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Abstract

We propose a framework for robot programming which allows
the seamless integration of explicit agent programming with
decision-theoretic planning. Specifically, the DTGolog model
allows one to partially specify a control program in a high-
level, logical language, but also provides an interpreter that—
given a logical axiomatization of a domain—will determine
the optimal completion of that program (viewed as a Markov
decision process). We demonstrate the utility of this model by
describing results obtained in an office delivery robotics do-
main.

1 Introduction
The construction of autonomous agents, such as mobile
robots or software agents, is paramount in artificial intelli-
gence, with considerable research devoted to methods that
will ease the burden of designing controllers for such agents.
There are two main ways in which the conceptual complex-
ity of devising controllers can be managed. The first is to
provide languages with which a programmer can specify a
control program with relative ease, using high-level actions
as primitives, and expressing the necessary operations in a
natural way. The second is to simply specify goals (or an
objective function) and provide the agent with the ability to
plan appropriate courses of action that achieve those goals (or
maximize the objective function). In this way the need for
explicit programming is obviated.

In this paper, we propose a framework that combines both
perspectives, allowing one to partially specify a controller by
writing a program in a suitably high-level language, yet al-
lowing an agent some latitude in choosing its actions, thus
requiring a modicum of planning or decision-making abil-
ity. Viewed differently, we allow for the seamless integration
of programming and planning. Specifically, we suppose that
the agent programmer has enough knowledge of a given do-
main to be able to specify some (but not necessarily all) of the
structure and the details of a good (or possibly optimal) con-
troller. Those aspects left unspecified will be filled in by the
agent itself, but must satisfy any constraints imposed by the
program (or partially-specified controller). When controllers
can easily be designed by hand, planning has no role to play.
On the other hand, certain problems are more easily tackled
by specifying goals and a declarative domain model, and al-
lowing the agent to plan its behavior.

Our framework is based on the synthesis of Markov de-
cisions processes (MDPs) [5, 17] with the Golog program-
ming language [11]. Key to our proposal is the extension of
the Golog language and interpreter, called DTGolog, to deal
with uncertainty and general reward functions. The plan-
ning ability we provide is that of a decision-theoretic plan-
ner in which choices left to the agent are made by maxi-
mizing expected utility. Our framework can thus be moti-
vated in two ways. First, it can be viewed as a decision-
theoretic extension of the Golog language. Golog is a high-
level agent programming language based on the situation
calculus [13], with a clear logical semantics, and in which
standard programming constructs (e.g., sequencing, nonde-
terministic choice) are used to write a high-level control pro-
grams. From a different standpoint, our contribution can be
viewed as a language and methodology with which to pro-
vide “advice” to a decision-theoretic planner. MDPs are a
conceptually and computationally useful model for decision-
theoretic planning, but their solution is often intractable. We
provide the means to naturally constrain the search for (ide-
ally, optimal) policies with a Golog program. The agent can
only adopt policies that are consistent with the execution of
the program. The decision-theoretic Golog interpreter then
solves the underlying MDP by making choices regarding the
execution of the program through expected utility maximiza-
tion. This viewpoint is fruitful when one considers that an
agent’s designer or “taskmaster” often has a good idea about
the general structure of a good (or optimal) policy, but may be
unable to commit to certain details. While we run the risk that
the program may not allow for optimal behavior, this model
has clear advantage that the decision problem faced will gen-
erally be more tractable: it need only make those choices left
open to it by the programmer.

Our approach is specifically targeted towards developing
complex robotics software. Within robotics, the two major
paradigms—planning and programming—have largely been
pursued independently. Both approaches have their advan-
tages (flexibility and generality in the planning paradigm,
performance of programmed controllers) and scaling limi-
tations (e.g., the computational complexity of planning ap-
proaches, task-specific design and conceptual complexity for
programmers in the programming paradigm). MDP-style
planning has been at the core of a range of fielded robot ap-



plications, such as two recent tour-guide robots [6, 23]. Its
ability to cope with uncertain worlds is an essential feature
for real-world robotic applications. However, MDP plan-
ning scales poorly to complex tasks and environments. By
programming easy-to-code routines and leaving only those
choices to the MDP planner that are difficult to program (e.g.,
because the programmer cannot easily determine appropriate
or optimal behavior), the complexity of planning can be re-
duced tremendously. Note that such difficult-to-program be-
haviors may actually be quite easy to implicitly specify using
goals or objectives.

To demonstrate the advantage of this new framework, we
have developed a prototype mobile office robot that delivers
mail, using a combination of pre-programmed behavior and
decision-theoretic deliberation. An analysis of the relative
trade-offs shows that the combination of programming and
planning is essential for developing robust, scalable control
software for robotic applications like the one described here.

We give brief overviews of MDPs and Golog in Sections 2
and 3. We describe the DTGolog representation of MDPs and
programs and the DTGolog interpreter in Section 4, and illus-
trate illustrate the functioningof the interpreter by describing
its implementation in a office robot in Section 5.

2 Markov Decision Processes
We begin with some basic background on MDPs (see [5, 17]
for further details on MDPs). We assume that we have a
stochastic dynamical system to be controlled by some agent.
A fully observable MDP
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following components.
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is a finite set of states of the sys-
tem being controlled. The agent has a finite set of actions

	
with which to influence the system state. Dynamics are given
by
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probability that action

,
, when executed at state
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, induces a

transition to
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is a real-valued, bounded reward
function. The process is fully observable: though the agent
cannot predict with certainty the state that will be reached
when an action is taken, it can observe that state precisely
once it is reached.

