
On Planning with Preferences in HTN

Shirin Sohrabi and Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada.

{shirin,sheila}@cs.toronto.edu

Abstract

In this paper, we address the problem of generating preferred
plans by combining the procedural control knowledge speci-
fied by Hierarchical Task Networks (HTNs) with rich qualita-
tive user preferences. The outcome of our work is a language
for specifying user preferences, tailored to HTN planning,
together with a provably optimal preference-based planner,
HTNPREF, that is implemented as an extension ofSHOP2.
To compute preferred plans, we propose an approach based
on forward-chaining heuristic search. Our heuristic uses
an admissible evaluation function measuring the satisfaction
of preferences over partial plans. Our empirical evaluation
demonstrates the effectiveness of ourHTNPREF heuristics.
We prove our approach sound and optimal with respect to the
plans it generates by appealing to a situation calculus seman-
tics of our preference language and of HTN planning. While
our implementation builds onSHOP2, the language and tech-
niques proposed here are relevant to a broad range of HTN
planners.

1 Introduction
Hierarchical Task Network (HTN) planning is a popular
and widely used planning paradigm, and many domain-
independent HTN planners exist (e.g.,SHOP2, SIPE-2, I-X/I-
PLAN, O-PLAN) (Ghallab, Nau, and Traverso 2004). In HTN
planning, the planner is provided with a set of tasks to be
performed, possibly together with constraints on those tasks.
A plan is then formulated by repeatedly decomposing tasks
into smaller and smaller subtasks until primitive, executable
tasks are reached. A primary reason behind HTN’s success
is that its task networks capture useful procedural control
knowledge—advice on how to perform a task—described in
terms of a decomposition of subtasks. Such control knowl-
edge can significantly reduce the search space for a plan
while also ensuring that plans follow one of the stipulated
courses of action. However, while HTNs specify a family
of satisfactory plans, they are, for the most part, unable to
distinguish what constitutes a high-quality plan.

In this paper, we address the problem of generating pre-
ferred plans by augmenting HTN planning problems with
rich qualitative user preferences. User preferences can be
arbitrarily complex, often involving combinations of condi-
tional, interacting, and mutually exclusive preferences that
can range over multiple states of a plan. This makes finding

an optimal plan hard. There are two aspects to addressing
the problem of preference-based planning with HTNs. The
first is to propose a preference specification language that is
tailored to HTN planning. The second, is to generate pre-
ferred, and ideally optimal, plans efficiently.

To specify user preferences, we augment a rich quali-
tative preference language,LPP, proposed in (Bienvenu,
Fritz, and McIlraith 2006) with HTN-specific constructs.
LPP specifies preferences in a variant of linear temporal
logic (LTL). Among the HTN-specific properties that we
add to our language,LPH, is the ability to express pref-
erences over how tasks in our HTN are decomposed into
subtasks, preferences over the parameterizations of decom-
posed tasks, and a variety of temporal and nontemporal pref-
erences over the task networks themselves.

To compute preferred plans, we propose an approach
based on forward-chaining heuristic search. Key to our ap-
proach is a means of evaluating the (partial) satisfaction of
preferences during HTN plan generation based on progres-
sion. The optimistic evaluation of preferences yields an ad-
missible evaluation function which we use to guide search.
We implemented our planner,HTNPREF, as an extension to
the SHOP2 HTN planner. Our empirical evaluation demon-
strates the effectiveness ofHTNPREF heuristics in finding
high-quality plans. We provide a semantics for our pref-
erence language in the situation calculus (Reiter 2001) and
appeal to this semantics to prove the soundness and optimal-
ity of our planner with respect to the plans it generates. This
paper omits a number of technical details that can be found
in a longer paper describing this work.

2 HTN Planning
In this section, we provide a brief overview of both HTN
planning, following (Ghallab, Nau, and Traverso 2004), and
our situation calculus encoding of preference-based HTN
planning.
Travel Example: Consider a simple HTN planning prob-
lem to address the task of arranging travel. This task can
be decomposed into arranging transportation, accommoda-
tions, and local transportation. Each of these tasks can again
be decomposed based on alternate modes of transportation
and accommodations, reducing eventually to primitive ac-
tions that can be executed in the world. Further constraints
can be imposed to restrict decompositions.

Definition 1 (HTN Planning Problem) An HTN planning prob-
lem is a 3-tupleP = (s0, w, D) wheres0 is the initial state,w
is a task network called the initial task network, andD is the HTN
planning domain.P is a total-order planning problem if w andD
are totally ordered; otherwise it is said to be partially ordered.

A taskconsists of a task symbol and a list of arguments.
A task is primitive if its task symbol is an operator name and
its parameters match, otherwise it isnonprimitive. In our
example,arrange-transand arrange-accare nonprimitive
tasks, whilebook-flightandbook-carare primitive tasks.

Definition 2 (Task Network) A task network is a pair w=(U, C)
where U is a set of task nodes and C is a set of constraints. Each
task node u∈ U contains a tasktu. If all of the tasks are ground
then w is ground; If all of the tasks are primitive, then w is called
primitive; otherwise is called nonprimitive. Task networkw is to-
tally ordered ifC defines a total ordering of the nodes in U.

