
Reactivity in a Logic-Based
Robot Programming Framework

�

Yves Lespérance Kenneth Tam Michael Jenkin

Dept. of Computer Science, York University,
4700 Keele St., Toronto, ON Canada, M3J 1P3�

lesperan,kenneth,jenkin� @cs.yorku.ca

Abstract. A robot must often react to events in its environment and exceptional
conditions by suspending or abandoning its current plan and selecting a new plan
that is an appropriate response to the event. This paper describes how high-level
controllers for robots that are reactive in this sense can conveniently be imple-
mented in ConGolog, a new logic-based agent/robot programming language. Re-
activity is achievedby exploiting ConGolog’s prioritized concurrentprocessesand
interrupts facilities. The language also provides nondeterministic constructs that
support a form of planning. Program execution relies on a declarative domain the-
ory to model the state of the robot and its environment. The approach is illustrated
with a mail delivery application.

1 Introduction

Reactivity is usually understood as having mainly to do with strict constraints on re-
action time. As such, much work on the design of reactive agents has involved non-
deliberative approaches where behavior is hardwired [3] or produced from compiled
universal plans [18, 17]. However, there is more to reacting to environmental events or
exceptional conditions than reaction time. While some events/conditionscan be handled
at a low level, e.g., a robot going down a hallway can avoid collision with an oncoming
person by slowing down and making local adjustments in its trajectory, others require
changes in high-level plans. For example, an obstacle blocking the path of a robot at-
tempting a delivery may mean that the delivery must be rescheduled. Here as in many
other cases, the issue is not real-time response. What is required is reconsideration of the
robot’s plans in relation to its goals and the changed environmental conditions. Current
plans may need to be suspended or terminated and new plans devised to deal with the
exceptional event or condition.
�

The research described received financial support from Communications and Information
Technology Ontario (and its earlier incarnation ITRC) and the Natural Science and Engineer-
ing Research Council of Canada. Hector Levesque came up with the idea of handling sensing
through exogenous events; he also helped with the iterative deepening route planning proce-
dure. Ho Kong Ng did much of the work involved in porting the controller to the Nomad Super
Scout and testing the resulting system. We thank them as well as Ray Reiter, Jeff Lloyd, Mikhail
Soutchanski, Giuseppe De Giacomo, and Daniele Nardi for helpful discussions related to this
work. Many of our papers are available at http://www.cs.yorku.ca/� lesperan/.

To provide the range of responses required by environmental events and exceptional
conditions, i.e. reactivity in the wide sense, the best framework seems to be a hierarchical
architecture. Then, urgent conditions can be handled in real-time by a low-level control
module, while conditions requiring replanning are handled by a high-level control mod-
ule that models the environment and task, and manages the generation, selection, and
scheduling of plans.

Synthesizing plans at run-time provides great flexibility, but it is often computation-
ally infeasible in complex domains, especially when the agent does not have complete
knowledge and there are exogenous events (i.e. actions by other agents or natural events).
In [10], it was argued that high-level program execution was a more practical alterna-
tive. The idea, roughly, is that instead of searching for a sequence of actions that takes
the robot from an initial state to some goal state, the task is to find a sequence of actions
that constitutes a legal execution of some high-level program. By high-level program,
we mean one whose primitive instructions are domain-dependent actions of the robot,
whose tests involve domain-dependent predicates that are affected by the actions, and
whose code may contain nondeterministic choice points where lookahead is necessary
to make a choice that leads to successful termination. As in planning, to find a sequence
that constitutes a legal execution of a high-level program, one must reason about the pre-
conditions and effects of the actions within the program. However, if the program hap-
pens to be almost deterministic, very little searching is required; as more and more non-
determinism is included, the search task begins to resemble traditional planning. Thus,
in formulating a high-level program, the user gets to control the search effort required.

In [10], Golog was proposed as a suitable language for expressing high-level pro-
grams for robots and autonomous agents. Golog was used to design a high-level robot
control module for a mail delivery application [20]. This module was interfaced to sys-
tems providing path planning and low-level motion control, and successfully tested on
several different robot platforms, including a Nomad 200, a RWI B21, and a RWI B12.

A limitation of Golog for this kind of applications is that it provides limited support
for writing reactive programs. In [4], GonGolog, an extension of Golog that provides
concurrent processes with possibly different priorities as well as interrupts was intro-
duced. In this paper, we try to show that ConGolog is an effective tool for the design of
high-level reactive control modules for robotics applications. We provide an example
of such a module for a mail delivery application. The approach proposed should also be
applicable in contexts other than robotics, where an agent is embedded in some environ-
ment and needs to react to failures and changes in its environment.