The decision problem faced by the agent in an MDP is
that of forming an optimal policy (a mapping from states to
actions) that maximizes expected total accumulated reward
over some horizon of interest. An agent finding itself in state'*6

at time 7 must choose an action
,86

. The expected value of
a course of action 9 depends on the specific objectives. A
finite-horizon decision problem with horizon : measures the
value of 9 as ; &�<>=6(?A@ ��&�'+6B0$C 9 0 (where expectation is taken
w.r.t.
���

). D For an MDP with horizon : , a (nonstationary)
policy 9 ��EF�HG8#I��J$J$JB� :LK �NM associates with each state'

and stage-to-go 7POQ: an action 9 &�'R� 7 0 to be executed at
'

with 7 stages remaining. An optimal policy is one with max-
imum expected value at each state-stage pair.

A simple algorithm for constructing optimal policies is
value iteration [4, 17]. Define the 7 -stage-to-go value func-
S
We focus on finite-horizon problems to keep the presentation

short, though everything we describe can be applied with little mod-
ification to discounted, infinite-horizon MDPs.

tion T 6 by setting T @ &�' ) 0U����&(' ) 0 and, for all
# OH7POV: :

T 6 &(' ) 0U����&(' ) 0AWHX�Y2Z[$\2] GU^_
`�\$a
����&�' ) ��,-�' . 0 T 6cb D &(' . 0 K (1)

By setting 9 &(' ) � 7 0 to the action
,

maximizing the right-hand
term, the resulting policy 9 will be optimal.

One difficulty faced by (the classical versions of) such al-
gorithms is their reliance on an explicit state-space formula-
tion; as such, their complexity is exponential in the number
of state variables. However, “logical” representations such as
STRIPS and dynamic Bayesian networks have recently been
used to make the specification and solution of MDPs much
easier [5].

When the system is known to start in a given state
' @ , the

reachability structure of the MDP can also be exploited for
computational gain. Reachability analysis allows one to re-
strict value and policy computations to states reachable by
some sequence of actions. This form of directed value itera-
tion can be effected by building a search tree rooted at state' @ : its successors at level 1 of the tree are possible actions;
the successors at level 2 of any action node are those states
that can be reached with nonzero probabilitywhen that action
is taken at state

' @ ; and deeper levels of the tree are defined re-
cursively in the same way. For an MDP with finite horizon d ,
the tree is built to level eRd : the value of of any state is given
by the maximum among all values of its successor actions,
and the value of an action is given by the expected value
of its successor states. f Search-based approaches to solving
MDPs can use heuristics, learning, sampling and pruning to
improve their efficiency [3, 7, 8, 9, 10]. Declarative search
control knowledge, used successfully in classical planning
[2], might also be used to prune the search space. In an MDP,
this could be viewed as restricting the set of policies consid-
ered. This type of approach has been explored in the more
general context of value iteration for MDPs by Parr and Rus-
sell [14]: they use a finite state machine to model a partial
policy and devise an algorithm to find the optimal policy con-
sistent with the constraints imposed by the FSM. In Section 4
we develop the DTGolog interpreter to capture similar intu-
itions. We will marry the MDP model with the Golog pro-
gramming language [11].

3 The Situation Calculus and Golog
The situation calculus is a first-order language for axiomatiz-
ing dynamic worlds. In recent years, it has been considerably
extended beyond the “classical” language to include concur-
rency, continuous time, etc., but in all cases, its basic ingre-
dients consist of actions, situations and fluents.

Actions are first-order terms consisting of an action func-
tion symbol and its arguments. In the approach to represent-
ing time in the situation calculus of [18], one of the argu-
ments to such an action function symbol—typically, its last
argument—is the time of the action’s occurrence. For exam-
ple, startGo

&hgB�Bg(ij��k�lm#$0
might denote the action of a robot start-

ing to move from location
g
to
g(i

at time 3.1. FollowingReiter
n
States at the leaves are assigned their reward value.



[18], all actions are instantaneous (i.e, with zero duration). �
A situation is a first-order term denoting a sequence of ac-

tions. These sequences are represented using a binary func-
tion symbol do: do

&�� ��'$0
denotes the sequence resulting from

adding the action
�

to the sequence
'
. The special constantE @ denotes the initial situation, namely the empty action se-

quence. Therefore, the situation term

do
&
endGo
& gB�/ghij����l"kI0+�

do
&
startGrasp

&�� � e 0*�
do
&
startGo

& gB�/g i � e 0+��E @ 0B0/0
denotes the following sequence of actions: startGo �	��
����
���� ,
startGrasp �	��
���� , endGo �	��
�����
���� ��� . Foundational axioms for
situations without time are given in [15]. Axioms for situ-
ations with time are given in [19]. We refer to these papers
for further details.

Relations or functions whose values vary from state to
state are called fluents, and are denoted by predicate or func-
tion symbols whose last argument is a situation term. For ex-
ample, � g��2'�� : � &�� ������'$0 might be a relational fluent, meaning
that when the robot performs the action sequence denoted by
the situation term

'
,
�

will be close to
�
.

A domain theory is axiomatized in the situation calculus
with four classes of axioms (see [15] for details):
Action precondition axioms: There is one for each ac-
tion function

M�&� �-0
, with syntactic form Poss

& M�&� �-0+��'�0"!
#%$�&� � �'$0+l

Here,
#%$P&� � �'$0

is a formula with free variables
among

 � ��'Rl
These are the preconditions of action

M
.