In our example, we could have a task network(U,C)
whereU = {u1, u2}, u1 =book-car, andu2= pay, andC is
a precedence constraint such thatu1 must occur beforeu2

and a before-constraint such that at least one car is available
for rent beforeu1.

A domain is a pairD = (O, M) whereO is a set of op-
erators andM is a set of methods. Operators are essentially
primitive actions that can be executed in the world. They
are described by a tripleo =(name(o), pre(o), eff(o)), corre-
sponding to the operator’s name, preconditions and effects.
Preconditions are restricted to a set of literals, and effects
are described as STRIPS-like Add and Delete lists. An op-
eratoro can accomplish a ground primitive task in a states
if their names match ando is applicable ins. In our exam-
ple, ignoring the parameters, operators might include:pay,
book-train, book-car, book-hotel,andbook-flight.

A method,m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m))corresponding to the method’s name, a nonprim-
itive task and the method’s task network, comprising sub-
tasks and constraints. A method istotally orderedif its task
network istotally ordered. A domain is a total-order domain
if everym ∈ M is totally ordered. Methodm is relevant for
a taskt if there is a substitutionσ such thatσ(t) =task(m).
Several different methods can be relevant to a particular non-
primitive taskt, leading to different decompositions oft. In
our example, the method withname by-flight-transcan be
used to decompose thetask arrange-transinto thesubtasks
of booking a flight and paying, with the constraint (constr)
that the booking precede payment.

Definition 3 (Solution to HTN Planning Problem) Given HTN
planning problemP = (s0, w, D), a planπ = (o1, ..., ok) is a
solution forP, depending on these two cases: 1) if w is primitive,
then there must exist a ground instance of (U ′, C′) of (U, C) and
a total ordering(u1, ..., uk) of the nodes inU ′ such that for all
1 ≤ i ≤ k, name(oi) = tui

, the planπ is executable in the states0,
and all the constrains hold, 2) if w is nonprimitive, then there must
exist a sequence of task decompositions that can be applied to w to
produce a primitive task networkw′, whereπ is a solution forw′.

Finally, we define the HTN preference-based planning
problem. This definition appeals to two concepts that are
not yet well-defined and which we defer to later sections:
definitions of the form and content of the the formulaΦhtn

that captures user preferences for HTN planning as well as

and the precise definition ofmore preferredappears in Sec-
tion 3.

Definition 4 (Preference-based HTN Planning)An HTN plan-
ning problem with user preferences is described as a 4-tupleP =
(s0, w, D, Φhtn) whereΦhtn is a formula describing user prefer-
ences. A planπ is a solution toP if and only if: π is a plan for
P ′ = (s0, w, D) and there does not exists a planπ′ such thatπ′ is
more preferred thanπ with respect to the preference formulaΦhtn.

2.1 Situation Calculus Specification of HTN
We now have a definition of preference-based HTN plan-
ning. Later in the paper, we propose an approach to comput-
ing preferred plans, together with a description of our im-
plementation. To prove the correctness and optimality of our
algorithm, we appeal to an existing situation calculus encod-
ing of HTN planning, which we augment and extend to pro-
vide an encoding of preference-based HTN planning. Since
the situation calculus has a well-defined semantics, we have
a semantics for our encoding which we use in our proofs. In
this section, we review the salient features of this encoding.

The Situation Calculus is a logical language for speci-
fying and reasoning about dynamical systems (Reiter 2001).
In the situation calculus, thestateof the world is expressed
in terms of functions and relations (fluents) relativized toa
particularsituations, e.g.,F (~x, s). A situations is ahistory
of the primitive actions,a ∈ A, performed from a distin-
guished initial situationS0. The functiondo(a, s) maps a
situation and an action into a new situation thus inducing a
tree of situations rooted inS0. A basic action theoryin the
situation calculusD includesdomain independent founda-
tional axioms, anddomain dependent axioms. A situations′

precedes a situations, i.e.,s′ ⊏ s, means that the sequence
s′ is a proper prefix of sequences.

Golog (Reiter 2001) is a high-level logic programming
language for the specification and execution of complex ac-
tions in dynamical domains. It builds on top of the situation
calculus by providing Algol-inspired extralogical constructs
for assembling primitive situation calculus actions into com-
plex actions (programs) δ. Example complex actions in-
clude action sequences, if-then-else, while loops, nondeter-
ministic choice of actions and action arguments, and pro-
cedures. These complex actions serve as constraints upon
the situation tree. ConGolog (De Giacomo, Lespérance, and
Levesque 2000) is the concurrent version of Golog in which
the language can additionally deal with execution of concur-
rent processes, interrupts, prioritized concurrency, andex-
ogenous actions.

A number of researchers have pointed out the connection
between HTN and ConGolog. Following Gabaldon (Gabal-
don 2002), we map an HTN state to a situation calculussit-
uation. Consequently, the initial HTN states0 is encoded as
the initial situation,S0. The HTN domain description maps
to a corresponding situation calculus domain description,D,
where for every operatoro there is a corresponding primi-
tive actiona, such that the preconditions and the effects ofo
are axiomatized inD. Every method and nonprimitive task
together with constraints is encoded as a ConGolog proce-
dure. For the purposes of this paper, the set of procedures in
a ConGolog domain theory is referred to asR.

