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Abstract

Structured utility models are essential for the effec-
tive representation and elicitation of complex multiat-
tribute utility functions. Generalized additive indepen-
dence (GAI) models provide an attractive structural
model of user preferences, offering a balanced tradeoff
between simplicity and applicability. While represen-
tation and inference with such models is reasonably
well understood, elicitation of the parameters of such
models has been studied less from a practical perspec-
tive. We propose a procedure to elicit GAI model pa-
rameters using only “local” utility queries rather than
“global” queries over full outcomes. Our local queries
take full advantage of GAI structure and provide a
sound framework for extending the elicitation proce-
dure to settings where the uncertainty over utility pa-
rameters is represented probabilistically. We describe
experiments using a myopic value-of-information ap-
proach to elicitation in a large GAI model.

1 Introduction

The increased interest in automated decision support tools
in recent years has brought the problem ofautomated pref-
erence elicitationto the forefront of research in decision
analysis [7, 15, 12] and AI [5, 6, 2]. Generally speaking,
the goal of automated preference elicitation is to devise
algorithmic approaches that will guide a user through an
appropriate sequence of queries or interactions and deter-
mine enough about her preferences to make a good or opti-
mal decision. Many models have been proposed, including
those that treat responses to queries as constraints on utili-
ties (including methods in conjoint analysis [13]) and those
that use priors over utility parameters.

Crucial to preference elicitation in complex domains is the
existence of utility functionstructure[11, 8]. Structure in
the form of additive, multilinear, generalized additive or
other models [11, 8, 1, 3] can be used to represent utility
models very concisely. While additive models are by far
the most commonly used in practice,generalized additive
independence (GAI) models[8, 1, 10] have drawn more at-
tention recently because of their additional flexibility. Un-

fortunately, effective elicitation procedures for GAI mod-
els have attracted far less attention than additive models.
Thus, for example, recent procedures for eliciting parame-
ters of GAI models often ignore the semantic foundations
of direct queries [4]. Gonzales and Perny [10] recently ad-
dressed this problem. Using the semantic foundations of
Fishburn [8] they discuss a graphical model which can be
used to guide elicitation in GAI models.

In this paper, we continue the exploration of elicitation
of GAI utility model parameters. One difficulty with the
procedure of Gonzales and Perny [10] is its reliance on
standard gamble queries involving full outcomes. In large,
multiattribute domains, it can be cognitively unmanageable
for a user to compare full outcomes involving more than
a handful of attributes; furthermore, this fails to take ad-
vantage of the independence structure in the queries them-
selves. We propose a new elicitation technique that allows
the parameters of a GAI model to be determined using (al-
most exclusively) “local” queries over a small number of
attributes, while respecting the Fishburn semantics.

Our second contribution is a procedure forpartial elicita-
tion of utility parameters. Generally speaking, good (or
even optimal) decisions can be realized without complete
utility information. Rather than asking for the direct as-
sessment of utility parameters using standard gambles as
in [10], we consider simpler binarycomparison queries
over gambles. Following [6, 2], we suppose some prior
over the parameters of a GAI model, and use myopic ex-
pected value of information (EVOI) to determine appropri-
ate queries. The advantages of GAI models become very
clear in such a setting, since the implied decomposition al-
lows us to effectively compute EVOI in very large mod-
els. We demonstrate our procedure on a large (26 variable)
constraint-based configuration problem, showing that it is
fast enough to support interactive elicitation.

2 GAI Models

We begin with some standard concepts from multiattribute
utility theory [11, 8].



2.1 Background and Notation

Assume a set of attributesX1, X2, . . . , Xn, each with fi-
nite domains (for ease of notation we useXi to refer to
its domain as well). These define a set ofoutcomes(or
alternatives or consequences)X = X1 × · · · × Xn over
which a decision maker (DM) has preferences. A prefer-
ence relation� is a total preorder over the set of outcomes,
with x � x′ meaning thatx is at least as preferred asx′.
Strict preference� and indifference∼ are defined in the
usual way. Given an index setI ⊆ {1, . . . , n}, we define
XI = ×i∈IXi to be the set ofpartial outcomesrestricted
to attributes inI, andxI to be the same restriction of a
specific outcomex. IC denotesI ’s complement.

User preferences can be expressed by a bounded, real-
valuedutility functionu : X 7→ R such thatu(x) ≥ u(x′)
iff x � x′. A utility function serves as a quantitative rep-
resentation of strength of preferences, and can be used to
represent preferences overlotteries(distributions over out-
comes); specifically, one lottery is preferred to another iff
its expected utility is greater [14]. Let〈p1,x1; . . . ; pk,xk〉
denote a lottery overk outcomes withxi realized with
probability pi (and

∑
i pi = 1). Since utility functions

corresponding to� are unique only up to positive affine
transformation, it is customary to set the utility of the best
outcomex> to 1, and the utility of the worst outcomex⊥ to
0. Thus, if a DM is indifferent betweenx and thestandard
gamble〈p,x>; 1 − p,x⊥〉, thenu(x) = p.

