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Abstract fortunately, effective elicitation procedures for GAI mod-
els have attracted far less attention than additive models.
Structured utility models are essential for the effec- Thus, for example, recent procedures for eliciting parame-
tive representation and elicitation of complex multiat- ters of GAI models often ignore the semantic foundations
tribute utility functions. Generalized additive indepen- of direct queries [4]. Gonzales and Perny [10] recently ad-

dence (GAI) models provide an attractive structural : . : :
model of user preferences, offering a balanced tradeof? dressed this problem. Using the semantic foundations of

between simplicity and applicability. While represen- Fishburn [8] they _diS_CUSfS a graphical model which can be
tation and inference with such models is reasonably used to guide elicitation in GAl models.

well understood, elicitation of the parameters of such 1, yhig haner, we continue the exploration of elicitation

models has been studied less from a practical perspec- o eee .
tive. We propose a procedure to elicit GAl model pa- of GAI utility model parameters. One difficulty with the

rameters using only “local” utility queries rather than procedure of Gonzales and Perny [10] is its reliance on
“global” queries over full outcomes. Our local queries standard gamble queries involving full outcomes. In large,
take full advantage of GAI structure and provide a  muyltiattribute domains, it can be cognitively unmanageable

sound framework for extending the elicitation proce- for a user to compare full outcomes involving more than
dure to settings where the uncertainty over utility pa-

rameters is represented probabilistically. We describe & handful of attributes; furthermore, this fails to take ad-
experiments using a myopic value-of-information ap- vantage of the independence structure in the queries them-
proach to elicitation in a large GAl model. selves. We propose a new elicitation technique that allows
the parameters of a GAl model to be determined using (al-
most exclusively) “local” queries over a small number of
1 Introduction attributes, while respecting the Fishburn semantics.

) ) ) . Our second contribution is a procedure fartial elicita-
_The increased interest in automated decision support toolg,, of utility parameters. Generally speaking, good (or
in recent years has brought the problenaofomated pref- o optimal) decisions can be realized without complete
erence elicitationto the forefront of research in decision utility information. Rather than asking for the direct as-
analysis [7, 15, 12] and Al [5, 6, 2]. Generally speaking, sessment of utility parameters using standard gambles as
the goal of automated preference elicitation is to devisg, [10], we consider simpler binargomparison queries
algorithmic approaches that will guide a user through an,, o, gambles. Following [6, 2], we suppose some prior
appropriate sequence of queries or interactions and deteé‘ver the parameters of a GAl model, and use myopic ex-
mine enough about her preferences to make a good or 0plse cted value of information (EVOI) to determine appropri-
mal decision. Many models have been proposed, including queries. The advantages of GAl models become very
those that treat responses to queries as constraints on Utilifaar in such a setting, since the implied decomposition al-
ties (includ_ing method_s_in conjoint analysis [13]) and thosey\ys us to effectively compute EVOI in very large mod-
that use priors over utility parameters. els. We demonstrate our procedure on a large (26 variable)
Crucial to preference elicitation in complex domains is theconstraint-based configuration problem, showing that it is
existence of utility functiorstructure[11, 8]. Structure in  fast enough to support interactive elicitation.
the form of additive, multilinear, generalized additive or
other models [11, 8, 1, 3] can be used to represent utility
models very concisely. While additive models are by far2 GAl Models
the most commonly used in practiggneralized additive
independence (GAl) moddB, 1, 10] have drawn more at- We begin with some standard concepts from multiattribute
tention recently because of their additional flexibility. Un- utility theory [11, 8].



2.1 Background and Notation betweenz¥ and alocal gamble(p, 2, ;1 — p, z3-) is well-
defined since utility independence implies thaf,y) =
{p, (z],y);1—p, (z3,y)) for somey € Xc iff this holds
for all suchy. Indifference for a specifip implies that

Assume a set of attribute¥;, X, ..., X,,, each with fi-
nite domains (for ease of notation we uXe to refer to
its domain as well). These define a setanftcomegor
altgrnatives or consequencé§)= X; x --- x X,, over u(zF,y) = pu(z],y) + (1 —p)ulz’,y),
which a decision maker (DM) has preferences. A prefer-

ence relation- is a total preorder over the set of outcomes,and therefore, because of the additive farm
with x = x’ meaning thak is at least as preferred &5. . T N
Strict preference- and indifference~ are defined in the vi(a7) = pui(a; ) + (1 —p)vilzg).
usual way. Given an index sétC {1,...,n}, we define
X; = X;e1X; to be the set opartial outcomesestricted
to attributes inf, andx; to be the same restriction of a
specific outcomex. 1¢ denoted’s complement.

