
Reasoning about Large Taxonomies of Actions
Yilan Gu

Dept. of Computer Science
University of Toronto

10 King’s College Road
Toronto, ON, M5S 3G4, Canada

Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@cs.ryerson.ca

Abstract

We design a representation based on the situation calculus to
facilitate development, maintenance and elaboration of very
large taxonomies of actions. This representation leads to
more compact and modular basic action theories (BATs) for
reasoning about actions than currently possible. We compare
our representation with Reiter’s BATs and prove that our rep-
resentation inherits all useful properties of his BATs. More-
over, we show that our axioms can be more succinct, but ex-
tended Reiter’s regression can still be used to solve the projec-
tion problem (this is the problem of whether a given logical
expression will hold after executing a sequence of actions).
We also show that our representation has significant compu-
tational advantages. For taxonomies of actions that can be
represented as finitely branching trees, the regression oper-
ator can work exponentially faster with our theories than it
works with Reiter’s BATs. Finally, we propose general guide-
lines on how a taxonomy of actions can be constructed from
the given set of effect axioms in a domain.

Introduction
A long-standing and important problem in AI is the prob-
lem of how to represent and reason about effects of actions
grouped in a realistically large taxonomy, where some ac-
tions can be more generic (or more specialized) than others.
While the problem of representing largesemantic networks
of (static) concepts has been addressed in AI research from
the 1970s and served as motivation for research ondescrip-
tion logics, a related problem of representing and reason-
ing about large taxonomies ofactionsreceived surprisingly
little attention. We would like to address this problem us-
ing the situation calculus. The situation calculus (SC) is
a well known and popular predicate logical theory for rea-
soning about events and actions. There are several different
formulations of the SC. In this paper we would like to con-
centrate onbasic action theories(BATs) introduced in (Re-
iter 2001), in particular, on successor state axioms (SSAs)
proposed by Reiter to solve (sometimes) the frame problem
(SSAs are part of a BAT). Recall that BATs are more expres-
sive than STRIPS theories: actions specified using BATs can
have context-dependenteffects. We propose a representation
that allows writing more compact and modular BATs than is
currently possible. BATs are logical theories of a certain
syntactic form that have several desirable theoretical prop-
erties. However, BATs have not been designed to support
taxonomic reasoning about objects and actions. Essentially,

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

these theories are “flat” and do not provide representation for
hierarchies of actions. This can lead to potential difficulties
if one intends to use BATs for the purpose of large scale for-
malization of reasoning about actions on the commonsense
level, when potentially arbitrary actions and objects haveto
be represented. Intuitively, many events and actions have
different degrees of generality: the action of driving a car
from home to an office is a specialization of the action of
transportation using a vehicle, that is in its turn a specializa-
tion of the action of moving an object from one location to
another. We represent hierarchies of actions explicitly and
use them in our new modular SSAs. However, we show that
our new modular SSAs can be translated into “flat” Reiter’s
SSAs and, consequently, we inherit all useful properties of
his BATs: formulas entailed from Reiter’s BAT remain en-
tailments from a modular BAT; consequently, the projection
problem can be solved.

Below, we first review the SC. Then we propose a new
representation that helps to design modular BATs and prove
that it has the same desirable logical properties as Reiter’s
BATs. We also discuss the significant computational ad-
vantages of using modular BATs in comparison to Reiter’s
“flat” BAT. Finally, we propose an approach to designing
taxonomies of actions and discuss related work.

The Situation Calculus
All dialects of the SCLsc include three disjoint sorts (ac-
tions, situationsandobjects). Actions are first-order (FO)
terms consisting of an action function symbol and its ar-
guments. Actions change the world.Situations are FO
terms which denote possible world histories. A distin-
guished constantS0 is used to denote theinitial situation,
and functiondo(a, s) denotes the situation that results from
performing actiona in situations. Every situation corre-
sponds uniquely to a sequence of actions. Moreover, the
notations′ ⊑ s means that either situations′ is a subse-
quence of situations or s = s′. Objects are FO terms
other than actions and situations that depend on the do-
main of an application.Fluents are relations or functions
whose values may vary from one situation to the next. Nor-
mally, a fluent is denoted by a predicate or function symbol
whose last argument has the sort situation. For example,
F (~x, do([α1, · · · , αn], S0)) represents a relational fluent in
the situationdo(αn, do(· · · , do(α1, S0) · · ·)) resulting from
execution of actionsα1, · · · , αn in S0. For simplicity, we
omit all details related to functional fluents below. All free
variables are always∀-quantified at the front.

The SC includes the distinguished predicatePoss(a, s)

to characterize actionsa that are possible to execute ins.
For any first order SC formulaφ and a terms of sort situa-
tion, we sayφ is a formulauniform in s iff it mentions only
fluents (does not mentionPoss or ⊑), it does not quantify
over variables of sort situation, it does not use equality on
situations, and whenever it mentions a term of sort situation
in a fluent, then that term is a variables (see (Reiter 2001)).

