
Legolog: Inexpensive Experiments in Cognitive Robotics
Hector J. Levesque and Maurice Pagnucco

�

Abstract. Researchers and instructors of Cognitive Robotics have
long lamented the lack of affordable hardware platforms upon which
to demonstrate their art. Even with the advent of more recent mobile
robotic platforms that have begun to bring prices within reach, the
amount of low-level programming that needs to be performed means
that significant time must be spent before work can begin on the prob-
lems upon which they would like to focus. Recently LEGO R

�
intro-

duced the MINDSTORMSTM Robotics Invention SystemTM—a con-
struction kit equipped with a programmable microprocessor that can
accept inputs and control outputs. Together with the vast number of
original LEGO R

�
pieces it is now possible to construct all manner of

controllable robotic devices.

In this paper we describe our implementation of Legolog; a system
that uses a controller from the Golog family of planners to control a
MINDSTORMSTM robot. Legolog is capable of dealing with prim-
itive actions, exogenous actions and sensing. Moreover, the Golog
controller is easily replaced with an alternate planner. In this way,
our aim is to demonstrate that practical cognitive robotics is already
within reach, and to provide a (Prolog-based) system for cognitive
robotics practitioners to use.
Key words: Cognitive robotics, Golog, LEGO R

�
MINDSTORMSTM

Robotics Invention SystemTM.

Advances in mobile robot technology have led to a plethora of
such devices becoming commercially available. However, the price
of many of these platforms remains prohibitive for many researchers
whose work could benefit from their ready availability. This factor is
even more pertinent when it comes to the use of mobile robots for
pedagogical purposes.

In this paper we describe Legolog,2 a system developed to allow
experimentation with and demonstration of a Golog [6] planner on
the LEGO R

�
MINDSTORMSTM Robotics Invention SystemTM (RIS).

We describe the main components of this system and how they inter-
act. While the use of Golog was our initial motivation, one important
consideration during the design was to make it possible to substitute
Golog with any planner and to run the underlying Prolog on different
platforms in a reasonably seamless manner.

The RIS augments the standard LEGO R
�

components with a RCX
(Robotic Command Explorer) “brick” containing a microprocessor
capable of accepting three inputs and controlling three outputs. Fur-
thermore, the RCX has an infrared port for communicating with other
RCXs and an infrared “tower” that can be attached to the serial port
of a personal computer. The RCX allows one to build a vast array of
different robots of reasonable sophistication and write programs to

�
Cognitive Robotics Group, Department of Computer Science, Uni-

versity of Toronto, Toronto, ON, M5S 3H5, Canada. Email: � hector,
morri � @cs.toronto.edu�
Legolog is in no way associated with LEGO R

�
or its products.

control them. Currently, the cost of a MINDSTORMSTM kit is about
$US 200. One of the main advantagesof the RIS over more expensive
mobile robot platforms is the ability to quickly and easily modify the
design of a robot to try different experimental scenarios.

The main aim of this paper is to demonstratehow practical robotics
can be brought within the reach of cognitive robotics researchersand
educators and to provide one such system that is available to be used
and easily adapted for such a purpose.

In the next section we briefly describe the RIS and the particular
flavour of Golog used in our implementation of Legolog. In Section 2
we describe the various components of Legolog. A discussion of the
main contributions follows in Section 3 with conclusions in Section 4.

1 Platform Components

Legolog is based on two main components: a robot constructed using
the RIS and a Golog robotic controller. The RIS grew out of research
conducted on the Programmable Brick [17] at the MIT Media Labo-
ratory. Golog has its origins in the situation calculus [11, 16] and has
been used to control quite sophisticated robots in real-world environ-
ments. We briefly overview these two components before focussing
on their specific roles in Legolog.

1.1 LEGO R
�

MINDSTORMSTM Robotics Invention
SystemTM

The RIS represents a significant advance on the types of construc-
tions possible with traditional LEGO R

�
kits. At the heart of the RIS

is the RCX (Robotic Command Explorer). The RCX contains a Hi-
tachi H8/3297 microprocessor [4]. It allows for up to three input ports
and is capable of controlling three output ports. A variety of sensors
can be attached to the three input ports. Currently LEGO R

�
has light,

temperature, rotation and pushbutton sensors available. However, en-
thusiasts have shown how to construct inexpensiveadditional sensors
[3][5, Chapter 11]. The outputs are primarily for the control of motors
but lights are also available. The RCX is also equipped with an in-
frared port that can be used to download programs from a standalone
computer via an infrared tower attached to the computer’s serial port
and also allows communication with other RCXs.

