotes a procedure call
that has been contextualized: the environment in which the definition of P is to be
looked for is Env.
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We define the semantics of ConGolog programs with procedures by defining both Trans
and Final by a second-order formula (instead of a set of axioms).!® Trans is defined as
follows:

Trans(6,s,0',s') =VT.[... D T(6,s,0,5)]

where ... stands for the conjunction of 777" — i.e. the set of axioms 7 modulo textual
substitution of Trans with T' — and (the universal closure of) the following two assertions:

T({Env;d},s,0',s') = T(5P"(£) 5,08

[Env:Py(8)]’
T([Env : P(t)],s,0',s") = T({Env; 0Pzt s, 88"
where 5[1;;7(3: (@) denotes the program ¢ with all procedures bound by Env and free in §

replaced by their contextualized version (this gives us the lexical scope), and where § p%’; !
denotes the body of the procedure P in Env with formal parameters ¢ substituted by the
actual parameters ¢ evaluated in the current situation.

Similarly, Final is defined as follows:

Final(6,8) =VF.[... D F(4,s)]

where ... stands for the conjunction of F£"® — i.e. the set of axioms F modulo textual
substitution of Final with F' — and (the universal closure of) the following assertions:
; _ P;(t)
F({Env;d},s) = F((S[Env:Pi(t.)],s)
F([Env: P(t),s) = F({Env; Opgy}:s)

Note that no assertions for (uncontextualized) procedure calls are present in the definitions
of Trans and Final. Indeed a procedure call which cannot be bound to a procedure
definition neither can do transitions nor can be considered successfully completed.

Observe also the two uses of substitution to deal with procedure calls. When a pro-
gram with an associated environment is executed, for all procedure calls bound by Enwv,
we simultaneously substitute the corresponding procedure calls, contextualized by the
environment of the procedure in order to deal with further procedure calls according to
the static scope rules. Then when a (contextualized) procedure is actually executed, the
actual parameters are first evaluated in the current situation, and then are substituted
for the formal parameters in the procedure bodies!!, thus yielding call-by-value parameter
passing.

The following example program dg;s. illustrates ConGolog’s static scoping:

0For compatibility with the formalization in Section 4, we treat Trans and Final as predicates, although
it is clear that they could be understood as abbreviations for the second-order formulas.

1To be more precise, every formal parameter v is substituted by a term of the form name0£(#[s]), where
again name0f is used to convert situation calculus objects/actions into program terms of the corresponding
sort (see Appendix A).
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Ps()
}

One can show that for this program, the sequence of atomic actions performed will be a
followed by b (assuming that both a and b are always possible):

Vs.[Poss(a, s) A Poss(b, s)] D
Vs, s'.[Do(dstsc, $,8") = 8’ = do(b, do(a, s))]
To see this consider the following. Let
Env, “ proc Pi() a end;

proc P»() Pi() end;
proc P3() {Envs; P5(); P1()} end;

Env, & proc Pi() b end;

Then it is easy to see that:

Trans(dsise, $,90', s")
= Trans({Envy; P3()},s,0',s")
= Trans([Env, : Ps()],s,0",s")

(
= Trans({ Envy; {Envs; Po(); P1()}}, 8,6, 8")
= Trans({ Enve; [Env; : Py()]; Pi()},s,0",8")
= Trans([Envy : Py()];[Envy : Pi()],s,6',s")
= Trans({Envy; Pi()}; [Enve : Pi()],s,0",s)
= Trans([Env, : P()];[Envs : Pi()],s,6',s")

= Trans(a; [Envsy : Pi()],s,0',s")
= Poss(a,s) N\ s’ = do(a, s) N §' = (nil; [Envy : Pi()]).

Similarly, one can show that: Trans([Envy : Pi()], do(a,s),nil, do(b, do(a,s)))
and Final(nil, do(b, do(a, s))), which yields the thesis.
Our next example illustrates ConGolog’s call-by-value parameter passing:
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{ proc P(n)
if (n = 1) then nil
else goDown; P(n — 1)
end;
P(floor)

}

Intuitively, this program is intended to bring an elevator down to the bottom floor of
a building. If we run the program starting in situation Sp, the procedure call P(floor)
invokes P with the value of the functional fluent floor in Sy, i.e. P is called with floor[Sy],
the floor the elevator is on in Sy, as actual parameter. If ConGolog used call-by-name
parameter passing, P would be invoked with the term “floor” as actual parameter, and
the elevator would only go halfway to the bottom floor. Indeed at each iteration of the
procedure the call P(n — 1) would be evaluated by textually replacing n by floor, which
at that moment has already decreased by 1.

As mentioned earlier, the need for a second-order definition of Trans(é,s,?’,s") and
Final(6, s) when procedures are introduced comes from recursive procedures. The second-
order definition allows us to assign a formal semantics to every such procedure, including
viciously circular ones. The definition of Trans disallows the execution of such ill-formed
procedures. At the same time the definition of Final considers them not to have com-
pleted (non-final). For example, the program {proc P() P() end; P()} does not have any
transitions, but it is not final for any situation s.2

7.1 Formal properties of Trans and Final with procedures

We observe that the second-order definitions of Trans and Final can easily be put in the
following form:

Trans(é,s,0',s") =
VT[lea S1, 52a S2. @Trans<Ta 51a S1, 52a 52) = T(ala S1, 52’ 82)]
D T(6,s,0's")

Final(6,s,0',s") =
v}TV[V(Sla S1.- @F’inal(Fa 61) 31) = F(51; 81)]
D F(o,s)

where @74, and @ p;ne are obtained by rewriting each of the assertions in the definition
of Trans and Final so that only variables appear in the left-hand part of the equations,

12Note that both Golog and ConGolog do not allow for boolean procedures to be used in tests. Intro-
ducing such kind of procedures requires particular care to avoid counterintuitive implications.
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ie.:
T(8,s,0',8") = ¢(T,0,s,8,8") F(8,5) = ¢4(F, 9, s)

and then getting the disjunction of all right-hand sides, which are mutually exclusive since
each of them deals with programs of a specific form.

From such definitions, natural “induction principles” emerge (cf. the discussion on
extracting induction principles from inductive definitions in [34]). These are principles
saying that to prove that a property P holds for instances of Trans and Final, it suffices
to prove that the property P is closed under the assertions in the definition of Trans and
Final, i.e.:

Prrans(P; 01, 51,02,82) = P(61,51,02,52)
®rina(P,01,51) = P(d1,51)

Formally we can state the following theorem:
Theorem 3: The following sentences are consequences of the second-order definitions of
Trans and Final respectively:
VP[lea S1, 52’ S2. (I)Trans(Pa 51’ 81, 62’ 82) = P(ala 81, 62’ 82)] D
Vé,s,8',s". Trans(d,s,0',s') D P(6,s,0',s")

VP[V(sl, S1. q)Fz'nal(Pa 51, 81) = P(51, 51)] D)
V6, s. Final(6,s,8',8') D P(6,s)
Proof: We prove only the first sentence. The proof of the second sentence is analogous.
By definition we have:
Vé,s,8', 8. Trans(é,s,8',s) =
VP[V(Sl, S1, 52; S2. ‘I)Trans(Pa 51’ S1, 52; 32) = P(ala S1, 52’ 82)]
D P(4,s,8,5")

By considering the only-if part of the above equivalence, we get:

V4, s,0', 8. Trans(6,s,d',s") A
VP[VCSI’ S1, 52’ S2. @Trans(P; 51) S1, 62’ 32) = P((Sla S1, 527 32)]
D P(d,s,0"8)

So moving the quantifiers around we get:

VP[Véla S1, 627 S2. QTrans(Pa 61) S1, 527 82) = P(éla S1, 627 32)] A
V9, s,0',s'. Trans(é, s,d', s")
S P58, )

and hence the thesis. O
These induction principles allow us to prove that Trans and Final for programs with
procedures can be considered an extension of those for programs without procedures.
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Theorem 4: With respect to ConGolog programs without procedures, Trans and Final
introduced above are equivalent to the versions introduced in Section 4.

Proof: Let us denote Trans defined by the second-order sentence as Transsor and Trans
implicitly defined through axioms in Section 4 as Transpor. Since procedures are not
considered we can drop, without loss of generality, the assertions for { Env;§} and [Env :
P(t)] in the definition of Transsor. Then:

e Transsor(9,s,0',s)D Transror (9, s,8’, '), is proven simply by noting that Transror,
satisfies (is closed under) the assertions in the definition of Transsor, and then using
Theorem 3.

e Transpor(9,s,d’,s')DTranssor (9, s,d’, '), is proven by induction on the structure of
0 considering as base cases nil, a, and ¢7, and then applying the induction argument.

Similarly for Final. O

It is interesting to examine whether Trans and Final introduced above are themselves
closed under the assertions in their definitions. For Final a positive answer can be estab-
lished:

Theorem 5: The following sentence is a consequence of the second-order definition of
Final:
@ pina(Final(d, s),d,s) = Final(d, s).

Proof: Observe that ® gy, is monotonic'3, i.e.:
VZl, ZZ[V(S, s.Zl(é, 8)322((5, S)] D) [Vd, S-QFinal(Zla (5, S)DQFz’nal(Zm (5, 8)]

Hence the thesis is a direct consequence of the Tarski-Knaster fixpoint theorem [40]. O
For Trans an analogous result does not hold in general. Indeed consider the following
program d,:

{ proc Q()
Q) ) a
end;
Q)
}

Observe that the definition of Transimplies that Trans(d,, s,d’, s') = False. Hence if Trans
was closed under ®ry4ns, then we would have Trans(é, )) a,s,d',s') = Trans(a, s, 0, s'),
which would imply that Trans(d,, s, d',s’) = Trans(a, s, d’,s"). Contradiction.