2 ConGolog

As mentioned, our high-level programs contain primitive actions and tests of predicates
that are domain-dependent. Moreover, an interpreter for such programs must reason about
the preconditions and effects of the actions in the program to find a legal terminating
execution. We specify the required domain theories in the situation calculus [11], a lan-
guage of predicate logic for representing dynamically changing worlds. In this language,
a possible world history, which is simply a sequence of actions, is represented by a first
order term called a situation. The constant � � is used to denote the initial situation —

that in which no actions (of interest) have yet occurred. There is a distinguished binary
function symbol � � and the term � � � � � � � denotes the situation resulting from action �
being performed in situation � . Relations whose truth values vary from situation to situ-
ation, called predicate fluents, are denoted by predicate symbols taking a situation term
as the last argument. For example, � � � � 	
 � � � � � � might mean that the robot is holding
object � in situation � . Similarly, functions whose value varies with the situation, func-
tional fluents, are represented by function symbols that take a situation argument. The
special predicate � � � � � � � � � is used to represent the fact that primitive action � is exe-
cutable in situation � . A domain of application will be specified by theory that includes
the following types of axioms:

– Axioms describing the initial situation, � � .
– Action precondition axioms, one for each primitive action � , which characterizes

� � � � � � � � � .
– Successor state axioms, one for each fluent , which characterize the conditions

under which � � � � � � � � � � � holds in terms of what holds in situation � ; these axioms
may be compiled from effects axioms, but provide a solution to the frame problem
[14].

– Unique names axioms for the primitive actions.
– Some foundational, domain independent axioms.

Thus, the declarative part of a ConGolog program implementing a high-level controller
for a robot will be such a theory.

A ConGolog program also includes a procedural part which specifies the behavior
of the robot. This is specified using the following constructs:

� , primitive action�
?, wait for a condition1

� � � � � � � , sequence
� � � � � � � , nondeterministic choice between actions� � � � � , nondeterministic choice of arguments
� � , nondeterministic iteration
if

�
then � � else � � endIf, conditional

while
�

do � endWhile, loop
� � � � � � � , concurrent execution
� � � � � � � � , concurrency with different priorities
� �� , concurrent iteration� � � � � � , interrupt
proc ! � � � � endProc, procedure definition
! � " � , procedure call
noOp do nothing

The nondeterministic constructs include � � � � � � � , which nondeterministically choses
between programs � � and � � , � � � � � , which nondeterministically picks a binding for the
variables � and performs the program � for this binding of � , and � � , which means

1 Here, # stands for a situation calculus formula with all situation arguments suppressed; # $ % &
will denote the formula obtained by restoring situation variable % to all fluents appearing in # .

performing � zero or more times. Concurrent processes are modeled as interleavings of
the primitive actions involved. A process may become blocked when it reaches a primi-
tive action whose preconditions are false or a wait action

�
? whose condition

�
is false.

Then, execution of the program may continue provided another process executes next.
In � � � � � � � � , � � has higher priority than � � , and � � may only execute when � � is done
or blocked. � �� is like nondeterministic iteration � � , but the instances of � are executed
concurrently rather than in sequence. Finally, an interrupt � � � � � � has variables
� , a trigger condition

�
, and a body � . If the interrupt gets control from higher prior-

ity processes and the condition
�

is true for some binding of the variables, the interrupt
triggers and the body is executed with the variables taking these values. Once the body
completes execution, the interrupt may trigger again. With interrupts, it is easy to write
programs that are reactive in that they will suspend whatever task they are doing to han-
dle given conditionsas they arise. A more detailed description of ConGolog and a formal
semantics appear in [4]. We give an example ConGolog program in section 4.

A prototype ConGolog interpreter has been implemented in Prolog. This implemen-
tation requires that the axioms in the program’s domain theory be expressible as Prolog
clauses; note that this is a limitation of this particular implementation, not the frame-
work.

In applications areas such as robotics, we want to use ConGolog to program an em-
bedded system. The system must sense conditions in its environment and update its the-
ory appropriately as it is executing the ConGolog control program.2 This requires adapt-
ing the high-level program execution model presented earlier: the interpreter cannot sim-
ply search all the way to a final situation of the program. An adapted model involving
incremental high-level program execution is developed in [5]. However in this paper,
we sidestep these issues by making two simplifying assumptions:

1. that the interpreter can make an arbitrary choice among the primitive actions that
are allowed by a nondeterministic program at each step and immediately commit
and execute this action, and

2. that there is a set of exogenous events detectable by the system’s sensors (e.g. a mail
pick up request is received or the robot has arrived at the current destination)and that
the environment is continuously monitored for these; whenever such an exogenous
event is detected to have occurred, it is immediately inserted in the execution.

We can get away with this because our applicationprogram performs essentially no search
and the exogenous events involvedare easy to detect. In the incremental execution model
of [5], sensing actions can be included at specific points in the program, and while nonde-
terminism is interpreted as arbitrary choice as per assumption (1), a new “search block”
construct is also added to the language, so that within such a block the interpreter must
search to ensure that the primitive action selected is on a path to a terminating configu-
ration for the block.

2 Here, the environment is anything outside the ConGolog control module about which infor-
mation must be maintained; so the sensing might only involve reading messages from another
module through a communication socket.

3 Interfacing the High-Level Control Module

As mentioned earlier, we use a hierarchical architecture to provide both real-time re-
sponse as well as high-level plan reconsideration when appropriate. At the lowest level,
we have a reactive control system that performs time-critical tasks such as collisionavoid-
ance and straight line path execution. In a middle layer, we have a set of components
that support navigation through path planning, map building and/or maintenance, keep-
ing track of the robot’s position, etc. and support path following by interacting with the
low-level control module. On top of this, there is the ConGolog-based control module
that supports high-level plan execution to accomplish the robot’s tasks; this level treats
navigation somewhat like a black box.