If we setv; (2, ) = 1, v;(zi) = 0, thenv; (z¥) = p. Local
value functionsv;(-) can be therefore elicited using only
local standard gamble queries that involve two local “an-
chor” outcomes:| andax;-.

User preferences can be expressed by a bounded, re%!fterperforming local elicitation, we know each attribute’s

: > =l p
};faluegunllltyAfun_lc_tlo?u : X = R such thatu(x) > u(x) joc4] yalue relative to the utilities of the respective anchor
It x = x'. A utility function serves as a quantitative rep- , ,.omes.  What remains is to bring all the local value

resentation of strength of preferen'ceg,, apd can be used Rales to the common global utility scale. To achieve global
represent preferences ovetteries(distributions over out- consistency, queries involving full outcomes are unavoid-

pomes); spdecn‘.llc_:allly, one Iotteer ISLpreferr(.ad t? another If-fable. Essentially, we need to find the true utility of all “an-
gs expectel utility is %reater[ I é.pﬁ’xl’ i ,pg,xk)h chor” outcomese; andz;-, with respect to some default
enote a lottery ovek: outcomes withx; realized wit outcomex”. It is customary to choose the worst outcome

probablhtypi (and>_; pi - 1). Since utility fqncﬂon_s as default outcome, and set its utility to 0. Then, eliciting
corresponding to- are unique only up to positive affine

transformation, it is customgry to set the utility of the best ul = wi(z") = u(z] %%,
outcomex " to 1, and the utility of the worst outconxe- to N . Lo

. e up = ui(zr) =u(r;,xc) =0
0. Thus, if a DM is indifferent betweex and thestandard i i

T.q _ 1 _
gamble(p, x ;1 — p,x=), thenu(x) = p. for all attributes ensures consistent scaling of subutility

functions. Scaling factora;, which reflect attribute con-
tributions to the overall utility function, are simply; .
Since the number of outcomes is exponential in the num-

ber of attributes, specifying the utility of each outcome is2.3 Generalized Additive Independence

infeasible in most practical applications. Howevergan

be expressed concisely if it exhibits sufficient structure.=’" ) R . :
Additive independencii1] is one structural assumption ut|I|t_y_func'F|onsm situations Where_smgle att_rl_bgtes are not
commonly used in practice. Under a strong independenc@dd't'vely independent, but (possibly nondisjoint) subsets

assumption—specifically, that the DM is indifferent amongOf attributes are. The form of a GAI model is as follows.

2.2 Additive Independence

GAIl models [8, 1] provide an additive decomposition of

lotteries that have same marginals on each attributean ~ ~\SSUME & coIIecti(r)]r{é'l, +os i} Of (possiblly in'iersect—
be written as a sum of single-attribustebutility functions ~ 1"9) index sets such that Z; = {1,...,n} andlocal subu-
tility functionsu; overXy,. Thenu is decomposed as:
n n
U(X) = Zuz(mq) = Z /\7,1]7,(1‘7) U(X) = ’U;l(X[l) +...+ um,(xlm)-
=1 i=1

If, say, I, = {1,2}, andl, = {2,3} in a three-attribute
This simple factorization exploits subutility functions domain, thenu(z;, z, 23) = uy (21, 22) + us (2, z3)
ui(x;) = Awi(x;), which themselves depend dacal
value functions; and scaling constants;. The assumed

We discuss the foundations of GAlI models below, but first

utility independence amona attributes allows elicitation toillustrate difficulties with generalizing local elicitation of
Y P 9 the type suitable for additive models to GAI models [10].

proceedlocally: specifically, thev; can be elicited inde- . 1 I .
pendently of other attribute values. Since each attribute ién the aqd|t|ve casey;(x;) > u;(z;) implies that out

; i 1
utility independent, each attribute’s best and worst IevelsComes withith attribute set ta:; are preferred to outcomes

o .
can be determined separately. Forma#, € X; is X,'s with z7, as long as the rest of attributes are kept constant.