Obviously there are several classes of ConGolog programs that are closed under ®7y.q15.
For instance, if we disallow prioritized concurrency in procedures we get one such class.
Another such class is that obtained by allowing prioritized concurrency to appear only in
non-recursive procedures. Yet another quite general class is immediately obtainable from
what is discussed next.

13Tn fact syntactically monotonic.

33



8 First-order Trans and Final for Procedures

In this section we investigate conditions that allow us to replace the second-order defini-
tions of Trans and Final for programs with procedures by the first-order definitions, as in
the case where procedures are not allowed.

8.1 Guarded configurations

We define a quite general condition on configurations (pairs of programs and situations)
that guarantees the possibility of using first-order axioms for 7Trans and Final for proce-
dures as well. To this end we introduce a notion of “configuration rank”. Intuitively, a
configuration is of rank n if and only if makes at most n (recursive) procedure calls before
trying to make an actual program step (either an atomic action or a test).

We define the rank of a configuration inductively. A configuration is of rank n denoted
by Rank(n,d, s) if and only if:

Rank(n,nil,s) = True
Rank(n,a,s) = True
Rank(n,¢?,s) = True

)
)
)
Rank(n, 61; 62, s)
Rank(n,6; | 92, s)
Rank(n,mv.4, s)
s)
)
)
)
s)

Rank(n, 01, s) A (Final(61, s)D Rank(n, ds, s))
Rank(n, 61, s) A Rank(n, b2, s)

Vz.Rank(n, d,, s)

Rank(n, d, s)

®[s] A Rank(n,61,s) V —¢[s] A Rank(n,ds, s)
o[s]D Rank(n, d, s)

Rank(n, 61, s) A\ Rank(n, b2, s)

Rank(n,d1,s) A

(=361, §'. Trans(64, s, 61, ")) D Rank(n, 2, s))
Rank(n, 4!, s) Rank(n, d, s)

Rank(n,{Env;6},s) = Rank(n,s"" i(6) ,8)

[Env:Py(f)]’

Rank(n,[Env : P(1)],s) = Rank(n — 1,{Enuv; 51’{[ 1, 8)

Rank(n, 6",
Rank(n,if ¢ then 0, else d, s
Rank(n, while ¢ do §, s
Rank(n, d; || 2, s

Rank(n, 61 )) 0,

A configuration (0, s) is guarded if and only if it is of rank n for some n:

Guarded (0, s) “/ 3n. Rank (n,d,s)

8.2 First-order Trans and Final for procedures

For guarded configurations, we do not need to use the second-order definitions of Trans
and Final when dealing with procedures. Instead we can use the first-order axioms in
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Section 4 together with the following:!4
. — Pi()
Trans({Env;é},s,0', ") = Tmns(é[Em:Pi(m, 5,0,

Trans([Env : P(t)],s,0',s") = Tmns({Env;dp?[’;]},3,5',8')

Final({Env;é},s) = Final(csp'i(t-) s)

[Env:P; (1))’

Final([Env : P(t)],s) = Final({Env;épg[’;]},s)

Let us call Transpor, and Finalgor the predicates determined by the first-order ax-
ioms and Transsor and Finalspr the original predicates determined by the second-order
definition for procedures. We can prove the following result:

Theorem 6:

Guarded(9, s)D

V&', s'. Transsor (8, s,0',s') = Transpor (6, 5,8, ")
Guarded (9, s)D

Finalsor (9, s) = Finalpor (6, s).

Proof:(outline) By induction on the rank of the configuration (4, s). For rank 0 the thesis
is trivial. For rank n 4 1, we assume that the thesis holds for all configurations of rank n,
and show the thesis by induction on the structure of the program considering nil, a, ¢?
and [Env : P(t)] as base cases. O

A configuration (0, s) has a guarded evolution, if and only if:

GuardedEvol(6, s) e/

Vo', s Transsor (6, 5,8, ') D Guarded(d', s')
For configurations with guarded evolution we have the following easy consequences:

GuardedEvol (6, s)D

V', s'. Transso;(6,8,8', ") = Transhor(6, 8,8, 8")
GuardedFEvol (6, s)D

Vs'.Dosor (6, s,s') = Doror(9, s, s')

14The form of these axioms is exactly that of the conditions on the predicate variables T and F in the
second-order definitions.
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8.3 Sufficient condition for guarded evolutions

Theorem 7: If all procedures P with environment Env in a program § are such that
Vt, s. Guarded ([Env : P(t)], s)

then we have:
Vs.GuardedEvol (9, s).

Proof:(outline) By induction on the number of transitions. For 0 transitions, we get the
thesis by induction on the structure of the program (considering nil, a, $? and [Env : P(t)]
as base cases). For k + 1 transitions, we assume the thesis holds for k transitions, and
we prove by induction on the structure of the program (again considering nil, a, ¢? and
[Env : P(t)] as base cases) that making a further transition from the program resulting
from the k transitions still preserves the thesis. O

It is easy to verify that non-recursive procedures, as well as procedures whose body
starts with an atomic action or a wait action, trivially satisfy the hypothesis of the the-
orem. Observe also that all procedures in [20] satisfy such hypothesis, except for the
procedure d at page 9 whose definition is reported below (n is a natural number):

procd(n) (n = 07) | d(n — 1); goDown end
However, the variants
procd(n) (n =07?) | goDown;d(n — 1) end
procd(n) (n=07) | (n > 0)7;d(n — 1); goDown end
procd(n) if (n = 0) then nilelse (d(n — 1); goDown) end
do satisfy the hypothesis.

9 Implementation

Despite the fact that in defining the semantics of ConGolog we resorted to first- and
second-order logic, it is possible to come up with a simple implementation of the ConGolog
language in Prolog.

In this section, we present a ConGolog interpreter in Prolog which is lifted directly
from the definition of Final, Trans, and Do introduced above.!® This interpreter requires
that the program’s precondition axioms, successor state axioms, and axioms about the
initial situation be expressible as Prolog clauses. In particular, the usual closed world

15Exogenous actions can be generated by simulating them probabilistically, by asking the user at
runtime when they should occur, or by monitoring the environment in which the program is running.
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assumption (CWA) is made on the initial situation. Note that this is a limitation of this
particular implementation, not the theory.

Prolog terms representing ConGolog programs are as follows:
e nil, empty program.

e act(a), atomic action, where a is an action term with the situation arguments
replaced by the constant now.

e test(c), wait/test, where c is a condition described below.
e seq(p;,p2), sequence.
e choice(p;,ps2), nondeterministic branch.

e pick(w,p), nondeterministic choice of argument, where v is a Prolog constant
(atom), standing for a ConGolog variable, and p a program-term that uses v.

e iter(p), nondeterministic iteration.

e if(c,p1,p2), if-then-else, with p; the then-branch and p, the else-branch.

e while(c,p), while-do.

e conc(py,p2), concurrency.

e prconc(p;,ps), prioritized concurrency.

e iterconc(p), iterated concurrency.

e pcall(pArgs), procedure call, with pArgs the procedure name and arguments.

A condition ¢ in the above is either a Prolog-term representing an atomic formula/fluent
with the situation arguments replaced by now or an expression of the form and(c;,cs),
or(cy,c2), neg(c), all(w,c), or some(v,c), with the obvious intended meaning. In
all(v,c) and some(v,c), v is an Prolog constant, standing for a logical variable, and c a
condition using v.

The Prolog predicate trans/4, final/2, trans*/4 and do/3 implement respectively
the predicate Trans, Final, Trans* and Do.

The Prolog predicate holds/2 is used to evaluate conditions in tests, while-loops and
if-then-else’s in ConGolog programs. As well, the Prolog predicate sub/4 implements the
substitution so that sub(z,y,t,t') means that ¢’ = ¢;. The definition of these two Prolog
predicates is taken from [20, 34].

The following is the Prolog code.
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/Ko ok o ok o sk sk sk sk sk o o o ok sk sk s o s ok ks s o s ok o ks sk s ok o ke sk sk o o ok sk ok o o sk ks sk o o sk sk sk ok o o sk sk ok ok o ok ok /
/* Trans-based ConGolog Interpreter */
/et ok o o o sk ks sk ok s o o ok sk sk s ok s ok ks sk o s ok o ks sk s ok o e sk ok o o ok sk ok o o sk sk sk ok o o sk ks ok o o sk sk ok ok o ok ok /
/* trans(Prog,Sit,Prog_r,Sit_r) */

trans(act(A),S,nil,do(AS,S)) :- sub(now,S,A,AS), poss(AS,S).

trans(test(C),S,nil,S) :- holds(C,S).

trans(seq(P1,P2),S,P2r,Sr) :- final(P1,S),trans(P2,5,P2r,Sr).
trans(seq(P1,P2),S,seq(P1r,P2),Sr) :- trans(P1,S,Pir,Sr).

trans(choice(P1,P2),S,Pr,Sr) :- trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).
trans (pick(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).
trans(iter(P),S,seq(PP,iter(P)),Sr) :- trans(P,S,PP,Sr).

trans(if(C,P1,P2),S,Pr,Sr) :- holds(C,S),trans(P1,S,Pr,Sr) ;
holds(neg(C),S),trans(P2,S,Pr,Sr).

trans(while(C,P),S,seq(PP,while(C,P)),Sr) :- holds(C,S),trans(P,S,PP,Sr).

trans(conc(P1,P2),S,conc(P1ir,P2),Sr) :- trans(P1,S,Pir,Sr).
trans(conc(P1,P2),S,conc(P1,P2r),Sr) :- trans(P2,S,P2r,Sr).

trans(prconc(P1,P2),S,prconc(P1ir,P2),Sr) :- trans(P1,S,Pir,Sr).
trans (prconc(P1,P2),S,prconc(P1,P2r),Sr) :- not trans(P1,S,_,_),trans(P2,3,P2r,Sr).

trans(iterconc(P),S,conc(PP,iterconc(P)),Sr) :- trans(P,S,PP,Sr).

trans(pcall(P_Args),S,Pr,Sr) :- sub(now,S,P_Args,P_ArgsS),
proc(P_ArgsS,P), trans(P,S,Pr,Sr).