We use a predicatebadSituation(s) proposed by Reiter
(Reiter 2001) to encode the constraints in a task network.
The purpose of these constraints is to prune part of a search
space similar to using temporal constraints.

To deal with partially ordered task networks, we add
two new primitive actionsstart(P (~v)), end(P (~v)), and two
new fluentsexecuting(P (~v), s) andterminated(X, s), where
P (~v) is a ConGolog procedure andX is eitherP (~v) or an
actiona ∈ A. executing(P (~v), s) states thatP (~v) is exe-
cuting in situations, terminated(X, s) states thatX has ter-
minated ins. executing(a, s) wherea ∈ A is defined to be
false. The successor state axioms for these fluents follow.
They show how the actionsstart(P (~v)), end(P (~v)) change
the truth value of these fluents:

executing(P (~v), do(a, s)) ≡ a = start(P (~v))∨
executing(P (~v), s) ∧ a 6= end(P (~v))

terminated(X, do(a, s)) ≡ X = a∨
(X ∈ R ∧ a = end(X)) ∨ terminated(X, s)

whereR is the set of ConGolog procedures in our domain.

Definition 5 (Preference-based HTN in Situation Calculus)
An HTN planning problem with user preferences described as a
4-tupleP = (s0, w, D, Φhtn) is encoded in situation calculus as
a 5-tuple(D, C, ∆, δ0, Φsc) whereD is the basic action theory,
C is the set of ConGolog axioms,∆ is the sequence of procedure
declarations for all ConGolog procedures inR, δ0 is an encoding
of the initial task network in ConGolog, andΦsc is a mapping of
the preference formulaΦhtn in situation calculus. A plan~a is a
solution to the encoded preference-based HTN problem if and only
if:

D ∪ C |= (∃s)Do(∆; δ0, S0, s) ∧ s = do(~a, S0)
∧ ¬badSituation(s) ∧ ∄s′.[Do(∆; δ0, S0, s

′)
∧ ¬badSituation(s′) ∧ pref(s′, s, Φsc)]

wherepref(s′, s,Φsc) denotes that the situations′ is pre-
ferred to situation s with respect to the preference formula
Φsc, and Do(δ, S0, do(~a, S0)) denotes that the ConGolog
programδ, starting execution inS0 will legally terminate
in situation do(~a, S0). Removing all thestart(P (~v)) and
end(P (~v)) actions from~a to obtain~b = (b1, ..., bn), a pre-
ferred plan for the original HTN planning problemP is a
planπ = (o1, ..., on) where for all1 ≤ i ≤ n, name(oi)= bi.

3 HTN Preference Specification
In this section, we describe how to specify the preference
formula Φhtn. Our preference language,LPH, modifies
and extends theLPP qualitative preference language pro-
posed in (Bienvenu, Fritz, and McIlraith 2006) to capture
HTN-specific preferences.

OurLPH language has the ability to express preferences
over certain parameterization of a task (e.g., preferring one
task grounding to another), over a certain decomposition of
nonprimitive tasks (i.e., prefer to apply a certain method
over another), and a soft version of the before, after, and in
between constraints. A soft constraint is defined via a pref-
erence formula whose evaluation determines when a plan is
more preferredthan another. However, unlike the task net-
work constraints which will prune or eliminate those plans
that have not satisfied them, not meeting a soft constraint
simplify deems a plan to be of poorer quality.

Definition 6 (Basic Desire Formula (BDF)) A basic desire
formula is a sentence drawn from the smallest setB where:

1. If l is a literal, thenl ∈ B andfinal(l) ∈ B
2. If t is a task, thenocc(t) ∈ B
3. If m is a method, andn = name(m), thenapply(n) ∈ B
4. If t1, andt2 are tasks, andl is a literal, then

before(t1, t2), holdBefore(t1, l), holdAfter(t1, l),
holdBetween(t1, l, t2) are inB.

5. If ϕ1 andϕ2 are inB, then so are¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
(∃x)ϕ1, (∀x)ϕ1, next(ϕ1), always(ϕ1), eventually(ϕ1),
anduntil (ϕ1, ϕ2).

final(l) states that the literall holds in the final state,occ(t)
states that the taskt occurs in the present state, andnext(ϕ1),
always(ϕ1), eventually(ϕ1), and until (ϕ1, ϕ2) are basic LTL
constructs.apply(n) states that a method whose name isn
is applied to decompose a nonprimitive task.before(t1, t2)
states a precedence ordering between two tasks.holdBe-
fore(t1, l), holdAfter (t1, l), holdBetween(t1, l, t2) state a soft
constraint over when the fluentl is preferred to hold. (i.e.,
holdBefore(t1, l) state thatl must be true right before the last
operator descender oft1 occurs). Combiningocc(t) with
the rest ofLPH language enables the construction of pref-
erence statements over parameterizations of tasks.

BDFs establish properties of different states within a plan.
By combining BDFs using boolean and temporal connec-
tives, we are able to express other properties of state. The
following are a few examples from our travel domain1.