The basic idea behind the RIS is that programs are written on a
desktop or laptop machine and downloaded to the RCX via the in-
frared tower which is attached to the machine’s serial port. There are a
number of options when it comes to programming the RCX. LEGO R

�

provides some basic software—known as firmware—implementing a
virtual machine that can be downloaded to the RCX. This virtual ma-
chine allows for five programs that can be chosen from buttons lo-
cated on the RCX. Each program may consist of up to 32 variables,

8 tasks and 9 subroutines. Tasks can execute concurrently with one
special task—main—being the starting point of any program.

Once the firmware is in place it is possible to use LEGO’s own
visual programming environment under Windows to write programs
for this virtual machine. However, this method is limited in the types
of behaviour that can be programmed. A more flexible alternative is
an independently developed language called NQC (Not Quite C) [1]
that provides a C-like language for programming the RCX firmware.
Other firmware programming environments also exist but we shall
not investigate these here. We opted for NQC as it appears to provide
the best compromise between ease of use and flexibility.

An alternative to the firmware oriented approach is LegOS [13].
This makes use of a C cross-compiler for the Hitachi processor. Pro-
grams are a little more sophisticated than NQC since they obviate
the need for the underlying firmware but, in so doing, take longer to
download. This approach is likely to be more powerful and flexible
than the others on offer, and remains one aspect worthy of further in-
vestigation.

One other factor that makes the RIS an attractive option is its large
user base. Designs for robots and program code are readily available
on the world wide web. The main sites for such information are the
official RIS site [8] and the LUGNET site [10]. Other pages describe
how to manufacture sensors [3], how the RCX functions [14], how to
use the infrared transmitter/receiver on the RCX to implement a prox-
imity sensor etc. When one considers the vast number of LEGO R

�

components—from gears and pulleys, pneumatics, motors, etc.—the
number and sophistication of devices is quite vast. While the quality
of sensors does not yet approach that of more expensive robots, they
still permit an adequate level of experimentation.

1.2 Golog

To provide high level control of the robot, we use the programming
language Golog [6]. Golog is similar to traditional imperative pro-
gramming languages, but with three significant differences: (a) the
primitive statements in a program are domain-dependent actions to
be carried out externally by the robot; (b) the primitive tests in a pro-
gram are domain-dependent conditions in the world (or fluents) that
are changed by the actions of the robot; and, (c) a program may con-
tain non-deterministic choice points where reasoned (non-random)
choices need to be made to ensure successful completion of the rest
of the program.

To be able to execute a Golog program, an interpreter needs to cal-
culate how fluents are affected by the actions of the robot. To this
end, a Golog program is coupled with a basic action theory [7] for-
mulated in the language of the Situation Calculus [11, 16]. A basic
action theory contains axioms that specify the initial state of the flu-
ents, and for each fluent, a successor state axiom [15] which specifies
how the fluent is changed as the result of performing any action. Ba-
sic action theories also contain precondition axioms for each action,
stating under what conditions the action can be successfully executed.
With these axioms and others in hand, the execution of a Golog pro-
gram becomes a form of theorem-proving: find a sequence of robot
actions such that it follows from the axioms that these actions go from
an initial state to a legal terminating state of the program.

2 Legolog

Legolog is currently written in Prolog and runs a Golog interpreter
augmented with Prolog code to communicate with the RCX via the
serial port (to which the infrared tower is attached). The RCX is pro-
grammed using NQC. At an abstract level the operation of Legolog
is quite simple. The Golog controller determines the next action (if
any) for the RCX to execute and sends the appropriate message to the
RCX. The RCX acknowledges this message and executes the action.
Each primitive action is assumed to take no longer than three sec-
onds to execute.3 Actions that might take longer to execute can be eas-
ily handled and we shall discuss this aspect further in Section 3. The
RCX can also signal the occurrence of exogenous actions to Golog.
In the model adopted for Legolog, Prolog initiates all communication
and therefore must “query” the RCX to determine whether any exoge-
nous action was detected. It is also possible for the RCX to send sens-
ing values to Golog but we have only recently begun to fully utilise
this feature.