/* final(Prog,Sit) */

final (nil,S).

final(seq(P1,P2),S) :- final(P1,S),final(P2,8S).

final(choice(P1,P2),S) :- final(P1,S) ; final(P2,S).
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final (pick(V,P),S) :- sub(Vv,_,P,PP), final(PP,S).
final(iter(P),S).

final (if(C,P1,P2),S) :- holds(C,S),final(P1,S) ;
holds(neg(C),S) ,final (P2,S).

final(while(C,P),S) :- holds(neg(C),S) ; final(P,S).
final(conc(P1,P2),S) :- final(P1,S),final(P2,8S).
final (prconc(P1,P2),S) :- final(P1,S),final(P2,8).
final (iterconc(P),S).

final(pcall(P_Args)) :- sub(now,S,P_Args,P_ArgsS),
proc(P_ArgsS,P) ,final(P,S).

/* trans*(Prog,Sit,Prog_r,Sit_r) */

trans*(P,S,P,S).
trans*(P,S,Pr,Sr) :- trans(P,S,PP,SS), trans*(PP,SS,Pr,Sr).

/* do(Prog,Sit,Sit_r) */

do(P,S,Sr) :- trans*(P,S,Pr,Sr),final(Pr,Sr).

/* holds(Cond,Sit): as defined in [34] */

holds(and(F1,F2),S) :- holds(F1,S), holds(F2,S).
holds(or(F1,F2),S) :- holds(F1,S8); holds(F2,S).
holds(all(V,F),S) :- holds(neg(some(V,neg(F))),S).
holds(some(V,F),S) :- sub(V,_,F,Fr), holds(Fr,S).
holds(neg(neg(F)),S) :- holds(F,S).
holds(neg(and(F1,F2)),S) :- holds(or(neg(F1l),neg(F2)),S).
holds(neg(or(F1,F2)),S) :- holds(and(neg(F1),neg(F2)),S).
holds(neg(all(V,F)),S) :- holds(some(V,neg(F)),S).
holds(neg(some(V,F)),S) :- not holds(some(V,F),S). /* Negation by failure */
holds(P_Xs,S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_) ,P_Xs\=neg(_),P_Xs\=all(_,_) ,P_Xs\=some(_._),
sub(now,S,P_Xs,P_XsS), P_XsS.
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holds(neg(P_Xs),S) :-
P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),P_Xs\=some(_._),
sub(now,S,P_Xs,P_XsS), not P_XsS. /* Negation by failure */

/* sub(Const,Var,Terml,Term2): as defined in [34] */

sub(X,Y,T,Tr) :- var(T), Tr = T.

sub(X,Y,T,Tr) :- not var(T), T = X, Tr = Y.

sub(X,Y,T,Tr) :- T \=X, T =..[F|Ts], sub_list(X,Y,Ts,Trs), Tr =..[F|Trs].
sub_list(X,Y,[1,[1).

sub_list(X,Y,[T|Ts], [Tr|Trs]) :- sub(X,Y,T,Tr), sub_list(X,Y,Ts,Trs).

In this implementation a ConGolog application is expected to have the following parts:

1. A collection of clauses which together define which fluents are true in the initial
situation s0. The clauses need not to be atomic, and can involve arbitrary amounts
of computation for determining entailments in the initial database.

2. A collection of clauses which together define the predicate Poss(a, s) for every action
a and situation s. Typically, this requires one clause per action, using a variable to
range over all situations.

3. A collection of clauses which together define the successor state axioms for each
fluent. Typically, this requires one clause per fluent, with variables for actions and
situations.

4. A collection of facts defining ConGolog procedures. In particular for each procedure
p occurring in the program we have a fact of the form:

proc(p(Xi,...,Xn), body)

In such facts: (i) formal parameters are represented as Prolog variables so as to use
Prolog built-in unification mechanism instead of a substitution procedure; (ii) in
the body body the only variables that can occur are those representing the formal
parameters X1, ..., X,,. For simplicity, we do not consider nested procedures in the
above implementation.

Expressing action theories as Prolog clauses places a number of restrictions on the
action theories that are representable. These restrictions force the closed world assump-
tion (Prolog CWA) on the initial situation and the unique name assumption (UNA) on
both actions and objects. For an in-depth study on action theories expressible as Prolog
clauses, we refer to [34].
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9.1 Example

Below, we give an implementation in Prolog of the two robots lifting a table scenario
discussed in subsection 6.1. The code is written as close to the specification as possible.
The inability of Prolog to define directly the functional fluent vpos(e, s) is resolved by
introducing a predicate val/2 such that val(vpos(e, s),v) stands for vpos(e, s) = v.

/***********************************************************************/

/* Two Robots Lifting a Table Example */
/***********************************************************************/

/* Precondition axioms */

poss(grab(Rob,E),S) :- not holding(_,E,S), not holding(Rob,_,S).
poss(release(Rob,E),S) :- holding(Rob,E,S).

poss (vmove (Rob,Amount) ,S) :- true.

/* Succ state axioms */

val (vpos(E,do(4,8)),V) :-
(A=vmove (Rob,Amount), holding(Rob,E,S), val(vpos(E,S),V1), V is Vi+Amount) ;
(A=release(Rob,E), V=0) ;
(val(vpos(E,S),V), not((A=vmove(Rob,Amount), holding(Rob,E,S))),
A\=release(Rob,E)).

holding(Rob,E,do(A,S)) :-
A=grab(Rob,E) ; (holding(Rob,E,S), A\=release(Rob,E)).

/* Defined Fluents */
tableUp(S) :- val(vpos(endl,S),V1), V1 >= 3, val(vpos(end2,S),V2), V2 >= 3.
safeToLift (Rob,Amount,Tol,S) :-

tableEnd(E1), tableEnd(E2), E2\=El, holding(Rob,El ,8),

val(vpos(E1,S),V1), val(vpos(E2,5),V2), V1 =< V2+Tol-Amount.

/* Initial state */

val (vpos(end1,s0),0). /* plus by CWA: */
val (vpos(end2,s0),0) . /* */
tableEnd(endl). /* not holding(robl,_,s0) */
tableEnd(end2). /* not holding(rob2,_,s0) */

/* Control procedures */
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proc(ctrl(Rob,Amount,Tol),
seq(pick(e,seq(test(tableEnd(e)) ,act(grab(Rob,e)))),
while(neg(tableUp(now)),
seq(test (safeToLift (Rob,Amount ,Tol,now)),
act (vmove (Rob,Amount)))))).

proc(jointLiftTable,
conc(pcall(ctrl(robl,1,2)), pcall(ctrl(rob2,1,2)))).

Below we show a few final situations returned by the interpreter for the above example
(note that the interpreter does not filter out identical situations).

?7- do(pcall(jointLiftTable),s0,S).

S = do(vmove(rob2, 1), do(vmove(robl, 1), do(vmove(rob2, 1), do(vmove(robl, 1),
do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(robl, 1), do(vmove(robl, 1),
do(grab(robl, endl), s0))))))))) ;

S = do(vmove(rob2, 1), do(vmove(robl, 1), do(vmove(rob2, 1), do(vmove(robl, 1),
do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(robl, 1), do(vmove(robl, 1),
do(grab(robl, endl), s0))))))))) ;

S = do(vmove(robl, 1), do(vmove(rob2, 1), do(vmove(rob2, 1), do(vmove(robi, 1),
do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(robl, 1), do(vmove(robl, 1),
do(grab(robl, endl), s0)))))))))

Yes

9.2 Correctness of the Prolog implementation

In this section we prove the correctness of the interpreter presented above under suitable
assumptions. Let C be the set of axioms for Trans, Final, and Do plus those needed
for the encoding of programs as first-order terms, and D the domain theory. To keep
notation simple we denote the condition corresponding to a situation calculus formula ¢
with the situation argument replaced by now, simply by ¢. Similarly for Prolog terms
corresponding to actions and programs.

Our proof of correctness relies on the following assumptions:

e The domain theory D enforces the unique name assumption (UNA) on both actions
and objects.!®

16UNA is already enforced for programs, see Appendix A.
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The predicate sub/4 correctly implements substitution for both programs and for-
mulas.

The predicate holds/2 satisfies the following properties:

1. If a goal holds(d, s), with free variables only on object terms and action terms,
succeeds with computed answer 6, then D = V¢[s]d (by Vi, we mean the
universal closure of ).

2. If a goal holds(¢, s), with free variables only on object terms and action terms,
finitely fails, then D = V—¢[s].

The predicate poss/2 satisfies the following properties:
1. If a goal poss(a, s), with free variables only on object terms and action terms,
succeeds with computed answer 6 then D = VPoss(a, s)6.