In this section, we describe how the ConGolog-based high-level control module is
interfaced to rest of the architecture. The high-level control module needs to run asyn-
chronously with the rest of the architecture so that other tasks can be attended to while
the robot is navigating towards a destination. It also needs to interact with the naviga-
tion module to get tasks accomplished. To support this, we need to give the high-level
control module a model of the navigation module. We have defined a simple version of
such a model. With respect to navigation, the robot is viewed by the high-level control
module as always being in one of the following set of states:

� � � � � � � � � � � � 	
 � � � � � � � � � � � 	
 � � � � � �
 � �
The current robot state is represented by the functional fluent � � � � 	 � 	 � 	 � � � � . The robot’s
default state is � � � � ; when in this state, the robot is not moving towards a destination, but
collision avoidance is turned on and the robot may move locally to avoid oncoming bod-
ies. With the robot in � � � � state, the high-level control module may execute the primitive
action � 	 � � 	 � � � � � � � � � � � ; this changes the robot’s state to � � � 	
 � and causes the nav-
igation module to attempt to move the robot to � � � � � . If and when the robot reaches the
destination, the navigation module generates the exogenous event � � � � � � � � 	 , which
changes the robot’s state to

� � � � � � � . If on the other hand the navigation module en-
counters obstacles it cannot get around and finds the destination unreachable, then it
generates the exogenous event � � 	 � 	
 � � , which changes the robot’s state to � 	
 � � . In
any state, the high-level control module may execute the primitive action � � � � 	 � � � � 	 ,
which aborts any navigation that may be under way and returns the robot to � � � � state.
Finally, there is the � � �
 state where collision avoidance is disabled and the robot
will not move even if something approaches it; this is useful when the robot is picking
up or dropping off things; humans may reach into the robot’s carrying bins without it
moving away. All other actions leave the robot’s state unchanged. This is specified in
the following successor state axiom for the � � � � 	 � 	 � 	 � fluent:

� � � � 	 � 	 � 	 � � � � � � � � � � � 	 �� � � � � 	 � � 	 � � � � � � � � 	 � � � � 	
 � �
� � � � � � � � � � 	 � 	 � � � � � � � � �
� � � � 	 � 	
 � � � 	 � � 	
 � � �
� � � � � � 	 � � � � 	 � 	 � � � � � �
� � � � � � � � � � 	 � 	 � � � �
 �
	 � � � � � 	 � 	 � 	 � � � � � � � � �� � 	 � � 	 � � � � � � � � � �� � � � � � � � � 	 �

� �� � � 	 � 	
 � � � � �� � � � � 	 � � � � 	 � � �� � � � � � � � � 	

We also have precondition axioms that specify when these primitive actions and ex-
ogenous events are possible. For example, the following says that the action of directing
the robot to start moving toward a destination � is possible whenever the robot is in � � � �
state:

� � � � � � 	 � � 	 � � � � � � � � � � � � � � � 	 � 	 � 	 � � � � � � � � �
We omit the other precondition axioms as they are obvious from the model description.

We also use two additional functional fluents: � � � � 	 � � � 	 	
 � 	 	 �
 � � � refers to the last
destination the robot was set in motion towards, and � � � � 	 � � � � � � � � refers to the current
location of robot as determined from the model. Their successor state axioms are:

� � � � 	 � � � 	 	
 � 	 	 �
 � � � � � � � � � � � �
� � � 	 � � 	 � � � � � � � �
� � � � � � 	 � � � 	 	
 � 	 	 �
 � � � � � � � �� � 	 � � 	 � � � � � � �
� � � � 	 � � � � � � � � � � � � � � � � �� � � � � � 	 � � 	 � � � � � � � � � � � �
 �
 � �
 �

� � � � � � � � � � 	 � � � � � � � 	 � � � 	 	
 � 	 	 �
 � � � �
� � � � � � 	 � � � � � � � � �

� � � �� � 	 � � 	 � � � � � � � � � �� � � � � � � � � 	
Note that in this model, we treat navigation to a location as an “activity” in the sense

of Gat [8], i.e. the primitive actions are essentially instantaneous changes that do not
constitute the activity, but only initiate or terminate it. In contrast to [8], we do specify
how the world model is to be updated. In extending our model, we should be able to use
the same approach to include other activities, e.g. perceptual search routines.

4 A Mail Delivery Example

To test our approach, we have implemented a simple mail delivery application. The high-
level control module for the application must react to two kinds of exogenous events:

– new shipment orders, which are represented by the event
� � � � � � � 	 � � �
 	 � � �
 � � � � � � � 	 � 	 �
 	 � � � 	 � � 	 	 � � , and

– signals from the navigation module, namely the � � � � � � � � 	 event announcing that
the destination has been reached and the � � 	 � 	
 � � event announcing that the robot
has failed to reach its destination.