2.2 Additive Independence

Since the number of outcomes is exponential in the num-
ber of attributes, specifying the utility of each outcome is
infeasible in most practical applications. However,u can
be expressed concisely if it exhibits sufficient structure.
Additive independence[11] is one structural assumption
commonly used in practice. Under a strong independence
assumption—specifically, that the DM is indifferent among
lotteries that have same marginals on each attribute—u can
be written as a sum of single-attributesubutility functions:

u(x) =
n∑

i=1

ui(xi) =
n∑

i=1

λivi(xi).

This simple factorization exploits subutility functions
ui(xi) = λivi(xi), which themselves depend onlocal
value functionsvi and scaling constantsλi. The assumed
utility independence among attributes allows elicitation to
proceedlocally: specifically, thevi can be elicited inde-
pendently of other attribute values. Since each attribute is
utility independent, each attribute’s best and worst levels
can be determined separately. Formally,x>

i ∈ Xi is Xi’s
best attribute levelif and only if

(x>
i ,y) � (xk

i ,y) ∀xk
i ∈ Xi,y ∈ XiC .

The worst levelx⊥
i is defined similarly. Alocal preference

betweenxk
i and alocal gamble〈p, x>

i ; 1 − p, x⊥
i 〉 is well-

defined since utility independence implies that(xk
i ,y) �

〈p, (x>
i ,y); 1−p, (x⊥

i ,y)〉 for somey ∈ XiC iff this holds
for all suchy. Indifference for a specificp implies that

u(xk
i ,y) = p u(x>

i ,y) + (1 − p)u(x⊥
i ,y),

and therefore, because of the additive formu,

vi(xk
i ) = p vi(x>

i ) + (1 − p) vi(x⊥
i ).

If we setvi(x>
i ) = 1, vi(x⊥

i ) = 0, thenvi(xk
i ) = p. Local

value functionsvi(·) can be therefore elicited using only
local standard gamble queries that involve two local “an-
chor” outcomesx>

i andx⊥
i .

After performing local elicitation, we know each attribute’s
local value relative to the utilities of the respective anchor
outcomes. What remains is to bring all the local value
scales to the common global utility scale. To achieve global
consistency, queries involving full outcomes are unavoid-
able. Essentially, we need to find the true utility of all “an-
chor” outcomesx>

i andx⊥
i , with respect to some default

outcomex0. It is customary to choose the worst outcome
as default outcome, and set its utility to 0. Then, eliciting

u>
i ≡ ui(x>) = u(x>

i ,x0
iC ),

u⊥
i ≡ ui(x⊥) = u(x⊥

i ,x0
iC ) = 0

for all attributes ensures consistent scaling of subutility
functions. Scaling factorsλi, which reflect attribute con-
tributions to the overall utility function, are simplyu>

i .

2.3 Generalized Additive Independence

GAI models [8, 1] provide an additive decomposition of
utility functions in situations where single attributes are not
additively independent, but (possibly nondisjoint) subsets
of attributes are. The form of a GAI model is as follows.
Assume a collection{I1, . . . , Im} of (possibly intersect-
ing) index sets such that∪iIi = {1, . . . , n} andlocal subu-
tility functionsui overXIi . Thenu is decomposed as:

u(x) = u1(xI1 ) + . . . + um(xIm ).

If, say, I1 = {1, 2}, andI2 = {2, 3} in a three-attribute
domain, thenu(x1, x2, x3) = u1(x1, x2) + u2(x2, x3).

We discuss the foundations of GAI models below, but first
illustrate difficulties with generalizing local elicitation of
the type suitable for additive models to GAI models [10].
In the additive case,ui(x1

i ) > ui(x2
i ) implies that out-

comes withith attribute set tox1
i are preferred to outcomes

with x2
i , as long as the rest of attributes are kept constant.

However, in GAI models we cannot draw such straightfor-
ward conclusions. Let’s take our exampleu(x1, x2, x3) =
u1(x1, x2) + u2(x2, x3). If we know thatu1(x1

1, x
1
2) = 10

andu1(x1
1, x

2
2) = 5, does it imply(x1

1, x
1
2) � (x1

1, x
2
2), ce-

teris paribus? It turns out that because of interdependence



of subutility factors, we can rewrite the utility function as
follows (f(x2) is an arbitrary real-valued function):

u(x1, x2, x3)
= [u1(x1, x2) + f(x2)] + [u2(x2, x3) − f(x2)]
= u′

1(x1, x2) + u′
2(x2, x3).