2. If a goal poss(a, s), with free variables only on object terms and action terms,
finitely fails, then D = V—Poss(a, s).

The Prolog interpreter flounders (and hence does not return) on goals of the form
not trans(4, s, _, _)!7 with non-ground 4 and s.18

Observe that the hypotheses required for sub/4, holds/2 and poss/2 do hold when
these predicates are defined as above and run by an interpreter that flounders on non-
ground negative goals (see [34]).

Theorem 8: Under the hypotheses above the following holds:

1. If a goal do(6,s,s'), where & and s may contain variables only on object terms
and action terms, succeeds with computed answer 6, then C UD = VDo(4,s,s')8,
moreover s'0 may contain free variables only on object terms and action terms.

2. If a goal do(6, s,s"), where 6 and s may contain variables only on object terms and
action terms, finitely fails, then C UD |=V—Do(4, s, s').

To make the arguments more apparent we will first prove the theorem without con-
sidering procedures. Then we show how introducing procedures affects the proof.

1"From a formal point of view not trans(d,s,_, ) is a shorthand for not aux(d, s) with aux/2 defined
as aux(d, s) :— trans(d, s, -, -).

18This form of floundering arises for example when we expand 7 in programs of the form 7z.(d;(2) ))
d2(2z)). Notably it does not arise for their variants w2z.(¢(2)?; (61(2) ) 62(2)))-
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Without procedures

Theorem 8 is an easy consequence of Lemma 2 and Lemma 3 below.

Lemma 2: Under the hypotheses above the following holds:
e The predicate trans/4 satisfies the following properties:

1. If a goal trans(6,s,d',s'), where § and s may contain variables only on ob-
ject terms and action terms, succeeds with computed answer 6, then C UD =
V Trans(0, s, 0", s')0, moreover 6’6 and s'6 may contain free variables only on
object terms and action terms.

2. If a goal trans(d,s,d',s"), where 6 and s may contain variables only on object
terms and action terms, finitely fails, then C UD = VY- Trans(d, s, d',s').

e The predicate final/2 satisfies the following properties:

1. If a goal £inal(é, s), where § and s may contain variables only on object terms
and action terms, succeeds with computed answer 6, then CUD = VFinal(d, s)6.

2. If a goal £inal(d, s), where 6 and s may contain variables only on object terms
and action terms, finitely fails, then C UD = V—Final(6, s).

Proof: First we observe that since we are not considering procedures, Trans and Final
satisfy the axioms 7 and F from Sections 4 and 5. We prove simultaneously 1 and 2 for
both trans/4 and final/2 by induction on the program §. Here we show only the case
§ =01 )) 62 for trans/4.

Success. If trans(d; ) 0q,8,0', s') succeeds with computed answer 6, then: either (i)
trans(dy, s, 01, s') succeeds with computed answer 6, and 6 = 6'6; where 8/ = mgu(¢d', 67 ))
d2) is the most general unifier [23] between ¢’ and 6] )) d2; or (ii) trans(dy, s, -, -) finitely
fails and trans(ds, s, 05, s') succeeds with computed answer 0y and 8 = mgu(d', 6, )) §5)0s.
In case (i) by the induction hypothesis CUD =V Trans(d1, s, 61, s')61, and s'6; and §76; may
contain free variables only on object terms and action terms. In case (ii) by the induction
hypothesis CUD = V= Trans(d1, s, 0%, s1), CUD =V Trans(d2, s, 05, s')02, and s'0s and 650,
may contain free variables only on object terms and action terms. Considering

Trans(6y ) 0s,8,0',s") = (3)
Fy.6' = (7)) 62) A Trans(dy,s,7,s") V
Iy.6" = (61 ) v) A Trans(62, 8,7, s") A =3¢, 8" Trans(é4, s, ¢, s")
and how € is defined in both cases, we get the thesis.
Failure. If trans(d; )) d2, 5,0, s') finitely fails, then: (i) for all 6] such that ¢’ unifies

with 8] )) b2, trans(dy, s, 7, s') finitely fails, hence by the induction hypothesis C UD =
V= Trans(d1,s,07,s') ANd" = (8] ) 02)); (ii) either trans(dy, s, -, -) succeeds, hence CUD =
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361, s1. Trans(d1, s, 01, s1), or for all &4 such that ¢’ unifies with é; )) d5, trans(ds, s, 65, s')
finitely fails, hence by the induction hypothesis C UD = V- Trans(ds, s, 85, 8') AN 6' = (61 ))
05)). Considering (3) and the UNA for object, actions, and program terms, we get the
thesis. O

Lemma 3: Under the hypotheses above the following holds:

1. If a goal transx(d,s,d',s'), where 6 and s may contain variables only on ob-
ject terms and action terms, succeeds with computed answer 6, then C U D
Y Trans*(0, s, 0", s')0, moreover 6’6 and s'6 may contain free variables only on ob-
ject terms and action terms.

2. If a goal transx(9, s,d', s'), where 6 and s may contain variables only on object terms
and action terms, finitely fails, then C U D = V-Trans"(4,s,d',s').

Proof: Using Lemma 2. Success. Then there exists a successful SLDNF-derivation
[23] . Such a derivation must contain a finite number & of selected literals of the form
trans*(dy, s1, 02, S2). The thesis is proven by induction on such a number k. Failure.
Then there exists a finitely failed SLDNF-tree [23] formed by failed SLDNF-derivations
each of which contains a finite number of selected literals of the form trans*(dy, s1, 02, $2).
The thesis is proven by induction on the maximal number of selected literals of the form
trans*(dy, $1, 0a, S2) contained in the SLDNF-derivations forming the tree. O

With procedures

Since we do not have nested procedures in the Prolog implementation, we can avoid
carrying around the procedure environment. Hence we can simplify the constraints on
procedures in the definition of Trans and Final from Section 7 to respectively:

T(P('E), S, 617 Sl) = T((SP%i]a S, 61) Sl)
F(P(t),s) = F(bpy), s)

To prove the soundness of the interpreter in presence of procedures, we need only redo
the proof of Lemma 2.

We now prove Lemma 2 as follows. Assume, for the moment, that Trans and Final
satisfy the axioms 7 and F from Sections 4 and 5 plus the following ones:

Trans(P(t),s,8',s') = T?"U//LS(&P?[};], s,0', ")

Final(P(t), s) Final(c?p%’;], s)

Then we follow the line of the proof given above. However we need to deal with the
additional complication that due to procedure expansions the program now does not
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get always simpler anymore. To this end, we observe that every terminating SLDNF-
derivation contains a finite number of selected literals of the form trans(P(t), s1, 2, 52)
(final(P ﬂ s1)). Hence we can prove the lemma using the following three nested induc-
tlons

e Induction on the rank of successful SLDNF-derivations/finitely failed SLDNF-trees
(i.e., the depth of nesting of auxiliary finitely failed SLDNF-trees) [23].

e Induction on the number of selected literals of the form trans(P(%), sy, 2, ss)
(final(P(f),s;)) occurring in a successful SLDNF-derivation, for success. Induc-
tlon on the max1mal number of selected literals of the form trans(P(%), s1, 02, 52)
(final(P(f),s;)) contained in the SLDNF-derivations forming the finitely failed
SLDNF -tree, for failure.

e Induction on the structure of the program.

Now we come back to the assumption we made above for Trans and Final. In fact
Final, being closed under the constraints on F' in its definition, does actually satisfy the
axioms F from Sections 4 and 5 as well as the one above. However, Trans, which is not
closed under the constraints for 7" in its definition, does not satisfy the assumption, in
general. However, we get the desired result by noticing that the equivalences assumed for
Trans form a conservative extension (see e.g. [37]) of domain theory D plus the axioms
needed for the encoding of programs as first-order terms, and appealing to the following
general result:

Proposition 1: Let T be a consistent theory, TU{®} a conservative extension of I' where
® is a closed first-order formula, and P a predicate occurring in ® but not in I'. Then
for any tuple of terms t:

1. TU{®} |z VP(t) implies T = V(VZ.[®5 > Z(1)])
2. TU{®} = V-P(t) implies T = ¥(-VZ.[®} D Z()])

Proof: (1) by contradiction. Suppose there exists a model M of I" and variable assignment
o with 0(Z) = R for some relation R, such that M, = ®% but M,o = Z(t). Now
consider the model M’ of T' obtained from M by changing the interpretation of P to
PM' = R. Then M' = & and M',o i P(t), which contradicts T U {®} = VP(t). (2) by
contradiction. Suppose exists a model M of I' and a variable assignment ¢ such that
M,o = VZ.[®5 O Z(t)]. Then for every variable assignment o’ obtained from o by
putting o(Z) = Q if M,o’ = ®% then M,o' = Z(f). Let M’ be an expansion of M
such that M’ = ®. Then for Q = PM' we have M, o’ = Z(t), i.e., M',c = P(t), which
contradicts T' U {®} |= V-P(t). O

Intuitively, Proposition 1 says that when we constrain a relation P by a first-order
statement, then every tuple that is forced to be “in” or “out” of the relation, will also
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be similarly “in” or “out” of the relation obtained by the second-order version of the
statement. Thus if Trans(d, s, d’, s') holds for the first-order version of Trans, it must also
hold for the second-order version.

