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Abstract. A robot must often react to eventsin its environment and exceptional
conditions by suspending or abandoningits current plan and selecting anew plan
that is an appropriate response to the event. This paper describes how high-level
controllers for robots that are reactive in this sense can conveniently be imple-
mented in ConGolog, a new logic-based agent/robot programming language. Re-
activity isachieved by exploiting ConGolog’sprioritized concurrent processesand
interrupts facilities. The language also provides nondeterministic constructs that
support aform of planning. Program execution relies on adeclarative domain the-
ory to model the state of the robot and its environment. The approachisillustrated
with amail delivery application.

1 Introduction

Reactivity is usually understood as having mainly to do with strict constraints on re-
action time. As such, much work on the design of reactive agents has involved non-
deliberative approaches where behavior is hardwired [3] or produced from compiled
universal plans[18,17]. However, there is more to reacting to environmental events or
exceptional conditionsthan reaction time. While some events/conditionscan be handled
a alow level, eg., arobot going down ahallway can avoid collision with an oncoming
person by slowing down and making local adjustmentsin its trgjectory, others require
changes in high-level plans. For example, an obstacle blocking the path of a robot at-
tempting a delivery may mean that the delivery must be rescheduled. Here as in many
other cases, theissueisnot rea -timeresponse. What isrequired isreconsideration of the
robot’splansin relation to itsgoal s and the changed environmental conditions. Current
plans may need to be suspended or terminated and new plans devised to deal with the
exceptional event or condition.
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To providetherange of responses required by environmental events and exceptional
conditions,i.e. reactivity inthewide sense, the best framework seemsto beahierarchical
architecture. Then, urgent conditionscan be handled in real-time by alow-level control
modul e, while conditionsrequiring replanning are handled by a high-level control mod-
ule that models the environment and task, and manages the generation, selection, and
scheduling of plans.

Synthesizing plans at run-time providesgreat flexibility, but it is often computation-
ally infeasible in complex domains, especially when the agent does not have compl ete
knowledgeand there are exogenousevents(i.e. actionsby other agentsor natural events).
In[10], it was argued that high-level program execution was a more practical aterna
tive. The idea, roughly, isthat instead of searching for a sequence of actions that takes
therobot from an initial stateto some goal state, thetask isto find a sequence of actions
that constitutes a legal execution of some high-level program. By high-level program,
we mean one whose primitive instructions are domain-dependent actions of the robot,
whose tests involve domain-dependent predicates that are affected by the actions, and
whose code may contain nondeterministic choice points where lookahead is necessary
to make a choice that leadsto successful termination. Asin planning, to find a sequence
that constitutesalegal execution of ahigh-level program, onemust reason about the pre-
conditionsand effects of the actions within the program. However, if the program hap-
pensto be almost deterministic, very little searching is required; as more and more non-
determinism isincluded, the search task begins to resemble traditiona planning. Thus,
in formulating a high-level program, the user getsto control the search effort required.

In [10], Golog was proposed as a suitable language for expressing high-level pro-
grams for robots and autonomous agents. Golog was used to design a high-level robot
control module for amail delivery application [20]. This module was interfaced to sys-
tems providing path planning and low-level motion control, and successfully tested on
severa different robot platforms, including a Nomad 200, a RwWI B21, and aRWI B12.

A limitation of Golog for thiskind of applicationsisthat it provides limited support
for writing reactive programs. In [4], GonGolog, an extension of Golog that provides
concurrent processes with possibly different priorities as well as interrupts was intro-
duced. In this paper, wetry to show that ConGolog is an effective tool for the design of
high-level reactive control modules for robotics applications. We provide an example
of such amodulefor amail delivery application. The approach proposed should also be
applicablein contexts other than robotics, where an agent is embedded in some environ-
ment and needs to react to failuresand changesin its environment.