(∃c).occ′(book-car(c, Enterprise)) (P1)

apply′(by-car-local(SUV, Avis)) (P2)

before(arrange-trans, arrange-acc) (P3)

holdBefore(hotelReservation, arrange-trans) (P4)

always(¬(occ′(pay(Mastercard)))) (P5)

(∃h, r).occ′(book-hotel(h, r)) ∧ starsGE(r, 3) (P6)

(∃c).occ′(book-flight(c, Economy, Direct, WindowSeat))

∧ member(c, StarAlliance) (P7)

P1 states that at some point the user books a car with
Enterprise. P2 states that at some point, theby-car-local
method is applied to book an SUV from Avis. P3 states that
thearrange-transtask occurs before thearrange-acc task.
P4 states that the hotel is reserved before transportation is ar-
ranged. P5 states that the user never pays by Mastercard. P6
states that at some point the user books a hotel that has a rat-
ing of 3 or more. P7 states that at some point the user books
a direct economy window-seated flight with a Star Alliance
carrier.

To define a preference ordering over alternative properties
of states,Atomic Preference Formulae(APFs) are defined.
Each alternative comprises two components: the property
of the state, specified by a BDF, and avalue term which
stipulates the relative strength of the preference.

Definition 7 (Atomic Preference Formula (APF))
LetV be a totally ordered set with minimal elementvmin and max-
imal elementvmax. An atomic preference formula is a formula

1To simplify the examples many parameters have been sup-
pressed, and we abbreviateeventually(occ(ϕ)) by occ′, eventu-
ally(apply(ϕ)) by apply′ and refer to preferences by their labels.

ϕ0[v0] ≫ ϕ1[v1] ≫ ... ≫ ϕn[vn], where eachϕi is a BDF, each
vi ∈ V, vi < vj for i < j, andv0 = vmin. Whenn = 0, atomic
preference formulae correspond to BDFs.

While one could letV = [0, 1], you could choose a strictly
qualitative set like{best < good < indifferent < bad <
worst} to express preferences over alternatives.

Now here are a few APF examples from the travel domain.
P2[0]≫ apply′(by-car-local(SUV, National))[0.3] (P8)

apply′(by-car-trans)[0]≫ apply′(by-flight)[0.4] (P9)

occ′(book-train)[0]≫ occ′(book-car)[0.4] (P10)

P8 states that the user prefers that theby-car-localmethod
rents an SUV and that the rental car company Avis is pre-
ferred to National. P9 states that the user prefers to de-
compose thearrange-transtask by the methodby-car-trans
rather than theby-flight method. Note that the task is im-
plicit in the definition of the method. P10 states that the user
prefers travelling by train over renting a car.

To allow the user to specify more complex preferences
and to aggregate preferences, General Preference Formulae
(GPFs) extend the language to conditional, conjunctive, and
disjunctive preferences.

Definition 8 (General Preference Formula (GPF))
A formulaΦ is a GPF if one of the following holds:
• Φ is an APF
• Φ is γ : Ψ, whereγ is a BDF andΨ is a GPF [Conditional]
• Φ is one of Ψ0 & Ψ1 & ... & Ψn [General Conjunction]

or Ψ0 | Ψ1 | ... | Ψn [General Disjunction]
wheren ≥ 1 and eachΨi is a GPF.

General conjunction (resp.general disjunction) refines the
ordering defined byΨ0 & Ψ1 & ... & Ψn (resp.Ψ0|Ψ1|...|Ψn)
by sorting indistinguishable states using the lexicograping
ordering. Continuing our example:

occ(arrange-trans) : (∃c).occ′(book-car(c, Avis)) (P11)

occ(arrange-local-trans) : P1 (P12)

drivable : P10[0]≫ occ′(book-flight)[0.3] (P13)

P4& P6 & P7 & P8& P9 & P10& P12& P13 (P14)

P11 states that if inter-city transportation is being ar-
ranged then the user prefers to rent a car from Avis. P12
states that if local transportation is being arranged the user
prefers Enterprise. P13 states that if the distance betweenthe
origin and the destination is drivable then the user prefersto
book a train over booking a car over booking a flight. P14
aggregates preferences into one formula.

Again, and only for the purpose of proving properties, we
provide an encoding of the HTN-specific terms ofLPH in
the situation calculus. As such, for any preference formula
Φhtn there is a corresponding formulaΦsc where every
HTN-specific term is replaced as follows: each literall is
mapped to a fluent or non-fluent relation in the situation cal-
culus, as appropriate; each primitive taskt is mapped to an
actiona ∈ A; and each nonprimitive taskt and each method
m is mapped to a procedureP (~v) ∈ R in ConGolog.

3.1 The Semantics
The semantics ofLPH is achieved through assigning a
weight to a situations with respect to a GPF,Φ, written

ws(Φ). This weight is a composition of its constituents. For
BDFs, a situations is assigned the valuevmin if the BDF is
satisfied ins, vmax otherwise. Similarly, given an APF, and
a situations, s is assigned the weight of the best BDF that it
satisfies within the defined APF. Finally GPF semantics fol-
low the natural semantics of boolean connectives. As such
General Conjunction yields the minimum of its constituent
GPF weights and General Disjunction yields the maximum.

Similar to (Gabaldon 2004) and followingLPP, we use
the notationϕ[s′, s] to denote thatϕ holds in the sequence
of situations starting froms′ and terminating ins. Next, we
will show how to interpret BDFs in the situation calculus.