10 Discussion

With all of this procedural richness (nondeterminism, concurrency, recursive procedures,
priorities, etc.), it is important not to lose sight of the logical framework. ConGolog
is indeed a programming language, but one whose execution, like planning, depends on
reasoning about actions. Thus, a crucial part of a ConGolog program is the declarative
part: the precondition axioms, the successor state axioms, and the axioms characterizing
the initial state. This is central to how the language differs from superficially similar
“procedural languages”. A ConGolog program together with the definition of Do and
some foundational axioms about the situation calculus #s a formal logical theory about
the possible behaviors of an agent in a given environment. And this theory must be used
explicitly by a ConGolog interpreter.

In contrast, an interpreter for an ordinary procedural language does not use its se-
mantics explicitly. Standard semantic accounts of programming languages also require
the initial state to be completely specified; our account does not; an agent may have
to act without knowing everything about its environment. Our account accommodates
domain-dependent primitive actions and allows the interactions between the agent and its
environment to be modeled — actions may change the environment in a way that affects
what actions can later occur [8].

As mentioned, an important motivation for the development of ConGolog is the need
for tools to implement intelligent agent programs that are “reactive” in the sense that
they reconsider their plans in response to significant changes in their environment. Thus,
our work is related to earlier research on resource-bounded deliberative architectures such
as [2] (IRMA) and [30] (PRS), and agent programming languages that are to some ex-
tent based on this kind of architectures, such as AGENT-0 [38], AgentSpeak(L) [29], and
3APL [16]. One difference is that in ConGolog, domain dynamics are specified declara-
tively and the specification is used automatically in program execution; there is no need
to program the updating of a world model when actions are performed. On the other
hand, plan selection or generation is not specified using rules; it must be coded up in
the program; this produces more complex programs, but there is perhaps less overhead.
Finally, agents programmed in ConGolog can be understood as executing programs, al-
beit in a smart way; they have a simple operational semantics; architectures like IRMA
and PRS, and languages like AGENT-0, AgentSpeak(L), and 3APL have more complex
execution models.

Other programming languages share features with ConGolog. The agent programming
language Concurrent MetateM [11] supports concurrency and uses a temporal logic to
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specify the behavior of agents. Bonner and Kifer [3] have proposed a logical formalism to
specify concurrent database transactions. Also related are concurrent constraint languages
such as CCP [35] and HCC [14], which support incompletely specified information states
and concurrency. But unlike ConGolog, these languages generally restrict the kinds of
constraints allowed in order to make entailment easy to compute. In ConGolog, the action
theory is what determines how how states are updated. Also in constraint languages,
control seems somewhat deemphasized. van Eijk et al.’s [10] have proposed an agent
language partly inspired from CCP.

The simple Prolog implementation of the ConGolog interpreter described in section 8
is at the core of a toolkit we have developed for implementing ConGolog applications. The
interpreter in the toolkit is very similar to the one described, but uses a more convenient
syntax, performs some error detection, and has tracing facilities for debugging.

The toolkit also includes a module for progressing the initial state database. To
understand the role of this component, first note that the basic method used by our
implementation of action theories for determining whether a condition holds in a given
situation (i.e. evaluate holds(¢, do(ay, ..., do(a,, Sy)...) is to perform regression on the
condition to obtain a new condition that only mentions the initial situation and then
query the initial situation database to determine whether the new condition holds. But
regressing the condition all the way back to the initial situation can be quite inefficient
when the program has been running for a while and many actions have been performed.
If the program is willing to commit to a particular sequence of actions, it is possible
to progress the initial situation theory to a new initial situation theory representing the
state of affairs after the sequence of actions.!® Subsequent queries can then be efficiently
evaluated with respect to this new initial situation database. The progression module
performs this updating of the initial situation database.

The toolkit also includes a graphical viewer (see figure 1) for debugging ConGolog
programs and delivering process modeling applications. The tool, which is implemented
in Tcl/Tk, displays the sequence of actions performed by the ConGolog program and
the value of the fluents in the resulting situation (or any situation along the path). The
program can be stepped through and exogenous events can be generated either manually
or at random according to a given distribution. The manner in which state information
is displayed can be specified easily and customized as required.

Finally, a high-level Golog Domain Specification language (GDL) similar to Gelfond
and Lifschitz’s A [12] has also been developed. The toolkit includes a GDL compiler that
takes a domain specification in GDL, generates successor state axioms for it, and then
produces a Prolog implementation of the resulting domain theory.

ConGolog has already been used in various applications. Lespérance et al. [19] have
implemented a “reactive” high-level control module for a mobile robot in ConGolog. The

19Tn general, the progression of an initial situation database may not be first-order representable; but
when the initial situation is completely known (as we are assuming in this implementation), its progression
is always first-order representable and can be computed efficiently; see [22] for details.
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Figure 1: The ConGolog toolkit’s graphical viewer.

robot performs a mail-delivery task. The ConGolog control program involves a set of
prioritized interrupts that react to events such as the robot arriving to a customer’s
mailbox or failing to get to a mailbox due to obstacles, as well as new shipment orders
with varying degrees of urgency being received. The ConGolog controller was interfaced
to navigation software and successfully tested on a RWI B12 mobile robot.

Work has also been done on using ConGolog to model multiagent systems [36]. In this
case, the domain theory includes fluents that model the beliefs and goals of the system’s
agents (this is done by adapting a possible-world semantics of such mental states to the
situation calculus). A ConGolog program is used to specify the complex behavior of the
agents in such a system. A simple multiagent meeting scheduling example is specified in
[36]. ConGolog-based tools for specifying and verifying complex multiagent systems are
being investigated.

Finally, in [7], the transition semantics developed in this paper is adapted so that
execution can be interleaved with program interpretation in order to accommodate sensing
actions, that is, actions whose effect is not to change the world so much as to provide
information to be used by the agent at runtime.

In summary, we have seen how, given a basic action theory describing an initial state
and the preconditions and effects of a collection of primitive actions, it is possible to
combine these into complex actions for high-level agent control. The semantics of the
resulting language end up deriving directly from that of the underlying primitive actions.
In this sense, the solution to the frame problem provided by successor state axioms for
primitive actions is extended to cover the complex actions of ConGolog. So ConGolog
can be viewed as an action theory (that supports complex actions), as a specification
language, and as an implementation language, and has been used in all three ways.
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There are, however, many areas for future research. Among them, we mention: han-
dling non-termination, that is, developing accounts of program correctness (fairness, live-
ness etc.) appropriate for controllers expected to operate indefinitely as in [9], but with-
out giving up the agent’s control over nondeterministic choices that characterizes the
Do-based semantics for terminating programs; and also incorporating utilities, so that
nondeterministic choices in execution can be made to maximize the expected benefit.
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A Appendix: Programs as Terms

In this section, we develop an encoding of programs as first-order terms. Although some care
is required (e.g. introducing constants denoting variables and defining substitution explicitly in
the language), this does not pose any major problem; see [18] for an introduction to problems
and techniques in this area.

We add to the sorts Sit, Obj and Act of the Situation Calculus, the following new sorts:
Idz, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV and PROG.

Intuitively, elements of Idz denote natural numbers, and are used for building indexing
functions. Elements of PseudoAct, PseudoObj, PseudoSit and PseudoForm are syntactic devices
to denote respectively actions, objects, situations and formulas within programs. Elements of
ENYV denote environments, i.e sets of procedure definitions. And finally, elements of PROG
denote programs, which are considered as simply syntactic objects.

A.1 Sort Ildz

We introduce the constant 0 of sort Idz, and a function succ : Idz — Idz. For them we enforce
the following unique name axioms:

succ(i) #0
succ(i) = succ(i') Di =17

We define the predicate Idx : Idz as:
Idx(1) = VX.[... D X(i)]

where ... stands for the universal closure of

X(0)
X(i) D X(succ(s))

Finally we assume the following domain closure axiom for sort Idz:

Vi.1dx(7)

A.2 Sorts PseudoSit, PseudoQObj, PseudoAct
The languages of PseudoSit, PseudoObj and PseudoAct are as follows:

o A constant Now : PseudoSit.

e A function nameOf g, : Sort — PseudoSort for Sort = Obj, Act. We use the notation [z]
to denote name0f g, (), leaving Sort implicit.

e A function vargy, : Idt — PseudoSort for Sort = Obj, Act. We call terms of the form
vargor: (1) pseudo-variables and we use the notation z; (or just x,y,z) to denote var gy (i),
leaving Sort implicit.
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e A function f : PseudoSort; X ... x PseudoSort, — PseudoSort,1 for each fluent or
nonfluent function f of sort Sorty x ... x Sort, — Sort,+1 with Sort; = Obj, Act, Sit in
the original language (note that if n = 0 then f is a constant).