2 ConGolog

Asmentioned, our high-level programs contain primitive actions and tests of predicates
that are domain-dependent. Moreover, aninterpreter for such programsmust reason about
the preconditions and effects of the actions in the program to find a legal terminating
execution. We specify the required domain theoriesin the situation calculus[11], alan-
guage of predicatelogicfor representing dynamically changing worlds. Inthislanguage,
apossibleworld history, which issimply a sequence of actions, isrepresented by afirst
order term called a situation. The constant Sy is used to denote the initial situation —



that in which no actions (of interest) have yet occurred. There is a distinguished binary
function symbol do and the term do(«, s) denotes the situation resulting from action o
being performed in situation s. Relationswhose truth values vary from situationto situ-
ation, called predicate fluents, are denoted by predicate symbolstaking a situation term
asthelast argument. For example, Holding (o, s) might mean that the robot is holding
object o in situation s. Similarly, functionswhose value varies with the situation, func-
tional fluents, are represented by function symbols that take a situation argument. The
specia predicate Poss(«, s) isused to represent the fact that primitive action « is exe-
cutablein situation s. A domain of application will be specified by theory that includes
the following types of axioms:

— Axioms describing theinitia situation, Sy.

— Action precondition axioms, one for each primitive action «, which characterizes
Poss(a, s).

— Successor state axioms, one for each fluent F', which characterize the conditions
under which F'(x, do(a, s)) holdsintermsof what holdsin situation s; these axioms
may be compiled from effects axioms, but provide a solution to the frame problem
[14].

— Unigue names axioms for the primitive actions.

— Some foundational, domain independent axioms.

Thus, the declarative part of a ConGol og program implementing a high-level controller
for arobot will be such a theory.

A ConGolog program also includes a procedural part which specifies the behavior
of the robot. Thisis specified using the following constructs:

a, primitiveaction
é?, wait for acondition®
(01;02), sequence
(o1 | o2), nondeterministic choice between actions
T[], nondetermini stic choice of arguments
o*, nondeterministic iteration
if ¢ then o1 dse oy endlf, conditiona
while ¢ do o endWhile, loop
(o1 || o2), concurrent execution
(o1 ) 02), concurrency with different priorities
ol, concurrent iteration
<Eip—>0o>, interrupt
proc 3(x) o endProc, procedure definition
B(¢), procedure call
noOp do nothing

The nondeterministic constructsinclude (o7 | o2), which nondeterministically choses
between programs ¢y and o5, T[], which nondeterministically picks abinding for the
variables = and performs the program o for this binding of ®, and o*, which means

! Here, ¢ stands for a situation calculus formula with all situation arguments suppressed; ¢(s)
will denote the formula obtained by restoring situation variable s to all fluents appearingin ¢.



performing o zero or more times. Concurrent processes are model ed as interleavings of
the primitiveactionsinvolved. A process may become bl ocked when it reaches a primi-
tive action whose preconditionsare false or await action ¢?whose condition ¢ isfalse.
Then, execution of the program may continue provided another process executes next.
In (o1 )) 02), o1 has higher priority than o4, and o2 may only execute when o isdone
or blocked. ol islike nondeterministiciteration o*, but the instances of o are executed
concurrently rather than in sequence. Finally, an interrupt <« : ¢ — o > hasvariables
x, atrigger condition ¢, and a body &. If the interrupt gets control from higher prior-
ity processes and the condition ¢ istrue for some binding of the variables, the interrupt
triggers and the body is executed with the variabl es taking these values. Once the body
compl etes execution, the interrupt may trigger again. With interrupts, it is easy to write
programsthat are reactive in that they will suspend whatever task they are doing to han-
dlegiven conditionsasthey arise. A more detail ed description of ConGolog and aformal
semantics appear in[4]. We give an example ConGolog program in section 4.

A prototype ConGologinterpreter has been implemented in Prolog. Thisimplemen-
tation requiresthat the axiomsin the program’s domain theory be expressible as Prolog
clauses; note that thisis a limitation of this particular implementation, not the frame-
work.

In applications areas such as robotics, we want to use ConGolog to program an em-
bedded system. The system must sense conditionsin its environment and update itsthe-
ory appropriately asit isexecuting the ConGol og control program.? Thisrequires adapt-
ingthehigh-level program execution model presented earlier: theinterpreter cannot ssim-
ply search al the way to afina situation of the program. An adapted model involving
incremental high-level program execution is developed in [5]. However in this paper,
we sidestep these issues by making two simplifying assumptions:

1. that the interpreter can make an arbitrary choice among the primitive actions that
are alowed by a nondeterministic program at each step and immediately commit
and execute thisaction, and

2. that thereisaset of exogenous events detectabl e by the system’s sensors (e.g. amail
pick up request isreceived or therobot has arrived at the current destination) and that
the environment is continuously monitored for these; whenever such an exogenous
event is detected to have occurred, it isimmediately inserted in the execution.