If f is a fluent, we will writef [s′, s] = f [s′] since flu-
ents are represented in situation-suppressed form. Ifr is
a non-fluent, we will haver[s′, s] = r sincer is already
a situation calculus formula. Furthermore, we will write
final(f)[s′, s] = f [s] sincefinal(f) means that the fluent
f must hold in the final situation.

The BDFocc(X) states the occurrence ofX which can
be either an action or a procedure. written as:

occ(X)[s′, s] =



do(X, s′) ⊑ s if X ∈ A
do(start(X), s′) ⊑ s if X ∈ R

The BDFapply(P (~v)) will be interpreted as follows:
apply(P (~v))[s′, s] = do(start(P (~v)), s′) ⊑ s

Boolean connectives and quantifiers are already part of the
situation calculus and require no further explanation here.
The LTL constructs are interpreted in the same way as in
(Gabaldon 2004). We interpret the rest of the connectives as
follows 2.

before(X1, X2)[s
′, s] = (∃s1, s2 : s′ ⊑ s1 ⊑ s2 ⊑ s)

{terminated(X1)[s1] ∧ ¬executing(X2)[s1]
∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}

holdBefore(X, f)[s′, s] = (∃s1 : s′ ⊑ s1 ⊑ s)
{f [s1] ∧ occ(X)[s1, s]}

holdAfter (X, f)[s′, s] = (∃s1 : s′ ⊑ s1 ⊑ s)
{terminated(X)[s1] ∧ f [s1]}

holdBetween(X1, f, X2)[s
′, s] =

(∃s1, s2 : s′ ⊑ s1 ⊑ s2 ⊑ s)
{terminated(X1)[s1] ∧ ¬executing(X2)[s1]
∧ ¬terminated(X2)[s1] ∧ occ(X2)[s2, s]}
∧ (∀si : s1 ⊑ si ⊑ s2)f [si]

From here, the semantics follows that ofLPP.

Definition 9 (Basic Desire Satisfaction)LetD be an action the-
ory, and lets′ ands be situations such thats′ ⊑ s. The situations
beginning ins′ and terminating ins satisfyϕ just in the case that
D |= ϕ[s′, s]. We definews′,s(ϕ) to be the weight of the situations
originating in s′ and ending ins wrt BDF ϕ. ws′,s(ϕ) = vmin if
ϕ is satisfied, otherwisews′,s(ϕ) = vmax.

Note that for readability we are going to drops′ from the
index, i.e.,ws(ϕ) = ws′,s(ϕ) in the special case ofs′ = S0.

Definition 10 (Atomic Preference Satisfaction)Let s be a situ-
ation and Φ = ϕ0[v0] ≫ ϕ1[v1] ≫ ... ≫ ϕn[vn] be an
atomic preference formula. Thenws(Φ) = vi if i = min j{D |=
ϕj [S0, s]}, andws(Φ) = vmax if no suchi exists.

2We use the following abbreviations:
(∃s1 : s′ ⊑ s1 ⊑ s)Φ = (∃s1){s

′ ⊑ s1 ∧ s1 ⊑ s ∧ Φ}
(∀s1 : s′ ⊑ s1 ⊑ s)Φ = (∀s1){[s

′ ⊑ s1 ∧ s1 ⊑ s] ⊂ Φ}

Definition 11 (General Preference Satisfaction)Let s be a situ-
ation andΦ be a general preference formula. Thenws(Φ) is de-
fined as follows:
• ws(ϕ0 ≫ ϕ1 ≫ ...≫ ϕn) is defined above

• ws(γ : Ψ) =



vmin if ws(γ) = vmax

ws(Ψ) otherwise
• ws(Ψ0 & Ψ1 & ... & Ψn) = max{ws(Ψi) : 1 ≤ i ≤ n}
• ws(Ψ0 | Ψ1 | ... | Ψn) = min{ws(Ψi) : 1 ≤ i ≤ n}

The following definition dictates how to compare two sit-
uations (and thus two plans) with respect to a GPF. This
preference relationpref is used to compare HTN plans in
Definition 5 and provides the semantics formore preferred
in Definition 4.

Definition 12 (Preferred Situations) A situations1 is at least as
preferred as a situations2 with respect to a GPFΦ, written
pref(s1, s2, Φ) if ws1

(Φ) ≤ ws2
(Φ).

4 Computing Preferred Plan
To compute a preferred plan, we proposed a heuristic-
search, forwarding-chaining planner that searchs for the
most preferredterminating state that satisfies the HTN plan-
ning problem. The search is guided by an admissible eval-
uation function that evaluates partial plans with respect to
preference satisfaction. We useprogressionto evaluate the
preference formula satisfaction over partial plans.