A basic action theory(BAT) D in the SC is a set of ax-
ioms written inLsc with the following five classes of axioms
to model actions and their effects (Reiter 2001).Action
precondition axiomsDap: For each action functionA(~x),
there is one axiom of the formPoss(A(~x), s) ≡ ΠA(~x, s).
ΠA(~x, s) is a formula uniform ins with free variables
among~x ands, which characterizes the preconditions of ac-
tion A. Successor state axiomsDss: For each relational
fluentF (~x, s), there is one axiom of the form

F (~x, do(a, s))≡
_

i

ψ
+

i (~x, a, s) ∨ F (~x, s) ∧ ¬(
_

j

ψ
−
j (~x, a, s)). (1)

Here, each formulaψ+

i (~x, a, s) (ψ−

j (~x, a, s), respectively)
is uniform in s and specifies a positive effect (negative ef-
fect, respectively) with certain conditions on fluentF . Each
ψ+

i (~x, a, s) orψ−

i (~x, a, s) in Eq. (1) has the syntactic form
∃~z.a = A(~y)∧γ(~x, ~z, s), (2)

where~z = ~y − ~x andγ(~x, ~z, s) is a context where the ac-
tion A(~y) has the effect. The successor state axiom (SSA)
for each fluentF completely characterizes the truth value of
F in the next situationdo(a, s) in terms of values that fluents
have in the current situations. Notice that, unlike STRIPS,
in general these SSA axioms are context-dependent.Initial
theoryDS0

: A set of FO formulas whose only situation term
is S0. It specifies the values of all fluents in the initial state.
It also describes all the facts that are not changeable by any
actions in the domain.Unique name axioms for actions
Duna: Includes axioms specifying that two actions are dif-
ferent if their action names are different, and that identical
actions have identical arguments.Foundational axioms for
situations Σ: The axioms for situations which characterize
the basic properties of situations. These axioms are domain
independent. They are included in the axiomatization of any
dynamic system in the SC (see (Reiter 2001) for details).

Suppose thatD = Dap ∪ Dss ∪ DS0
∪ Σ ∪ Duna is

a BAT, α1, · · · , αn is a sequence of ground action terms,
andG(s) is a uniform formula with one free variables.
One of the most important reasoning tasks in the SC is
the projection problem, that is, to determine whetherD |=
G(do([α1, · · · , αn], S0)). Another basic reasoning task is the
executability problem. Planning and high-level program ex-
ecution are two important settings where the executability
and projection problems arise naturally.Regressionis a cen-
tral computational mechanism that forms the basis for auto-
mated reasoning in the SC (Reiter 2001). A recursive defini-
tion of the regression operatorR on anyregressable formula
φ is given in (Reiter 2001). We use notationR[φ] to denote
the formula that results from eliminatingPoss atoms in fa-
vor of their definitions as given by action precondition ax-
ioms and replacing fluent atoms aboutdo(α, s) by logically
equivalent expressions abouts as given by SSAs repeatedly
until it cannot make such replacements any further. The re-
gression theorem (Reiter 2001) shows that one can reduce

the evaluation of a regressable formulaW to a FO theorem
proving task in the initial theory together with unique name
axioms for actions: D |= W iff DS0

∪ Duna |= R[W].

This fact is the key result in the SC. It demonstrates that an
executability or a projection task can be reduced to a theo-
rem proving task that does not use precondition, successor
state, and foundational axioms. This is one of the reasons
why the SC provides a natural and easy way to represent
and reason about dynamic systems.

Action Hierarchies
In practice, it is not easy to specify and reason with a logi-
cal theoryD if an application domain includes a very large
number of actions. To deal with this problem, we propose to
represent events and actions using a hierarchy.

Definition 1 We use the predicatesp(a1, a2) to represent
that actiona1 is a direct specializationof actiona2 (action
a2 is a direct generalizationof a1). An action diagramis
defined by a finite setH of axioms of the syntactic form

sp(A1(~x), A2(~y)) ≡ φA1,A2
(~x, ~y) (3)

for two action functionsA1(~x), A2(~y), whereφA1,A2
(~x, ~y)

is a satisfiable (i.e., not equivalent to⊥) situation-free FO
formula with free variables at most among~x, ~y. Also,H
must be such that the following condition hold:

H ∪D |= sp(a1, a2) ⊃ (Poss(a1, s)⊃Poss(a2, s)).

Given any action diagramH, we say that a directed graph
G = 〈V,E〉 is a digraph ofH whenV = {A1, · · · , An},
where allAi’s are distinct action function symbols inD and
a directed edgeAj→Ak belongs to the edge setE iff there
is an axiom of the formsp(Aj(~x), Ak(~y)) ≡ φAj ,Ak

(~x, ~y)
in H. FromDuna follows that the graphG cannot have mul-
tiple edges from one node to another. When the digraphG
of H is acyclic, i.e., there is no directed loop inG, we call
H anacyclic action diagram. Below, we will only consider
acyclic action diagrams. Note that if each action in the di-
graph of an acyclic action diagram has only one parent (sin-
gle inheritance case), then the digraph is actually a forest,
but generally, there can be actions that have several parents
(multiple inheritance case), as shown in Examples 1 and 2.

Example 1 Consider actions performed in a kitchen, ac-
tions such as washing, cooking, frying, etc. Some can be
considered as specializations of others. To simplify the ex-
ample we assume that water and electricity are always avail-
able, ignore some other kitchen activities (such as chopping,
mixing, etc) and consider the (simplified) action digraph
shown in Fig. 1. Each edge corresponds to onesp axiom
in the setH, for example,
sp(wash(x), kitchenAct), sp(prepFood(x), kitchenAct),
sp(cook(food, vessel), prepFood(food)),
sp(oilyCook(food, vessel), cook(food, vessel)),
sp(oilyCook(food, vessel), reheat(food)),
sp(microwave(food), reheat(food)), · · · , etc.

Example 2 We show additional examples where actions in
H can have different numbers of arguments. Consider an
action travel(p, o, d): a personp travels from origino to
destinationd. It can be regarded as a direct specialization

pressureCook stirfry

bakebroil

reheat

roast

steam

prepFood

microwaveoilyCooklowOilCook

cook

grill

boilstew ovenCook

makeSalad

wash

handWash

prepDrink

kitchenAct

prepColdDrprepHotDr

deepFryparboil

Figure 1:A (Simplified) Action Digraph for Kitchen Activities

of move – personp moves from locationo to locationd:
sp(travel(p, o, d),move(p, o, d)).