We can get away with thisbecause our application program performsessentially no search
andtheexogenouseventsinvolved are easy to detect. Intheincremental execution model
of [5], sensing actionscan beincluded at specific pointsinthe program, and whilenonde-
terminismisinterpreted as arbitrary choice as per assumption (1), anew “search block”
congtruct is also added to the language, so that within such a block the interpreter must
search to ensure that the primitive action selected is on a path to aterminating configu-
ration for the block.

2 Here, the environment is anything outside the ConGolog control module about which infor-
mation must be maintained; so the sensing might only involve reading messagesfrom another
module through a communication socket.



3 Interfacing the High-Level Control Module

As mentioned earlier, we use a hierarchica architecture to provide both real-time re-
sponse aswell as high-level plan reconsideration when appropriate. At thelowest level,
wehaveareactive control system that performstime-critical tasks such ascollisionavoid-
ance and straight line path execution. In a middle layer, we have a set of components
that support navigation through path planning, map building and/or maintenance, keep-
ing track of the robot’ s position, etc. and support path following by interacting with the
low-level control module. On top of this, there is the ConGol og-based control module
that supports high-level plan execution to accomplish the robot’stasks; thislevel treats
navigation somewhat like a black box.

In this section, we describe how the ConGolog-based high-level control moduleis
interfaced to rest of the architecture. The high-level control module needs to run asyn-
chronoudly with the rest of the architecture so that other tasks can be attended to while
the robot is navigating towards a destination. It also needs to interact with the naviga
tion module to get tasks accomplished. To support this, we need to give the high-level
control module a model of the navigation module. We have defined a simple version of
such amodel. With respect to navigation, the robot is viewed by the high-level control
modul e as always being in one of the following set of states:

RS = {Idle, Moving, Reached, Stuck, Frozen}.

Thecurrent robot stateisrepresented by thefunctional fluent robot State(s). Therobot's
default stateis Idle; when inthisstate, therobot isnot moving towardsadestination, but
collisionavoidanceisturned on and the robot may movelocally to avoid oncoming bod-
ies. Withtherobot in Idle state, the high-level control module may execute theprimitive
action startGoT o(place); thischangestherobot’sstate to M oving and causes the nav-
igation module to attempt to move therobot to place. If and when the robot reaches the
destination, the navigation module generates the exogenous event reach Dest, which
changes the robot’s state to Reached. If on the other hand the navigation module en-
counters obstacles it cannot get around and finds the destination unreachable, then it
generates the exogenous event get Stuck, which changes the robot’s state to Stuck. In
any state, the high-level control module may execute the primitive action reset Robot,
which aborts any navigation that may be under way and returns the robot to 7dle state.
Finally, there is the Frozen state where collision avoidance is disabled and the robot
will not move even if something approaches it; thisis useful when the robot is picking
up or dropping off things; humans may reach into the robot’s carrying bins without it
moving away. All other actions leave the robot’s state unchanged. Thisis specified in
the following successor state axiom for the robot State fluent:

robotState(do(a,s)) =i =
dpa = startGoTo(p) Ai = Moving V
a = reachDest AN i = Reached V
a = getStuck N1 = Stuck V
a = reset Robot A1 = Idle V
a = frezeRobot At = FrozenV
i = robotState(s) AVpa # startGoTo(p) A a # reachDest A
a # getStuck A a # reset Robot A a # frezeRobot



We a so have precondition axioms that specify when these primitive actionsand ex-
ogenousevents are possi ble. For example, thefollowing saysthat the action of directing
therobot to start moving toward adestination p is possiblewhenever therobotisin Idle
state:

Poss(startGoTo(p), s) = robotState(s) = Idle

We omit the other precondition axioms as they are obviousfrom the model description.
Weal so usetwo additional functional fluents: robot Destination(s) referstothelast

destination the robot was set in motion towards, and robot Place(s) refersto the current

location of robot as determined from the model. Their successor state axioms are;

robot Destination(do(a,s)) = p =
a = startGoTo(p) V
p = robot Destination(s) AVpa # startGoTo(p)

robot Place(do(a, s)) = p =
p’ a = startGoTo(p') A p = Unknown V
a = reachDest A p = robot Destination(s) V
p = robot Place(s) A
Vpa # startGoTo(p) A a # reachDest

Notethat inthismodel, wetreat navigationto alocation asan “activity” inthe sense
of Gat [8], i.e. the primitive actions are essentially instantaneous changes that do not
congtitute the activity, but only initiate or terminateit. In contrast to [8], we do specify
how theworld model isto be updated. In extending our model, we should be ableto use
the same approach to include other activities, e.g. perceptua search routines.

