
A Requirements-Driven Software Development Methodology

Jaelson Castro Manuel Kolp John Mylopoulos
Centro de Informática Dept. of Computer Science Dept. of Computer Science

Universidade Federal de Pernambuco University of Toronto University of Toronto
Av. Prof. Luiz Freire S/N 10 King’s College Road 10 King’s College Road

Recife PE, Brazil 50732-970 Toronto M5S3G4, Canada Toronto M5S3G4, Canada
+1 5581 2718430 +1 416 978 7569 +1 416 978 5180
jbc@cin.ufpe.br mkolp@cs.toronto.edu jm@cs.toronto.edu

ABSTRACT
We propose a software development methodology which is
founded on concepts used to model early requirements. Our
proposal adopts the i* modeling framework [21], which
offers the notions of actor, goal and (actor) dependency,
and uses these as a foundation to model early and late
requirements, architectural and detailed design. The paper
outlines the methodology, named Tropos, through an
example, and sketches a formal language which underlies
the methodology and is intended to support formal analysis.
The methodology seems to complement well proposals for
agent-oriented programming platforms.

Keywords
Software development, software requirements analysis and
design, agent-oriented software systems, software architectures.

1 INTRODUCTION
Software development techniques have traditionally been
inspired and driven by the programming paradigm of the
day. This means that the concepts, methods and tools used
during all phases of development were based on those
offered by the pre-eminent programming paradigm. So,
during the era of structured programming, structured
analysis and design techniques were proposed [9,19], while
object-oriented programming has given rise more recently
to object-oriented design and analysis [1,17]. For structured
development techniques this meant that throughout
software development, the developer can conceptualize her
software system in terms of functions and processes, inputs
and outputs. For object-oriented development, on the other
hand, the developer thinks throughout in terms of objects,
classes, methods, inheritance and the like.

Using the same concepts to align requirements analysis
with software design and implementation makes perfect
sense. For one thing, such an alignment reduces impedance

mismatches between different development phases.
Moreover, such an alignment can lead to coherent toolsets
and techniques for developing software (and it has!) as
well, it can streamline the development process itself.

But, why base such an alignment on implementation
concepts? Requirements analysis is arguably the most
important stage of software development. This is the phase
where technical considerations have to be balanced against
social and personal ones. Not surprisingly, this is also the
phase where the most and costliest errors are introduced to
a software system. Even if (or rather, when) the importance
of design and implementation phases wanes sometime in
the future, requirements analysis will remain a critical
phase for the development of any software system,
answering the most fundamental of all design questions:
“what is the system intended for?”

This paper outlines a software development framework,
named Tropos, which is requirements-driven in the sense
that it is based on concepts used during early requirements
analysis. To this end, we adopt the concepts offered by i*
[20], a modeling framework offering concepts such as
actor (actors can be agents, positions or roles), as well as
social dependencies among actors, including goal, softgoal,
task and resource dependencies. These concepts are used
for an e-commerce example to model not just early
requirements, but also late requirements, as well as
architectural and detailed design.

The proposed methodology spans four phases of software
development:

• Early requirements, concerned with the understanding of
a problem by studying an organizational setting; the
output of this phase is an organizational model which
includes relevant actors, their respective goals and their
inter-dependencies.

• Late requirements, where the system-to-be is described
within its operational environment, along with relevant
functions and qualities.

• Architectural design, where the system’s global
architecture is defined in terms of subsystems,

2

interconnected through data, control and other
dependencies.

• Detailed design, where behaviour of each architectural
component is defined in further detail.

The proposed methodology includes techniques for
generating an implementation from a Tropos detailed
design. Using an agent-oriented programming platform for
the implementation seems natural, given that the detailed
design is defined in terms of (system) actors, goals and
inter-dependencies among them. For this paper, we have
adopted JACK as programming platform to study the
generation of an implementation from a detailed design.
JACK is a commercial product based on the BDI (Beliefs-
Desires-Intentions) agent architecture. Early previews of
the Tropos methodology appear in [2, 14].

Section 2 of the paper describes a case study for a B2C
(business to consumer) e-commerce application. Section 3
introduces the primitive concepts offered by i* and
illustrates their use with an example. Sections 4, 5, and 6
illustrate how the technique works for late requirements,
architectural design and detailed design respectively.
Section 7 sketches the implementation of the case study
using the JACK agent development environment, while
Section 8 discusses the formal language which underlies
Tropos diagrams. Finally, Section 9 summarizes the
contributions of the paper, and relates it to the literature.