Successor state axioms: There is one for each rela-
tional fluent & &� � ��'$0 , with syntactic form & &� � ��'(� &(,-��'�0/0)!*,+�&� � ��,-�'$0+�

where
*,+�&� � ��,-�'$0

is a formula with free vari-
ables among

,-�'I�( �Al
These characterize the truth values of the

fluent & in the next situation
'(� &(,-��'�0

in terms of the current
situation

'
, and they embody a solution to the frame problem

for deterministic actions ([20]). There are similar axioms for
functional fluents, but we shall not be using these in this pa-
per, so we omit them.
Unique names axioms for actions: These state that the ac-
tions of the domain are pairwise unequal.
Initial database: This is a set of sentences whose only situ-
ation term is

E @ ; it specifies the initial problem state.

Example The following are action precondition and suc-
cessor state axioms for a blocks world. To keep the ex-
ample short, we suppose that blocks may only be moved
onto other blocks. The axioms appeal to a process flu-
ent - ��.�/�021A&�� �3� � 7 � 7 ic�'$0 , meaning that block

�
is in the

process of moving to
�
, and 7 and 7 i are the initiation

and termination times of this process. The process has
its own instantaneous initiating and terminating actions,' 7 ,54 7 �6��.��R&�� ����� 7 0 and

��07' �6��.��R&�� ����� 7 0 , with the obvi-
ous meanings.

Action Precondition Axioms
Poss
&�' 7 ,(4 7 �6��.8�I&�� ����� 7 0+��'�0,! � g���,(4 &�� ��'�029

� g���,(4 &�� �'$0:9;�=<�>�?9 7 � ' 7 ,(4 7 &('$0+�
Poss
&���07' �6��.8�I&�� ����� 7 0+��'�0@! &�A 7 i 0 - ��.8/�021 &�� ����� 7 iB� 7 ��'$0+l

B
Durations can be captured using processes, as shown below. A

full exposition of time is not possible here.

Successor State Axioms
� g��$,(4 &�� �3'(� &�, ��'$0B0C!&�AD����E�� 7 0�G���0�&������ �'$079�, �F' 7 ,(4 7 �6��.8�I&�� �3E � 7 0 KGF

� g���,(4 &�� ��'�079;HP&�AD��� 7 0B,��I��07' �6��.8�I&�� �3� � 7 0*���0�&�� ������'5� &�,-�'$0B0C! &�A 7 0/, �>��07' �6��.8�I&�� �3� � 7 0 F��0�&�� ������'$079JH &�ADE � 7 0/, � ' 7 ,(4 7 �6��.8�I&�� �3E � 7 0*���0 : ,(K�g��I&�� �3'(� &�, ��'$0B0C!I��0 : ,(K�g��R&�� ��'�029HP&�AD� � 7 0/, � ' 7 ,(4 7 �6��.8�I&�� ����� 7 0+l
- ��.�/�021A&�� �3� � 7 � 7 ic�3'(� &�, ��'$0B0C! , � ' 7 ,(4 7 �6��.8�I&�� �3� � 7 0D97 iA� 7 W - ��.8��L)MN42, 7 /���0�&�� �3� �'$0 F

- ��.8/�021 &�� ����� 7 � 7 iB�'$079�,;<�O��07' �6��.8�I&�� ����� 7 i 0*l
Golog [11] is a situation calculus-based programming lan-

guage for defining complex actions in terms of a set of primi-
tive actions axiomatized in the situation calculus as described
above. It has the standard—and some not-so-standard—
control structures found in most Algol-like languages.

1. Sequence:
�QP7RUl

Do action
�

, followed by action
R

.

2. Test actions: SNT Test the truth value of expression S in the
current situation.

3. Nondeterministic action choice:
�QC�RUl

Do
�

or
R

.

4. Nondeterministic choice of arguments:
& 9 �-0�� . Nonde-

terministically pick a value for
�

, and for that value of
�

,
do action

�
.

5. Conditionals (if-then-else) and while loops.

6. Procedures, including recursion.

The semantics of Golog programs is defined by macro-
expansion, using a ternary relation Do. Do

&	U2�'I��'$i 0
is an ab-

breviation for a situation calculus formula whose intuitive
meaning is that

'�i
is one of the situations reached by eval-

uating the program
U

beginning in situation
'
. Given a pro-

gram
U
, one proves, using the situation calculus axiomatiza-

tion of the background domain, the formula
&�A�'$0

Do
&�U ��E @ �'$0

to compute a plan. Any binding for
'

obtained by a construc-
tive proof of this sentence is a legal execution trace, involving
only primitive actions, of

U
. A Golog interpreter for the situ-

ation calculus with time, implemented in Prolog, is described
in [19].

Example The following is a nondeterministic Golog pro-
gram for the example above. - , d ��VW07� : ��X?��4 &�ER0 creates
a single tower of blocks, using as a base the tower whose
top block is initially

E
.

proc - , d ��VW07� : ��X?��4 &�ER0H &�AD�I0+lY�;<�OEZ9 � g���,(4 &��R0 T C& 9 � � 7 0+�"' 7 ,54 7 �6��.��R&�� ��E�� 7 0@P& 9 7 i 0[��07' �6��.��R&�� ��E�� 7 i 0ZP - , d ��V\07� : ��X%��4 &�� 0j%
endProc

Like any Golog program, this is executed by proving&�A�'$0�L)� & - , d ��V\07� : ��X%��4 &�ER0+��E @ ��'$0+�
in our case, using background axioms above. We start
with
E @ as the current situation. In general, if ] is the



current situation, - , d ��V\07� : ��X%��4 &�ER0 terminates in sit-
uation ] if

HP&�AD�R0*l � <� E;9 � g��$,(4 &���� ] 0 holds. Other-
wise it nondeterministically selects a block

�
and time7 , and “performs”

' 7 ,54 7 �6��.��R&�� ��E�� 7 0 , meaning it makes'(� &(' 7 ,(4 7 �6��.8�I&�� �3E � 7 0*� ] 0 the current situation; then it
picks a time 7 i and “performs”

��07'8�6��.��R&�� ��E�� 7 i 0 , mak-
ing

'(� &���07' �6��.8�I&�� �3E � 7 i 0*�3'(� &(' 7 ,(4 7 �6��.8�I&�� �3E � 7 0*� ] 0/0
the current situation; then it calls itself recursively. On ter-
mination, the current situation is returned as a side effect of
the computation; this is an execution trace of the program.
It is important to understand that this is an offline compu-
tation; the resulting trace is intended to be passed to some
execution module for the online execution of the primitive
actions in the program trace, in our example, to physically
build the tower.