4.1 Progression
Given a situation and a temporal formula, progression eval-
uates it with respect to the state of a situation to generate a
new formula representing those aspects of the formula that
remain to be satisfied. In this section, we define the progres-
sion of the constructs we added/modified fromLPP and
show that progression preserves the semantics of preference
formulae. To define the progression, similar to (Bienvenu,
Fritz, and McIlraith 2006) we add the propositional con-
stantsTRUE andFALSE to both the situation calculus and to
our set of BDFs, whereD � TRUE andD 2 FALSE for ev-
ery action theoryD. We also add the BDFoccNext(X), and
applyNext(P (~v)) to capture the progression ofocc(X) and
apply(P (~v)). Below we show the progression of the added
constructs.
Definition 13 (Progression) Let s be a situation, and letϕ be a
BDF. The progression ofϕ throughs, writtenρs(ϕ), is given by:
• If ϕ=occ(X) then

ρs(ϕ) = occNext(X) ∧eventually(terminated(X))
• If ϕ = occNext(X) , then
8

<

:

TRUE if X ∈ A ∧ D |= ∃s′.s = do(X, s′)
TRUE if X ∈ R ∧ D |= ∃s′.s = do(start(X), s′)
FALSE otherwise

• If ϕ = apply(P (~v)), then
ρs(ϕ) = applyNext(P (~v)) ∧eventually(terminated(P (~v)))
• If ϕ = applyNext(P (~v)) , then

ρs(ϕ) =



TRUE if D |= ∃s′.s = do(start(P (~v)), s′)
FALSE otherwise

• If ϕ = before(X1, X2), holdBefore(X, f), holdAfter(X, f),
or holdBetween(X1, f, X2), then

ρs(ϕ) =



TRUE if ws(ϕ) = vmin

FALSE otherwise

To see how the other constructs are progressed please re-
fer to (Bienvenu, Fritz, and McIlraith 2006).

4.2 Admissible Evaluation Function
In this section, we describe an admissible evaluation func-
tion using the notion ofoptimisticandpessimisticweights
that provide a bound on the best and worst weights of any
successor situation with respect to a GPFΦ. Optimistic
(resp. pessimistic) weights,wopt

s (Φ) (resp. wpess
s (Φ)) are

defined based on optimistic (resp. pessimistic) satisfaction
of BDFs. Optimistic satisfaction (ϕ[s′, s]opt) assumes that
any parts of the BDF not yet falsified will eventually be
satisfied. Pessimistic satisfaction (ϕ[s′, s]pess) assumes the
opposite. The following definitions highlight the key differ-
ences between this work and the definitions in (Bienvenu,
Fritz, and McIlraith 2006).

occ(X)[s′, s]opt def
=



do(X, s′) ⊑ s ∨ s′ = s if X ∈ A
do(start(X), s′) ⊑ s ∨ s′ = s if X ∈ R

occ(X)[s′, s]pess def
=



do(X, s′) ⊑ s if X ∈ A
do(start(X), s′) ⊑ s if X ∈ R

apply(P (~v))[s′, s]opt def
= do(start(P (~v)), s′) ⊑ s ∨ s′ = s

apply(P (~v))[s′, s]pess def
= do(start(P (~v)), s′) ⊑ s

If ϕ = before(X1, X2), holdBefore(X, f), holdAfter (X, f)
holdBetween(X1, f, X2), then

ϕ[s′, s]opt def
= ϕ[s′, s]pess def

= ws′,s(ϕ)

Theorem 1 Let sn = do([a1, ..., an], S0), n ≥ 0 be a collection
of situations,ϕ be a BDF,Φ a general preference formula, and
wopt

s (Φ), wpess
s (Φ) be the optimistic and pessimistic weights ofΦ

with respect tos. Then for any0 ≤ i ≤ j ≤ k ≤ n,
1. D |= ϕ[si]

pess ⇒ D |= ϕ[sj], D 6|= ϕ[si]
opt ⇒ D 6|= ϕ[sj],

2.
“

w
opt
si

(Φ) = w
pess
si

(Φ)
”

⇒ wsj
(Φ) = w

opt
si

(Φ) = w
pess
si

(Φ),

3. wopt
si

(Φ) ≤ wopt
sj

(Φ) ≤ wsk
(Φ), wpess

si
(Φ) ≥ wpess

sj
(Φ) ≥ wsk

(Φ)

Theorem 1 states that the optimistic weight is non-
decreasing and never over-estimates the real weight. Thus,
fΦ is admissible and when used in best-first search, the
search is optimal.
Definition 14 (Evaluation function) Let s = do(~a, S0) be a
situation and letΦ be a general preference formula. Then

fΦ(s)
def
= ws(Φ) if ~a is a plan, otherwisefΦ(s)

def
= wopt

s (Φ).

5 Implementation and Results
In this section, we describe our best-first search, ordered-
task-decomposition planner. Figure 1 outlines the algorithm.
HTNPREF takes as inputP = (s0, w,D, pref) wheres0 is
the initial state,w the initial task network,D is the HTN
planning domain, andpref the general preference formula,
and returns a sequence of ground primitive operators, i.e. a
plan, and the weight of that plan.

The frontier is a list of nodes of the form[optW, pessW,
w, partialP, s, pref], sorted by optimistic weight, pessimistic
weight, and then by plan length. The frontier is initializedto
the initial task networkw, the empty partial plan, itsoptW,
pessW, andpref corresponding to the progression and evalua-
tion of the input preference formula in the initial state.

On each iteration of thewhile loop, HTNPREF removes
the first node from the frontier and places it incurrent. If
w is empty (i.e.,U is an empty set), the situation associated
with this node is a terminating situation. ThenHTNPREF re-
turnscurrent’s partial plan and weight. Otherwise, it calls
the functionEXPAND with current’snode as input.