If f(x1
2) = −5, andf(x2

2) = 5, thenu′
1(x1

1, x
1
2) = 5 and

u′
1(x

1
1, x

2
2) = 10, the exact opposite ofu1(·). Since the util-

ity can “flow” from one subutility factor to the next through
the shared attributes, the subutility values do not have an in-
dependent semantic meaning. This example illustrates that
the same utility function can be decomposed in an infinite
number of non-trivial ways.

The conditions under which a GAI model provides an ac-
curate representation of a utility function were defined by
Fishburn [8, 9], who introduced the model.1 Let P be the
set of all gambles (probability distributions) onX, andPI

be the set of all gambles onXI . For P ∈ P , PI is the
marginal gamble ofP overXI . Let {I1, . . . , Im} be a col-
lection of nonempty subsets of{1, . . . , n}.
Defn. 1. The sets of attributes indexed byI1, . . . , Im are
(generalized) additively independentif and only if

[(PI1 , . . . , PIm) = (QI1 , . . . , QIm)] =⇒ P ∼ Q,

that is, if and only if the decision maker is indifferent be-
tween two lotteries whenever their marginal distributions
onXI1 , . . . ,XIm are the same.

Theorem 1. [8] The GAI condition holds iff there are real-
valued subutility functionsu1, . . . , um on XI1 , . . . ,XIm

such that

u(x) = u1(xI1 ) + . . . + um(xIm ). (1)

The following important result relies on the notion of ade-
fault outcome, denoted byx0 = (x0

1, x
0
2, . . . , x

0
n) (where

eachxi is set to an arbitrary value). For anyx, let x[I] be
the outcome where attributes not inI are set to the default
value, but other attributes remain as inx (i.e., Xi = xi if
i ∈ I, andXi = x0

i if i /∈ I). For example, ifx = (x1, x2),
thenx[{1}] = (x1, x

0
2).

Theorem 2. [8] If GAI holds, then for allx ∈ X:

u(x) =
mX

j=1

(−1)j+1
X

1≤i1<i2<···<ij≤m

u

 
x

"
j\

s=1

Iis

#!
. (2)

This theorem captures all dependencies intrinsic to GAI
utility functions and serves as a semantic foundation of
GAI models. In our running example,u(x1, x2, x3) =

1Fishburn used the terminterdependent value additivity; Bac-
chus and Grove [1] dubbed the same concept GAI, which seems
to be more commonly used in the AI literature currently.

u(x1, x2, x
0
3) + u(x0

1, x2, x3) − u(x0
1, x2, x

0
3). Given three ar-

bitrary attribute setsI1, I2, I3, we have:

u(x) = u(x[I1]) + u(x[I2]) + u(x[I3])

− u(x[I1 ∩ I2]) − u(x[I1 ∩ I3]) − u(x[I2 ∩ I3])

+ u(x([I1 ∩ I2 ∩ I3]).

As we can see, under GAI conditions, Theorem 2 provides
a way to write the utility of any outcomex as a sum of
utilities of certain otherkeyoutcomes. These outcomes are
related tox in a specific way: in each of them, some at-
tributes are set to the same levels as in outcomex, while
remaining attributes are at their default values.
Theorem 2 allows one to construct the subutility functions
required in Eq. 1. If we group the addends on the right side
of Eq. 2 appropriately, we can defineu1, . . . , um such that
u(x) =

∑m
j=1 uj(xIj ). There is, however, more than one

way to define these subutility functions. Letxj denotexIj

(the restriction ofx to attributes inIj ). Fishburn [8] pro-
posed the following construction for subutility functions:

u1(x1) = u(x[I1]), (3)

uj(xj) = u(x[Ij ]) +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

u(x[
k\

s=1

Iis ∩ Ij ]).

We call this thecanonicalsubutility decomposition. In our
trivial example, the canonical decomposition would be:

u1(x1, x2) = u(x1, x2, x
0
3) ≡ u(x[I1]);

u2(x2, x3) = u(x0
1, x2, x3) − u(x0

1, x2, x
0
3)

= u(x[I2]) − u(x[I1 ∩ I2]).

In the case of three overlapping attribute setsI1, I2, I3:,

u1(x1) = u(x[I1]),
u2(x2) = u(x[I2]) − u(x[I1 ∩ I2]),
u3(x3) = u(x[I3]) − (u(x[I1 ∩ I3]) + u(x[I2 ∩ I3]))

+ u(x[I1 ∩ I2 ∩ I3]).

Recall thatu(·) denotes utility of full outcomes, whereas
ui(·) is defined over attributes indexed byIi.