We define the predicates PseudoSit : PseudoSit, PseudoObj : PseudoObj and PseudoAct :
PseudoAct respectively as:

PseudoSit(:L') = VPg, PObja PAct-[ . D PSit(-'L')]
PseudoObj(x) = VPs;t, Pobj, Pact-[ --- D Popj(z)]
PseudoAct(z) = VPsi, Pobj, Pact-[ --- D Pact()]

where ... stands for the universal closure of

Ps;i(Now)
Pgs,ri(name0f gyt () for Sort = Obj, Act
Psori(2;) for Sort = Obj, Act
Psort(21) A oo A Psort () D Psore(f(z1...,2y)) (for each f)

We assume the following domain closure axioms for the sorts PseudoSit, PseudoObj and

PseudoAct:
Vz.PseudoSit(x)

Vz.PseudoObj(x)
Vz.PseudoAct(x)

We also enforce unique name axioms for them, that is, for all functions g, ¢’ of any arity (including
constants) introduced above:

9(z1, ., 20) 9 (Y15, Ym)
g(@1, .. 2n) =91, Yn)DTL =LA .. ATy = Yn

Observe that the unique name axioms impose that name0f(z) = name0f(y) Dz = y but do not
say anything on domain elements denoted by x and y since these are elements of Act or Obj.
Next we want to relate pseudo-situations, pseudo-objects and pseudo-actions to real sit-
uations, object and actions. In fact we do not want to relate all terms of sort PseudoObj
and PseudoAct to real object and actions, but just the “closed” ones, i.e. those in which no
pseudo variable z; occur. To formalize the notion of closedness, we introduce the predicate
Closed : PseudoSort for Sort = Sit, Obj, Act, characterized by the following assertions?®

Closed(Now)

Closed(name0f(z))

—Closed(z;)
Closed(f(#z1,...,2n)) = Closed(z;)A...AClosed(z,) for each f

Closed terms of sort PseudoObj and PseudoAct are related to real objects and actions by
means of the function decode : (PseudoSort x Sit — Sort) for Sort = Sit, Obj, Act. We use the

20We say the following theory is “characterizing” since it is complete, in the sense that it partitions
the elements in PseudoSort into those that are closed and those that are not.
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notation z[s] to denote decode(z, s). Such a function is characterized by the following assertions:

decode(Now,s) = s
decode(name0f(z),s) =z
decode(f(z1...,x,),s) = f(decode(xy,s),...,decode(xy,,s)) (for each f)

A.3 Sort PseudoForm

Next we introduce pseudo-formulas used in tests. Specifically, we introduce:

e A function p : PseudoSorty X ... x PseudoSort, — PseudoForm for each nonfluent/fluent
predicate p in the original language (not including the new the predicates introduced in
this section).

e A function and : PseudoForm x PseudoForm — PseudoForm. We use the notation p; A ps
to denote and(p1, p2).

e A function not : PseudoForm — PseudoForm. We use the notation —p to denote not(p).

e A function someg,.; : PseudoSort x PseudoForm — PseudoForm, for PseudoSort =
PseudoObj, PseudoAct. We use the notation Jz;.p to denote some(varg, (i), p), leaving
Sort implicit.

We define the predicate PseudoForm : PseudoForm as:
PseudoForm(p) = VPrym-[--- O Prorm(p)]

where ... stands for the universal closure of

(for each p)
D Prorm(p1 A p2)
D Prorm ("P)
D PForm(Elzi-P)

PForm(p(xla ‘- axn))
Prorm (pl) A Prorm (P2)
PForm (p)

Prorm (,0)

We assume the following domain closure axiom for the sort PseudoForm:
Vp.PseudoForm(p).

We also enforce unique name axioms for pseudo-formulas, that is, for all functions g, g’ of any
arity introduced above:

g(w1,---,$n) #gl(yla'--aym)
g(z1,. . xn) =9(Y1, - Yn)DTI =YL A ... ATy = Yn

Next we formalize the notion of substitution. We introduce the function sub : PseudoSort x
PseudoSort x PseudoSort’ — PseudoSort’ for Sort = Obj, Act and Sort' = Sit, Obj, Act. We
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use the notation t; to denote sub(z,y,t). Such a function is characterized by the following
assertions:

Nowy = Now

name0£(t), = name0£(t)

zigi =y

r#z; DO Ziz = z;

f(t1,. . tn)y = £(t13,- -, tny) (for each £)

We extend the function sub to pseudo-formulas (as third argument) as follows:

P(t1,. .- tn)y = P(t1y,. .. tny) (for each p)
(p1 A p2)y = (p1)y A (p2)y

(=p)y = —(p)y

(3. p) =Jz;.p

#2z O (3zi-p), = 3zi-(p})

Next we extend the predicate Closed to pseudo-formulas in a natural way:

Closed(p(z1,...,2,)) = Closed(zi)A...AClosed(z,) foreachp
Closed(p1 /\ p2) = Closed(pi) A Closed(pz)
Closed(—p) = Closed(p:)
Closed(dz;.p) = Vy.Closed (pnameof(y )

We relate closed pseudo-formulas to real formulas by introducing a predicate Holds
PseudoForm x Sit, characterized by the following assertions:

Holds(p(z1,-.-,%n),s) = p(decode(zxy,s),...,decode(x,,s)) (for each p)
Holds(p1 /\ p2,8) = Holds(pi,s) AHolds(ps,s)
Holds(—p,s) = —Holds(p,s)
Holds(3z.p,s) = EIy.Holds(pIZlameof(y), s)

where y in the last equation is any variable that does not appear in p. We use the notation ¢[s]
to denote Holds(g, s).

A.4 Sorts PROG and ENV

Now we are ready to introduce programs. Specifically, we introduce:
e A constant nil: PROG.

e A function act : PseudoAct — PROG. As notation we write simply a to denote act(a)
when confusion cannot arise.

e A function test : PseudoForm — PROG. We use the notation p? to denote test(p).
e A function seq : PROG x PROG — PROG. We use the notation é;;02 to denote
seq(d1,02).
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A function choice : PROG x PROG — PROG. We use the notation d; | d2 to denote
choice(dy,d2).

e A function iter : PROG — PROG. We use the notation §* to denote iter(d).

e Two functions pickg,,, : PseudoSort x PROG — PROG, where PseudoSort is either
PseudoObj or PseudoAct. We use the notation 7z;.0 to denote pickg,,(vargy(i),d),
leaving Sort implicit.

e A function if : PseudoForm x PROG x PROG — PROG. We use the notation if p then
d1 else dy to denote if(p, d1,d2).

e A function while : PseudoForm x PROG — PROG. We use the notation whilep do §
to denote while(p,d).

e A function conc : PROG x PROG — PROG. We use the notation d; || d2 to denote
conc(dy, d2).

e A function prconc : PROG x PROG — PROG. We use the notation d; )) d2 to denote
prconc(dy, d2).

e A function iterconc : PROG — PROG. We use the notation 8l to denote iterconc(d).

To deal with procedures we need to introduce the notion of environment together with that
of program. We introduce:

e A finite number of functions P : PseudoSort; x ... X PseudoSort, — PROG, where
PseudoSort; is either PseudoObj or PseudoAct. These functions are going to be used as
procedure calls.

e A function proc : PROG x PROG — PROG. This function is used to build procedure
definitions and so we will force the first argument to have the form P(z T ,Zj, ), where

z1...zp are used to denote the formal parameters of the defined procedure. We use the
notation proc P(zy,...,zn) d end to denote proc(P(zy,...,zn),d).

e A constant € : ENV, denoting the empty environment.

e A function addproc : ENV x PROG — ENV. We will restrict the programs allowed
to appear as the second argument to procedure definitions only. We use the notation
&;proc P(Z) § end to denote addproc(€, proc P(Z) § end).

e A function pblock : ENV x PROG — PROG. We use the notation {£;d} to denote
pblock(&,d).

e A function c_call : ENV x PROG — PROG. We will restrict the programs allowed to
appear as the second argument to procedure calls only. We use the notation [£ : P(t-)] to
denote c_call(&,P(t)).
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We next introduce a predicate defined : PROG X ENV meaning that a procedure is defined
in an environment. It is specified as:

defined(c,€) = VD.[... D D(c&)]

where ... stands for
D(P(Z),e; proc P(¥) d end)

D(c,&") D D(c,&'54d)

Observe that procedures P are only defined in an environment £, and that the parameters the
procedure is applied to do not play any role in determining whether the procedure is defined.
Now we define the predicate Prog : PROG and the predicate Env : ENV as:

Prog(4)
Env(&)

VPprog,Penv-| ... D Pproc(9)]
VPprogG, Penv:[ --- D Panv(€)]

where ... stands for the universal closure of

Pprog(nil)
Prroc(act(a)) (a pseudo-action)
Pproc(p?) (p pseudo-formula)
Pprog(91) A Pproc(62) O Pproc(d1;62)
Pproc(d1) A Prroc(92) O Pprog(d1 | 02)
Pproc(6) O Pproc(0*)
Pproc(8) DO Pproc(mz;.0)
PpRog((51) A Ppgog((SQ) D) PpRog(lf p then 01 else 52)
Pproc(d) D Pprog(whilep do d)
Pprog(01) A Prrog(62) D Pprog(d1 || d2)
Pproc(01) A Prroc(d2) D Pprocg(d1 ) d2)
Pprog(d) D PPROG(5”)
PpRog(P(.’L‘l, - ,.’En)) (fOI‘ each P)
Pgnv(€) A Pproc(6) D Prroc({€;4})
Pgny(€) A defined(P(Z),€) O Pproc([€ : P(z1,...,7n)])

Pgnv(e)
Ppnv(E) A Pproc(8) A ~defined(P(2),€) A (AR 1%, # i) O
Penv(€;proc P(z;,,...,2;,) § end)

We assume the following domain closure axioms for the sorts PROG and ENV:
V4.Prog(d) VE Env(€).

We also enforce unique name axioms for programs and environments, that is for all functions
g, g’ of any arity introduced above:

g(l']_,---,l'n) #gl(yla""ym)
9(x1,. .y 2n) =9(Y1y - Yn)DTI =YL A ... ATy = Yn
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We extend the predicate Closed to PROG by induction on the structure of the program
terms in the obvious way so as to consider closed, programs in which all occurrences of pseudo-
variables z; are bound either by 7, or by being a formal parameter of a procedure. Only closed
programs are considered legal.