. : . However, in GAI models we cannot draw such straightfor-
best attribute levelf and only if

ward conclusions. Let’s take our examplery, o, x3) =
(2], y) = (2, y) Vab € X1,y € X,e. uy (1, x2) + ua(wa, x3). If we know thatu, (21, 23) = 10
andu; (x1,23) = 5, does itimply(z1, 23) = (x1,23), ce-

The worst levelr;- is defined similarly. Aocal preference  teris paribus? It turns out that because of interdependence



of subuitility factors, we can rewrite the utility function as w(z1, 2, 23) + u(x?, 2o, x3) — u(z?, 22, 3). Given three ar-

follows (f (z2) is an arbitrary real-valued function):

u($17$2;x3)
= [ur (@1, 2) + f(22)] + [u2(w2, w3) — f(22)]

= U/l(a?l, x2) + U'g($27363)-

If f(z1) = —5, andf(23) = 5, thenu) (z},21) = 5 and
uy (z1, #3) = 10, the exact opposite af; (+). Since the util-

bitrary attribute set$;, I, I3, we have:

u(x) = u(x[]) + u(x[l2]) + u(x[I3])
- u(x[h N 12]) - u(x[h n 13]) - u(x[Ig N ]3])
=+ u(x([h Nl N ]3])

As we can see, under GAI conditions, Theorem 2 provides
a way to write the utility of any outcomg as a sum of
utilities of certain othekeyoutcomes. These outcomes are

ity can “flow” from one subutility factor to the next through '€lated tox in a specific way: in each of them, some at-
the shared attributes, the subutility values do not have an irffiPutes are set to the same levels as in outcamehile
dependent semantic meaning. This example illustrates th&8Maining attributes are at their default values.

the same utility function can be decomposed in an infiniteTheorem 2 allows one to construct the subutility functions

number of non-trivial ways.

required in Eq. 1. If we group the addends on the right side
of Eq. 2 appropriately, we can defing, . . ., u,, such that

The conditions under which a GAI model provides an ac-y(x) = ", u;(xz,). There is, however, more than one
curate representation of a utility function were defined byway to define these subutility functions. Let denotex;,

Fishburn [8, 9], who introduced the modeLet P be the
set of all gambles (probability distributions) &, andP;

be the set of all gambles aX;. For P € P, P; is the
marginal gamble oP overX;. Let{I,...,I,,} be acol-
lection of nonempty subsets 6f, ..., n}.

Defn. 1. The sets of attributes indexed Wy, . .., I,, are
(generalized) additively independehand only if

[(Pr,,-Pr,,) = (Qr,---,Qr1,)] = P~Q,

that is, if and only if the decision maker is indifferent be-
tween two lotteries whenever their marginal distributions

onXy,,..., Xy, arethe same.
Theorem 1. [8] The GAI condition holds iff there are real-
valued subutility functionsu, ..., uy, on Xy, ..., X7,
such that

u(x) =ur(xp) + ...+ um(xyg, ). Q)

The following important result relies on the notion ofle-
fault outcomedenoted by’ = (29, 29,...,2%) (where
eachz; is set to an arbitrary value). For ary letx[I] be
the outcome where attributes notiirare set to the default
value, but other attributes remain asxir(i.e., X; = x; if
i€ l,andX; = 2V if i ¢ I). For example, ik = (z1, z2),
thenx[{1}] = (1, 29).

Theorem 2. [8] If GAI holds, then for allx € X:

u(x) = Z(—l)jH Z i (x {Q Iis:|> . (2

j=1 1<iq <ip<--<ij<m

This theorem captures all dependencies intrinsic to GA
utility functions and serves as a semantic foundation o

GAI models. In our running exampleu(z1,z2,z3) =

Fishburn used the termterdependent value additivitac-

(the restriction ofx to attributes in/;). Fishburn [8] pro-
posed the following construction for subutility functions:

(3)
w(x[() I, N 1),

w1 (x1) = u(x[1]),

uj (%) = w(x[l]) + (1)

k=1

>

1<iy << <j

We call this thecanonicalsubutility decomposition. In our

trivial example, the canonical decomposition would be:
i (1, 2) = u(@1, v9,23) = u(x[N]);

= u(2?, zo, x3) — u(z?, z0, 23)

= u(x[I2]) — u(x[I N I3]).

ug (2, 3)

In the case of three overlapping attribute ggtds, I3:,

uy(x1) = u(x[N]),

uz(x2) = u(x[l2]) — u(x[l1 N L)),

us(x3) = u(x[Is]) — (w(x[ N Is]) + u(x[Iz N I3]))
+ U(X[Il NIy N 13])

Recall thatu(-) denotes utility of full outcomes, whereas
u;(-) is defined over attributes indexed by

3 GAI Elicitation with Local Queries

If we could easily elicit utilities of key outcomes, the elic-
itation task would be straightforward: the utility of amy
can be calculated using the utilities of related key outcomes
via Eqg. 2. This simplifies elicitation because the decision
maker only has to specify utilities of key outcomes (see
10] for a relevant elicitation algorithm). Unfortunately,
%ven key outcomes are “full” outcomes over all attributes;
tis unrealistic to expect a user to assess tradeoffs involving
full outcomes in domains with more than a few attributes.
Therefore, just as in the elicitation of additive utility func-

chus and Grove [1] dubbed the same concept GAI, which seemd0ns, we would like to separate the elicitation process into

to be more commonly used in the Al literature currently.

local elicitation and global scaling.