3 GAI Elicitation with Local Queries

If we could easily elicit utilities of key outcomes, the elic-
itation task would be straightforward: the utility of anyx
can be calculated using the utilities of related key outcomes
via Eq. 2. This simplifies elicitation because the decision
maker only has to specify utilities of key outcomes (see
[10] for a relevant elicitation algorithm). Unfortunately,
even key outcomes are “full” outcomes over all attributes;
it is unrealistic to expect a user to assess tradeoffs involving
full outcomes in domains with more than a few attributes.
Therefore, just as in the elicitation of additive utility func-
tions, we would like to separate the elicitation process into
local elicitation and global scaling.



3.1 Local Elicitation

Assume that for each subsetIi we have chosen two dif-
ferent “top” and “bottom”anchor outcomesx[Ii]> =
(x>

Ii
,x0

IC
i

) andx[Ii]⊥ = (x⊥
Ii

,x0
IC

i
).2 In these outcomes,

the attributes indexed by the setIi are set to their “top” and
“bottom” levels, respectively, while the other attributes are
set to the default level. We will assume thatx[Ii]> is the
best possible outcome andx[Ii]⊥ is the worst possible out-
come given that attributes not inIi are set to the default
level; however, in general, this does not have to be the case
as long as top and bottom anchor outcomes are different.

Assuming these two anchor levels for each subsetIi, we
can express the utility of certain outcomes in terms of an-
chor outcome utilitiesin a local way. First, we defineMj

to be the union of all the subsets that have variablej:

Mj =
⋃

i:j∈Ii

Ii.

We can think ofMj as theneighbor setof the attribute
j; it includes all the attributes that share subsets with the
attributej. Then, theconditioning setCi of the setIi is
just the union of the neighbor sets of the attributes inIi

minus the attributes inIi:

Ci =
⋃

j∈Ii

Mj − Ii.

For example, letu(x1, . . . , x7) = u1(x1, x2, x3, x6) +
u2(x1, x2, x7)+u3(x2, x4)+u4(x4, x5)+u5(x5, x6) (see
Fig. 1). Then, the neighbor set ofx4 is M4 = {2, 5} and
the conditioning set forI4 is C4 = {2, 6}.

After appropriate rearrangement of indices, an outcomex
can be written as(xi,xCi ,y), wherey are the attributes
that are neither inIi nor Ci. If the attributes in the condi-
tioning set are at default level, then we have the following:
Theorem 3. Under GAI conditions, if

(xi,x
0
Ci

,y) ∼ 〈p, (x>
i , x0

Ci
,y); 1 − p, (x⊥

i ,x0
Ci

,y)〉, then

(xi,x
0
Ci

,y′) ∼ 〈p, (x>
i ,x0

Ci
,y′); 1 − p, (x⊥

i ,x0
Ci

,y′)〉,

for anyy′. Therefore,

(xi,x0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.

That is, as long as attributes in the conditioning set ofIi are
fixed, the remaining attributes do not influence the strength
of preference of local outcomesxi. Thus, we can perform
local elicitation with respect to local anchorsx>

i andx⊥
i ,

without specifying the levels of they attributes.

Proof Given collection of subsets{I1, . . . , Im}, letCi be
a partition of this collection such thatCi contains allIj that

2It is important to keep in mind that anchor levels are defined
for each subutility factor, not individual attributes.

share some attribute withIi: Ci = {Ij : Ij ∩ Ii 6= ∅}. All
subsets inCi contain only variables inIi andCi. Thus, if

(xi,x0
Ci

,y) ∼ 〈p, (x>
i ,x0

Ci
,y); 1 − p, (x⊥

i ,x0
Ci

,y)〉,
then

u(xi,x
0
Ci

,y) = pu(x>
i ,x0

Ci
, y) + (1 − p)u(x⊥

i ,x0
Ci

,y)

=⇒
=
X

Ij∈Ci

uj(xj [Ii]) +
X

Ij /∈Ci

uj(yj) =
X

Ij /∈Ci

uj(yj)+

=

2
4p

X
Ij∈Ci

uj(x
>
j [Ii]) + (1 − p)

X
Ij∈Ci

uj(x
⊥
j [Ii])

3
5

=⇒X
Ij∈Ci

uj(xj [Ii]) =

p
X

Ij∈Ci

uj(x
>
j [Ii]) + (1 − p)

X
Ij∈Ci

uj(x
⊥
j [Ii]) =⇒

(xi,x
0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉. �

Thus, the utility of any suboutcomexi of factor i can be
expressed locally in terms of the two anchor levels, given
that attributes in the conditioning set ofi are set to their
default values. We can now define alocal value function
vi(·) such thatvi(x>

i ) = 1, vi(x⊥
i ) = 0, andvi(xi) = p iff

(xi,x0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.
We can calibrate the relative values ofvi(xi) within any
subutility factor (conditional onCi at default levels) using
only queries over attributes inIi andCi.3 This stands in
contrast to the elicitation procedure of [10] which uses full
outcomes. After local elicitation, we know the conditional
local valuesvi(·) for all settings of attributes inIi.