Thus the interpreter will makes choices (if possible) that
lead to successful computation of an execution trace of the
program. With nondeterministic choice and the specifica-
tion of postconditions corresponding to goals, Golog can be
viewed as integrating planning and programming in deter-
ministic domains.

4 DTGolog: Decision-Theoretic Golog
As a planning model, MDPs are quite flexible and robust,
dealing with uncertainty, multiple objectives, and so on, but
suffer from several key limitations. While recent work in
DTP has focused on the development of compact, natural
representations for MDPs [5], little work has gone into the
development of first-order languages for specifying MDPs
(see [1, 16] for two exceptions). More importantly, the com-
putational complexity of policy construction is prohibitive.
As mentioned, one way to circumvent planning complex-
ity is to allow explicit agent programming; yet little work
has been directed toward integrating the ability to write pro-
grams or otherwise constrain the space of policies that are
searched during planning. What work has been done (e.g.,
[12, 14, 22]) fails to provide a language for imposing such
constraints, and certainly offers no tools for “programming”
agent behavior.

Golog, on the other hand, provides a very natural means
for agent programming. With nondeterministic choice a pro-
grammer can even leave a certain amount of “planning” up
to the interpreter (or agent being controlled). However, for
applications such as robotics programming, the usefulness of
Golog is severely limited by its inability to model stochastic
domains, or reason decision-theoretically about appropriate
choices. Despite these limitations, Golog has been success-
fully used to provide the high-level control of a museum tour-
guide robot, controllinguser interaction and scheduling more
than 2,400 exhibits [6].

We have developed DTGolog, a decision-theoretic exten-
sion of Golog that allows one to specify MDPs in a first-
order language, and provide “advice” in the form of high-
level programs that constrain the search for policies. Such
a program can be viewed as a partially-specified policy: its
semantics can be viewed, informally, as the execution of the
program (or the completion of the policy) that has highest ex-
pected value. DTGolog offers a synthesis of both planning

and programming, and is in fact general enough to accommo-
date both extremes. One can write purely nondeterministic
programs that allow an agent to solve an MDP optimally, or
purely deterministic programs that leave no decisions in the
agent’s hands whatsoever. We will see, in fact, that a point
between these ends of the spectrum is typically the most use-
ful way to write robot programs. DTGolog allows the appro-
priate point for any specific problem to be chosen with rel-
ative ease. Space precludes the presentation of many impor-
tant technical details, but we try to provide the basic flavor of
DTGolog.

4.1 DTGolog: Problem Representation

The specification of an MDP requires the provisionof a back-
ground action theory—as in Section 3—and a background
optimization theory—consisting of the specification of a re-
ward function and some optimality criterion (here we require
only a horizon : ). The unique names axioms and initial
database have the same form as in standard Golog.

A background action theory in the decision-theoretic set-
ting distinguishes between deterministic agent actions and
stochastic agent actions. Both types are used to form pro-
grams and policies. However, the situation resulting from
execution of a stochastic action is not determined by the ac-
tion itself: instead each stochastic agent action is associated
with a finite set of deterministic actions, from which “nature”
chooses stochastically. Successor state axioms are provided
for nature’s actions directly (which are deterministic), not for
stochastic agent actions (i.e., successor state axioms never
mention stochastic agent actions). When a stochastic action
is executed, nature chooses one of the associated actions with
a specified probability, and the successor state is given by na-
ture’s action so chosen. The predicate stochastic

&(,-�'I��0A0
re-

lates a stochastic agent action
,

to one of nature’s action
0

in
a situation

'
, and prob

&�0�� S �'$0 denotes the probability with
which

0
is chosen in

'
. Deterministic agent’s actions are ax-

iomatized in using exactly the same precondition and succes-
sor state axioms. This methodology allows us to extend the
axiomatization of a domain theory described in the previous
section in a minimal way.

As an example, imagine a robot moving between differ-
ent locations: the process of going is initiated by a deter-
ministic action startGo

& g
D
�Bg
f
� 7 0 ; but the terminating action

endGo
& g
D
�/g
f
� 7 0 is stochastic (e.g., the robot may end up in

some location other than
g
f , say, the hallway). We give na-

ture two choices, endGoS
& g
D
�/g
f
� 7 0 (successful arrival) and

endGoF
& g
D
����,Ig gB� 7 0 (end with failure), and include axioms

such as stochastic
&
endGo
&hg
D
�Bg
f
� 7 0*�'I� endGoS

& g
D
�/g
f
� 7 0B0 and

prob
&
endGoS

& g
D
�Bg
f
� 7 0*�! l � �'$0 (i.e., successful movement oc-

curs with probability0.9 in any situation). Let going
&hg
D
�/g
f
�'$0

be the relational fluent meaning that in the situation
'

the
robot is in the process of moving between locations

g
D andg

f ; and let robotLoc
& gB��'�0

be a relational fluent denoting the
robot’s location. The following precondition and succes-
sor state axioms characterize these fluents, and the actions
startGo, endGoS, endGoF:

Poss � startGo �	� S 
�� n 
����[
�� ���
	 ������
����� going �	��
 ����
� ��
robotLoc�	� S 
�� �[