3.1 Local Elicitation

Assume that for each subsg&twe have chosen two dif-
ferent “top” and “bottom”anchor outcomesx|[/;] "
(x/.,x%) andx[[;]* = (x7,x%).2 In these outcomes,
the attributes indexed by the sfeiare set to their “top” and

“bottom” levels, respectively, while the other attributes are

set to the default level. We will assume thdf;] " is the
best possible outcome amdl;]* is the worst possible out-
come given that attributes not i are set to the default

level; however, in general, this does not have to be the case
as long as top and bottom anchor outcomes are different.

Assuming these two anchor levels for each sulisetve

can express the utility of certain outcomes in terms of an-

chor outcome utilitiesn a local way First, we definel/;
to be the union of all the subsets that have varigble

Ut
i:j€l;

We can think ofM; as theneighbor setof the attribute

share some attribute with: C* = {I; : I, N I; # 0}. All
subsets ir€? contain only variables id; andC;. Thus, if

(XiaX%UY) ~ <p7 (X:,X%i,y); 1 - D (XfaxgiaY)>a
then

= pu(x{,x¢,,y) + (1 = p)u(xi, x¢,,y)

> uily) = Y uilyy)+

u(xi, XG,,y)

= > u(xlh]) +

Iject I;¢cCt I;¢cCt
p Y ui(x) L)+ (1—p) > ui(xi[L])
Iject Iject

BN

> u(x(L) =

Iject
p Y u(x; L)+ (1 =p) Y uxi[L]) =
Iject Iject

(Xi,X%7) <p7 (Xz 7XC ) 1- D, (xz 7XC )> U

4 it includes all the attributes that share subsets with the

attributej. Then, theconditioning setC; of the setl; is
just the union of the neighbor sets of the attributed;in
minus the attributes i;:

C; = UMj—Ii.

JEL;

For example, letu(xy,...,27) = wui(x1, 22, 23,26) +
ua(x1, 2, x7) +us(ra, x4) +us(zs, x5) + us(xs, x6) (SEE
Fig. 1). Then, the neighbor set of is M, = {2,5} and
the conditioning set fof, is Cy = {2,6}.

After appropriate rearrangement of indices, an outcame
can be written a$x;, x¢,,y), wherey are the attributes
that are neither id; nor C;. If the attributes in the condi-

Thus, the utility of any suboutcome of factori can be
expressed locally in terms of the two anchor levels, given
that attributes in the conditioning set dfare set to their
default values. We can now defindaal value function
vi(-) such thab;(x; ) = 1, v;(x;") = 0, andv;(x;) = piff

(Xivxg‘i) <pa (vaxc ) ]-_pv (Xz aXC )>

We can calibrate the relative values @fx;) within any
subutility factor (conditional oi”; at default levels) using
only queries over attributes iy andC;.2 This stands in
contrast to the elicitation procedure of [10] which uses full
outcomes. After local elicitation, we know the conditional
local valuesy; (+) for all settings of attributes ir;.

tioning set are at default level, then we have the following:3.2  Global scaling

Theorem 3. Under GAI condmons if

<p7 (xz 7XC Y )1 - P (vax(é’ 7y)> then
<p7 (X;I—,XCi,y/),l p, (Xz 7XC Y )>

(%i,X&,,Y) ~
(Xi,X&,,y) ~
for anyy’. Therefore,
1 0
- D, (Xi aXC,;)>'

Thatis, as long as attributes in the conditioning sef; @fre

fixed, the remaining attributes do not influence the strength/x; X%“yo) ~ (vi(xi), x[I;]7; 1

of preference of local outcomes. Thus, we can perform
local elicitation with respect to local anchoxs' andx;,
without specifying the levels of thg attributes.