Consider an actiondrive(p, v, o, d), representing that a
personp drives a vehiclev from origin o to destination
d. It can be considered as a direct specialization of ac-
tion travel – personp travels from locationo to location
d: sp(drive(p, v, o, d), travel(p, o, d)). It is also a direct spe-
cialization of actionmove – vehiclev moves from location
o to locationd: sp(drive(p, v, o, d),move(v, o, d)).

Consider an actionpassDr(p, dr): a personp passes
through a doordr. It is considered as a direct specializa-
tion ofmove(p, o, d) iff the origin o is the outside ofdr and
the destinationd is the inside ofdr, or vice versa:
sp(passDr(p, dr),move(p, o, d)) ≡
outside(o, dr) ∧ inside(d, dr) ∨ outside(d, dr) ∧ inside(o, dr),

where predicateoutside(o, dr) (inside(d, dr), respec-
tively) is true iff o (d, respectively) is the location that is
outside (inside, respectively) ofdr.

In this paper, we will only consider action diagrams with
monotonic inheritanceof effects:

D ∪H |= (∀F).sp(a1, a2) ∧ F (s) 6≡ F (do(a2, s))

⊃ F (do(a1, s)) ≡ F (do(a2, s)).

Since there are only finitely many (say,m) fluents inD,
the above second-order (SO) formula can be replaced by the
finite conjunction (overj = 1..m) of FO formulas (where
Fj(~xj , s) is jth fluent with object arguments~xj):

sp(a1, a2) ∧ Fj(~xj , s) 6≡Fj(~xj , do(a2, s))

⊃ Fj(~xj , do(a1, s))≡Fj(~xj , do(a2, s)).

Because in general we need to reason about a direct spe-
cialization of another direct specialization of an action,we
define (distant) specializations using the predicatesp∗.

Definition 2 The predicatesp∗(a1, a2) represents that ac-
tion a1 is a (distant) specializationof actiona2 and is de-
fined as a reflexive-transitive closure ofsp:

sp
∗(a1, a2) ≡ (∀P).{(∀v)[P (v, v)]∧

(∀v, v′, v′′)[sp(v, v′) ∧ P (v′, v′′) ⊃ P (v, v′′)] ∧

(∀v, v′)[sp(v, v′) ⊃ P (v, v′)]} ⊃ P (a1, a2) (4)

Axiom (4) requires SO logic, but we will show in Theorem 3
that we can still reduce reasoning about regressable formu-
las to theorem proving in FOL only. We denote the set of
axioms including Axiom (4) and all axioms in an action di-
agramH asH⋆ and call it theaction hierarchy (ofH).

Definition 3 An action hierarchyH∗ is acyclic iff it en-
tails the following conditions:H∗ |= sp∗(A1(~x1), A2(~y1)) ∧
sp∗(A2(~y2), A1(~x2)) ⊃ A1(~x3) =A2(~y3) for all action func-
tionsA1, A2.

One can easily prove that underDuna, H∗ is acyclic accord-
ing to Def. 3 iff the digraph of the action diagramH is
acyclic. Note that the above condition in Def. 3 is more gen-
eral than the antisymmetry ofsp∗ (because antisymmetry is
not strong enough to assure the acyclicity ofH).

The following theorem states that the action hierarchies
entail the same intuitively clear taxonomic properties as the
predicatesp.

Theorem 1 LetH be an acyclic action diagram, whose cor-
responding action hierarchy isH⋆. Then,

H⋆ ∪ D |= sp
∗(a1, a2) ⊃ (Poss(a1, s)⊃Poss(a2, s)).

Proof: It follows from Def. 1, Def. 2 and Def. 3 using in-
duction, but details are omitted because of lack of space.�

Moreover, the following lemma will be convenient later.

Lemma 1 Consider any acyclic action diagramH, whose
corresponding action hierarchy isH⋆. For any action func-
tionsA1(~x) andA2(~y),A1(~x) is a (distant) specialization of
A2(~y) iff φA1,A2

(~x, ~y), for some situation-free FO formula
φA1,A2

(including⊤ and⊥) whose free object variables are
at most among~x and~y. That is,

H⋆ ∪ Duna |= sp
∗(A1(~x), A2(~y)) ≡ φA1,A2

(~x, ~y).

And,φA1,A2
can be found fromH in finitely many steps.

Proof: Let G = 〈V,E〉 be the digraph of the givenH,
and let max(A′, A) be the maximum of the lengths of
all the distinct paths fromA′ to A in G. We prove
the following property P (n) for any natural number
n: “For any action function symbolA′, A such that
max(A′, A) = n, n ≤ |V |, and for any distinct free variables
~x, ~y, sp∗(A′(~x), A(~y)) ≡ φA′,A(~x, ~y) for some FO formula
φA′,A (including ⊤ and⊥) with object variables at most
among~x and~y ”.
Base case:P (0), max(A′, A)=0, two sub-cases.
Case 1:A=A′, sincesp∗ is reflexive

sp∗(A′(~x), A(~y)) ≡ |~x| = |~y| ∧
V|~x|

i=1
xi = yi (by UNA).