Poss � endGoS �	� S 
�� n 
���[
� ��� going �	� S 
�� n 
� �[

Poss � endGoF �	� S 
�� n 
���[
 � � � ��� � � going �	� S 
 � � 
 � � � � � �� � n 


going �	��
�� � 
��������(
 � ����� ��� ����� � startGo �	��
 � � 
���	�
going �	��
 ����
�� � � 	 ��� ����� � endGoS �	��
��	��
�����
going �	��
 ����
�� � � 	 ��� � 
 �	� � ��� � endGoF �	��
��	� ��
 ���[


The background action theory also includes a new class
of axioms, sense conditions axioms, which assert atomic for-
mulae using predicate senseCond

&�0���
A0
: this holds if



is a

logical condition that an agent uses to determine if the spe-
cific nature’s action

0
occurred when some stochastic action

was executed. We require such axioms in order to “imple-
ment” full observability. While in the standard MDP model
one simply assumes that the successor state is known, in prac-
tice, one must force agents to disambiguate the state using
sensor information. The sensing actions needed can be de-
termined from sense condition axioms. The following dis-
tinguish successful from unsuccessful movement:
senseCond

&
endGoS

&hg
D
�/g
f
� 7 0+� robotLoc

& g
f
0/0

senseCond
&
endGoF

&hg
D
�/g
f
� 7 0*� robotLoc

&���,Ig g(0/0
A DTGolog optimization theory contains axioms specify-

ing the reward function. � In their simplest form, reward ax-
ioms use the predicate reward

&�42��'$0
and assert costs and re-

wards as a function of the action taken, properties of the cur-
rent situation, or both (note that the action taken can be recov-
ered from the situation term). For instance, we might assert

hasCoffee
&
Jill
��'$0�

reward
&���l"k���'�0

Because primitive actions have an explicit temporal argu-
ment, we can also describe time-dependent reward functions
easily (associated with behaviors that extend over time). �
This often proves useful in practice. In a given temporal
Golog program, the temporal occurrence of certain actions
can be uniquely determined either by temporal constraints
or by a programmer. Other actions may occur at any time
in a certain interval determined by temporal inequalities;
for any such action

M &� � � 7 0 , we can instantiate the time ar-
gument by maximizing the reward for reaching the situa-
tion
& M�&� � � 7 0*�'$0 . For example, suppose the robot receives

a reward
4 � - ,(� & D @�@*b 6� ) _c6([�������������� ����� 0 for doing the action

endGoS
& g
D
�Bg
f
� 7 0 in ' . With this reward function, the robot

is encouraged to arrive at the destination as soon as possible
and is also encouraged to go to nearby locations (because the
reward in inversely proportional to distance).

Our representation is related somewhat to the representa-
tions proposed in [1, 8, 16].

4.2 DTGolog: Interpreter
In what follows, we assume that we have been provided with
a background action theory and optimization theory. We in-
terpret DTGolog programs relative to this theory. DTGolog
programs are written using the same program operators as

�
We require an optimality criterion to be specified as well. We

assume a finite-horizon  in this work.!
These can be dealt with in the interpreter because of our use of

situation terms rather than states.

Golog programs. The semantics is specified in a similar fash-
ion, with the predicate BestDo (described below) playing the
role of Do. However, the structure of BestDo (and its Prolog
implementation) is rather different than that of Do.

One difference reflects the fact that primitive actions can
be stochastic. Execution traces for a sequence of primitive
actions need not be simple “linear” situation terms, but rather
branching “trees”, with probabilities of occurrence labeling
each branch. Furthermore, when the stochastic primitive
action dictated by a program is executed, one action out-
come may preclude continuation of the program, while an-
other may lead to successful completion. In general, a pro-
gram “trace” will be associated with a probabilityof success-
ful completion of the program. If an agent enters a situation
where the next step of its program is impossible, we halt exe-
cution of the program by having the agent execute a zero-cost
Stop action that takes it to a zero-cost absorbing state. "

A second difference has to do with how a “legal trace” is
defined. In the originalGolog framework, no criteria are used
to distinguish one legal execution trace from another. In our
decision-theoretic setting, we want nondeterministic choices
to be made in a way that maximizes value. Given a choice
between two actions (or subprograms) at some point in a
program, the interpreter chooses the action with highest ex-
pected value, mirroring the structure of an MDP search tree.
Intuitively, then, the semantics of a DTGolog program willbe
given by the optimal execution of that program, where opti-
mality is defined in much the same way as for MDPs. View-
ing the program as advice—or a constraint on the set of poli-
cies we are allowed to consider—the DTGolog interpreter
provides us with an optimal execution trace of

U
. Specifi-

cally, every nondeterministic choice point will be grounded
with the selection of an optimal choice.

We note that there is some subtlety in the interpretationof a
DTGolog program: on the one hand, we wish the interpreter
to choose a course of action with maximal expected value;
on the other, it should follow the advice provided by the pro-
gram. Because certain choices may lead to abnormal termi-
nation (incomplete execution) of the program with varying
probabilities, the success probability associated with a policy
can be loosely viewed as the degree to which the interpreter
adhered to the program. Thus we have a multi-objective op-
timization problem, requiring some tradeoff between success
probability and expected value of a policy. We use a predi-
cate O that compares pairs of the form

� S ��.R� , where S is a
success probability and

.
is an expected value. #

$
This can be viewed as having an agent simply give up its at-

tempt to run the program and await further instruction.%
How one defines this predicate depends on how one interprets

the advice embodied in a program. In our implementation, we use a
mild lexicographic preference where &(' S 
*) S�+-, &(' n 
�) n.+ whenever
' S �0/ and ' n21 / (so an agent cannot choose an execution that
guarantees failure). If both ' S and ' n are zero, or both are greater
than zero, than the ) -terms are used for comparison. It is important
to note that certain forms of multiattribute preference could violate
the dynamic programming principle, in which case our search pro-
cedure would have to be revised (as would any form of dynamic pro-
gramming). This is not the case with any criteria we consider here
and is not violated by our lexicographic preference.