Proof Given collection of subsetd, ..., I, }, letC? be
a partition of this collection such thét contains alll; that

Suppose we have elicited the local value functiopnand
the utilities of anchor outcomes[l;]T and x[;]* (re-
call that anchor outcomes are full outcomes). kgt =
w(x[L;)") andu} = u(x[;]*). The utility of an arbitrary
outcomex can now be calculated from the utilities of an-
chor outcomes and local value functions. By the definition
of local value functions (assuming(x;) = p),

(Xi,X%i,yO) ~ <p7 (X;rvxg‘pyo); 1-p, (Xi,lvxg‘pyo»a
—vi(xq), x[L] ).
Therefore, for any/; C I;,

w(x[J;]) = vi(xs[Ji]) w4 (1 = vi(x[ i) ui-
(u] — u) vi(x[ i) + uy

(2

%It is important to distinguish local value functions (which are

2It is important to keep in mind that anchor levels are definedonly locally calibrated) from the GAI subutility functions, even

for each subutility factor, not individual attributes.

though both are defined over the same factors.



Finally, we define the subutility functions,, ..., u,, in
terms of anchor outcome utilities and local value functions.
Using the canonical definition (Eq. 3), we get

ui(x1) = (UI - uf') v1(x1) +uf‘, 4)
w;(x;) = (uj —uj) -

-1 k
[vj(xj) +Y (=D" > vl L ﬂfj])]

k=1 1<i] <---<i, <j s=1

j—1
Flu+ ) =D > u | Figure 1: An Example of a GAI Graph.
k=1 1<ig < <ip <j

In our small example, this gives: v (%; [ﬂf:l Ii, N L)) = v (x;[0]) = v;(x)), i.e., the lo-
cal utility of the default suboutcome. This utility is fixed at

(u(x°)—uj)/(u] —uj), and does not depend on the argu-

uz(ta,x3) = (ug —uy) [va(2,23) — va(w2, 23)]. mentx;; therefore, every; (x; [ﬂle I;, N I;]) for which
ﬂf:l I;, N I; = () can be eliminated from Eq. 4.

Any utility function v can now be rewritten as a strategi-
In practice, we expect GAl models to exhibit considerablecally equivalent utility function.’:

structure, and intersections between subutility factors to in-

volve only a few variables. We propose a complete util- reon / N~ T
ity elicitation procedure that takes advantage of such struc- W00 =D uix) = D)y — ),
ture. For now, we assume that a decision maker is capable

of answeringdirect local standard gamble utility queries, where
such as “for what probability would you be indiffer- ,
ent between suboutcomeg and a (local) standard lottery _ ,_ =, & 1)k . ﬁ], AL
(p,x;{ ;1 — p,x;-), assuming that attributes in the condi- 25067) = v (x3) + (=) 2. ulsl e b,

up(z1,22) = (u] —ui) vi(zy,20) + up,

3.3 Graphical Elicitation Procedure

k=1 1<iy <<y <j s=1

tioning set’; are at default levels?” Later, we will consider

more realistic locatomparisorgueries. andv; (x; |5, I, N 1)) = 0,if OF_, I, NI = 0.
Assume a decomposition of attributes into GAI subsets

I, ..., Im, and fix an order over these subsets (the ordefry compute a (unnormalized) subutility functian(x; ),

does not affect efficiency of our algorithm). We construct,ye nave to know which local suboutcomesare involved

a directed graph whose nodes correspond to thelsarsd . , . ;

directed e(?gegfi,lj) wheneverT; N ij7£ 0 andi > ;.4 (in the formx; [ﬂ’;zl I;,NI;]) ontheright side thhe equa-

Edge(;, I;) is labeled byl; N ;. Fig. 1 shows an example tion; this amounts to finding all nonempty B, 1,.NI;

of a GAI graph. and recording the corresponding sign of the local value

After local elicitation, we have local value functiong functions in Eq. 5. The structure of subutility functions de-

Utilities of anchor Ie,veISuT i T L have tb.aj.e pends only on the GAIl subset decomposition. Therefore,

obtained by alobal ueritleémlv-fo'v.v;:/enr’ “\;\';e o need togiven a GAl graph, we can use the following search proce-
y 9 q : ’ y dure to compute the relevant subsets needed to solve Eg. 5.

ask2m such queries involving full outcomés.Interest- v only need to do this once for each subutility factor:
ingly, this is thesame number of global queriesquired

for %‘Ioba! scaling mfthe Ilnearr:y add!t!ve case (considering Input: GAI attribute sets .. L.,
each attribute as a factor in the additive case). Output: For each subutility factof, a collection of setd. ;,