The first kind is typical of the communication interactions a robot may have with its en-
vironment, while the second kind is typical of the control interactions a task-level mod-
ule may have with the rest of the robot’s architecture. To require more reactivity from
the robot, we assume that shipment orders come with different priority levels and that
the system must interrupt service of a lower priority order when a higher priority one
comes in. Also, we want the robot to make a certain number of attempts to get to a cus-
tomer’s mailbox as some of the obstacles it runs into may be temporary. This is handled
by assigning a certain amount of credit to customers initially and reducing their credit
when an attempt to go to their mailbox fails. When customers run out of credit, they are
suspended and shipments sent to them are returned to the sender when possible.

In addition to the navigation primitive actions and exogenous events already de-
scribed, the application uses the following primitive actions:

� � � � � � � � �
 � acknowledge reception of servable order
� � � � 	
 � � � � � � �
 � decline an unservable order
� 	 � � � � � � 	 � � �
 	 �
 � pick up shipment

� � � � � � � � � 	 � � �
 	 �
 � drop off shipment

� �
 � � � � � � � � �
 � cancel an unservable order
� � �
 � � � � � � 	 	 � � � reduce customer � ’s credit

 � 	 	 � � � 	 � � � � � � 	
 � � � � notify unreachable customer

Note that shipment orders are identified by a number
 that is assigned from a counter
when the � � � � � � � 	 � � �
 	 event occurs. We have precondition axioms for these primi-
tive actions, for example:

� � � � � � 	 � � � � � � 	 � � �
 	 �
 � � � � �
� � � � � � 	 � 	 � �
 � � � � � � � 	 � � � � �
� � � � 	 � � � � � � � � � � � 	 � � � � � � �
 � � � �
 � � � �

The primitive fluents for the application are:

� � � � � � 	 � 	 � �
 � � � � 	 order
 is in state 	
� �
 � � � �
 � � � � � sender of order
 is �
� � � 	 � 	 �
 	 �
 � � � � � recipient of order
 is �
� � � � � � � 	 � �
 � � � � � priority of order
 is �
� � � � � � 	 � � � � �
 counter for orders arriving
� � � � 	 	 � � � � � � � customer � has credit �
�
 � � �
 � � � � � � � � service to customer � is suspended

We have successor state axioms for these fluents. For example, the state of an order starts
out as � �
 � � 	 � 	 �
 	 , then changes to �
 � 	 �
 when the � � � � � � � 	 � � �
 	 event occurs,
etc.; the following successor state axiom specifies this:

� � � � � � 	 � 	 � �
 � � � � � � � � � � 	 �� � � � � � � � � � � � � � � 	 � � �
 	 � � � � � � � � � � � � � � 	 � �
 � 	 � �
 � 	 �
 �
� � � � � � � � � � �
 � � 	 � � � � 	 � � � � �
� � � 	 � � � � � � 	 � � �
 	 �
 � � 	 � �
 � � � � � �
� � � � � � � � � � � 	 � � �
 	 �
 � �

� � � � 	 � � � � � � � � � � � 	 � � � � � � � � 	 � 	 �
 	 �
 � � � � � 	 � � � � 	 � � � � � �
� � � � � � � � � � � 	 � � �
 	 �
 � �

� � � � 	 � � � � � � � � � � � 	 � � � � � � �
 � � � �
 � � � � � 	 � � � 	
 �
 � � �
� � � � � � � � � � � 	 � � �
 	 �
 � �

� � � � 	 � � � � � � � � � � �
 	 � � � � � � 	 � � � 	 � � 	 � �
 	 � � � � � � 	 � � �
� � � �
 � � � � � � � � �
 � � 	 � � �
 � � � � � � �
� � � � � � 	
 � � � � � � �
 � � 	 � � � � � 	
 � � �
	 � � � � � � � 	 � 	 � �
 � 	 � � �
 	 � � � � � � � � � � � � � � 	 � �
 �

� � �� � � � � � � � � �
 � � � �� � 	 � � � � � � 	 � � �
 	 �
 � �
� �� � � � � � � � � � 	 � � �
 	 �
 � � � �� � �
 � � � � � � � � �
 � � � �� � � � � 	
 � � � � � � �
 �

We omit the rest of the successor state and action precondition axioms for space reasons.

The initial state of the domain might be specified by the following axioms:

�
 � 	 � � � � � � � � � � �
 � 	 � � � � � � �
 �
�
 � 	 � � � � � � � � 	 � � � �
 � 	 � � � � � � 	 � � � � � �
�
 � 	 � � � � � � � � � � � � 	 	 � � � � � � � �
� � � � � � 	 � � � � � � �
� � � � � � 	 � 	 � �
 � � � � � � �
 � � 	 � 	 �
 	
� � � � 	 � 	 � 	 � � � � � � � � � �
� � � � 	 � � � � � � � � � � � �
 	 � � � � � � 	 � �

Let us now specify the behavior of our robot using a ConGolog program. Exogenous
events are handled using prioritized interrupts. The main control procedure concurrently
executes four interrupts at different priorities:

proc � � 	
 � �
 	 � � ��
 � � � � � � � 	 � 	 � �
 � � �
 � 	 �
 � � �
 � � � � � � � � � � � �
 �
� ��
 � � � � � � � � 	 � 	 � �
 � � � � � 	 � � � � � �
 � � �
 � � � � � �
 � � � �
 � � �� � �
 � � � � � � � � �
 �
��
 � � � � � � � � 	 � 	 � �
 � � � � � 	 � � � � � � � � � � � 	 � 	 � �
 � � �
 � � � � �

� � � � � 	 � � � � � �� � �
 	 � � � � � � 	 � � �� � � � � 	 � � 	 	 �
 � �
 	 � � �
� �� � � � � 	 � 	 � 	 � � � � � 	
 � �

noOp
endProc

The top priority interrupt takes care of acknowledging or declining new shipment orders.
This ensures that customers get fast feedback when they make an order. At the next level
of priority, we have two other interrupts, one that takes care of cancelling orders whose
senders have been suspended service, and another that controls the robot’smotion. At the
lowest priority level, we have an interrupt with an empty body that prevents the program
from terminating when the robot is in motion and all other threads are blocked.

The top priority interrupt deals with a new shipment order
 by executing the fol-
lowing procedure:

proc � �
 � � � � � � � � � � � �
 �
if �
 � � �
 � � � � � �
 � � � �
 � � � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � then

� � � � 	
 � � � � � � �
 �
else

� � � � � � � � �
 � �
if � � � � 	 � 	 � 	 � � � � � 	
 � � � � � � � � � 	 � �
 � �
 � � � � � � � � 	 � then

� � � � 	 � � � � 	 % abort current service
endIf

endIf
endProc

This sends a rejection notice to customers making an order whose sender or recipient
is suspended; otherwise an acknowledgement is sent. In addition, when the new ship-
ment order has higher priority than the order currently being served, the robot’s motion
is aborted, causing a reevaluation of which order to serve (�
 � � � � � � � � 	 � is a defined
fluent whose definition appears below).

The second interrupt in � � 	
 � �
 	 � � � handles the cancellation of orders when the
sender gets suspended; its body executes the primitive action � �
 � � � � � � � � �
 � .

The third interrupt in � � 	
 � �
 	 � � � handles the robot’s navigation, pick ups, and
deliveries. When the interrupt’s condition is satisfied, the following procedure is called:

proc � � � � 	 � � 	 	 �
 � �
 	 � � �
if

� � �
 � 	 � � � � � � � � � � then 	 � � � � � � � �
 � 	 � � � �
else 	 � � � � � � � � � � �
endIf

endProc

This tries to serve a customer when there is one to be served and tries to return to the
central office and wrap up otherwise. �
 � 	 � � � � � � � � � � � � is a defined fluent:

�
 � 	 � � � � � � � � � � � � def� �
 �
� � � � � � � 	 � 	 � �
 � � � � � � � 	 � � � � � � �
 � � � �
 � � � � �

� � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � � � � � � �
� � � � � � � 	 � 	 � �
 � � � � �
 � � � � � � � � � � 	 � 	 �
 	 �
 � � � � �
� � �
 � � � �
 � � � � � � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � � � � � � � �

� � �
 � � �
 � � � � � � � �
To try to serve a customer, we execute the following:

proc 	 � � � � � � � �
 � 	 � � � �� � � � � � 	 �
 � 	 � � � � � � � � � � � �
� 	 � � 	 � � � � � � � 	 � � � � � � � � �
� � � � � 	 � 	 � 	 � �� � � � 	
 � � � �
if � � � � 	 � 	 � 	 � � � � � � � � � then

� � � � � � � � � 	 �
� � � � � � � � � 	 � � �
 	 � � � � � � ;
� 	 � � � � � � 	 � � �
 	 � � � � � � � �
� � � � 	 � � � � 	

else if � � � � 	 � 	 � 	 � � � 	
 � � then
� � � � 	 � � � � 	 � % abandon attempt
� �
 � � � � � � � 	 � � � 	 �
 � � � � �

% else when service aborted nothing more to do
endIf]

endProc

This first picks one of the best customers to serve, directs the robot to start navigating
towards the customer’s mailbox, and waits until the robot halts. If the robot reaches the
customer’s mailbox, then shipments for the customer are dropped off and shipments
from him/her are picked up. If on the other hand, the robot halts because it got stuck,

the � �
 � � � � � � � 	 � � � 	 �
 � � procedure is executed. Finally, if the robot halts because a
higher priority order came in and the top priority interrupt executed a � � � � 	 � � � � 	 , then
there is nothing more to be done. � � � 	 �
 � 	 � � � � � � � � � � � � is a defined fluent that cap-
tures all of the robot’s order scheduling criteria:

� � � 	 �
 � 	 � � � � � � � � � � � � def� �
 � 	 � � � � � � � � � � � � �
�
 � 	 � � 	 � � 	 	 � � � � � � � � � � �
 � 	 � � 	 � � 	 	 � � � � �
� � � � 	 	 � � � � � � � � � � � � � 	 	 � � � � � � �
 � 	 � � 	 � � 	 	 � � � � � � �

�
 � 	 � � 	 � � 	 	 � � � � � � � � def��
 � � � � � � � �
 � 	 � 	 � � 	 � �
 � � � � � � � �
�
 � � � � � � � � � � � � �
 � 	 � 	 � � 	 � �
 � � � � � � � � � � � � � � �

� � � � � � � �
 � 	 � 	 � � 	 � �
 � � � � � � � def� � �
 � � �
 � � � � � � � � �
� � � � � � � 	 � 	 � �
 � � � � � � � 	 � � � � � � �
 � � � �
 � � � � � �

� � � � � � � 	 � �
 � � � � � �
� � � � � � 	 � 	 � �
 � � � � �
 � � � � � � � � � � � � � 	 � �
 � � � � � �

� � � � 	 � 	 �
 	 �
 � � � � � �
� �
 � � � �
 � � � � � � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � � � � � � �

� � � �
 � 	 � � 	 � � 	 	 � � � � � � def� � � �
 � 	 � � 	 � � 	 	 � � � � � � � �
� � � � �
 � 	 � � 	 � � 	 	 � � � � � � � � �

� � � � � � � 	 	 � � � � � � � � � def�� � � �
 � 	 � � 	 � � 	 	 � � � � � � � � � � � � � 	 	 � � � � � � � �
� � � � �
 � 	 � � 	 � � 	 	 � � � � � � � � � � � � � � 	 	 � � � � � � � � � �

This essentially says that the best customers to serve are those that have the highest credit
among those having the highest priority orders. We can now also define the priority of
the order currently being served as follows:

�
 � � � � � � � � 	 � � � � � � def�
� � � � � � � 	 � 	 � 	 � � � � � � � � 	
 � �

� � � � 	 � � � 	 	
 � 	 	 �
 � � � � � � 	 � � � � � � �
� � � �
 � 	 � � 	 � � 	 	 � � � � � � � �

� � � � � � � 	 � 	 � 	 � � � � � � � � 	
 � �� � � � � � 	 � � � 	 	
 � 	 	 �
 � � � � � � 	 � � � � � � � � � � � � � �
The � �
 � � � � � � � 	 � � � 	 �
 � � procedure goes as follows:

proc � �
 � � � � � � � 	 � � � 	 �
 � � � � �
� � �
 � � � � � � 	 	 � � � �
if � � � � 	 	 � � � � � then

 � 	 	 � � � 	 � � � � � � 	
 � � � � �
endIf;

endProc

When the robot gets stuck on the way to customer � ’s mailbox, it first reduces � ’s credit,
and then checks whether it has reached zero and � has just become �
 � � �
 � � � ; if so, �
is notified that he/she will no longer be served.

The 	 � � � � � � � � � � procedure is similar to 	 � � � � � � � �
 � 	 � � � � , except that it at-
tempts to drive the robot to the � �
 	 � � � � � � 	 � � and then drop off undeliverable ship-
ments there.

Procedure � � � � � � � � � 	 � � �
 	 � � � � � � delivers to customer � all shipments on board
such that � is the shipment’s recipient or � is the shipment’s sender and the recipient has
been suspended:

proc � � � � � � � � � 	 � � �
 	 � � � � � �
while

�
 � � � � � � � 	 � 	 � �
 � � �
 � � � � � �
(� � � 	 � 	 �
 	 �
 � � � �
� �
 � � � �
 � � � � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � � � do�
 � � � � � � � � 	 � 	 � �
 � � �
 � � � � � �

(� � � 	 � 	 �
 	 �
 � � � �
� �
 � � � �
 � � � � �
 � � �
 � � � � � � � 	 � 	 �
 	 �
 � � � � � �

� � � � � � � � � 	 � � �
 	 �
 � �
endWhile

endProc

Procedure � 	 � � � � � � 	 � � �
 	 � � � � � � � simply picks up all outgoing shipments from
customer � ’s mailbox.

Note that by handling the cancellation of pick ups in a separate thread from that deal-
ing with navigation and order serving, we allow the robot to be productive while it is in
motion and waiting to reach its destination. This makes a better use of resources.

To run the system, we execute � � 	
 � �
 	 � � � after placing a few initial orders:

� � � � � � � 	 � � �
 	 � � � � � � � �
 � � � �
� � � � � � � 	 � � �
 	 � � �
 � � � � 	 � � � � � � �
� � 	
 � �
 	 � � �

5 Implementation

The high-level control module for the mail delivery application has been ported to an
RWI B12 and a Nomad Super Scout mobile robot and tested on some sample deliv-
ery tasks (see figure 1). The other software components for this were based on a sys-
tem developed during an earlier project concerned with building an experimental ve-
hicle to conduct survey/inspection tasks in an industrial environment [12]. The system
supports point to point navigation in a previously mapped environment and can use pre-
positionedvisual landmarks to correct odometry errors. It relies on sonar sensors to sense
unmodeled obstacles.