Case 2:A6=A′, and sincemax(A′, A)=0, which means there
is nosp path betweenA andA′, thensp∗(A′(~x), A(~y)) ≡ ⊥.
Inductive step:Assume thatP (j) is true for allj < n, we
proveP (n), wheren > 0. Consider any action function
symbolsA′, A such thatmax(A′, A) = n, wheren ≤ |V |.
SinceG is acyclic, hence each path fromA to A′ has no
repetitions of the action nodes. Sincen > 0, collect all
direct generalizations ofA′ in G, say{A1, · · · , At}, which
are (distant) specializations ofA. Then,
sp∗(A′(~x), A(~y)) ≡

Wt

i=1
(∃~xi)[sp(A

′(~x), Ai(~xi)) ∧ sp
∗(Ai(~xi), A(~y))].

For eachi, max(Ai, A) ≤ n−1. By the induction hypoth-
esis, we havesp∗(Ai(~xi), A(~y)) ≡ φAi,A(~xi, ~y) for some
situation-free FO formulaφAi,A whose free variables
are at most among~xi and ~y. In H, for eachi we have

sp(A′(~x), Ai(~xi)) ≡ φA′,Ai
(~x, ~xi),

whereφA′,Ai
is a situation-free FO formula. Let

φA′,A(~x, ~y) =
Wt

i=1
(∃~xi)[φA′,Ai

(~x, ~xi) ∧ φAi,A(~xi, ~y)],

thenP (n) is proved. Notice thatn ≤ |V |; hence such FO
formula can always be obtained in finitely many steps.�

Example 3 We continue with Example 2. Most
of the FO formulas φA1,A2

(~x, ~y) equivalent to
sp∗(A1(~x), A2(~y)) are straightforward (either ⊤,
⊥, or the same as the axioms ofsp), except for
sp∗(drive(p, v, o, d),move(obj, orig, dest)) for any
free variablep, v, o, d, obj, orig, dest. By using Def. 2 and
the axioms given in Example 2, we have

sp∗(drive(p, v, o, d),move(obj, orig, dest))
≡ sp(drive(p, v, o, d),move(obj, orig, dest)) ∨

sp(drive(p, v, o, d), travel(p, o, d))∧
sp(travel(p, o, d),move(obj, orig, dest))

≡ v = obj ∧ o = orig ∧ d = dest ∨
p = obj ∧ o = orig ∧ d = dest,

which can be simplified as: for any variablesp, v, o, d, obj,
sp∗(drive(p, v, o, d),move(obj, o, d)) ≡ p = obj∨v = obj.

Modular BATs
Our goal is to provide a more compact specification of a BAT
based on a given hierarchy of actions. We will call such a
modified BAT amodular BATand denote it asDH , where

DH = Dap ∪ DH
ss ∪ DH

S0
∪ Σ ∪ Duna.

Here,DH
S0

= DS0
∪H⋆, in whichH⋆ is the action hierarchy

andDS0
describes the usual initial state, the same as Reiter’s

initial theory, andDH
ss is the new class of SSAs specified

based onH⋆. In the sequel, letsp∗=(a, a′) be an abbreviation
for eithersp∗(a, a′) or a = a′ in Formula (5) below.

The new syntactic form of SSAs inDH
ss

can be different
from Reiter’s format inDss . Intuitively, instead of repeating
tediously each individual action in the right-hand side (RHS)
of a SSA for a fluent, sayF (~x, do(a, s)), one can take ad-
vantage of the action hierarchies and describe the effect of
the whole class of action functions at once. One can say that
all those actions which are (distant) specializations of some
generic actionA(~y) (actions from the branch going out of
A(~y)), except those (distant) specializations of some other
generic actions, sayA(~yl) for 1 ≤ l ≤ h (i.e., excluding
actions from some branches), can cause the same (positive
or negative) effects onF under certain conditions. By doing
so, we can represent the effects of actions more compactly.
We will see later that this new form of SSAs leads to signif-
icant computational advantages as well.

It is convenient to use the following notation related with
a fluentF (~x, s): for any variable vector~yl (l ≥ 0), let
~zl = ~yl − ~x (i.e., ~zl are the new variables mentioned in~yl

but not in~x). Note that, in the RHS of the SSA ofF (~x, s),
those new variables~zl need to be existentially quantified.
Formally speaking, the modified SSA of a relational flu-
entF (~x, s) has the format (1), where eachψ+

i (~x, a, s) or
ψ−

i (~x, a, s) has either the syntactic form (2) or the follow-
ing syntactic form:

(∃ ~z0)[sp
⋆(a,A(~y0))∧γ(~x, ~z0, s) ∧

ĥ

l=1

¬(∃ ~zl)sp
⋆
=(a,Al(~yl))]. (5)

In (5),γ is a formula uniform ins that has~x, ~z0, s at most as
its free variables. Notice that whenever~zl (l ≥ 0) is empty,
then there is no existential quantifier over~zl. In addition, in
(5), when indexh=0, the conjunction overl does not exist.
One can prove that axiomatizers can always write modified
SSAs inDH with h = 0 in (5). However, with negation

(whenh> 0), axiomatizers gain flexibility of writing SSAs
that can deliver more computational advantages. Details can
be found in the next section (see Example 6).

Other classes of axioms such as the initial theoryDS0
, the

precondition axiomsDap, the foundational axiomsΣ and
unique name axioms for actionsDuna have the same formats
as in (Reiter 2001). It is easy to see that a modular BAT
DH differs from Reiter’s BATD in the following aspects:
DH

S0
includes the action hierarchyH⋆ and can usesp∗ to

specify SSAs forclassesof actions, whileDss enumerates
each action individually. However, according to Lemma 2
(with a constructive proof), theoriesDH andD are related.