2 A CASE STUDY
Media Shop is a store selling and shipping different kinds
of media items such as books, newspapers, magazines,
audio CDs, videotapes, and the like. Media Shop customers
(on-site or remote) can use a periodically updated catalogue
describing available media items to specify their order.
Media Shop is supplied with the latest releases and in-
catalogue items by Media Supplier. To increase market
share, Media Shop has decided to open up a B2C retail
sales front on the internet. With the new setup, a customer
can order Media Shop items in person, by phone, or
through the internet. The system has been named Medi@
and is available on the world-wide-web using
communication facilities provided by Telecom Cpy. It also
uses financial services supplied by Bank Cpy, which
specializes on on-line transactions.

The basic objective for the new system is to allow an on-
line customer to examine the items in the Medi@ internet
catalogue, and place orders.

There are no registration restrictions, or identification
procedures for Medi@ users. Potential customers can
search the on-line store by either browsing the catalogue or
querying the item database. The catalogue groups media
items of the same type into (sub)hierarchies and genres
(e.g., audio CDs are classified into pop, rock, jazz, opera,
world, classical music, soundtrack, …) so that customers
can browse only (sub)categories of interest.

An on-line search engine allows customers with particular
items in mind to search title, author/artist and description
fields through keywords or full-text search. If the item is
not available in the catalogue, the customer has the option
of asking Media Shop to order it, provided the customer has
editor/publisher references (e.g., ISBN, ISSN), and
identifies herself (in terms of name and credit card
number).

3 EARLY REQUIREMENTS WITH I*
During early requirements analysis, the requirements
engineer captures and analyzes the intentions of
stakeholders. These are modeled as goals which, through
some form of a goal-oriented analysis, eventually lead to
the functional and non-functional requirements of the
system-to-be [7]. In i* (which stands for “distributed
intentionality’’), early requirements are assumed to involve
social actors who depend on each other for goals to be
achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic
dependency model for describing the network of
relationships among actors, as well as the strategic
rationale model for describing and supporting the
reasoning that each actor goes through concerning its
relationships with other actors. These models have been
formalized using intentional concepts from AI, such as
goal, belief, ability, and commitment (e.g., [5]). The
framework has been presented in detail in [20] and has
been related to different application areas, including
requirements engineering [21], software processes [22] and
business process reengineering [23].

A strategic dependency model is a graph, where each node
represents an actor, and each link between two actors
indicates that one actor depends on another for something
in order that the former may attain some goal. We call the
depending actor the depender and the actor who is
depended upon the dependee. The object around which the
dependency centers is called the dependum. Figure 1
shows the beginning of an i* model.

Items
Buy Media

Increase
Market Share

Orders
Customer

Handle
Customers

Happy

Media
Shop

Customer

Figure 1: “Customers want to buy media items, while the Media
Shop wants to increase market share, handle orders and keep

customers happy”

The two main stakeholders for a B2C application are the
consumer and the business actors named respectively in our
case Customer and Media Shop. The customer has one
relevant goal Buy Media Items (represented as an oval-
shaped icon), while the media store has goals Handle
Customer Orders, Happy Customers, and Increase Market
Share. Since the last two goals are not well-defined, they
are represented as softgoals (shown as cloudy shapes).

3

Once the relevant stakeholders and their goals have been
identified, a strategic rationale model determines through a
means-ends analysis how these goals (including softgoals)
can actually be fulfilled through the contributions of other
actors. A strategic rationale model is a graph with four
types of nodes -- goal, task, resource, and softgoal -- and
two types of links -- means-ends links and process
decomposition links. A strategic rationale graph captures
the relationship between the goals of each actor and the
dependencies through which the actor expects these
dependencies to be fulfilled.

Means-ends link

Legend Actor Boundary

Actor

Softgoal

Task

Ressource

Goal

Decomposition link

Dependency
XDepender Dependee

Happy
Customers

Process
InternetBank Cpy

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Orders

Customer

Items
Buy Media

Service
Improve

Phone
OrderBy

Be Friendly

Enhance
Catalogue

Run Shop

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Billing
Handle

Business
Continuing

Orders
Customer
Handle

Person
OrderIn

Determine
Amount

Sell Stock

Shop
Manage
Staff

Inventory
Manage

Media

Desires
Customer
Satisfy

Figure 2: Means-ends analysis for the softgoal Increase Market
Share

Figure 2 focuses on one of the (soft)goal identified for
Media Shop, namely Increase Market Share. The analysis
postulates a task Run Shop (represented in terms of a
hexagonal icon) through which Increase Market Share can
be fulfilled. Tasks are partially ordered sequences of steps
intended to accomplish some (soft)goal. Tasks can be
decomposed into goals and/or subtasks, whose collective
fulfillment completes the task. In the figure, Run Shop is
decomposed into goals Handle Billing and Handle
Customer Orders, tasks Manage Staff and Manage
Inventory, and softgoal Improve Service which together
accomplish the top-level task. Sub-goals and subtasks can
be specified more precisely through refinement. For
instance, the goal Handle Customer Orders is fulfilled
either through tasks OrderByPhone, OrderInPerson or
OrderByInternet while the task Manage Inventory would
be collectively accomplished by tasks Sell Stock and
Enhance Catalogue.