The structure of a Legolog application can be viewed as in Fig-
ure 1. While the implementation consists of a greater number of files
than the components indicated in this diagram, this is only to facil-
itate portability by keeping operating system and Prolog implemen-
tation specific code separate from generic Prolog code. However, the
overall structure of Legolog is best described at the level of this dia-
gram. A Golog program is run by the Golog interpreter (in this case
Indigolog, which will be described in more detail below). Whenever
the Indigolog interpreter wishes to execute an action or to determine
whether exogenousactions have occurred, it usesProlog communica-
tion predicates to signal the RCX. The NQC program running on the
RCX will acknowledge, returning a sensing value or indicate which
exogenous action has occurred as appropriate. We shall now describe
some of these aspects in further detail.

2.1 RCX User Messages

The RCX is capable of sending and receiving a large variety of mes-
sages using a simple error-checking protocol. We shall not delve into
the details here but refer the interested reader to the work of Proud-
foot [14] on the internals of the RCX (most messages deal with pro-
gramming the firmware) or to the documentation related to the recent
alpha release of RIS 2.0 [9]. Of particular interest are the numbered
user messages for which NQC (and most other RCX languages) pro-
vides primitive functions for sending and receiving. These messages
can be used to send numbers in the range 1 to 255. Prolog code was
similarly written to provide analogous primitive predicates for send-
ing and receiving RCX numbered message packets. All communica-
tion and coordination between Golog and the RCX is achieved in this
way. While on the surface this method of communication may appear
relatively crude, it functions quite well in practice.

One of the desiderata for our approach was to be able to send arbi-
trarily large numbers. This facility was mainly seen as a way of send-
ing sensor information back to Golog. We devised a scheme (to be ex-
plained shortly) whereby numbers could be transmitted using a series
of RCX numbered messages. However, it soon became apparent that
such a scheme could also be used to send all manner of information
back and forth between Golog and the RCX without tying up large
�

This length of time is dictated by a characteristic of the infrared tower. It
remains able to receive data for only a few seconds after having last trans-
mitted data.

Prolog

Communication

Indigolog

Golog Program

RCX

NQCInfrared
Link

LEGO Sensors LEGO Motors

Figure 1. Idealised view of Legolog structure.

portions of the 255 numbered RCX messages at our disposal. This
would allow multiple RCXs to be used with no additional effort.

Arbitrary (positive) integers are easily sent using numbered RCX
messages over a small range. The method is perhaps easier to explain
using an example. We reserve the RCX message numbers 32–47 to
stand for the values 0–15; 32 stands for 0, 33 for 1, etc. The RCX mes-
sage numbers 48–63 also stand for the values 0–15 (respectively) but
signify that another “packet” of information is to follow (they have a
“continuation” bit set, as it were). In this way, via the values 0–15, we
can transmit four bits of information in each RCX message packet.
Using the continuation bit, we can send arbitrarily long bit strings,
four bits at a time (least significant bits first). Each packet will need
to be multiplied by an increasing power of 16 (starting at

�����
) before

adding it to the sum of the previous packets (this is easily achieved us-
ing a recursive procedure). For example, the value 65 would be sent
as two RCX messages: 49 followed by 36 which is 1 (with continu-
ation bit set) followed by 4 (no continuation bit) and, decoded, gives
the value

�����
	�������������
as desired. This method is used to send

action numbers as well as sensing values. To avoid conflict, separate
ranges are used for each. When actions are sent and received, a trans-
lation table is used to determine the number corresponding to the ac-
tion (or vice versa).

Each part of a message sent by Prolog must be acknowledged by
the RCX (recall that all communication is initiated by Prolog). When
integer values (action numbers) are communicated using multiple
RCX messages as described above, each individual part is acknowl-
edged by the RCX with a special continue message telling Prolog that
it can proceed with the next part of the message. When the last part
is received from Prolog (it does not have a continuation bit set), the
RCX acknowledges with the start of a sensing value (which can be
an arbitrary value for non-sensing actions). Likewise, Prolog signals
the RCX that it can send the next part using the same special continue
message. The last part of a sensing value (not having a continuation
bit set) need not be acknowledged. If the RCX needs to return an in-

teger value corresponding to the occurrence of an exogenous action,
a similar scheme is used with the RCX responding to a special mes-
sage from Prolog requesting that any exogenous action that has been
detected be returned. In this way, message parts are sent in “pairs”
with Prolog initiating and RCX “responding”. Messages awaiting ac-
knowledgement will time-out after 3.5 seconds and be re-sent.