Lemma 2 For a DH
ss, there exists an equivalent classDss

including SSAs of the syntactic form given in Reiter’s BAT
(Reiter 2001): for each relational fluentF

DH |= F (~x, do(a, s)) ≡ φF (~x, a, s)
in which φF may have occurrences of the predicatesp∗,
there exists a uniform formulaφ′F (~x, a, s) that does not men-
tionsp∗ and such that D |= F (~x, do(a, s)) ≡ φ′F (~x, a, s).
Proof: Assume that a given BATD includesk action func-
tions in total, sayA1(~v1), · · · , Ak(~vk). For each relational
fluentF (~x, s), assume that its SSA inDH is of the form (1)
whose positive and negative effect conditions have the syn-
tactic form (5), then we substitutea with each action func-
tion, sayAi(~vi) (without loss of generality, we assume that
variables in~vi are all new variables never used in the SSA
of F), and in the RHS obtained by this substitution from the
SSA ofF (~x, do(Ai(~vi), s)), replace every occurrence ofsp∗
(that has two action functions as arguments) with its equiv-
alent FO formula (that exists according to Lemma 1). This
replacement results in an axiom of the following form
F (~x, do(Ai(~vi), s))≡ψ

+

i (~x,~vi, s) ∨ F (~x, s) ∧ ¬ψ−
i (~x,~vi, s).

Wheneverψ+

i (~x,~vi, s) (ψ−

i (~x,~vi, s), respectively) are con-
sistent conditions (SC formulas uniform ins), Ai(~vi) has a
positive effect (a negative effect) onF under such condition.
Hence, the following yields the logically equivalent SSA of
F in the usual BAT of (Reiter 2001):

F (~x, do(a, s)) ≡ [
Wk

i=1
(∃~vi)(a=Ai(~vi) ∧ ψ

+

i (~x,~vi, s))]∨

F (~x, s) ∧ ¬[
Wk

j=1
(∃~vj)(a=Aj(~vj) ∧ ψ

−
j (~x,~vj , s))].

Notice that the above axiom can be simplified by removing
inconsistent clauses. Hence the lemma is proved. �

We then have the following important property:

Theorem 2 For eachDH , there exists an equivalentD of
the format given in (Reiter 2001), where equivalence means
that for any FO regressable sentenceW that has no occur-
rences of the predicatesp, DH |= W iff D |= W.

Proof: Use Lemma 2. �

Here we provide some examples of the new way of repre-
senting SSAs, and compare them with Reiter’s format.

Example 4 We continue with Example 1 (recall Figure 1).
Consider a fluentfCooked(x, s) (food x is cooked in the
situations), the modular BAT version of its SSA could be:
fCooked(x, do(a, s))≡ (∃y)sp∗(a, cook(x, y))∨fCooked(x, s).

Another example is a SSA for the fluentdirtyV es(x, s) (it
will be false after washing a vesselx in some manner, or it
will be true whenx is used to prepare food or drink):

dirtyV es(y, do(a, s)) ≡ dirtyV es(y, s) ∧ ¬sp∗(a,wash(y))
∨ (∃x)sp∗(a, cook(x, y)) ∨ (∃x)a = makeSalad(x, y)
∨ (∃x)sp∗(a, prepDrink(x, y)).

The Reiter’s SSA for fluentfCooked(x, s) (with a bigger
taxonomy of actions, it will be much longer):
fCooked(x, do(a, s)) ≡

(∃y)[a=cook(x, y)∨a= lowOilCook(x, y)∨a=steam(x,y)
∨a=boil(x, y)∨a=stew(x,y)∨a=broil(x, y)
∨a=bake(x, y)∨a=roast(x,y)∨a=ovenCook(x, y)
∨a=pressureCook(x,y)∨a=oilyCook(x, y)
∨a=fry(x, y) ∨ a=deepFry(x,y) ∨ a=stir(x, y)
∨a=parboil(x, y) ∨ a=grill(x,y)] ∨ fCooked(x, s).

We can also get a similar longer Reiter’s SSA for fluent
dirtyV es(x, s) (details are omitted).

The definitions of the regression operator and the regress-
able sentences inDH are all the same as in (Reiter 2001).
Similar to the regression theorem (Reiter 2001), we have

DH |= W iff DH
S0

∪ Duna |= R[W]

for any regressable sentenceW . Let E
[

R[W]
]

(called the
extended regression ofW) be the operator that eliminates
all occurrences (if any) of thesp∗(A′, A) predicate inR[W]
in favor of the corresponding FO formulasφA′,A that exists
according to Lemma 1. Then, we have:

Theorem 3 For eachDH and for any FO regressable sen-
tenceW , DH |= W iff DS0

∪H ∪ Duna |= E
[

R[W]
]

.

This theorem is important becauseDH
S0
∪Duna (and hence

DH) include the SO definition of the predicatesp∗. How-
ever, all occurrences ofsp∗ in sentenceR[W] can be re-
placed by FO sentences in finitely many steps according to
the Lemma 1. Consequently, one can use regression in our
modular BATs to reduce projection and executability prob-
lems to theorem proving in FOL only.

Advantages of Modular BATs
Using action hierarchies and specifying BATs modularly not
only provides a compact way of representing effects of ac-
tions, but sometimes leads to a more computationally effi-
cient (than Reiter’s) solution of the projection problem.

Example 5 Continuing with Example 4, consider a ground
actionα = deepFry(Egg1, F ryingPan1), and the regres-
sion of fCooked(Egg1, do(α, S0)). Using Reiter’s SSA for
this fluent, regression involves checking16 equality clauses
between actions when regressing on the positive conditions
in the SSA offCooked (see the axiom above). Using the
modular BAT, extended regression of the positive conditions
involves only1 step of regression for predicatesp∗, and fi-
nally the replacement ofsp∗(α, cook(Egg1, y)) with the cor-
responding FO formula, i.e., the operatorE , takes at most4
steps of recursive computation (see Figure 1).