We introduce the function resolve : ENV x PROG x PROG — PROG, to be used to
associate to procedure calls the environment to be used to resolve them. Namely, given the

P(7)

[£P(H)]
replaces P(f) by c_call(£,P()) in order to obtain static scope for procedures. It is obvious
how the function can be extended to resolve whole sets of procedure calls whose procedures are
defined in the environment £. Formally this function satisfies the following assertions:

procedure P defined in the environment £, resolve(&,P(t),d) denoted by (6) suitably

(nil)fg(?( 7 = nal
(@re = o
b(z)
Piep@y = P71 )
(O3 2)i ey = (U mGay ()cmgay
(61| 82) ey (&)@% | (B2) ey
(r2:0) ey = i) nge
(5*)fg>)(5)} ((J)I[Dg(?(z)])*
(if p then §; else 52)?5(?(5)} if p then (Jl)f’éa?( 7 else (62)[( )(i)]
(while p do J)Fg(?’)(f)} while p do ( F;?((:’v’)
(61 1l 2) £ ey (cﬁ)m I (@ )};?
61) &)ime) = (O ) (B2)ae
()ien = ((5)[5(;)( )])”
C@)ipw = [€:P@)]
(Q(f))fg(i,)(f)} = Qi) for any procedure call Q(¢) different from P(Z)
(6537 _ { {€'; 6} if procedure P is (re)defined in &’
1 IER(@)] {E' (0) £(P( } otherwise
([€":Q _] P(z = [£':Q(t)] for every procedure call Q() and environment &’

Finally, we extend the function sub to PROG (as third argument) again by induction on the
structure of program terms in the natural way considering 7 as a binding construct for pseudo-
variables and without doing any substitutions into environments. sub is used for substituting
formal parameters with actual parameters in contextualized procedure calls, as well as to deal
with 7. We also introduce a function c_body : PROG x ENV — PROG to be used to return the
body of the procedures. Namely, c_body(P(Z), ) returns the body of the procedure P in £ with
the formal parameters substituted by the actual parameters Z. Formally this function satisfies
the following assertions:

c_body(P(%),E; proc P(¥) 6 end) = 52;
c_body(P(Z), £; proc Q(Y) & end) = c_body(P(Z),E) (Q#P)
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A.5 Consistency preservation

The encoding presented here preserves consistency as stated by the following theorem.

Theorem 9: Let H be the azioms defining the encoding above. Then every model of an action
theory D (involving sorts Sit, Act and Obj) can be extended to a model of HUD (involving the
additional sorts Idz, PseudoSit, PseudoAct, PseudoObj, PseudoForm, ENV and PROG).

Proof: It suffices to observe that for each new sort (Idz,..., PROG) H contains:

e A second-order axiom that explicitly defines a predicate which inductively characterizes
the elements of the sort.

e An axiom that closes the domain of the new sort with respect to the characterizing pred-
icate.

e Unique name axioms that extend the interpretation of = to the new sort by induction on
the structure of the elements (as imposed by the characterizing axiom).

e Axioms that characterize predicates and functions, such as Closed, decode, sub, Holds,
etc., by induction on the structure of the elements of the sort.

Hence, given a model M of the action theory D, it is straightforward to introduce domains
for the new sorts that satisfy the characterizing predicate, the domain closure axioms, and the
unique name axioms for the sort, by proceeding by induction on the structure of the elements
forced by the characterizing predicate, and then establishing the extension of the newly defined
predicates/functions for the sort. O
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B Appendix: Proof of Theorem 1 — Equivalence be-
tween the Do’s for Golog programs

In this section, we prove Theorem 1, i.e. the equivalence of the original definition of Do and
the new one given in this paper, in the more general language which includes procedures. To
simplify the presentation of the proof, we use the same symbols to denote terms and elements
of the domain of interpretation; the meaning will be clear from the context.

B.1 Alternative definitions of Trans and Final

For proving the following results, it is convenient to reformulate the definitions of Trans and
Final:

e Trans(d,s,d0',s") = VI.[... D T(4,s,d,s")], where ... stands for the conjunction of
the universal closure of the following implications:

Poss(a[s],s) D T(a,s,nil do(a[s], s))
¢ls] D T(47,s,nil,s)
T(3,8,0',8") D T(d7,8,0'57,s")
Final(vy,s) NT(4,s,d',s") D T(v;d,s,8,s")
T(4,s,0',8") D T(d]~,s, 5' s")
T(6,5.8,5) > T(v|558,5)
T(62,8,0',s") D T(wv.d,s,d,s")
T(d,s,8',s") D T(6%s, 5’ 6* s')
T(dg(ap@ s,0',8") DO T({Enwv;d},s,d,s")
T({Env; (513T },5,68',8") O T([Env:P(t),s,d,s")
e Final(d,s) = VYF.[... D F(4,s)], where ... stands for the conjunction of the universal
closure of the following implications:
True O F(nil,s)
F(6,s)NF(y,s) D F(§7,s)
F(é,s) D> F(6|7,s)
F(,s) D F(v]4s)
F(63,s) D F(mv.d,s)
True DO F(6*s)
Pl por® 2 P({Bnv; ), 5
F({Env;dp:-’[’;’],s) > F([Env:P(t)],s

Theorem 10: With respect to Golog programs, the definitions above are equivalent to the ones
given in Section 7 of the paper.
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Proof: To prove this equivalence, consider first the following general results, which are a direct
consequence of the Tarski-Knaster fixpoint theorem [40]. If

5@ = VZ[[v§.e(Z,4)2Z(§)]0Z(7)] (4)

and ®(Z, ¥) is monotonic (i.e. VZ1, Z2.[V§.Z1(§) D Z2(Y)] D [V§.®(Z1, §) DP(Z2, §)]), then we get
the following consequences?!

S@E@) = &(S,7) (5)
7) = VZIV§.Z(§) = ®(Z,9)|>2(3). (6)

Now it is easy to see that the above definition of Trans and Final can be rewritten as (4) and
that the resulting ® is indeed monotonic (in particular it is syntactically monotonic since the
predicate variables T and F' do not occur in the scope of any negation). Thus, by the Tarski-
Knaster fixpoint theorem, the above definitions can be rewritten in the form of (6). Once in
this form it is easy to see that for Golog programs they are equivalent to those introduced in
Section 7. O

B.2 Do, is equivalent to Doy

Let Do; be the original definition of Do in [20] extended with Doy(nil, s, s’) “l ¢ — 5 and

Do([Env : P(1)],s,5") def Do({Env; P()},s,s'), and Doy the new definition in terms of Trans
and Final. Also, we do not allow procedure calls for which no procedure definitions are given.

Lemma 4 : For every model M of C, there ezist 81,81...0pn,8, such that M [
Trans(d;, i, 0i+1, Si+1) for i =1,...,n—1 if and only if M |= Trans* (61, s1,0n, Sn)-

Proof: = By induction on n. If n = 1, then M |= Trans*(é1,s1,01,51) by definition of
Trans*. If n > 1, then by induction hypothesis M = Trans*(d2, s2,6n, sn), and since M =
Trans(d1, s1, 02, s2), we get M = Trans*(d1, s1,0n, Sn) by definition of Trans*.

< Let R be the relation formed by the tuples (d1, s1, dn, $r) such that there exist d1,81 ..., sp
and M = Trans(d;, i, 0i+1,8i+1) for ¢ = 1,...,n — 1. It is easy to verify that (i) for all 4, s,
(6,8,68,8) € R; (ii) for all §,s,d',s',8",s", M |= Trans(d,s,d',s') and (¢§',s',8",s") € R implies
(6,s,0",s"yeR. O

Lemma 5: For every model M of C, M |= Do1(4,s,s") implies that there exist 81,81 ...0n, Sn
such that 61 = 6, s1 = 8, s, = §', M = Final(n,sy), and M = Trans(d;, si,di+1,Si+1) for
t1=1,...,n—1.

Proof: We prove the lemma by induction on the structure of the program. We only give details
for the most significant cases.

2In fact, (5) is only mentioned in passing and not used in the proof.
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1. a (atomic action). M |= Doi(a,s,s’) iff M = Poss(a[s],s) and s’ = do(a[s],s). Then
M = Trans(a, s, nil, do(a[s], s)), and hence the thesis.

2. ;7 (sequence). M = Doy(8;7,s,s') iff M |E Doy(d,s,s") and M | Doy(y,s",s").

Then by induction hypothesis: (i) there exist d1,s1...,0, sg such that §; = 4, s1 = s,
s, = 8", M = Final(dy,s;) and M = Trans(d;, si,0i11,8) for i = 1,...,k — 1; (ii)
there exist g, Sk - - -, Vn, Sp such that v1 = v, s = §", s, = s, M = Final(vn, sp) and
M = Trans(vi, SiyYit1,8i) for i = k,...,n— 1.

Since Trans itself is closed under the assertions in its definition we have that: M =
Trans(d;, 8i,0i+1, Si+1) implies M |= Trans(d:;7, Si,0i+1;7, Si+1). Moreover M
Final(dk, sx) and M = Trans(yg, Sk, Ye+1, Sk+1) implies M = Trans(dx; Vi, Sky Ve+1, Sk+1)-
Similarly in the case kK = n we have that, since Final is also closed under the assertions
in its definition M |= Final(dy, s;) and M |= Final(vy, s) implies M = Final(dg; vk, Sk)-
Hence the thesis.