HTNPREF(s0, w, D, pref)
frontier← INIT FRONTIER (s0, w, pref)
while frontier 6= ∅

current← REMOVE FIRST(frontier)
% establishes values ofw, partialP, s, progPref
if w= ∅ andoptW=pessWthenreturn partialP, optW
neighbours← EXPAND(w, D, partialP, s, progPref)
frontier← SORTNMERGE (neighbours, frontier)

return [], ∞

Figure 1: A sketch of theHTNPREF algorithm.

EXPAND returns a new list of nodes that need to be added
to the frontier. The new nodes are sorted byoptW, pessW, and
merged with the remainder of the frontier. Ifw is nil then
the frontier is left as is. Otherwise, it generates a new
set of nodes of the form[optW, pessW, newW, newPartialP,
newS, newProgPref], one for each legal ground operator that
can be reached by performingw using a partial-order for-
ward decomposition procedure (PFD) (Ghallab, Nau, and
Traverso 2004). CurrentlyHTNPREF usesSHOP2 (Nau et
al. 2003) as its PFD. Hence, the current implementation of
HTNPREF is an implementation ofSHOP2 with user prefer-
ences. For each primitive task leading to terminating states,
EXPAND generates a node of the same form but withoptW
andpessWreplaced by the actual weight. If we reach the
empty frontier, we return the empty plan.

Theorem 2 (Soundness and Optimality)
LetP=(s0, w, D, Φ) be a HTN planning problem with user pref-

erences. Letπ be the plan returned byHTNPREF from inputP.
Thenπ is a solution to the preference based HTN problemP

Proof sketch:We prove that the algorithm terminates appeal-
ing to the fact that the PFD procedure is sound and complete.
We prove that the returned plan is optimal, by exploiting the
correctness of progression of preference formula, and ad-
missibility of our evaluation function.

5.1 Experiments
We implemented our preference-based HTN planner,HT-
NPREF, on top of the LISP implementation ofSHOP2 (Nau
et al. 2003). All experiments were run on a Pentium 4 HT,
3GHZ CPU, and 1 GB RAM, with a time limit of 900 sec-
onds. Since the optimality ofHTNPREF-generated plans
was established in Theorem 2, our objective was to evalu-
ate the effectiveness of our heuristics in guiding search to-
wards the optimal plan, and to establish benchmarks for fu-
ture study, since none currently exist.

We testedHTNPREF with ZenoTravel and Logistics do-
mains, which were adapted from the International Planning
Competition (IPC). The ZenoTravel domain involves trans-
porting people on aircrafts that can fly at two alternative
speeds between locations. The Logistics domain involves
transporting packages to different destinations using trucks
for delivery within cities and planes for between cities.

In order to evaluate the effectiveness ofHTNPREF it
would have been appealing to evaluate our planner with a
preference-based planner that also makes use of procedural
control knowledge. But since no comparable planner exists,

P SHOP2 HTNPREF
Plan NE Time NE NC Time PL
1 12 172 0.54 79 89 1.71 23
2 19 224 2.41 72 78 2.2 30
3 155 1629 14.47 160 188 5.71 30
4 204 2287 19.58 53 59 0.84 29
5 230 2235 9.13 362 414 7.75 24
6 230 2235 9.13 77 89 1.67 24
7 485 6332 64.24 241 277 13.58 39
8 487 6227 109.9 122 125 13.8 46
9 720 6725 45.62 212 251 7.96 32
10 4491 45612 492.1 2154 2923 128.1 36
11 >1522 >16K >900 145 155 11.34 58
12 >2156 >24K >900 1680 1690 238.1 50

(a) ZenoTravel domain

P SHOP2 HTNPREF
Plan NE Time NE NC Time PL
1 8 109 0.28 32 34 0.44 28
2 90 540 1.01 20 25 0.24 13
3 92 497 0.41 18 20 0.16 14
4 808 4597 6.01 302 405 3.47 19
5 920 4310 5.22 74 94 1.01 15
6 1260 6320 6.58 131 173 1.48 15
7 2178 15104 26.18 28 33 0.39 21
8 2520 14728 20.07 30 41 0.56 17
9 >35K >236K >900 38 49 0.65 25
10 >39K >153K >900 905 1246 22.0 21
11 >40K >156K >900 1K 1438 20.1 20
12 >42K >230K >900 452 619 7.88 23

(b) Logistic domain

Figure 2:Our criteria for comparisons are number of Nodes Ex-
panded (NE), number of applied operators; number of Nodes Con-
sidered (NC), the number of nodes that were added to the frontier,
and time measured in seconds. Note NC is equal to NE forSHOP2.
PL is the Plan Length and # Plan is the total number of plans.

and it would not have been fair to compareHTNPREF with
a preference-based planner that does not use control knowl-
edge, we comparedHTNPREF with SHOP2, using a brute-
force technique forSHOP2 to determine the optimal plan. In
particular, as is often done with Markov Decision Processes,
SHOP2 generated all plans that satisfied the HTN specifica-
tion and then evaluated each to find the optimal plan. Note
that the times reported forSHOP2 do not actually include
the time for posthoc preference evaluation, so they are lower
bounds on the time to compute the optimal plan.