The system’s architecture conforms to the general scheme described earlier. It pro-
vides two levels of control.An onboard low-level controller [16] performs all time-critical
tasks such as collision avoidance and straight line path execution. The low-level con-
troller assumes that the robot is always in motion and communicates with an offboard

Fig. 1. Our robot facing an obstacle.

global path planner and user interface module known as the Navigator. The Navigator
takes as inputs a metric/topological map of the environment in which the robot is located
and the coordinates (as defined in the map) of the two end points, i.e., the source and the
destination of a path. By making use of some predefined path-finding algorithms such
as breadth-first search or � � the Navigator identifies a feasible path between the source
and the destination. To follow the path, the Navigator decomposes it into segments (a
segment is a straight line between two adjacent way-points) and then forwards the seg-
ments to the low-level controller for execution. The Navigator supervises the low-level
controller and identifies failures in the low-level controller’s ability to execute a path
segment.

The ConGolog-based high-level control module interacts with the rest of the archi-
tecture by communicating with the Navigator through a socket interface. The high-level
controller, Navigator, and low-level controller all run asynchronously. The primitive ac-
tions in the ConGolog interface model are implemented using operations provided by the
Navigator (currently, the mail pickup and drop off actions are only simulated). For exam-
ple, the ConGolog primitive action � 	 � � 	 � � � � � � � is implemented as
[planPath(coordinatesOf(�)); followPath], where planPath and
follow path are operations supplied by the Navigator.

Our test scenarios confirmed the system’s ability to deal with navigation failures and
to interrupt the current task when an urgent shipment order is made. For more details on
the implemented system, see [21].

6 Discussion

In this work, we have shown how ConGolog can be used to implement high-level robot
controllers that can cope with dynamic and unpredictable environments — controllers
that are reactive and support high-level plan reconsideration in response to exogenous
events and exceptional conditions. Our work demonstrates that a logic-based approach
can be used to build effective systems. In the ConGolog framework, application domains
and their dynamics are specified declaratively and the axioms are used by the interpreter
to automatically update its world model. This is less error-prone than having the user
program his own ad-hoc world representation and update procedures. ConGolog con-
trollershave clear formal specifications and are easier to extend and adapt to different en-
vironments or tasks. Existing robot control frameworks with similar objectives include
RAP [7] and ATLANTIS [8]. In ConGolog, the control framework is less constrained
and how the world changes is specified declaratively in a very expressive language.

The main limitation of the work accomplished so far is the lack of search/planning in
the current high-level control program. ConGolog is designed to support run-time plan-
ning through search over a nondeterministic program. This is the main reason for using
a declarative representation of domain dynamics. So the next step in our work will be to
extend the controller developed so far to perform run-time planning for route optimiza-
tion and dealing with failures (e.g., in navigation).

It is not difficult to write search/planning code in ConGolog. For example, here’s
how one might implement an iterative deepening search to find the shortest route through
customers needing service — one starts the search by invoking � � �
 � �
 	 � � � � :
proc � � �
 � �
 	 � �
 �

� � � � � � � � �
 � 	 �
 � � � � �
 � �
 	 � �
 � � �
endProc

proc � � � � � � � � �
 � 	 �
 �
� � � �
 � 	 � � � � � � � � � � � �� � � � � � �
 � 	 � � � � � � � � � � � � � � 	 � 	 �
 � � � � � � � � � �
 � � �

�
 � 	 �
 � � � �
endProc

But adding such planning to a reactive control program raises a lot of complex issues.
The planning/search must be interleaved with action execution and sensing the environ-
ment — as mentioned earlier, the standard ConGolog execution model does not support
this. The generated plan must also be reevaluated when conditions change; it may no
longer be executable, or achieve the goal, or be appropriate in the new conditions (e.g.
when a more urgent order has just arrived). As well, when generating a plan, we may
want to ignore the possibility that some actions may fail to achieve their objectives (e.g.
navigating to a customer), and just deal with such failures when they occur.

Recently, De Giacomo and Levesque [5] have developed a new execution model for
ConGolog that supports incremental high-level program execution in the presence of
sensing. This should allow us to incorporate controlled search/planning in our programs
while retaining a clean semantics. We are examining ways of dealing with the other is-
sues mentioned. A Golog-based approach to execution monitoring and plan repair has
been proposed in [6]. The use of Golog for planning is discussed in [15].

Another limitation of our work so far is that the system developed is rather small.
We need to experiment with more complex tasks to see whether our approach and the
use of prioritized interrupts to provide reactivity scales up. As well, interrupts support
the suspension of the current plan but not its termination; we may add a conventional
exception throwing/catching mechanism that terminates the current plan.

Another area under investigation is information acquisition tasks. [21] tackles an ap-
plication where packages must be delivered to the recipient “in person” and where the
robot must use smart search strategies to locate the recipient, for example, asking some-
one whether he has seen the recipient.