3. 0* (iteration). M |= Doy(6*,s,s") iff M = VP.[ ... DP(s,s')] where ... stand for the
following two assertions: (i) Vs.P(s,s); (ii) Vs, s',s".Do;1 (8, s, s") A P(s",s")DP(s, s').
Consider the relation Q defined as the set of pairs (s,s’) such that: there exist
§1,81..-,0n,8, with 6 = 6% s1 = s, s, = 8, M | Final(é,,s,) and M |
Trans(d;, 8i,0;+1,8;) for i = 1,...,n — 1. To prove the thesis, it is sufficient to show
that Q satisfies the two assertions (i) and (ii).

e (i) Let 6, = 0, = 0%, 81 = s, = s; since M | Final(6*, s), it follows that for all s,

(s,8) € Q.

e (ii) By the first induction hypothesis (the induction on the structure of the program):
M |= Doy (6, s,8") implies that there exist 1,81 ..., d, Sk such that §; = 4, s1 = s,
sy = 8", M | Final(d,s;) and M | Trans(d;, S, 0it1,8i41) for i = 1,...,k — 1.
This implies that M |= Trans(d;; 6%, si, 0i+1;0%,8i+1) for ¢ : 2,..., k — 1. Moreover,
we must also have M |= Trans(d*, s1, d2; 6%, s2).

By the second induction hypothesis (rule induction for P), we can assume that there
exist Yk, Sk - - -y Yn, Sn such that vy, = 6%, s = §", s, = s/, M | Final(y,,s,) and
M = Trans(vi, iy Yit1, Si+1) for i =k,...,n— 1.

Now observe that Final(dx,s,) and Trans(yg, Sk, Ve+1, Sk+1) implies that
Trans(dx; Yk, Sky Yk+1, Sk+1)- Thus, we get that (ii) holds for Q.

Hence the thesis.
4. {Env;é} (procedures). M = Doy ({Env;d},s,s’) iff
M EVP,...,P,. [® D Doy(4,s,s"))

where

n
=\ V:i",s,s'.Dol(éigf, s,8)DP;(&,s,s)]. (7)
i=1
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To get the thesis, it suffices to prove it for the case:
M EVP,...,P,. [® D P(,s,s) (8)

and then apply the induction argument on the structure of the program considering as
base cases nil, a, ¢?, and P(%).

Consider the relations Q; defined as the set of tuples (Z,s,s’) such that there exist
81,81...,0n, 8p With 61 = {Env; P(Z)}?2, s1 = s, sp = s', M = Final(6,,s,) and
M = Trans(d;, 8;i,0;41,8;) for i = 1,...,n — 1. To prove the thesis it is sufficient to
show that each Q; satisfies (is closed under) the assertion (7).

Recall that Doy (P(%)),s,s’) def P;(Z,s,s') where P; is a free predicate variable. This
means that for any variable assignment o, M, agll’,'_'_'_’gln = Doy (P;(%),s,s') implies
(Z,s,8') € Qy, i.e., there exist 1,81 ...,0n,8, with § = {Env; P;(Z)}, s1 = s, s, = &,
M = Final(6n,s,) and M |= Trans(;, si,0i+1,8;) for i = 1,...,n — 1. Hence by in-
duction on the structure of the program, considering as base cases nil, a, ¢? and P(%),
we have that M, agll’;_'_'_’,g"n = Dol(dig", s, s') implies that there exist 61,81 ...,08,,s, with
01 = {Env;di?}, s1 =8, sp = 8, M |E Final(éy,s,) and M = Trans(d;, si, di+1, Si)
for i = 1,...,n — 1. Now considering that M = Trans({Env;5igi},31,52,52) implies
M = Trans([Env : Py(&)], s1, 02, s2) implies M = Trans({Env; P;(Z)}, s1, 02, s2), we get
that (Z,s,s') € Q;.

Lemma 6: For all Golog programs § and situations s:

Final(d,s)D Doy (4, s, s)

Proof: It is easy to show that Do;(4,s,s) is closed with respect to the implications in the
inductive definition of Finael. O

Lemma 7: For all Golog programs 4,8’ and situations s,s’:

Trans(d,s,d',s8') A Doy (8, 8',s")DDoy (6, s,5").

Proof: The property we want to prove can be rewritten as follows:

with

Trans(d,s,d',s')D®(4,s,48',s")

®(4,s,0',s") def Vs". Doy (¢, s',5")DDoy (6, s,5").

Hence it is sufficient to show that ® is closed under the implications that inductively define
Trans. Again, we only give details for the most significant cases.

22To be more precise, the variables z; in P;(£) should be read as name0f(z;) thus converting situation
calculus objects/actions variables into suitable program terms (see appendix A).
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. Implication for primitive actions. We show that Poss(a[s], s)D®(a[s], s, nil, do(a[s], s)) i.e.:
Poss(a[s], s)DVs".Doy(nil, do(a[s], s), s") D Do1(a, s, s").

Since Doy (nil, s, s") el g = s, this reduces to Poss(a[s], s)DDo1(a, s, do(a, s)), which holds

by the definition of Do;.
. First implication for sequences. We have to show ®(4,s,d’,s')D®(d;7,s,d',s'), i.e.:

Vs".[Doy(8',8',8")D Doy (6, s,8")|DVs". Doy (857, 8, s")DDoy1 (857, s, 8").

By contradiction. Suppose that there is a model M such that M |
Vs". Doy (8", 8',8")DDoy(6,s,8"), and M |= Doy(8';v,s',s.) and M |= —Doi(d;7,s,s.)
for some s.. This means that M |= Do (d,s',st) A Doi(y,st,s.) for some sy but
M |=Vt.—Doy(d,s,t) V —Doi(v,t,s:). Since M |= Doy(d',s', s¢) implies M |= Doy (4, s, s¢),
we have a contradiction.

. Second
implication for sequences. We have to show Final(d,s) A ®(v,s,', s')D®(d;7,s,7,5),
ie.:

Final(8,s) AVs".[Do1 (v, s',8")DDo1(v, s,5")|DVs".Doi (v, s',s") D Doy (d;7, s, s").

By contradiction. Suppose that there is a model M such that M = Final(4,s),
M =Vs".Doi(v',s',s")YDDoi(v,s,8"), and M = Doi (v, s, sc) — thus M |= Doy (7, s, s¢) —
and M = —Doy(6;7,s,s.) for some s.. The latter means that M |= Vt.~Doy(9,s,t) V
—Do1(7,t,8c). Since M |= Final(é,s) implies M = Doi(6,s,s) by lemma 6, then
M = Doy (v, s, s¢), contradiction.

. Implication for iteration. We have to show ®(d, s,d’, s ) D®(d*, s,d';6*,s'), i.e.:
Vs".[Do1(d',8',8")DDoy (6, s,8")|DVs". Doy (8';6%,s',s" YD Doy (6%, 5,5").

By contradiction. Suppose that there is a model M such that M |

Vs".Doy(8',s',s")D Doy (4, s,5"), and M |= Doy (¢';0%,s',s.) and M = —Doy (6%, s, s.) for

some s.. Since M = Doy (¢';6*,s', s.) implies M = Doy (¢, s', s¢) — thus M |= Doy (6, s, s¢)

—and M = Doy(6*,s¢,8:), and M = Doy(4,s,8:) and M = Doy(6*, st,8.) imply
M = Doy (6%, s, s¢), contradiction.

. Implication for contextualized procedure calls. We have to show that

({Env; §;%

z{[s}},s,é',s') D> ®([Env : P(t)],s,d,s")

It suffices to prove that:

Dol({Env;cS,'?fs]},s,s') O Doi([Env : Py(t)],s,s').
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We proceed by contradiction. Suppose that there exists an model M such that M =
Dol({Env;éi%"s]},s,s') and M = =Doy([Env; P;(t)], s, s'), for some ¢, s and s'. That is:

M | VP,...,P,.[¥ D 001(5,-3'3],3,3')] (9)
M [ 3P,...,P, [¥ A —P(f]s)),s,s")]. (10)

—

where ¥ = [AiL; VT, s,s".Doi(diz),s,8")DPi(Zi,8,8')].  Then by (10) there exists a
variable assignment such that M,o | ¥ and M,0 | - P;(t]s], s,s'), which implies
M,oc E —|D01(5;-’["s], s,8'), which contradicts (9).

. Implication for programs within an environment. We have to show

@(6{}52:13@],3,5',3') > ®({Enw;d},s,d',s").

It suffices to prove that:

DOI(&;SZ:P-(Q]’S’SI) D Doy ({Enwv;d},s,s)

This can be done by induction on the structure of the program § considering nil, a, ¢7,
and [Env' : P(t)] as base cases (such programs do not make use of Env).

Lemma 8: For every model M of C, if there exist 61,81 -..0n,S, such that 61 = 8, s1 = s,
sp = 8, M | Final(é,,s,) and M = Trans(d;, si, 0i+1,8i+1) for i = 1,...,n— 1, then M |=
Doy (4,s,8").

Proof: By induction on n. If n = 1, then Final(é, s)DDo1(4,s,s) by lemma 6. If n > 1, then
by induction hypothesis M |= Doy (02, s2, '), hence by applying Lemma 7, we get the thesis. O

With these lemmas in place we can finally prove the wanted result:

Theorem 1: For each Golog program d:

C E Vs, s Doi(d,s,s') = Dos(4,s,s').

Proof: = by Lemma 5 and Lemma 4; <= by Lemma 4 and Lemma 8. O
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