In addition there are a small number of special message numbers
used for various purposes. These messages are used as follows:

� RCX/Golog continue message for sending arbitrary integers in
multiple parts as described above

� Golog signal to RCX that it should abort what it is doing and reset
its state

� Golog request to RCX for any pending exogenous actions (if one
has occurred, RCX responds with the appropriate action number)

� RCX reply to Golog that no exogenous action has occurred
� RCX reply to Golog request for the execution of a primitive action

that it will require more time (an additional 3 seconds is allowed).
This can be sent in lieu of a sensing value. Prolog will send a con-
tinue message to allow the RCX to subsequently communicate the
sensing value.

In this way it can be seen that the 255 numbered RCX messages can
be divided into distinct ranges; one for each RCX being used.

2.2 NQC

The NQC code running on the RCX revolves around a simple endless
event loop (illustrated in Figure 2) in the main task. At any point in
time, the RCX itself is considered to be in one of three possible states:

– OK: all is fine, the RCX is ready to receive and transmit messages
– PANIC: Prolog is not acknowledging RCX attempts at sending a

message
– ABORT: reset RCX

When in a PANIC state, the RCX continuously transmits a special
PANIC message, ignoring all incoming messages and awaiting to be
reset. An abort message causes the RCX to enter the ABORT state
where all tasks are stopped (except the main one) and the RCX is re-
set.

As already noted, all communication is initiated by Prolog. Prolog
will signal the RCX whenever it has a (primitive) action to perform
and Prolog will query the RCX for pending exogenousactions. When
the RCX state is OK, it checks for incoming messages from Golog
requesting the execution of a primitive action or querying for the oc-
currence of exogenous actions. If a primitive action request message
arrives, the RCX performs the necessary translation and executes the
action before returning a sensing value to Golog. If the primitive ac-
tion is a non-sensing action, Golog ignores the return value. It is con-
venient to simply return the value 0 in these cases. If an exogenous
action query message is received, the RCX checks whether any user-
defined exogenous events have occurred (e.g., button pressed, light
sensor reaches a threshold, etc.) and returns the relevant action num-
ber or a special reserved message indicating that no exogenousaction
has taken place. At present, due to the memory limitations of the RCX
firmware (and partly due to the lack of sophisticated NQC data struc-
tures), only one exogenous action is stored and sent at a time.

In an earlier version of Legolog we had experimented with a pro-
tocol allowing the RCX to asynchronously send messages to Prolog

but found this unsatisfactory for a number of reasons. Firstly, such a
scheme is prone to message “collision” which would require either
Prolog or the RCX to defer sending messages. Also, as the infrared
tower is only able to receive data for a few seconds after transmit-
ting, in an asynchronousprotocol it would be necessary to continually
transmit at regular intervals in order to ensure that no RCX transmis-
sions are lost. This becomescumbersometo manageand does not lead
to any significant gain in performance. The difference in the amount
of data transmitted under either of these schemes is negligible.

Action requests from Golog result in the execution of a behaviour
on the RCX (e.g., start motor, line following, turning, etc.). Each
behaviour corresponds to a primitive action and can be coded as a
function, subroutine or task.4 Since primitive actions must complete
within three seconds, they are usually written as a function or subrou-
tine. However, it is also possible for the RCX to return a message to
Prolog requesting an additional 3 seconds to complete a primitive ac-
tion. This adds some flexibility in the way that actions are to be dealt
with. Actions which have the potential of taking considerable time
(such as line following) can be dealt with in two ways. They can be
“split” into a primitive action that initiates the task and an exogenous
action detected by the RCX signalling that the task has been com-
pleted (or a failure has occurred). The resulting Golog program will
need to cater for a greater number of (exogenous) actions. Alterna-
tively, the RCX can monitor the elapsed time and continually return
requests for an additional 3 seconds until the action is completed. In
some cases this latter method is not advisable as the planner has es-
sentially suspended execution at this time, waiting for the primitive
action to end and a sensing value to be returned.

initialize() �
while

�
true

���
if
�
status

� �������
	�� ��
stopAllBehaviours() �
status

���
� ��
if
�
status

� ����������� ���
panicAction() � //Move around, wiggle, beep, whatever

SendMessage(PANIC MESG) �
ReceiveMessage(result) � //Hope for an abort command�

if
�
status

� ���
� ���
ReceiveMessage(result) �
if
�
validActionMesg(result)

��
startBehaviour(result) �
SendMessage(sensingValue) � //Return sensor value�

else if
�
exogRequestMesg(result)

���
SendMessage(exogAction) �
exogAction

����� �����
� �
�������
� ��
�

�

Figure 2. Main event loop in Legolog NQC program.