The semantics of a DTGolog program is defined by a pred-
icate BestDo

& ; �E�� 9 � T ��� � d 0 , where ; is a program,
E

is an
initial situation, 9 is the optimal conditional policy or com-
pletion of program ; in situation

E
, T is the expected value

of that policy,
�

is the probability of successful execution of; under 9 , and d is the horizon of interest. Generally, an
intepreter implementing this definition will be called with a
program ; and situation

E
, with arguments 9 , T and

�
in-

stantiated by the interpreter. The policy returned by the in-
terpreter is a DTGolog program composed only of: agent
actions, senseEffect

&hM�0
actions (which serve to identify na-

ture’s choices), and tests specified by sense conditions, where
these are composed sequentially; and the nondeterministic
choice operator. Nondeterministic choices are used only to
connect alternative program branches after a senseEffect ac-
tion, implementing a conditional plan. Each program branch
is headed by a test condition determining which of nature’s
outcomes was implemented. Thus the “choice” is actually
dictated by nature (not the agent).

We illustrate the structure of the definition of BestDo by
examining some of the important Prolog clauses in the im-
plementation of our interpreter. � Intuitively, the interpreter
builds an analog to an MDP search tree of some suitable
depth, and evaluates nondeterministic choices in the usual
way. Note that unlike a full MDP search tree, many nodes
at action levels do not involve choices; rather they have only
one possible action: the action dictated by the program.

How uncertainty is handled is best dealt with by examin-
ing how the interpreter deals with the initial agent actions in
a program. We start with the case of a deterministic action.

�

bestDo(A : E,S,Pol,V,Prob,k) :-
agentAction(A), deterministic(A),
(not poss(A,S), Pol=stop, Prob is 0, reward(V,S);
poss(A,S), start(S,T1), time(A,T2), T1 $<= T2,
bestDo(E,do(A,S),RestPol,Vfuture,Prob,k-1),
reward(R,S),
V is R + Vfuture,
(RestPol = nil, Pol = A ;
not RestPol=nil, Pol = (A : RestPol)

)
).

A program that begins with a deterministic agent action
M

(ifM
is possible in situation

E
) has its optimal execution defined

as the optimal execution of the remainder of the program ;
in situation

& M��E�0
. Its value is given by the expected value

of this continuation plus the reward in
E

(action cost for
M

can be included), while its success probability is given by the
success probability of its continuation. The optimal policy isM

followed by the optimal policy for the remainder. Notice
that if
M

is not possible at
E

, then the policy is simply the Stop
action, success probability is zero, and the value is simply the
reward associated with situation

E
.

The definition is slightly different when
M

is stochastic:
bestDo(A : E,S,Pol,V,Prob,k) :-
agentAction(A), nondet(A,S,Outcomes),
backedUpValue(E,Outcomes,S,RestPol,FV,Prob,k),
reward(R,S),
( RestPol = stop, V = R, Pol = (A : stop) ;
not RestPol=stop, V is R + FV,
Pol=(A : senseEffect(A) : (RestPol))

).

�
This definition is not complete, but does illustrate the most im-

portant concepts.�
All of our clauses are defined for horizon � 1 / ; the case of

� � / is straightforward.

In this case,
M

consists of a stochastic choice from a set of
nature’s actions: the predicate nondet

& M��E��
Outcomes

0
has

as its last argument the list of all nature’s actions related to
stochastic action

M
(this list is computed from the predicate

stochastic
& M��E�����0

given in the action theory). Each of na-
ture’s actions gives rise to a new situation, which occurs with
a given probability. The predicate BackedUpValue (defined
below) intuitively considers the values of the optimal exe-
cution of the remainder of the program ; in each of those
situations, and defines the expected value and success prob-
ability of the remainder of the program based on the eval-
uation of each of these situations. Total expected value is
given by adding the current reward to the expected value of; , and the optimal policy is given by

M
, followed by the ac-

tion senseEffect
&hM�0

—which determines which of the possi-
ble outcomes was actually realized—together with the opti-
mal policy for ; .

BackedUpValue is straightforward in the case where the
list of nature’s actions contains a single outcome.
backedUpValue(E,[AN],S,Pol,V,Prob,k) :-
poss(AN,S), start(S,T1), time(AN,T2),
T1 $<= T2, prob(AN,PA,S),
bestDo(E,do(AN,S),PolA,VA,ProbA,k-1),
V is PA * VA, Prob is PA * ProbA,
senseCondition(AN,W),
( PolA = nil, Pol= ?(W) ;

not PolA=nil, Pol= (?(W) : PolA)
).

backedUpValue(E,[AN],S,Pol,V,Prob,k) :-
not poss(AN,S), Pol=stop, Prob is 0, reward(V,S).

The standard recursion over the list Outcomes when it con-
tains more than one element yields the policy and allows us
to compute the total probability of branches that lead to suc-
cessful execution and the expected utility of all branches:
backedUpValue(E,[A,B | L],S,Pol,V,Prob,k) :-
backedUpValue(E,[A],S,PolA,VA,ProbA,k),
backedUpValue(E,[B | L],S,Tree,VT,ProbT,k),
V is VA + VT, Prob is ProbA + ProbT,
(PolA=stop, Tree=stop, Pol=stop ;
(PolA\=stop; Tree\=stop), Pol=(PolA # Tree)

).