4 A Mail Delivery Example

Totest our approach, we haveimplemented asimplemail delivery application. The high-
level control modulefor the application must react to two kinds of exogenous events:

— new shipment orders, which are represented by the event
orderShipment(sender, recipient, priority), and

— signasfrom the navigation module, namely the reach Dest event announcing that
the destination has been reached and the get Stuck event announcing that the robot
has failed to reach its destination.

Thefirst kindistypical of the communication interactionsarobot may have withitsen-
vironment, whilethe second kind istypical of the control interactionsatask-level mod-
ule may have with the rest of the robot’s architecture. To require more reactivity from
the robot, we assume that shipment orders come with different priority levels and that
the system must interrupt service of alower priority order when a higher priority one
comesin. Also, we want the robot to make a certain number of attemptsto get to acus-
tomer’smailbox as some of the obstaclesit runsinto may be temporary. Thisishandled
by assigning a certain amount of credit to customers initially and reducing their credit
when an attempt to go to their mailbox fails. When customers run out of credit, they are
suspended and shipments sent to them are returned to the sender when possible.



In addition to the navigation primitive actions and exogenous events already de-
scribed, the application uses the following primitive actions:

ackOrder(n) acknowl edge reception of servable order
declineOrder(n) decline an unservable order
pickUpShipment(n) pick up shipment n
dropO f fShipment(n) drop off shipment n
cancelOrder(n) cancel an unservable order
reduceCredit(c) reduce customer ¢’s credit
notifyStopServing(c) notify unreachable customer

Note that shipment orders are identified by a number n that is assigned from a counter
when the order Shipment event occurs. We have precondition axiomsfor these primi-
tive actions, for example:

Poss(pickUpShipment(n), s) =
orderState(n, s) = ToPickUp A
robot Place(s) = mailbox(sender(n, s))

The primitivefluents for the application are:

orderState(n,s) =i order n isin state s
sender(n,s) =c sender of order n isc
recipient(n,s) = ¢ recipient of order n isc
orderPrio(n,s) = p priority of order n isp
orderCtr(s) = n counter for orders arriving
credit(c,s) = k customer ¢ has credit k&
Suspended(c, s) service to customer ¢ is suspended

We have successor state axiomsfor these fluents. For example, thestate of an order starts
out as N on Existent, then changesto JustIn whentheorder Shipment event occurs,
etc.; thefollowing successor state axiom specifies this:

orderState(n,do(a,s)) =i =

de, r, pa = orderShipment(c,r,p) AorderCtr = n Ai = Justin V

a = ackOrder(n) ANi = ToPickUpV

a = pickUpShipment(n) A i = OnBoard V

a = dropOf fShipment(n) A
robot Place(s) = mailbox(recipient(n,s)) A i = Delivered V

a = dropOf fShipment(n) A
robot Place(s) = mailbox(sender(n, s)) A i = Returned V

a = dropOf fShipment(n) A
robot Place(s) = CentralOf fice Ai = AtCentralOf fice V

a = cancelOrder(n) Ai = Cancelled V

a = declineOrder(n) A i = Declined V

i = orderState(n, s) A —=(3e,r, pa = orderShipment(c,r,p) A orderCtr = n)
A a # ackOrder(n) A a # pickUpShipment(n) A
a # dropOf fShipment(n) A a # cancelOrder(n) A a # declineOrder(n)

We omit therest of the successor state and action precondition axiomsfor space reasons.