3.2 Global scaling

Suppose we have elicited the local value functionsvi and
the utilities of anchor outcomesx[Ii]> and x[Ii]⊥ (re-
call that anchor outcomes are full outcomes). Letu>

i =
u(x[Ii]>) andu⊥

i = u(x[Ii]⊥). The utility of an arbitrary
outcomex can now be calculated from the utilities of an-
chor outcomes and local value functions. By the definition
of local value functions (assumingvi(xi) = p),

(xi,x0
Ci

,y0) ∼ 〈p, (x>
i ,x0

Ci
,y0); 1 − p, (x⊥

i ,x0
Ci

,y0)〉,
(xi,x0

Ci
,y0) ∼ 〈vi(xi), x[Ii]>; 1 − vi(xi), x[Ii]⊥〉.

Therefore, for anyJi ⊆ Ii,

u(x[Ji]) = vi(xi[Ji]) u>
i + (1 − vi(xi[Ji])) u⊥

i

= (u>
i − u⊥

i ) vi(xi[Ji]) + u⊥
i .

3It is important to distinguish local value functions (which are
only locally calibrated) from the GAI subutility functionsui, even
though both are defined over the same factors.



Finally, we define the subutility functionsu1, . . . , um in
terms of anchor outcome utilities and local value functions.
Using the canonical definition (Eq. 3), we get

u1(x1) = (u>
1 − u⊥

1 ) v1(x1) + u⊥
1 , (4)

uj(xj) = (u>
j − u⊥

j ) ·2
4vj(xj) +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

vj(xj [

k\
s=1

Iis ∩ Ij ])

3
5

+

2
4u⊥

j +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

u⊥
j

3
5 .

In our small example, this gives:

u1(x1, x2) = (u>
1 − u⊥

1 ) v1(x1, x2) + u⊥
1 ,

u2(x2, x3) = (u>
2 − u⊥

2 ) [v2(x2, x3) − v2(x2, x
0
3)].

3.3 Graphical Elicitation Procedure

In practice, we expect GAI models to exhibit considerable
structure, and intersections between subutility factors to in-
volve only a few variables. We propose a complete util-
ity elicitation procedure that takes advantage of such struc-
ture. For now, we assume that a decision maker is capable
of answeringdirect local standard gamble utility queries,
such as “for what probabilityp would you be indiffer-
ent between suboutcomexi and a (local) standard lottery
〈p,x>

i ; 1 − p,x⊥
i 〉, assuming that attributes in the condi-

tioning setCi are at default levels?” Later, we will consider
more realistic localcomparisonqueries.

Assume a decomposition of attributes into GAI subsets
I1, . . . , Im, and fix an order over these subsets (the order
does not affect efficiency of our algorithm). We construct
a directed graph whose nodes correspond to the setsIi and
directed edges(Ii, Ij) wheneverIi ∩ Ij 6= ∅ andi > j.4

Edge(Ii, Ij) is labeled byIi ∩Ij . Fig. 1 shows an example
of a GAI graph.

After local elicitation, we have local value functionsvi(·).
Utilities of anchor levelsu>

1 , u⊥
1 , . . . , u>

m, u⊥
m have to be

obtained by global queries. However, we only need to
ask 2m such queries involving full outcomes.5 Interest-
ingly, this is thesame number of global queriesrequired
for global scaling in the linearly additive case (considering
each attribute as a factor in the additive case).

The general formula for defining canonical subutility func-
tions is provided by Eq. 4. However, we can simplify it
considerably due to the graphical structure of GAI attribute
sets. A utility functionu′ is strategically equivalent tou
if u′ is a positive affine transformation ofu. Notice that
the expressionu⊥

j +
∑j−1

k=1(−1)k
∑

u⊥
j on the last line

in Eq. 4 does not depend on the particular configuration
xj . Therefore, it is simply a constant and can be elimi-
nated. Furthermore, when

⋂k
s=1 Iis ∩ Ij = ∅, we have

4An undirected version of this graph is aGAI network[10].
5Only m queries are required ifx0 = x⊥.
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Figure 1: An Example of a GAI Graph.

vj(xj [
⋂k

s=1 Iis ∩ Ij ]) = vj(xj [∅]) = vj(x0
j ), i.e., the lo-

cal utility of the default suboutcome. This utility is fixed at
(u(x0)−u⊥

j )/(u>
j −u⊥

j ), and does not depend on the argu-

mentxj ; therefore, everyvj(xj [
⋂k

s=1 Iis ∩ Ij ]) for which⋂k
s=1 Iis ∩ Ij = ∅ can be eliminated from Eq. 4.