Apart from specific examples, let us discuss in general the
following problems: when we can actually gain computa-
tional advantages using action hierarchies and how much we
can gain, whether there is any possible computational disad-
vantage in using action hierarchies alone, and if so, whether
it can be avoided.

According to the definition in the previous section, the
digraph of an acyclic action diagram is in fact a directed

acyclic graph (DAG). Computing the FO formula equivalent
to sp∗(A1(~x), A2(~y)) for any pair of action functionsA1(~x)
andA2(~y) is similar to finding all paths fromA1 toA2 in the
corresponding digraph. The latter problem has the compu-
tational complexity ofΘ(p) wherep is the number of all the
distinct edges in the digraph on any path fromA1 toA2, and
therefore has a computational complexity ofO(e) wheree
is the number of all edges in the digraph (i.e.,e is the num-
ber of sp axioms inH). As a consequence, this yields the
following encouraging and important result.

We start with the caseh = 0 in (5). Let φ(a, ~x, s) de-
note (∃~z0)[sp

∗(a,A(~y0)) ∧ γ(~x, ~z0, s)]. In general, to pro-
vide an equivalent SSA ofF (~x, s) in Reiter’s representation,
φ(a, ~x, s) has to be replaced by an uniform formulaψ(a, ~x, s)
of the form(∃~z0)[ψsp(a, ~y0) ∧ γ(~x, ~z0, s)]. Here,ψsp(a, ~y0)
might have the form(a=A(~y0) ∨

WnA−1

i=1
(∃~zi)(a=Ai(~yi) ∧

ψi(~y0, ~yi))), where eachAi(~yi) (1≤ i ≤ nA − 1) is a special-
ization ofA(~y0) under the conditionψi(~y0, ~yi), nA is the to-
tal number of specializations ofA. The formulaψsp(a, ~y0)
is a logically equivalent replacement ofsp∗(a,A(~y0)) in
φ (see Lemma 2). Let the action diagramH in DH be
acyclic and the corresponding action digraph rooted atA
have a tree structure (the most general actions are considered
as roots and the most specialized actions are considered as
leaves). Then, the computational time of extended regres-
sionE [R[sp∗(α,A(~t ′, ~z0))]] in the clauseφ(α,~t, S), for any
object terms~t and any situation termdo(α, S), is no worse
than and (sometimes) can be exponentially faster than com-
putational time of Reiter’s regression onψsp in ψ(α,~t, S).

Theorem 4 If the sub-tree rooted atA in the digraph ofH
is a completek-ary tree (k ≥ 2) with nA action functions
as its nodes, the computational complexity of extended re-
gressionE [R[sp∗(α,A(~t ′, ~z0))]] is Θ(logk nA), while the
computational complexity of Reiter’s regressionR[ψsp] on
an equivalent replacement isΘ(nA).
Proof: When a DAG of an action hierarchy has a tree
structure or a forest structure, there is at most one path
between any two action functions. In particular, assume
that the digraph of the action hierarchy is a completek-
ary (k ≥ 2) tree structure and consider the regression of
F (~t, do(α, S)) for any action termα and situation termS.
To specify the equivalent SSA in Reiter’s format,φ(α,~t, S)
needs to be replaced byψ(α,~t, S). It is easy to see that
one-step regression of the above clause in Reiter’s format
takesΘ(nA) steps (subsequently, additional time is required
to regress recursivelyR[γ(~t, ~z0, S)]). To perform one-
step regression using the modular BAT format, it is suffi-
cient to regresssp∗(α,A(~t ′, ~z0)) ∧ γ(~t, ~z0, S) (which takes
Θ(1) time, excluding again the time that subsequently re-
quired to compute recursivelyR[γ(~t, ~z0, S)]) and then re-
placesp∗(α,A(~t ′, ~z0)) with the equivalent FO formula. Be-
cause this last replacement step can be considered as finding
the path fromα toA0 with the computational complexity of
Θ(logk nA). Finally, regression makes the same number of
recursive calls in both cases: the formulaγ is the same. �

However, if we do not allow the usage of (in)equality be-
tween action terms (e.g.,a = Ai) in DH

ss, we may (some-

times) lose computational advantages when the effects of
actions for some fluents only involve very few actions in
a large taxonomy or when the structure of a DAG is not a
forest, especially if it is close to a complete DAG. Since a
dense DAG ofn nodes has at most the order ofn2 edges
(a complete DAG ofn nodes hasn(n − 1)/2 edges in to-
tal), computing the FO formula equivalent to the predicate
sp∗ has complexityO(n2). To avoid such computational
disadvantages, we can easily use both (in)equality between
action terms and predicatesp∗ in modular BATs. Whenever
the (sub)digraph rooted at some action function symbolA
has a tree structure (even mostly a tree structure with a few
extra edges) and most of its specializations have the same
effects under certain common conditions on some fluentF ,
one can use thesp∗ predicate forA to gain both the compu-
tational advantage and the advantage of compact representa-
tion when writing the SSA forF . Otherwise, one can use the
(in)equality format to avoid computational disadvantages.

Now, we illustrate the advantage of using the negated
component in clause (5) (i.e., allowingh>0).