The expected utility and termination probability are deter-
mined using the probability of each outcome, and the policy
corresponding to each outcome has that outcome’s sense con-
dition placed as the first action (essentially guarding against
execution of that branch unless that outcome in fact oc-
curred).

With this in hand, the definition applied to complex
program-forming operators can be given:
bestDo(?(C) : E,S,Pol,V,Prob,k) :-
holds(C,S), bestDo(E,S,Pol,V,Prob,k) ;
holds(-C,S), Prob is 0, Pol=stop, reward(V,S).

/* nondeterministic choice of an argument */
bestDo(pi(X,E1) : E,S,Pol,V,P,k) :-
sub(X,_,E1,E2), /*E2 results from substitution of a value for X*/
bestDo(E2 : E,S,Pol,V,P,k).

/* nondeterministic choice between E1 and E2 */
bestDo((E1 # E2) : E,S,Pol,V,P,k) :-

bestDo(E1 : E,S,Pol1,V1,P1,k),
bestDo(E2 : E,S,Pol2,V2,P2,k),
( lesseq(V1,P1,V2,P2), Pol=Pol2, P=P2, V=V2;
greatereq(V1,P1,V2,P2), Pol=Pol1, P=P1, V=V1).

bestDo(if(C,E1,E2) : E,S,Pol,V,Prob,k) :-
holds(C,S), bestDo(E1 : E,S,Pol,V,Prob,k) ;
holds(-C,S), bestDo(E2 : E,S,Pol,V,Prob,k).

bestDo(while(C,E1) : E,S,Pol,V,Prob,k) :-
holds(-C,S), bestDo(E,S,Pol,V,Prob,k) ;
holds(C,S), bestDo(E1 : while(C,E1) : E,S,Pol,V,Prob,k).

bestDo(ProcName : E,S,Pol,V,Prob,k) :- proc(ProcName,Body),
bestDo(Body : E,S,Pol,V,Prob,k).



Of special interest is the clause involving nondeterminis-
tic choice between two complex actions E1 and E2. Given
the choice between two subprograms, the optimal policy is
given by that subprogram with optimal execution. The O
predicate is used to compare the expected values and suc-
cess probabilities of the two alternatives. The standard argu-
ment choice construct offered by Golog does not guarantee
that an optimal argument will be chosen above. For this rea-
son, in DTGolog we provide a new decision-theoretic con-
struct pickBest

&���� & � ; 0 , whose execution requires that pro-
gram ; be executed using the best argument value from the
finite range of values & to instantiate argument

�
:

bestDo(pickBest(X,F,E1) : E,S,Pol,V) :-
range(F,R), /* R is the list of values */
bestDoAll(X,R,E1 : E,S,Pol,V).

bestDoAll(X,[D],E,S,Pol_D,V_D) :-
sub(X,D,E,E_D), /* Substitute value D for X in E; get E_D */
bestDo(E_D,S,Pol_D,V_D).

bestDoAll(X,[D1, D2 | R],E,S,Pol,V) :-
sub(X,D1,E,E1), bestDo(E1,S,Pol1,V1),
bestDoAll(X,[D2 | R],E,S,Pol2,V2),
(lesseq(V1,Pol1,V2,Pol2), Pol=Pol2, V=V2 ;
greatereq(V1,Pol1,V2,Pol2), Pol=Pol1, V=V1).

The optimal policy is the policy that corresponds to the best
value of the argument varied over a finite number of alterna-
tives; the interpreter finds it using the O predicate to compare
pairwise the expected values and success probabilities of all
alternatives.

Space precludes a detailed discussion, but we can provide
a formal account in a fairly abstract setting of the notion of
an optimal policy constrained by a program, and show that
our definitions correspond to this notion of optimality. Intu-
itively, we view a policy as a mapping from situation terms
into action choices. A program imposes constraints on pos-
sible mappings, dictating specific actions except where non-
deterministic choices appear. An optimal policy is simply an
extension of the mapping dictated by the completion of the
program with highest expected value.

5 Robot Programming
One of the key advantages of DTGolog as a framework for
robot programming and planning is its ability to allow be-
havior to be specified at any convenient point along the pro-
gramming/planning spectrum. By allowing the specification
of stochastic domain models in a declarative language, DT-
Golog not only allows the programmer to specify programs
in a natural fashion (using robot actions as the base level
primitives), but also permits the programmer to leave gaps
in the program that will be filled in optimally by the robot
itself. This functionality can greatly facilitate the develop-
ment of complex robotic software. Planning ability can al-
low for the scheduling of complex behaviors that are difficult
to preprogram. It can also obviate the need to reprogram a
robot to adapt its behavior to reflect environmental changes
or changes in an objective function. Programming, in con-
trast, is crucial in alleviating the computational burden of un-
informed planning.

To illustrate these points, we have developed a mobile
delivery robot, tasked to carry mail and coffee in our of-
fice building. The physical robot is an RWI B21 robot,
equipped with a laser range finder. The robot navigates using
BeeSoft [6, 23], a software package that includes methods for

map acquisition, localization, collision avoidance, and on-
line path planning. Figure 1d shows a map, along with a de-
livery path (from the main office to a recipient’s office).

Initially, the robot moves to the main office, where some-
one loads mail on the robot, as shown in Figure 1a. DTGolog
then chooses a recipient by utility optimization. Figure 1b
shows the robot traveling autonomously through a hallway.
If the person is in her office, she acknowledges the receipt of
the items by pressing a button on the robot as shown in Fig-
ure 1c; otherwise, after waiting for a certain period of time,
the robot marks the delivery attempt as unsuccessful and con-
tinues with the next delivery. The task of DTGolog, thus, is
to schedule the individual deliveries in the face of stochastic
action effects arising from the fact that people may or may
not be in their office at the time of delivery. It must also con-
tend with different priorities for different people and balance
these against the domain uncertainty.