Theinitial state of the domain might be specified by the following axioms:

Customer(Yves) Customer(Ken)
Customer(Hector) Customer(Michael)
Customer(c) D eredit(c, Sp) = 3
orderCtr(Sy) =0

orderState(n, Sg) = NonEzistent
robotState(Sy) = Idle

robot Place(Sg) = CentralOf fice

Let usnow specify the behavior of our robot using a ConGol og program. Exogenous
eventsare handled using prioritizedinterrupts. The main control procedure concurrently
executes four interrupts at different priorities:

proc mainC'ontrol
< n:orderState(n) = JustIn — handleNewOrder(n) >
p)
< n: (orderState(n) = ToPickUp A Suspended(sender(n)))
— cancelOrder(n) >

< n: (orderState(n) = ToPickUp V orderState(n) = OnBoard
V robot Place # CentralOf fice)
— robot M otionC'ontrol >
»
< robotState = Moving — noOp >
endProc

Thetop priority interrupt takes care of acknowledging or declining new shipment orders.
Thisensuresthat customers get fast feedback when they make an order. At the next level
of priority, we have two other interrupts, one that takes care of cancelling orders whose
senders have been suspended service, and another that control stherobot’smotion. At the
lowest priority level, we have an interrupt with an empty body that preventsthe program
from terminating when the robot isin motion and all other threads are blocked.

The top priority interrupt deals with a new shipment order n by executing the fol-
lowing procedure:

proc handle N ewOrder(n)
if Suspended(sender(n)) V Suspended(recipient(n)) then
declineOrder(n)
ese
ackOrder(n);
if robotState = Moving A order Prio(n) > curOrder Prio then
reset Robot % abort current service
endlf
endlf
endProc



This sends a rejection notice to customers making an order whose sender or recipient
is suspended; otherwise an acknowledgement is sent. In addition, when the new ship-
ment order has higher priority than the order currently being served, the robot’s motion
is aborted, causing a reevaluation of which order to serve (curOrder Prio is a defined
fluent whose definition appears below).

The second interrupt in mainControl handles the cancellation of orders when the
sender gets suspended; its body executes the primitiveaction cancelOrder(n).

The third interrupt in mainControl handles the robot’s navigation, pick ups, and
deliveries. When theinterrupt’sconditionis satisfied, the following procedureis called:

proc robot M otionControl
if 3¢ CustToServe(c) then tryServeCustomer
esetryToWrapUp;
endIf

endProc

Thistries to serve a customer when there is one to be served and tries to return to the
central office and wrap up otherwise. CustToServe(c, s) isadefined fluent:

CustToServe(c, s)=3n]
(orderState(n, s) = ToPickUp A sender(n,s) = ¢
A —Suspended(recipient(n, s),s)) V
(orderState(n, s) = OnBoard A (recipient(n,s) = ¢
V sender(n, s) = ¢ A Suspended(recipient(n, s), s)))]
A —Suspended(c, s)

To try to serve a customer, we execute the following:

proc tryServeCustomer
7 c[BestCustToServe(c)?;
startGoT o(mailbox(c));
(robotState # Moving)?;
if robotState = Reached then
freezeRobot;
dropO f f ShipmentsTo(c);
pickUpShipmentsFrom(c);
reset Robot
elseif robotState = Stuck then
reset Robot; % abandon attempt
handleService Failure(c)
% else when service aborted nothing more to do
endlf]
endProc

Thisfirst picks one of the best customers to serve, directs the robot to start navigating
towards the customer’s mailbox, and waits until the robot halts. If the robot reaches the
customer’s mailbox, then shipments for the customer are dropped off and shipments
from him/her are picked up. If on the other hand, the robot halts because it got stuck,



the handleService Failure procedureisexecuted. Finaly, if the robot halts because a
higher priority order came in and thetop priority interrupt executed areset Robot, then
there is nothing more to be done. BestCustToServe(c, s) isadefined fluent that cap-
turesall of the robot’sorder scheduling criteria:

BestCustToServe(e, s) « CustToServe(c,s) A
cust Priority(c, s) = maxCust Priority(s) A
credit(c, s) = maxCredit For(maxCust Priority(s), s)

cust Priority(c, s) = pZ
dn Order ForCust At Prio(n, ¢, p, s) A
V!, p'(Order ForCust At Prio(n',c,p',s) D p' < p)

OrderForCust At Prio(n,c,p, s) g—'Suspended(c, s) A
[orderState(n,s) = ToPickUp A sender(n,s) = c A
orderPrio(n,s) =pV
orderState(n, s) = OnBoard A order Prio(n,s) = p A
(recipient(n,s) = cV
sender(n, s) = ¢ A Suspended(recipient(n, s), s))]

maxCust Priority(s) = PEER cust Priority(c,s) = p
AYc cust Priority(c’,s) <p

maxCreditFor(p,s) = k «
def[cust Priority(c,s) = p A credit(c,s) = k A
Ve!(cust Priority(c’, s) = p D credit(c’,s) < k)]