The NQC code is written in a modular fashion so that the main task
and most of the functions called from it need not be changedfrom one
robot to the next. The user needs to supply code for each of the be-
�

In NQC, functions are expanded to in-line code. Subroutines are separate
procedures. Tasks are procedures that can execute concurrently.

haviours and provide code to perform the necessary translation from
the incoming numbers to call the appropriate behaviour function, sub-
routine or task. This code is placed in the function startBehaviour.

2.3 Indigolog Interpreter

As originally formulated, the Golog framework is completely off-
line: we calculate a full sequence of actions to perform, examining
the entire program, and only then send the sequence to the robot for
execution. To be able to allow sensing information or exogenous ac-
tions to help determine which actions should be performed, we need
to execute actions in the world, retrieve any sensing results, check for
exogenous occurrences, and only then decide on the next actions to
perform. This is perhaps just as well, since for large programs, it was
somewhat unrealistic to expect to go through the entire program be-
fore doing anything at all with the robot.

One of the formulations of Golog lends itself nicely to this type
of incremental execution. In this formulation, used to describe a con-
current version of Golog called ConGolog [2], program execution is
specified in terms of single steps, using two predicates
!#"%$�& and��' $("*) :
!#"%$�& �#+-,) � holds if program

+
can legally terminate in sit-

uation) ; ��' $(".) �#+ � ,) � ,�+ � ,) � � holds if one step of
+ � in situation

) � leads to situation) � with
+ � remaining to be executed. For off-line

execution, we look for a sequence of
��' $(".) steps leading to a
!#"/$�&

termination. But for an on-line incremental execution, we look for any
single action

�
such that

��' $(".) �#+0,) ,1+324,�5�6 �#��,) � � is entailed, we
commit to it, get the robot to execute it, and repeat.

The top level execution loop for an interpreter
indigo(program,situation) based on this idea is as follows:

indigo(P,S) :- exog_occurs(A), !,
indigo(P,do(A,S)).

indigo(P,S) :- final(P,S).
indigo(P,S) :- trans(P,S,P1,S), !,

indigo(P1,S).
indigo(P,S) :- trans(P,S,P1,do(A,S)),

execute(A), !,
indigo(P1,do(A,S)).

In this code, exog occurs is an application-dependent predicate
used to check if an exogenous action has occurred, and execute is
an application-dependentpredicate which gets the robot to physically
perform the action. (For simplicity, we leave out sensing results.)

We call the resulting dialect of Golog, Indigolog (incremental de-
terministic Golog). The execution is deterministic in the sense that
there is no provision for backtracking once an action has been se-
lected. Yet there may be two actions

� � and
� � for which

��' $("*)
holds and yet only

� � leads ultimately to a legal termination. To deal
with this form of non-determinism, Indigolog contains a search oper-
ator 7 where executing 7 �#+ � means executing

+
making sure that at

each step there is a sequence of further steps leading to a legal termi-
nation. Unlike a purely off-line execution, however, the search oper-
ator allows us to control the amount of lookahead to use at each step.
For example, no step would be taken in 7 �#+ � ;

+ � � without looking
ahead to the end of

+ � ; but with 7 �#+ � � ; + � , we would only lookahead
to the end of

+ � . Further details on Indigolog can be found in [18].

2.4 Prolog—RCX Communication

In order to allow for communication between the Indigolog controller
(written in Prolog) and the RCX (running NQC code) it was neces-
sary to write some supplementary Prolog communication code. This
code is essentially in two parts: a Prolog implementation-specific and
operating system specific part containing a small number of primi-
tive predicates, and a system independentpart implementing the RCX
communication protocol and providing some higher level predicates
that distance the user from having to deal with the RCX at the lower
level.

The system dependent code implements predicates for the follow-
ing purposes:

� initialise the serial port (to which the infrared tower is connected)
to appropriate baud rate, parity, etc.

� open the serial port for read/write and close it
� obtain a character from the serial port within a specified time-out
� send a character out the serial port
� return the system time in hundredths of seconds
� wait for a specified period of time

With these primitives in place it is possible to write generic (i.e.,
Prolog and operating system independent) higher-level predicates to
communicate with the RCX. The initial version of these primitive
predicates was written in SWI-Prolog and subsequently ported to
LPA Prolog and ECLiPSe Prolog with a small amount of effort.