Figure 2 reports our experimental results for ZenoTravel
and the Logistics domain. The problems varied in prefer-
ence difficulty and are shown in the order of difficulty with
respect to number of possible plans (# Plan) that satisfy the
HTN control.

The results show that, in all but the first case of each do-
main, SHOP2 required more time to find the optimal plan,
and expanded more nodes. In particular note that in prob-
lems 11 and 12SHOP2 ran out of time (900 seconds) while
HTNPREF found the optimal plan well within the time limit.
Also note thatHTNPREF expands far fewer nodes in com-
parison toSHOP2, illustrating the effectiveness of our eval-
uation function in guiding search.

6 Summary and Related Work
In this paper, we addressed the problem of generating pre-
ferred plans by combining the procedural control knowl-
edge of HTNs with rich qualitative user preferences. The
most significant contributions of this paper include:LPH,
a rich HTN-tailored preference specification language, de-
veloped as an extension of a previously existing language;
an approach to (preference-based) HTN planning based on
forward-chaining heuristic search, that exploits progression
to evaluate the satisfaction of preferences during planning;
a sound and optimal implementation of an ordered-task-
decomposition preference-based HTN planner; and leverag-
ing previous research, an encoding of HTN planning with
preferences in the situation calculus, that enabled us to prove
our theoretical results. While the implementation we present
here exploitsSHOP2, the language and techniques proposed
are relevant to a broad range of HTN planners.

In previous work, we addressed the problem of integrat-
ing user preferences into Web service composition (Sohrabi,
Prokoshyna, and McIlraith 2006). To that end, we devel-
oped a Golog-based composition engine that also exploits
heuristic search. It similarly uses an optimistic heuristic.
The language used in that work wasLPP and had no Web-
service or Golog-specific extensions for complex actions.
This paper’s HTN-tailored language and HTN-based plan-
ner are significantly different.

Preference-based planning has been the subject of much
interest in the last few years, spurred on by an International
Planning Competition (IPC) track on this subject. A num-
ber of planners were developed, all based on the the com-
petition’s PDDL3 language (Gerevini and Long 2005). Our
work is distinguished in that it exploitsprocedural(action-
centric) domain control knowledge in the form of an HTN,
and action-centric and state-centric preferences in the form
of LPH. In contrast, the preferences and domain control
in PDDL3 and its variants are strictly state-centric. Further,
LPH is qualitativewhereas PDDL3 is quantitative, appeal-
ing to a numeric objective function. We contend that qualita-
tive, action- or task-centric preferences are often more com-
pelling and easier to elicit that their PDDL3 counterparts.

While no other HTN planner can perform true preference-
based planning,SHOP2 (Nau et al. 2003) andEN-
QUIRER (Kuter et al. 2004) handle some simple user con-
straints. In particular the order of methods and sorted pre-
conditions in a domain description specifies a user prefer-
ence over which method is more preferred to decompose
a task. Hence users may write different versions of a do-
main description to specify simple preferences. However,
unlikeHTNPREF the user constraints are treated as hard con-
straints and (partial) plans that do not meet these constraints
will be pruned from the search space. Further, there is no
way to handle temporally extended hard or soft constraints
in SHOP2. We used progression in our approach to planning
precisely to deal with these interesting preferences. Werewe
limiting the expressive power of preferences toSHOP2-like
method ordering, we would have created a different planner.
Interestingly,SHOP2 method ordering can still be exploited
in our approach, but requires a mechanism that is beyond the
scope of this paper.

Finally, the ASPEN planner (Rabideau, Engelhardt, and
Chien 2000) performs a simple form of preference-based
planning, focused mainly on preferences over resources and
with far less expressivity thanLPH. Nevertheless,AS-
PEN has the ability to plan with HTN-like task decompo-
sition, and as such, this work is related in spirit, though not
in approach to our work.

Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Ontario Ministry of Re-
search and Innovation Early Researcher Award.

References
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Plan-
ning with qualitative temporal preferences. InProceedings
of the 10th International Conference on Knowledge Repre-
sentation and Reasoning (KR), 134–144.
De Giacomo, G.; Lesṕerance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121(1–2):109–
169.
Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. InAIPS’02 Workshop on
On-line Planning and Scheduling.
Gabaldon, A. 2004. Precondition control and the progres-
sion algorithm. InProceedings of the 9th International
Conference on Knowledge Representation and Reasoning
(KR), 634–643. AAAI Press.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences for PDDL3. Technical Report 2005-08-07, Depart-
ment of Electronics for Automation, University of Brescia,
Brescia, Italy.
Ghallab, M.; Nau, D.; and Traverso, P. 2004.Hierarchical
Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann.
Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler,
J. A. 2004. Information gathering during planning for web
service composition. InProceedings of the 3rd Interna-
tional Semantic Web Conferece (ISWC), 335–349.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research
20:379–404.
Rabideau, G.; Engelhardt, B.; and Chien, S. A. 2000.
Using generic preferences to incrementally improve plan
quality. InProceedings of the 5th International Conference
on Artificial Intelligence Planning and Scheduling (AIPS),
236–245.
Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Sohrabi, S.; Prokoshyna, N.; and McIlraith, S. A. 2006.
Web service composition via generic procedures and cus-
tomizing user preferences. InProceedings of the 5th Inter-
national Semantic Web Conferece (ISWC), 597–611.