The high-level program execution model of robot/agent control that underlies our
approach is related to work on resource-bounded deliberative architectures [2, 13] and
agent programming languages [19, 9, 22]. One difference is that in our approach, plan se-
lection is coded in the program; there is no goal-directed invocation of plans. This makes
for a less declarative and perhaps more complex specification, but eliminates some over-
head. On the other hand, the robot’s world is modeled using a domain action theory and
the world model is updated automatically using the successor state axioms; there is no
need to perform asserts and retracts. Moreover, the evaluation of a test may involve arbi-
trary amounts of inference, although following logic programming philosophy, we take
the programmer to be responsible for its efficiency/termination. Perhaps a more central
difference is that our robots/agents can be understood as executing programs, albeit in a
rather smart way — they have a simple operational semantics. Modeling the operation
of an agent implemented using a resource-bounded deliberative architecture requires a
much more complex account. In [1], Baral and Son extend ConGolog to handle plans
specified as hierarchical task networks; this somewhat bridges the gap between Con-
Golog and “rule-based” agent languages.

References

1. Chitta Baral and Tran Cao Son. Extending ConGolog to allow partial ordering. In N.R. Jen-
nings and Y. Lespérance, editors, Intelligent Agents VI — Proceedings of the Sixth Interna-
tional Workshop on Agent Theories, Architectures,and Languages (ATAL-99), Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, 2000. In this volume.

2. M.E. Bratman, D.J. Israel, and M.E. Pollack. Plans and ressource-bounded practical reason-
ing. Computational Intelligence, 4:349–355, 1988.

3. R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal on Robotics
and Automation, 2(1):14–23, 1986.

4. Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. Reasoning about con-
current execution, prioritized interrupts, and exogenous actions in the situation calculus. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages
1221–1226, Nagoya, Japan, August 1997.

5. Giuseppe De Giacomo and Hector J. Levesque. An incremental interpreter for high-level
programs with sensing. In Cognitive Robotics — Papers from the 1998 AAAI Fall Symposium,
pages 28–34, Orlando, FL, October 1998. AAAI Press. AAAI Tech. Report FS-98-02.

6. Giuseppe De Giacomo, Raymond Reiter, and Mikhail E. Soutchanski. Execution monitor-
ing of high-level robot programs. In Principles of Knowledge Representation and Reason-
ing: Proceedingsof the Sixth International Conference(KR’98), pages 453–464,Trento, Italy,
June 1998.

7. R. James Firby. An investigation into reactive planning in complex domains. In Proceedings
of the Sixth National Conference on Artificial Intelligence, pages 202–206, Seattle, WA, July
1987.

8. Erann Gat. Integrating planning and reacting in a heterogenous asynchronous architecture
for controlling real-world mobile robots. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 809–815, San Jose, CA, July 1992.

9. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A formal semantics for
an abstract agent programming language. In M.P. Singh, A. Rao, and M.J. Wooldridridge,
editors, Intelligent Agents IV — Proceedings of ATAL’97, pages 215–229. Springer-Verlag,
June 1998.

10. Hector J. Levesque,Raymond Reiter, Yves Lespérance,FangzhenLin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Program-
ming, 31(59–84), 1997.

11. John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of ar-
tificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,
pages 463–502. Edinburgh University Press, Edinburgh, UK, 1979.

12. B. Nickerson, P. Jasiobedzki,D. Wilkes, M. Jenkin, E. Milios, J. Tsotsos, A. Jepson, and O.N.
Bains. The ARK project: Autonomous mobile robots for known industrial environments.
Robotics and Autonomous Systems, 25:83–104, 1998.

13. A.S. Rao and M.P. Georgeff. An abstract architecture for rational agents. In Bernhard Nebel,
Charles Rich, and William Swartout, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International Conference, pages 439–449, Cambridge,
MA, 1992. Morgan Kaufmann Publishing.

14. Raymond Reiter. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial Intelli-
gence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
359–380. Academic Press, San Diego, CA, 1991.

15. Raymond Reiter. Knowledge in action: Logical foundations for describ-
ing and implementing dynamical systems. Draft Monograph, available at
http://www.cs.toronto.edu/˜cogrobo, 1999.

16. Matt Robinson and Michael Jenkin. Reactive low level control of the ARK. In Proceedings,
Vision Interface ’94, pages 41–47, Banff, AB, May 1994.

17. Stanley J. Rosenscheinand Leslie P. Kaelbling. A situated view of representation and control.
Artificial Intelligence, 73:149–173, 1995.

18. M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In Pro-
ceedings of the Tenth International Joint Conference on Artificial Intelligence, pages 1039–
1046, 1987.

19. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.
20. K. Tam, J. Lloyd, Y. Lespérance, H. Levesque, F. Lin, D. Marcu, R. Reiter, and M. Jenkin.

Controlling autonomous robots with GOLOG. In Proceedings of the Tenth Australian Joint
Conference on Artificial Intelligence (AI-97), pages 1–12, Perth, Australia, November 1997.

21. Kenneth Tam. Experiments in high-level robot control using ConGolog — reactivity, failure
handling, and knowledge-based search. Master’s thesis, Dept. of Computer Science, York
University, 1998.

22. Rogier M. van Eijk, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer.
Open multi-agent systems: Agent communication and integration. In N.R. Jennings and
Y. Lespérance, editors, Intelligent Agents VI — Proceedings of the Sixth International Work-
shop on Agent Theories, Architectures,and Languages (ATAL-99), Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 2000. In this volume.