Thisessentially saysthat thebest customersto serve arethosethat have thehighest credit
among those having the highest priority orders. We can now also define the priority of
the order currently being served as follows:

curOrder Prio(s) = pZ
Ve[robotState(s) = Moving A
robot Destination(s) = mailboz(c)
D p = custPriority(c, s)] A
[~ (robotState(s) = Moving A
Jerobot Destination(s) = mailbox(c)) D p = —1]

The handleService Failure procedure goes as follows:

proc handleService Failure(c)
reduceCredit(c);
if credit(c) = 0 then
notifyStopServing(p);
endIf;
endProc



When the robot gets stuck on the way to customer ¢’smailbox, it first reduces ¢’s credit,
and then checks whether it has reached zero and ¢ has just become Suspended; if S0, ¢
is notified that he/she will no longer be served.

ThetryToWrapUp procedureissimilar to tryServeCustomer, except that it at-
temptsto drive the robot to the CentralO f fice and then drop off undeliverable ship-
ments there,

ProceduredropO f f ShipmenisTo(c) deliverstocustomer ¢ all shipmentson board
such that ¢ isthe shipment’srecipient or ¢ isthe shipment’s sender and the recipient has
been suspended:

proc dropO f fShipmentsTo(c)
while3n (orderState(n) = OnBoard A
(recipient(n) = cV
sender(n) = ¢ A Suspended(recipient(n)))) do
7 n [(orderState(n) = OnBoard A
(recipient(n) = cV
sender(n) = ¢ A Suspended(recipient(n))))?;
dropO f f Shipment(n)]
endWhile
endProc

Procedure pickUpShipmentsFrom(c) simply picks up al outgoing shipments from
customer ¢’s mailbox.

Notethat by handling the cancellation of pick upsin aseparate thread fromthat deal -
ing with navigation and order serving, we allow the robot to be productivewhileitisin
motion and waiting to reach its destination. This makes a better use of resources.

To run the system, we execute mainControl after placing afew initial orders:

orderShipment(Y ves, Ken,0) ||
orderShipment(Ken, Hector,1) )
mainControl

5 Implementation

The high-level control module for the mail delivery application has been ported to an
RWI B12 and a Nomad Super Scout maobile robot and tested on some sample deliv-
ery tasks (see figure 1). The other software components for this were based on a sys-
tem developed during an earlier project concerned with building an experimental ve-
hicle to conduct survey/inspection tasksin an industrial environment [12]. The system
supportspoint to point navigation in apreviously mapped environment and can use pre-
positionedvisual landmarksto correct odometry errors. It relieson sonar sensorsto sense
unmodel ed obstacles.

The system’s architecture conforms to the general scheme described earlier. It pro-
videstwolevelsof control. An onboard|ow-level controller [16] performsall time-critical
tasks such as collision avoidance and straight line path execution. The low-level con-
troller assumes that the robot is aways in motion and communicates with an offboard
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Fig. 1. Our robot facing an obstacle.

global path planner and user interface module known as the Navigator. The Navigator
takes asinputsametric/topol ogical map of the environment in which therobot islocated
and the coordinates (as defined in the map) of the two end points, i.e., the source and the
destination of a path. By making use of some predefined path-finding algorithms such
as breadth-first search or A* the Navigator identifies afeasible path between the source
and the destination. To follow the path, the Navigator decomposes it into segments (a
segment is a straight line between two adjacent way-points) and then forwards the seg-
mentsto the low-level controller for execution. The Navigator supervises the low-level
controller and identifies failures in the low-level controller’s ability to execute a path
segment.

The ConGol og-based high-level control modul e interacts with the rest of the archi-
tecture by communicating with the Navigator through a socket interface. The high-level
controller, Navigator, and low-level controller all run asynchronoudy. The primitive ac-
tionsinthe ConGol oginterface model areimplemented using operationsprovided by the
Navigator (currently, themail pickup and drop off actionsare only simul ated). For exam-
ple, the ConGolog primitive action startGoTo(p) is implemented as
[ pl anPat h( coordi natesOf (p)); foll owPat h], where pl anPat h and
f ol | ow_pat h are operations supplied by the Navigator.

Our test scenarios confirmed the system’sability to deal with navigationfailuresand
tointerrupt the current task when an urgent shipment order ismade. For more detailson
the implemented system, see [21].