The predicates at a higher level of abstraction allow the user to send
and receive RCX numbered messages and, more importantly, com-
municate with the RCX using the protocol outlined in Section 2.1. It
must be emphasised that this code is all independent of Golog and
could be used by any Prolog program to communicate with the RCX
via numbered messages.

With all this in place, enabling Golog to control the RCX requires
a small amount of Prolog code. A translation predicate is used to map
primitive actions (and exogenousactions) to numbers (from numbers,
respectively). These are sent to the RCX (received from the RCX) us-
ing predicates implementing the scheme outlined above.5 It should be
noted that this scheme can easily be adapted to a planner other than
Golog with a minimum of fuss.

3 Discussion

Legolog has been implemented in such a way as to allow for porta-
bility in a number of different directions. Firstly, the Prolog code
used for the Indigolog interpreter and, arguably more importantly,
that used for communication with the RCX is structured in such a
way that it can be quickly and easily rewritten for any Prolog capa-
ble of providing or mimicking a small set of low-level primitives. At
another level it should be quite simple to “plug-in” another planner
in place of Golog and have it interact with the RCX. This has already
been successfully demonstrated with a Fluent Calculus [19] planner
controlling a MINDSTORMSTM robot on a delivery task.6 In fact, the
code need not interface with a planner at all but could be used as part
�

We also provide routines for debugging in the case that the predicates fail.
However, these are Golog dependent. An alternate planner would need to
provide its own debugging routines.�
The authors would like to thank Michael Thielscher for adapting a Fluent
Calculus planner for this purpose.

of any Prolog program to communicate with the RCX. Similarly, al-
though we use NQC to program the RCX it would be quite feasible
to use many other RCX programming languages as long as they ad-
here to the simple protocol outlined here. Of course, Legolog need not
even use the RCX but could work with other robot platforms.

One of the attractive features of Legolog is that it provides a phys-
ical platform on which to experiment with various reasoning about
action problems. We have already mentioned that primitive actions,
exogenous actions and sensing actions can be dealt with in the cur-
rent framework. Primitive actions are assumed to take no longer than
three secondsto execute(otherwise Golog will time-out) although ex-
tensions can be requested. Actions with longer duration can be easily
dealt with using exogenous actions. They are initiated via primitive
actions and run as separate tasks on the RCX. When they complete,
they signal Golog via an exogenous action. This also allows Golog
to deal with any errors that might arise if it so wishes (e.g., the robot
becomes lost in its environment). Exogenous actions need not only
come from the RCX either. At present Legolog is also able to deal
with exogenous actions generated by typing at the keyboard of the
desktop or laptop computer. This can be utilised to provide a level of
remote control of the robot. Additional sources of exogenous events
would also be possible. Other problems that could be addressed in-
clude continuous actions, concurrent actions, execution monitoring
and multiple agents.

4 Conclusions and Future Work

In this paper we have attempted to demonstrate a flexible system that
brings practical cognitive robotics within easy reach of researchers
and instructors. The current version of Legolog is written using SWI-
Prolog or ECLiPSe Prolog running under the Linux operating system.
This version was also ported to LPA-Prolog running DOS on a HP
200LX palmtop computer. However, by providing a small number of
system dependent predicates, this code should be easily ported to any
Prolog and operating system provided that they can read/write to a
serial port where the infrared tower is connected. Another feature of
Legolog is that the Golog interpreter can be easily replaced with an
alternate planner.

Legolog has been tested using various delivery tasks. The robot
design used is capable of following a black line (which need not be
straight) using a light sensor until it reaches a marker (landmark), turn�������

, raise and lower a carrying tray and accept pushbutton presses.
A picture of one of these robot designs is shown in Figure 3. This fig-
ure shows the RCX with the light sensor attached to the front of the
robot which is on the edge of a black line and just about to arrive at
a landmark. Figure 4 shows another view of the robot just after it has
reached the landmark. The RCX is placed with the infrared transmit-
ter/receiver facing upwards so as to facilitate communication with the
infrared tower.

The use of the RIS means that implementors are not stuck with
one robot configuration but can experiment with many designs and
scenarios. The LEGO R

�
constructions are quite durable and there is

much less worry of damage to the robot than with more expensive
platforms.