Our robot is provided with the following simple DTGolog
program:

while �������(���	��
���� ���D� � � , �5�
pickBest �(' 
 '� � '5���
��	 � � � ��� ���(' 
���� ��� � ��� mailPresent(p,n)

� 	 hasMail �('D�������� ��� �� ����)���  ���(' 
 �����5�
endWhile

Intuitively, this program chooses people from the list
people for mail delivery and delivers mail in the order that
maximizes expected utility (coffee delivery can be incorpo-
rated readily). deliverTo is itself a complex procedure in-
volvingpicking up items for a person, moving to the person’s
office, delivering the items, and returning to the mailroom.
But this sequence is a very obvious one to handcode in our
domain, whereas the optimal ordering of delivery is not (and
can change, as we’ll see). We have included a guard condi-
tion in the program so that only people who are not known
to be out of the office and who have items to be delivered are
actually considered. Interestingly the status fluent (denot-
ing whether a person is in their office) allows us to mimic lim-
ited partial observability: it can take on the value unknown in
which case delivery is attempted. If the person is out (deliv-
ery failure is sensed), their status becomes out (so no future
deliveries are attempted). The robot’s prior over the status of
a given person (whether in or out) is reflected in the transition
probabilities for the status fluent.

Several things emerged from the development of this code.
First, the same program determines different policies—
and very different qualitative behavior—when the model is
changed or the reward function is changed. As a simple ex-
ample, when the probability that Ray (high priority) is in his
office is

!�l! 
, his delivery is scheduled before Craig’s (low pri-

ority); but when that probability is lowered to
!�l(�

, Craig’s de-
livery is scheduled beforehand. Such changes in the domain
would require a change in the control program if not for the
planning ability provided by DTGolog. The computational
requirements of this decision making capabilityare much less
than those should we allow completely arbitrary policies to
be searched in the decision tree.

Note that full MDP planning can be implemented within
the DTGolog interpreter by running it with the program that
allows any (feasible) action to be chosen at any time. This



(a) (b) (c) (d)

Figure 1: Mail delivery: (a) A person loads mail and coffee onto the robot. (b) DTGolog sends the robot to an office. (c) The
recipient accepts the mail and coffee, acknowledging the successful delivery by pressing a button. (d) The map learned by the
robot, along with the robot’s path (from the main office to recipient).

causes a full decision tree to be constructed. Given the do-
main complexity, this unconstrained search tree could only
be completely evaluated for problems with a maximum hori-
zon of seven (in about 1 minute)—thisdepth is barely enough
to complete the construction of a policy to serve one person.
With the program above, the interpreter finds optimal com-
pletions for a 3-person domain in about 1 second (producing
a policy with success probability 0.94), a 4-person domain
in about 9 seconds (success probability 0.93) and a 5-person
domain in about 6 minutes (success probability 0.88). This
latter corresponds to a horizon of about 30; clearly the de-
cision tree search would be infeasible without the program
constraints.

We note that our example programs restrict the policy that
the robot can implement, leaving only one choice (the choice
of person to whom to deliver mail) available to the robot,
with the rest of the robot’s behavior fixed by the program.
While these programs are quite natural, structuringa program
this way may preclude optimal behavior. For instance, by
restricting the robot to serving one person at a time, the si-
multaneous delivery of mail to two people in nearby offices
won’t be considered. In circumstances where interleaving is
impossible (e.g., the robot can carry only one item at a time),
this program admits optimal behavior—it describes how to
deliver an item, leaving the robot to decide only on the or-
der of deliveries. But even in settings where simultaneous
or interleaved deliveries are feasible, the “nonoverlapping”
program may have sufficiently high utility that restricting the
robot’s choices is acceptable (since it allows the MDP to be
solved more quickly).

These experiments illustrate the benefits of integrating
programming and planning for mobile robot programming.
We conjecture that the advantage of our framework becomes
even more evident as we scale up to more complex tasks.
For example, consider a robot that serves dozens of people,
while making decisions as to when to recharge its batteries.
Mail and coffee requests might arrive sporadically at random
points in time, not just once a day (as is the case for our cur-
rent implementation). Even with today’s best planners, the
complexity of such tasks is well beyond what can be tackled
in reasonable time. DTGolog is powerful enough to accom-
modate such scenarios. If supplied with programs of the type
described above, we expect DTGolog to make the (remain-
ing) planning problem tractable—with a minimal of effort on

the programmer’s side.

6 Concluding Remarks
We have provided a general first-order language for specify-
ing MDPs and imposing constraints on the space of allowable
policies by writing a program. In this way we have provided
a natural framework for combining decision-theoretic plan-
ning and agent programming with an intuitivesemantics. We
have found this framework to be very flexible as a robot pro-
gramming tool, integratingprogramming and planningseam-
lessly and permitting the developer to choose the point on this
spectrum best-suited to the task at hand. While Golog has
proven to be an ideal vehicle for this combination, our ideas
transcend the specific choice of language.

A number of interesting directions remain to be explored.
These include: integrating efficient algorithms and other
techniques for solving MDPs into this framework (dynamic
programming, abstraction, sampling, etc.); incorporating re-
alistic models of partial observability (a key to ensuring
wider applicability of the model); extending the expressive
power of the language to include other extensions already de-
fined for the classical Golog model (e.g., concurrency); in-
corporating declaratively-specified heuristic and search con-
trol information; monitoring of on-line execution of DT-
Golog programs [21]; and automatically generating sense
conditions for stochastic actions.
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