Any utility function u can now be rewritten as a strategi-
cally equivalent utility functionu′:

u′(x) =
mX

j=1

u′
j(xj) =

mX
j=1

v̄j(xj)(u
>
j − u⊥

j ), (5)

where

v̄j(xj) = vj(xj)+

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

vj(xj [

k\
s=1

Iis∩Ij ]),

andvj(xj [
⋂k

s=1 Iis ∩ Ij ])) = 0, if
⋂k

s=1 Iis ∩ Ij = ∅.

To compute a (unnormalized) subutility function̄vj(xj),
we have to know which local suboutcomesx′

j are involved

(in the formxj [
⋂k

s=1 Iis ∩Ij ]) on the right side of the equa-
tion; this amounts to finding all nonempty sets

⋂k
s=1 Iis∩Ij

and recording the corresponding sign of the local value
functions in Eq. 5. The structure of subutility functions de-
pends only on the GAI subset decomposition. Therefore,
given a GAI graph, we can use the following search proce-
dure to compute the relevant subsets needed to solve Eq. 5.
We only need to do this once for each subutility factor:

Input: GAI attribute setsI1, . . . , Im.
Output: For each subutility factorj, a collection of setsLj ,
and a sign functionzj : Lj 7→ {+1,−1}.

• For each subutility factorj:

• Start at nodej and perform a graph search along the
directed arcs. The search depth is finite, so any search
algorithm (e.g., breadth-first or depth-first) could be
used. SetLj = ∅.

• While Ii ∩ Ij 6= ∅ (we’re at nodei)

– let K = {nodes on path fromj to i};
– add∩k∈KIk to Lj ;
– setzj(∩k∈KIk) = 1, if depth even,

zj(∩k∈KIk) = -1, if depth odd.



Because of the graphical structure of GAI models, Eq. 5
now reduces to

v̄j(xj) =
∑

J∈Lj

zj(J) vj(xj [J ]).

Consider the example GAI graph in Figure 1. To com-
pute L5, we search for all non-empty intersections of
the set I5 with other sets. The only such sets are
I5 itself (at depth 0),I4 (depth 1), andI1 (depth 1).
Therefore,L5 = {{5, 6}, {5}, {6}}, and v̄5(x5, x6) =
v5(x5, x6)−v5(x5, x

0
6)−v5(x0

5, x6). Finally,u5(x5, x6) =
v̄5(x5, x6)(u>

5 − u⊥
5 ).

4 Elicitation under Uncertainty

We now considerpartial elicitation of utility parameters.
Generally speaking, good (or even optimal) decisions can
be realized without complete utility information. Rather
than asking for the direct assessment of utility parameters
using standard gambles as in [10], we consider simpler bi-
nary comparison queriesover local gambles. Following
[6, 2], we suppose some prior over the parameters of a
GAI model, and use myopic expected value of information
(EVOI) to determine appropriate queries.

If a utility function u is completely unstructured, and a
prior densityπ over the utility function parameters is avail-
able, the best outcome with respect to the prior is simply
x∗ = arg maxx Eπ[u(x)]. However, we can query a user
about her utility function, update the prior based on the re-
sponse, and compute a new expected best outcome. If a
sequence of queries can be asked, finding the best elicita-
tion policy is a sequential decision process, providing an
optimal tradeoff between query costs (the burden of elic-
itation) and potentially better decisions due to additional
information [2]. However, such a policy is very difficult to
compute, so here we adopt a myopic approach to choosing
the next query [6].
We consider queries of the form “Is utility of outcomex
greater thanl?”, denoted〈xq, l〉; these require onlyyes, no
responses.6 Theexpected posterior utility (EPU)of query
〈xq, l〉 is

EPU(xq, l) =Pr(yes|xq, l) max
x

Eyes|xq,l [u(x)]+

Pr(no|xq, l)max
x

Eno|xq,l [u(x)],

where Pr(yes|xq, l) is the probability of responseyes
w.r.t. the current density andEyes|xq,l is expectation w.r.t.
the updated density given ayes response. Theexpected
value of informationof query〈xq , l〉 is:

EVOI(xq, l) = EPU(xq, l) − E[u(x∗)].

Therefore, the best myopic query is

〈xq, l〉∗ = arg max
xq

arg max
l

EPU(xq, l).

6The range of a utility function is assumed to be[0, 1].

This requires optimization over all outcomes inX, as well
as continuous optimization of thequery pointl ∈ [0, 1].