The general formula for defining canonical subutility func- | and asign function; : L; — {+1, —1}.
tions is provided by Eq. 4. However, we can simplify it
ConSIderal?lly d;'le to.the 9faph'°a' SFrU(I;Iture Of. G'IAI attribute e Start at nodej and perform a graph search along the
.sets/.. A uti 'tY ) unctlgnu 1S strateglga y equg ent ta directed arcs. The search depth is finite, so any seprch
if «' is a positive affine trlansformatlon of Notice that algorithm (e.g., breadth-first or depth-first) could pe
the expression;- + > _1(—1)* - u; on the last line used. Sef; = 0.
in Eq. 4 does not depend on the particular configuration| ¢ Wwhile I, N I; # () (we're at node))
x;. Therefore, it is simply ;;:l constant and can be elimi- _ let K = {nodes on path from to i}:
nated. Furthermore, whef,_, I;, N I; = 0, we have — addnyex i to Lj;

“An undirected version of this graph isGAl network[10]. — setz;(Mkex i) = 1, if depth even,

SOnly m queries are required #° = x. % (Nwercly) = -1, if depth odd.

e For each subutility factoy:




Because of the graphical structure of GAlI models, Eq. 5This requires optimization over all outcomesXn as well
now reduces to as continuous optimization of tfigiery pointl € [0, 1].

(%) = Y () vi(x4[)). 4.1 GAI Structure and Local Queries
JEL; . -
‘ GAI models allow us take advantage of the additive utility

Consider the example GAI graph in Figure 1. To com-decomposition to compute EVOI. We assume that anchor
pute L;, we search for all non-empty intersections of utilitiesuy ,ui", ..., u,),, u;, are known, but the local value
the setI; with other sets. The only such sets areguncttlonsm,...,vljm alre slpecflfledt_lmpreC|sertV|a|n_|<_jr(]aper}-
. ent priors over local value function parameters. Thus, for
§5h 'tsilf (atL deEth 0).1s (depth 1), angII} (depth 1_) each suboutcome; (apart from three special configura-
erefore, Ls = {{5,6},{5},{6}}, and s (s, ) = tionsx,' , x;-, x9 whose local values are fixed) we have an

p 0)__, 0 i _
?5@5’ )~ ‘45($5’f6) vs (25, z6). Finally, us (x5, z6) = independent prior density over possible values;ék;).”
Us(@s, w6 ) (u5 — uz ). The expected value of outconssis then
4 Elicitation under Uncertainty Elu(x)] = ZE[“J' )] =S () — ub)E[p;(x;)],
j=1 =1

We now considepartial elicitation of utility parameters.

Generally speaking, good (or even optimal) decisions carwhereE[v;(x;)] equals

be realized without complete utility information. Rather .

than asking for the direct assessment of utility parameters,,, k e , ,
using standard gambles as in [10], we consider simpler bi—E[v] Gl + 2 (1) 2. BliGsl() 5N D)
nary comparison queriesver local gambles. Following
[6, 2], we suppose some prior over the parameters of aWith priors over local utility functions, an appropriate

GAI model, and use myopic expected value of information{ﬁgﬁ l?,f, q(‘;;%ggdﬂg’ $|;2§"’}|> “tgSB(/:ﬁ;sgfgr‘;tfsoggslgéﬁgﬁgr
(EVOI) to determine appropriate queries. because it asks a user to focus on preferences over a (usu-

If a utility function u is completely unstructured, and a ally small) subset of attributes; the values of remaining at-
prior densityr over the utility function parameters is avail- tributes do not have to be considered. Indeed, this corre-

. L ponds to a binary comparison query over local outcomes
able, the best outcome with respect to the prior is S|mply:md gambles, which a user can more easily assess: “do you
x* = argmaxx E™[u(x)]. However, we can query a user

X : _ preferx; or (p,x; ;1 — p,x;), assuming that attributes in
about her utility function, update the prior based on the rethe conditioning set’; are at default levels?” The best local
sponse, and compute a new expected best outcome. Ifrayopic query is then

sequence of queries can be asked, finding the best elicita-
tion policy is a sequential decision process, providing an
optimal tradeoff between query costs (the burden of elic-
itation) and potentially better decisions due to additional
information [2]. However, such a policy is very difficult to
compute, so here we adopt a myopic approach to choosing

k=1 1<i) << <J s=1

a p\x _
(x},1) = arg max arg max
X
i

Pr(yes|x{,1) max pyesixil [u(x)]+

Pr(no|x},1) max Erelxi [u(x)].