Legolog is only at an initial stage and there is great potential for fu-
ture extensions. Currently we are working on examples that show the
potential of sensing actions and having sensing information returned
to Golog. The affordability of the MINDSTORMSTM kit means that
it is much easier to experiment with multiple robots. Golog control
of multiple RCXs would be of great interest and the current design

Figure 3. A delivery robot used for experimentation.

Figure 4. Alternative view of the delivery robot.

of Legolog is such as to accommodate this with minimal effort. Also,
communication between RCXs is also of interest.

In conclusion, we would like to invite the cognitive robotics
community to make use of Legolog; to adapt their planners to it
and experiment with the opportunities that are now within their
reach. A version of the Legolog distribution may be obtained from
http://www.cs.toronto.edu/˜cogrobo/.

ACKNOWLEDGEMENTS
The authors would like to thank Michael Thielscher for adapting an
early version of Legolog so that it would work with a Fluent Calculus
planner written by him in Prolog. They would also like to thank mem-
bers of the Cognitive Robotics Group at the University of Toronto for
their many useful comments and suggestions.

REFERENCES
[1] Dave Baum. Dave Baum’s Definitive Guide to LEGO R

�
MINDSTORMSTM. APress, 2000.

[2] Giuseppe De Giacomo, Yves Lespèrance and Hector J. Levesque. Rea-
soning about concurrent execution, prioritized interrupts, and exoge-
nous actions in the situation calculus. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI’99),
1221–1226, Nagoya, August 1997.

[3] Michael Gasperi. MindStorms RCX Sensor Input Page.
http://www.plazaearth.com/usr/gasperi/lego.htm.

[4] Hitachi Single-Chip Microcomputer H8/3297—Hardware Manual.
http://semiconductor.hitachi.com/products/pdf/
h33th0142.pdf. Hitachi, Third Edition, 1999.

[5] Jonathon B. Knudsen. The Unofficial Guide to LEGO R
�

MINDSTORMSTM Robots. O’Reilly & Associates, Inc. 1999.
[6] Hector J. Levesque, Raymond Reiter, Yves Lespèrance, Fangzhen Lin

and Richard Scherl. GOLOG: A Logic Programming Languagefor Dy-
namic Domains. Journal of Logic Programming, 31:59-84, 1997.

[7] Fangzhen Lin and Raymond Reiter. How to progress a database (and
why) I: Formal foundations. In Proceedings of the Fourth International
Conference on Principles of Knowledge Representation and Reasoning
(KR’94), Morgan-Kaufmann, 1994.

[8] LEGO R
�

MINDSTORMSTM official web site.
http://www.legomindstorms.com/.

[9] LEGO R
�

MINDSTORMSTM RIS 2.0 Software Developers Kit.
http://www.legomindstorms.com/sdk2/.

[10] LEGO R
�

user network group. http://www.lugnet.com/.
[11] John McCarthy and Patrick J. Hayes. Some philosophical problems

from the standpoint of Artificial Intelligence. In Bernard Meltzer and
Donald Michie, editors, Machine Intelligence 4. Edinburgh University
Press, 1969.

[12] Not Quite C web site. http://www.enteract.com/˜dbaum/n
qc/.

[13] Markus Noga. LegOS operating system for MINDSTORMSTM.
http://www.noga.de/legOS/

[14] Kekoa Proudfoot. RCX Internals.
http://graphics.stanford.edu/˜kekoa/rcx/.

[15] Raymond Reiter. The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression. In
Vladimir Lifschitz, editor, Artificial Intelligence andMathematical The-
ory of Computation: Papers in Honor of John McCarthy, pages 359–
380. Academic Press, San Diego, CA, 1991.

[16] Raymond Reiter. Knowledge In Action: Logical Foundations for De-
scribing and Implementing Dynamical Systems. In press.

[17] Mitchel Resnick, Fred Martin, Randy Sargent, and Brian
Silverman. Programmable Bricks: Toys to Think With.
IBM Systems Journal, 35(3-4):443–452, 1996. (See also
http://el.www.media.mit.edu/projects/programmab
le-brick/.)

[18] Giuseppe de Giacomo, Hector J. Levesque and Sebastian Sardinã. Ex-
ecuting programs over guarded theories. Submitted, 2000.

[19] Michael Thielscher. Ramification and Causality. Ar-
tificial Intelligence, 89(1–2):317–364, 1997. (See also
http://pikas.inf.tu-dresden.de/˜mit/FC/Tutorial
/index.htm.)