4.1 GAI Structure and Local Queries

GAI models allow us take advantage of the additive utility
decomposition to compute EVOI. We assume that anchor
utilities u>

1 , u⊥
1 , . . . , u>

m, u⊥
m are known, but the local value

functionsv1, . . . , vm are specified imprecisely via indepen-
dent priors over local value function parameters. Thus, for
each suboutcomexi (apart from three special configura-
tionsx>

i ,x⊥
i ,x0

i whose local values are fixed) we have an
independent prior density over possible values ofvi(xi).7
The expected value of outcomex is then

E[u(x)] =

mX
j=1

E[uj(xj)] =

mX
j=1

(u>
j − u⊥

j )E[v̄j(xj)],

whereE[v̄j(xj)] equals

E[vj(xj)] +

j−1X
k=1

(−1)k
X

1≤i1<···<ik<j

E[vj(xj [
k\

s=1

Iis ∩ Ij ])].

With priors over local utility functions, an appropriate
form of query is “Is local utility of suboutcomexi greater
thanl?”, denoted as〈xq

i , l〉. Such a query is alocal query,
because it asks a user to focus on preferences over a (usu-
ally small) subset of attributes; the values of remaining at-
tributes do not have to be considered. Indeed, this corre-
sponds to a binary comparison query over local outcomes
and gambles, which a user can more easily assess: “do you
preferxi or 〈p,x>

i ; 1 − p,x⊥
i 〉, assuming that attributes in

the conditioning setCi are at default levels?” The best local
myopic query is then

〈xq
i , l〉∗ = arg max

x
q
i

arg max
l

Pr(yes|xq
i , l) max

x
Eyes|xq

i ,l [u(x)]+

Pr(no|xq
i , l) max

x
Eno|xq

i ,l [u(x)].

We can simplify part of the equation as follows:

max
x

Eyes|xq
i ,l [u(x)]

= max
xi

2
4Eyes|xq

i ,l [ui(xi)] + max
x restr. toxi

X
j 6=i

E[uj(xj)]

3
5

= max
xi

h
(u>

i − u⊥
i )Eyes|xq

i ,l [v̄i(xi)] + r(xi)
i
,

wherer(xi) = maxx restr. toxi

∑
j 6=i E[uj(xj)] could be

computed by, say, variable elimination.

We need some additional notation. Letdep(x′
j) be the set

of all suboutcomesxj such thatx′
j appears (in the form

xj [
⋂k

s=1 Iis ∩ Ij ]) on the right side of an expression for
v̄j(xj) in Eq. 5.8 Intuitively, subutility values of outcomes

7Recallvi(x
>
i ) = 1, vi(x

⊥
i ) = 0, andvi(x

0
i ) =

u(x0)−u⊥
i

u>
i −u⊥

i

.
8The setdep(x′

j) can be computed easily from the setLj ob-
tained by the GAI graph search procedure.



in dep(x′
j) “depend” on the local utility of outcomex′

j .
Also, lets(xj ,x′

j) be the signed unit (i.e., +1 or -1) in front
of vj(x′

j) on the right side of an equation forv̄j(xj).

If xi /∈ dep(xq
i ), then a query involvingxq

i will not
change the expected value ofu(xi): Eyes|xq

i ,l [ui(xi)] =
E[ui(xi)]. If xi ∈ dep(xq

i ), then the expected posterior
value ofui(xi) changes only because of the change in the
posterior expectation ofvi(x

q
i ). Therefore, in such a case,

Eyes|xq
i
,l [v̄i(xi)]

= E[v̄i(xi)] − s(xi,x
q
i )E[vi(x

q
i )] + s(xi,x

q
i ) Eyes|xq

i
,l [vi(x

q
i )]

= s(xi,x
q
i ) Eyes|xq

i ,l [vi(x
q
i )] + E[v̄i(xi)] − s(xi,x

q
i ) E[vi(x

q
i )].

Thus,

max
x

Eyes|xq
i ,l [u(x)]

= max
xi

h
Eyes|xq

i ,l [ui(xi)] + r(xi)
i

= max

(
maxxi /∈dep(xq

i ) E[ui(xi)] + r(xi)

maxxi∈dep(xq
i ) Eyes|xq

i ,l [ui(xi)] + r(xi)

= max

(
m

{d1(xi) µ+(l) + d2(xi) | xi ∈ dep(xq
i )}.

where

µ+(l) = Eyes|xq
i
,l [vi(x

q
i )],

d1(xi) = (u>
i − u⊥

i )s(xi, x
q
i ), and d2(xi) =

(u>
i − u⊥

i )(E[v̄i(xi)] − s(xi, x
q
i )E[vi(x

q
i )]) + r(xi).

maxx Eno|xq
i ,l [u(x)] can be simplified in a similar way.