the next query [6]. We can simplify part of the equation as follows:
We consider queries of the form “Is utility of outconxe .
greater thari?”, denotedx?, [); these require onlyes, no max EY* P [u(x)]
response8. The expected posterior utility (EPWf query *
(x1,1)is es|x
= max | B X ()] + max > Elu(x)]
EPU(xY, 1) = Pr(yes|x?, 1) max EY**P" [u(x)]+ ' "
Pr(nofx?, 1) max E™*" [u(x)], = max [(ulT — ) BV [ (xi)] + T(Xi)] )

where Pr(yes|x?, 1) is the probability of responsges ~ Wherer(x;) = maxyreswtox; 2, Elu;(x;)] could be
w.r.t. the current density anl¥**Ix":! is expectation w.r.t. computed by, say, variable elimination.
the updated density given s 1esponse. Thexpected  we need some additional notation. ldsp(x’) be the set
value of informatiorof query(x?, ) is: of all suboutcomes:; such thatx/ appears (in the form
EVOI(x?,1) = EPU(x?,1) — Eu(x")]. X;j [ﬂle I;, N I;]) on the right side of an expression for

Therefore, the best myopic query is v;(x;) in Eq. 58 Intuitively, subutility values of outcomes

q a 7 TN 1 ey (0w —uf
(x9,1)" = arg max arg max EPU(xY,1). Recallvi(x; ) = 1,vi(x;") = 0, andvi(x;) = T —ul

- ¥The setdep(x);) can be computed easily from the dgt ob-
®The range of a utility function is assumed to[bel]. tained by the GAI graph search procedure.



in defx}) “depend” on the local utility of outcome’.
Also, lets(x;,x’;) be the signed unit (i.e., +1 or -1) in front
of v;(x’;) on the right side of an equation foj(x; ).

If x; ¢ depx!), then a query involvingk? will not
change the expected valuewfix;): EvesIXit [u;(x;)] =
Elui(x;)]. If x; € depx}), then the expected posterior
value ofu;(x;) changes only because of the change in the
posterior expectation af;(x;). Therefore, in such a case, B S

EPU()

4185

418

4175

yes\xg,l = )
E [o: (<o) , Figure 2: Expected posterior utility as a function of the
= E[vi(x:)] — s(xi, x3) Elvi (x9)] + s(xi, x7) BV [, (x9)] - query pointl
= s(xi, x?) BV PO [o;(x?)] + Blos(x:)] — s(xi, x7) Bloi(x?)].

Thus, tested it on a realistic car-rental problem [4]. The graphical
structure of this problem is sufficient to admit fast (around
1 second) EVOI computation; therefore, our approach can
readily support interactive real-time preference elicitation.

max EYesIxit [u(x)]

= max BV s ()] + 701

The car-rental problem is modeled with 26 variables that

o d % o) B [wi ()ff)] + r(x:) specify various attributes of a car relevant to typical rental
max,, cgepx?y BV [wi(xi)] + (i) decisions. Variable domains range from 2 to 9 values,
m resulting in 61,917,364,224 possible configurations. The
= max{ (dy(x) 1 (1) + da(xs) | : € dep(x?)}. GAl m_odel consists of 13 local factors, eaqh defined on at
' R ¢ most five variables; the model has 378 utility parameters
where (see [4] for further problem details). Constraints on possi-
N sl ble configurations require constraint-based optimization to
pr (1) = EYE (%)), determine optimafeasibleconfigurations of the variables
di(xi) = (ui —ui)s(xi,x?), and dz(x;) = (so even with a precise utility function, optimization is re-
(] — ud)(Efoi(xi)] — s(xi, x3) E[oi(x9)]) + (x:)- quired to determine the best outcome). We use variable

elimination to determine best “expected” outcomes.

max, E"°1 [u(x)] can be simplified in a similar way. e experiment with three different types of priors on local

) ) ) utility functions: a (random) mixture of five uniforms, a
4.2 Mixture of uniforms priors non-informative uniform density, and a mixture of 10 uni-
Specifying prior information over local utility parameters forms which is fitted to approximate a truncated Gaussian
as a mixture of uniform distributions confers several ad-distribution with a variance of 0.3 and the mean chosen
vantages for utility elicitation. With enough components, at random from the intervaD, 1]. For each of the three
a mixture of uniforms is flexible enough to approximate types of priors, we sample 30 different utility functions

many standard distributions; furthermore, it fits nicely with i d1 ¢ ¢ ! We th
the type of queries we consider here. Because the posterififat @ré used to generate responses to queries. We then

distribution after a response to a query remains a mixturéun our elicitation algorithm for 100 queries; for an EVOI
of uniforms (we only need to update the weights), it is pos-query strategy, if the EVOI becomes 0 (which happens af-

sible to maintain an exact density over Utlllty parameterser 20-30 queries on a\/erage), we choose the next query

throughout the elicitation process [2]. Most importantly, 4i -andom. We compare our myopic EVOI strategy with

we can calculate the optimal query poirgnalytically. To “ " .