Example 6 We continue with Example 5. Consider a fluent
nonBBQ(x, s): x is cooked without grilling. Its SSA in
DH can be written without negation in (5), i.e. whenh=0:
nonBBQ(x, do(a, s)) ≡ (∃y)[sp∗(a, oilyCook(x, y))∨

sp
∗(a, ovenCook(x, y)) ∨ a=steam(x,y) ∨ a=stew(x,y) ∨

sp
∗(a, boil(x, y))] ∨ nonBBQ(x, s)∧¬(∃y)a 6=grill(x,y) (6)

Alternatively, it can be written with negation (i.e.,h>0) as:
nonBBQ(x, do(a, s)) ≡ (∃y)[sp∗(a, oilyCook(x, y))∨

sp
∗(a, lowOilCook(x, y)) ∧ (∀z)(a 6= lowOilCook(x, z) ∧

a 6=grill(x, z))] ∨ nonBBQ(x, s)∧¬(∃y)a 6=grill(x,y) (7)

ConsiderE [R[nonBBQ(Egg1, do(α, S0))]], extended re-
gression whereα is the same as in Example 5. It takes 1
step less using Formula (7) than using Formula (6) during
regression (regardless the quantifiers). Clearly, the more
brancheslowOilCook(x, y) has that have positive effects
on nonBBQ(x, s) without extra context conditions, the
more computational advantage we can obtain by allowing
h ≥ 0 and using Formula (7) during regession.

How to Construct a Taxonomy of Actions
As we see, hierarchies of actions can lead to important com-
putational advantages. An important practical question re-
mains how an axiomatizer should approach the problem of
constructing a hierarchy of actions given only a set of effect
axioms which specify for each fluent what actions have a
(positive or negative) effect on the fluent. In a somewhat
similar vein, (Reiter 2001) starts from effect axioms and
demonstrates that under the causal completeness assump-
tion, SSAs can be constructed from effect axioms. We con-
tinue to consider only action diagramsH with monotonic
inheritance of effects. In this subsection, we assume that all
the variables used below in action functions and fluents are
distinct from each other. Consider a BATD which includes
a set ofn action functions, say{Ai(~xi) | i = 1..n}, and
m fluents, say{Fj(~yj) | j = 1..m}, that might be affected
by any of the above actions. For any action functionA(~x),
without loss of generality, we assume that its positive effect

axiom for any relational fluentF (~y, s) has the syntactic form
ψ

+

A,F (~x, ~y, s) ⊃ F (~y, do(A(~x), s), (8)

and its negative effect axiom forF (~y, s) is of the form
ψ

−
A,F (~x, ~y, s) ⊃ ¬F (~y, do(A(~x), s). (9)

Definition 4 For an action functionA(~x) and a fluent
F (~y, s), which has effect axioms of the form (8,9) we say that
an actionA has effect on a relational fluentF (or F could
be affected byA) iff either 6|= ψ+

A,F (~x, ~y, s) ≡ F (~y, s) or
6|= ψ−

A,F (~x, ~y, s) ≡ ¬F (~y, s). For any action functionA(~x), a
special meta-functionNe(A) is used to represent the number
of fluents that can be affected byA.

For any two action functionsA1(~x1) andA2(~x2), we say
thatA1 causes no less effects thanA2 iff there exists no flu-
ent such thatA1 has no effect on it butA2 has. We say that
A1 causes more effects thanA2 iff A1 has no less effects
thanA2 and there exists at least one fluent such thatA1 has
an effect on it butA2 does not.

Note that ifA1 causes more effects thanA2, thenNe(A1)>
Ne(A2); however, it is not necessarily true the other way
around: actions might affect different sets of fluents. Given
effect axioms, for any pair of actionsA1, A2, a straightfor-
ward linear timeO(m) procedure can check whetherA1

causes more effects thanA2.
We would like to provide general guidelines on how an

axiomatizer can construct an action diagramH for D. Un-
der the assumption of monotonic inheritance, ifA1 is a spe-
cialization ofA2, then it causes no less effects thanA2 and
Ne(A1)≥ Ne(A2). Thus, to return a setH that represents
an action diagramH, it is enough to start with generic ac-
tionsA that have the smallest value ofNe(A) and proceed
towards more specialized actions checking on each iteration
if the next action we consider is a specialization of one of
the previously considered actions.
1. Sort the action functions and get the sequenceA1(~x1),

· · · ,An(~xn) such thatNe(Ai1)≤ Ne(Ai2) for i1<i2.

2. Initially, let i=2 (index1 ≤ i ≤ n) andH = ∅.

3. If i > n, then returnH and terminate; else assignj = i
and continue: look forAj ’s that are generalizations ofAi.

4. Decrementj=j−1. If j=0 (i.e., all candidatesAj have
been already considered), then incrementi = i + 1 and
go to step 3 (i.e., take a next actionAi+1 from the sorted
sequence we obtained at step 1); else ifNe(Ai) = Ne(Aj),
go to step 4; else continue.

5. For any pair of indicesi, j such that1 ≤ j ≤ i − 1, if
there is a path inH from i to j, then we already know that
Ai is a specialization ofAj and because specialization is
a transitive relation there is no need to add a new directed
edge fromAi toAj and we can go to step 4; else continue.

6. If Ai(~xi) is a specialization ofAj(~xj) under FO condi-
tion φi,j , then updateH = H ∪ {(Ai(~xi), Aj(~xj), φi,j)}
and go to step 4; else do not changeH and go to step 4.

To implement the last step for any two action functions
Ai(~xi) andAj(~xj), provided that axiomatizers are able to
write effect axioms of the form (8,9), we formulate the fol-
lowing principles to determine whether or notAi(~xi) is a
specialization ofAj(~xj) under some conditionφ.

a. If Ai causes more effects thanAj , “guess” a FO formula
φ, whose free variables include at most~xj and~xi, such
that for any relational fluentF (~y, s) that could be affected
by bothAi andAj ,

D |= φ ⊃ (Poss(Ai(~xi), s) ⊃ Poss(Aj(~xj), s)),
D |= φ ⊃ (ψ+

Ai,F (~xi, ~y, s) ≡ ψ+

Aj ,F (~xj , ~y, s)),

D |= φ ⊃ (ψ−
Ai,F (~xi, ~y, s) ≡ ψ−

Aj ,F (~xj , ~y, s)).