4.2 Mixture of uniforms priors

Specifying prior information over local utility parameters
as a mixture of uniform distributions confers several ad-
vantages for utility elicitation. With enough components,
a mixture of uniforms is flexible enough to approximate
many standard distributions; furthermore, it fits nicely with
the type of queries we consider here. Because the posterior
distribution after a response to a query remains a mixture
of uniforms (we only need to update the weights), it is pos-
sible to maintain an exact density over utility parameters
throughout the elicitation process [2]. Most importantly,
we can calculate the optimal query pointl analytically. To
maximize EPU, we only need to calculate the maximum of(

Pr(yes|l) m + Pr(no|l) (d1(xi) µ−(l) + d2(xi))

Pr(yes|l) (d1(xi) µ+(l) + d2(xi)) + Pr(no|l) m

for eachxi ∈ dep(xq
i ). For a givenxi, this expression is a

piecewise quadratic function ofl. Fig. 2 shows an example
of such a function for a density with 5 components. The
maximum occurs atl∗ = m−d2(xi)

d1(xi)
, if l∗ ∈ [0, 1].

5 Empirical Results

We implemented the myopic elicitation strategy using prior
densities specified as mixtures of uniform distributions, and
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Figure 2: Expected posterior utility as a function of the
query pointl

tested it on a realistic car-rental problem [4]. The graphical
structure of this problem is sufficient to admit fast (around
1 second) EVOI computation; therefore, our approach can
readily support interactive real-time preference elicitation.

The car-rental problem is modeled with 26 variables that
specify various attributes of a car relevant to typical rental
decisions. Variable domains range from 2 to 9 values,
resulting in 61,917,364,224 possible configurations. The
GAI model consists of 13 local factors, each defined on at
most five variables; the model has 378 utility parameters
(see [4] for further problem details). Constraints on possi-
ble configurations require constraint-based optimization to
determine optimalfeasibleconfigurations of the variables
(so even with a precise utility function, optimization is re-
quired to determine the best outcome). We use variable
elimination to determine best “expected” outcomes.

We experiment with three different types of priors on local
utility functions: a (random) mixture of five uniforms, a
non-informative uniform density, and a mixture of 10 uni-
forms which is fitted to approximate a truncated Gaussian
distribution with a variance of 0.3 and the mean chosen
at random from the interval[0, 1]. For each of the three
types of priors, we sample 30 different utility functions
that are used to generate responses to queries. We then
run our elicitation algorithm for 100 queries; for an EVOI
query strategy, if the EVOI becomes 0 (which happens af-
ter 20-30 queries on average), we choose the next query
at random. We compare our myopic EVOI strategy with
a “random” query strategy, where a subutility factor and
a local query configuration is chosen at random; however,
the query pointl is set to the expected local utility of the
query suboutcome (sol is chosen “intelligently” to give
equal odds to either response). Figure 3 summarizes our
experimental results for the three different types of priors.
All results for EVOI queries are averaged over 30 trials
with underlying utility functions sampled from the corre-
sponding priors, while the random strategy results are av-
eraged over 100 trials. Figure 3(b) show (unsurprisingly)
that Gaussian priors are quite informative—on average, the
initial error (before elicitation) is only slightly greater than
2%, while the uniform priors give an initial error is around
13%. The impact of these differences is normalized in Fig-
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Figure 3: Utility error reduction with queries: (a) as a percentage of the initial error; (b) as a percentage of the optimal
utility. EVOI query strategy results are unmarked, and random strategy results are marked with an ‘X’.

ure 3(a), which shows how the error decreases as a fraction
of the initial error. In all cases, the EVOI strategy is clearly
superior to a random query strategy, which at best reduces
the error by only 20% after 100 queries. The EVOI strategy
cuts the error by at least a half after 50 queries. Though this
might seem like a large number of queries, recall that the
problem is large (378 utility parameters), and our queries
are local comparison queries.

6 Concluding Remarks

We described a new approach to elicitation in GAI mod-
els. Unlike previous approaches, we have shown how the
graphical structure can be exploited to restrict attention al-
most exclusively to queries over local outcomes and local
standard gambles, thus extending a key advantage of ad-
ditive models to the generalized case. We have also shown
how one can exploit GAI structure to optimize query choice
when using myopic EVOI to guide preference elicitation.

A number of directions remains to be explored. Methods
for eliciting GAI model structure are of primary importance
because a suitable GAI decomposition is a prerequisite for
our algorithm [11]. Other directions include incorporating
noise models into user responses [2]; developing compu-
tationally tractable approximations for computing nonmy-
opic EVOI in this setting; user case studies and methods for
dealing with inconsistency in user responses (though our
current method will never ask a query for which a response
could be inconsistent); and investigating other decision cri-
teria such as minimax regret [4].
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