maximize EPU, we only need to calculate the maximum of @ ‘Tandom” query strategy, where a subuitility factor and
a local query configuration is chosen at random; however,

{ Pr(yes|l) m + Pr(no|l) (di(x:) = (1) + da2(x)) the query point is set to the expected local utility of the
Pr(yes|l) (di(x;) T (1) + da2(x:)) + Pr(noll) m guery suboutcome (sbis chosen “intelligently” to give
equal odds to either response). Figure 3 summarizes our
for eachx; € dep(x{). For a given;, this expressionis a experimental results for the three different types of priors.
piecewise quadratic function afFig. 2 shows an example All results for EVOI queries are averaged over 30 trials
of such a function for a density with 5 components. Thewith underlying utility functions sampled from the corre-

maximum occurs at* = %ﬁf’)‘) if I* € [0,1]. sponding priors, while the random strategy results are av-
eraged over 100 trials. Figure 3(b) show (unsurprisingly)
5 Empirical Results that Gaussian priors are quite informative—on average, the

initial error (before elicitation) is only slightly greater than
We implemented the myopic elicitation strategy using prior2%, while the uniform priors give an initial error is around
densities specified as mixtures of uniform distributions, andL3%. The impact of these differences is normalized in Fig-
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Figure 3: Ultility error reduction with queries: (a) as a percentage of the initial error; (b) as a percentage of the optimal
utility. EVOI query strategy results are unmarked, and random strategy results are marked with an ‘X’.

ure 3(a), which shows how the error decreases as a fractiori2] C. Boutilier. A POMDP formulation of preference elicita-

of the initial error. In all cases, the EVOI strategy is clearly

superior to a random query strategy, which at best reduceg3]

the error by only 20% after 100 queries. The EVOI strategy
cuts the error by at least a half after 50 queries. Though this

might seem like a large number of queries, recall that the [4]

problem is large (378 utility parameters), and our queries
are local comparison queries.

(5]

6 Concluding Remarks

(6]

We described a new approach to elicitation in GAl mod-

els. Unlike previous approaches, we have shown how the,

graphical structure can be exploited to restrict attention al-

most exclusively to queries over local outcomes and local g
standard gambles, thus extending a key advantage of ad-

ditive models to the generalized case. We have also shown

how one can exploit GAl structure to optimize query choice [9]

when using myopic EVOI to guide preference elicitation.

A number of directions remains to be explored. Methods10]

for eliciting GAI model structure are of primary importance

tion problems.AAAI-02 pp.239—-246, Edmonton, 2002.

C. Boutilier, F. Bacchus, and R. |. Brafman. UCP-Networks:
A directed graphical representation of conditional utilities.
UAI-01, pp.56-64, Seattle, 2001.

C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.
Constraint-based optimization with the minimax decision
criterion. CP-2003 pp.168-182, Kinsale, Ireland, 2003.

U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Utility
elicitation as a classification problemJAI-98, pp.79-88,
Madison, 1998.

U. Chajewska, D. Koller, and R. Parr. Making rational de-
cisions using adaptive utility elicitationAAAI-0Q pp.363—
369, Austin, 2000.

J. S. Dyer. Interactive goal programminglanagement Sci-
ence 19:62-70, 1972.

P. C. Fishburn. Interdependence and additivity in multivari-
ate, unidimensional expected utility theorynternational
Economic Review8:335-342, 1967.

P. C. Fishburn.Utility Theory for Decision Making Wiley,
New York, 1970.

C. Gonzales and P. Perny. GAI networks for utility elicita-
tion. KR-04 2004.

because a suitable GAI decomposition is a prerequisite fot 1] R. L. Keeney and H. RaiffeDecisions with Multiple Objec-

our algorithm [11]. Other directions include incorporating

tives: Preferences and Value Trade-off¥iley, NY, 1976.

noise models into user responses [2]; developing Compd—lz] A. Salo and R. P. Hitélainen. Preference ratios in multiat-

tationally tractable approximations for computing nonmy-
opic EVOI in this setting; user case studies and methods for

dealing with inconsistency in user responses (though OUf 31

current method will never ask a query for which a response
could be inconsistent); and investigating other decision cri-
teria such as minimax regret [4].
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