6 Discussion

In thiswork, we have shown how ConGol og can be used to implement high-level robot
controllersthat can cope with dynamic and unpredictable environments — controllers
that are reactive and support high-level plan reconsideration in response to exogenous
events and exceptional conditions. Our work demonstrates that a | ogic-based approach
can be used to build effective systems. In the ConGol og framework, application domains
and their dynamicsare specified declaratively and the axioms are used by the interpreter
to automatically update its world moddl. This is less error-prone than having the user
program his own ad-hoc world representation and update procedures. ConGolog con-
trollershave clear formal specificationsand areeasier to extend and adapt to different en-
vironments or tasks. Existing robot control frameworks with similar objectivesinclude
RAP[7] and ATLANTIS [8]. In ConGolog, the control framework is less constrained
and how the world changes is specified declaratively in avery expressive language.

Themain limitation of thework accomplished so far isthelack of search/planningin
the current high-level control program. ConGolog is designed to support run-time plan-
ning through search over a nondeterministic program. Thisisthemain reason for using
adeclarative representation of domain dynamics. So the next step in our work will beto
extend the controller devel oped so far to perform run-time planning for route optimiza
tion and dealing with failures (e.g., in navigation).

It is not difficult to write search/planning code in ConGolog. For example, here's
how onemight implement an iterative deepening search to find the shortest routethrough
customers needing service — one starts the search by invoking plan Route(0):

proc plan Route(n)
serve AllCust(n) | planRoute(n + 1)
endProc

proc serve AllCust(n)
—JeCustToServe(c)? |
7, d[(CustToServe(c) Ad = distanceTo(c) Ad < n)?;
goServe(c); serve AllCust(n — d)]
endProc

But adding such planning to a reactive control program raises alot of complex issues.
The planning/search must beinterleaved with action execution and sensing the environ-
ment — as mentioned earlier, the standard ConGol og execution model does not support
this. The generated plan must also be reevaluated when conditions change; it may no
longer be executable, or achieve the goal, or be appropriatein the new conditions (e.g.
when a more urgent order has just arrived). As well, when generating a plan, we may
want to ignorethe possibility that some actionsmay fail to achieve their objectives (e.g.
navigating to a customer), and just deal with such failures when they occur.

Recently, De Giacomo and L evesque [5] have devel oped a new execution model for
ConGolog that supports incremental high-level program execution in the presence of
sensing. Thisshould allow usto incorporate controlled search/planning in our programs
whileretaining a clean semantics. We are examining ways of dealing with the other is-
sues mentioned. A Golog-based approach to execution monitoring and plan repair has
been proposed in [6]. The use of Golog for planning is discussed in [15].



Another limitation of our work so far is that the system developed is rather small.
We need to experiment with more complex tasks to see whether our approach and the
use of prioritized interruptsto provide reactivity scales up. As well, interrupts support
the suspension of the current plan but not its termination; we may add a conventional
exception throwing/catching mechanism that terminates the current plan.

Another areaunder investigationisinformation acquisitiontasks. [21] tacklesan ap-
plication where packages must be delivered to the recipient “in person” and where the
robot must use smart search strategiesto locate the reci pient, for example, asking some-
one whether he has seen the recipient.

The high-level program execution model of robot/agent control that underlies our
approach is related to work on resource-bounded deliberative architectures [2, 13] and
agent programming languages[ 19, 9, 22]. Onedifferenceisthat in our approach, plan se-
lectioniscoded inthe program; thereisno goal-directedinvocation of plans. Thismakes
for alessdeclarative and perhaps more compl ex specification, but eliminates some over-
head. On the other hand, the robot’ sworld is model ed using a domain action theory and
the world model is updated automatically using the successor state axioms; thereis no
need to perform asserts and retracts. M oreover, theeval uation of atest may involvearbi-
trary amounts of inference, although following logic programming philosophy, we take
the programmer to be responsiblefor its efficiency/termination. Perhaps a more central
differenceisthat our robots/agents can be understood as executing programs, albeitina
rather smart way — they have a simple operational semantics. Modeling the operation
of an agent implemented using a resource-bounded deliberative architecture requires a
much more complex account. In [1], Baral and Son extend ConGolog to handle plans
specified as hierarchical task networks; this somewhat bridges the gap between Con-
Golog and “rule-based” agent languages.
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