If one can find suchφ, thenAi is a specialization ofAj

under the conditionφ.

b. Otherwise,Ai is not a specialization ofAj .

Note that for any action functionsA1(~x),A2(~y) and FO for-
mulaφ, each(A1(~x), A2(~y), φ) in the returned setH corre-
sponds to an axiomsp(A1(~x), A2(~y))≡φ, and the collection
of all these axioms results in an action diagramH.

In general, to determine whether one action is a special-
ization of another under certain condition is undecidable.
Hence, the axiomatizers have to observe the preconditions
and effects of actions, guess formulaφ (using their intu-
ition), and construct action diagrams manually. In the future,
we would like to consider whether it is possible to generate
action diagrams automatically in some special cases.

Discussion and Future Work
There are a few papers related to our work that we would like
to mention. (Lifschitz & Ren 2006) consider modular theo-
ries in the propositional action representation languageC+,
and address the problem of the development of libraries of
reusable, general-purpose knowledge components. In com-
parison to them, we explore how to manage a large num-
ber of actions in the predicate logic using a hierarchical rep-
resentation for actions in SC. We propose a representation,
which not only facilitates writing axioms succinctly, but for
realistic taxonomies can also gain computational advantages
in solving the projection problem. (Kautz & Allen 1986)
and subsequent papers of H.Kautz develop frameworks for
plan recognition using hierarchies of plans, in which primi-
tive action and plan instances belong to certain event types
represented as unary predicates, and a hierarchy of plans is
a collection of restricted-form axioms specifying relation-
ships between various event types. However, their axiomati-
zations of actions (preconditions and effects of the actions)
are limited and they do not address the projection problem.
(Kaneiwa & Tojo 2005) give an ontological framework to
represent actions/events and their hierarchical relationships
in information systems using an order-sorted SO logic. In
this framework, events (or actions) are represented as predi-
cates rather than terms, and the authors consider taxonomi-
cal reasoning about relationships between events rather than
reasoning about effects of actions. The authors do not pro-
vide axiomatizations of the dynamic aspects of actions and
do not explore computational properties of their framework.
(Devanbu & Litman 1996) propose aplan-basedknowledge
representation and reasoning system, called CLASP (CLAs-
sification of Scenarios and Plans). CLASP extends the no-
tions of subsumption from terminological languages to plans
by allowing the construction of plans from concepts corre-
sponding to actions and using plan description forming oper-
ators for choice, sequencing and looping (similar to propo-

sitional dynamic logic). All actions in CLASP are repre-
sented in the style of STRIPS, which is less expressive than
general Reiter’s BATs and our modular BATs. Our formal-
ism is very different from all the papers mentioned above.
We use a specialization relation between primitive action
functions, and provide a formal axiomatization of the dy-
namic aspects of actions using full predicate logic (hence,
our theory is quite expressive). Also, we gain both represen-
tational and computational advantages by using the action
hierarchies. The extensive research on Hierarchical Task
Networks (HTN), that can be traced to the pioneering work
of Sacerdoti on ABSTRIPS, considers a completely differ-
ent recursive decomposition of complex actions (i.e., plans,
or nonprimitve tasks) into constituents, but does not explore
large taxonomies of primitive actions and whether these tax-
onomies can provide any computational advantages when
solving the projection problem. Our work is motivated in
part by the well-known hierarchies of verbs (full troponym)
in WordNet (Fellbaum 1998). Exploring connections with
other frameworks (e.g., FrameNet, Levin’s taxonomy, Verb-
Net, etc) in computational linguistics and natural language
processing is a possible direction for our future research.
(Amir 2000) proposes and studies an object oriented version
of the SC with the purpose of developing decomposed theo-
ries of actions, but he investigates a representation that is sig-
nificantly different from our approach and considers neither
taxonomies of actions nor BATs. In the future, we will ex-
plore how to combine Amir’s decomposed SC theories with
our action hierarchies. Moreover, currently we consider only
hierarchies of primitive actions. In the future, we may also
consider hierarchies of complex actions (plans), and explore
what criteria should be followed for constructing such hier-
archies, whether we can construct them automatically from
the existing hierarchies of primitive actions and our BATs.

Acknowledgments
Thanks to the Natural Sciences and Engineering Research
Council of Canada (NSERC) for partial financial support of
this research. Thanks to Fahiem Bacchus, Hector Levesque,
and Sheila McIlraith for comments on preliminary versions.

References
Amir, E. 2000. (De)Composition of Situation Calculus Theo-
ries. InProceedings of the Seventienth National Conference on
Artificial Intelligence (AAAI-00). AAAI.
Devanbu, P. T., and Litman, D. J. 1996. Taxonomic plan reason-
ing. Artif. Intell. 84(1-2):1–35.
Fellbaum, C. 1998. English verbs as a semantic net. In Fellbaum,
C., ed.,WordNet: An Electronic Lexical Database, with a preface
by George Miller, Chapter 3. The MIT Press. 69–104.
Kaneiwa, K., and Tojo, S. 2005. Logical aspects of events: Quan-
tification, sorts,composition and disjointness. InProceedings of
Australasian Ontology Workshop (AOW 2005).
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recogni-
tion. In Proceedings of the fifth National Conference on Artificial
Intelligence (AAAI-86), 32–37. AAAI Press.
Lifschitz, V., and Ren, W. 2006. A modular action description
language. InProceedings of the Twenty-First National Confer-
ence on Artificial Intelligence (AAAI-06). AAAI.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.