4 LATE REQUIREMENTS ANALYSIS
Late requirements analysis results in a requirements
specification which describes all functional and non-
functional requirements for the system-to-be. In Tropos, the
software system is represented as one or more actors which
participate in a strategic dependency model, along with

other actors from the system’s operational environment. In
other words, the system comes into the picture as one or
more actors who contribute to the fulfillment of stakeholder
goals. For our example, the Medi@ software system is
introduced as an actor in the strategic dependency model
depicted in Figure 3.

With respect to the actors identified in Figure 2, Customer
depends on Media Shop to buy media items while Media
Shop depends on Customer to increase market share and
remain happy (with Media Shop service). Media Supplier is
expected to provide Media Shop with media items while
depending on the latter for continuing long-term business.
He can also use Medi@ to determine new needs from
customers, such as media items not available in the
catalogue. As indicated earlier, Media Shop depends on
Medi@ for processing internet orders and on Bank Cpy to
process business transactions. Customer, in turn, depends
on Medi@ to place orders through the internet, to search
the database for keywords, or simply to browse the on-line
catalogue. With respect to relevant qualities, Customer
requires that transaction services be secure and usable,
while Media Shop expects Medi@ to be easily maintainable
(e.g., catalogue enhancing, item database evolution, user
interface update, …). The other dependencies have already
been described in Figure 2.

Increase
Market Share

Browse
Catalogue

Buy Media

Usability

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Maintainability

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Figure 3: Strategic dependency model for a media shop

As late requirements analysis proceeds, Medi@ is given
additional responsibilities, and ends up as the depender of
several dependencies. Moreover, the system is decomposed
into several sub-actors which take on some of these
responsibilities. This decomposition and responsibility
assignment is realized using the same kind of means-ends
analysis along with the strategic rationale analysis
illustrated in Figure 2. Hence, the analysis in Figure 4
focuses on the system itself, instead of a external
stakeholder. The figure postulates a root task Internet Shop
Managed providing sufficient support (++) [3] to the
softgoal Increase Market Share. That task is firstly refined

4

into goals Internet Order Handled and Item Searching
Handled, softgoals Attract New Customer, Secure and
Usable and tasks Produce Statistics and Maintenance. To
manage internet orders, Internet Order Handled is achieved
through the task Shopping Cart which is decomposed into
subtasks Select Item, Add Item, Check Out, and Get
Identification Detail. These are the main process activities
required to design an operational on-line shopping cart [6].
The latter (goal) is achieved either through sub-goal Classic
Communication Handled dealing with phone and fax orders
or Internet Handled managing secure or standard form
orderings. To allow for the ordering of new items not listed
in the catalogue, Select Item is also further refined into two
alternative subtasks, one dedicated to selecting catalogued
items, the other to preorder unavailable products.

++

++

Place

Market Share

Items

Cpy

Buy

Keyword

Media

Order

Secure

Usable

-

-
-

Search

Usability

+

Catalogue

Consulting

On-line
Money

Transactions

Process

Media

+

-

+

Cpy
Telecom

-
Catalogue

Order

Supplier

Form

Bank

Media
Shop

Orders
Internet
Process

Browse

Secure

Get

+

Detail

Update
Catalogue

Maintenance

Produce
Statistics

Security

Identification

Customer
Attract New

Customer

Maintainability

IncreaseServices

Internet

Handled

Internet

Internet
Handled

Searching
Item

Managed
Shop

Handled

New Needs

Internet

Orders

Find User

Medi@

Shopping

Database
System

Monitoring

Handled

Cart

Standard

Evolution
System

ClassicPre-Order

Form

Order
FaxPhone

Order

Order

CommunicationAvailable

Check Out
Add Item

Non Available

Querying

Item

Maintainable

Select Item

Pick

Item

Update GUI

Figure 4: Strategic rationale model for Medi@

To provide sufficient support (++) to the Maintainable
softgoal, Maintenance is refined into four subtasks dealing
with catalogue updates, system evolution, interface updates
and system monitoring.

The goal Item Searching Handled might alternatively be
fulfilled through tasks Database Querying or Catalogue
Consulting with respect to customers’ navigating
desiderata, i.e., searching with particular items in mind by
using search functions or simply browsing the catalogued
products.

In addition, as already pointed, Figure 4 introduces softgoal

contributions to model sufficient or partial positive
(respectively ++ and +) or negative (respectively - - and -)
support to softgoals Secure, Usable, Maintainable, Attract
New Customers and Increase Market Share. The result of
this means-ends analysis is a set of (system and human)
actors who are dependees for some of the dependencies that
have been postulated.

Figure 5 suggests one possible assignment of
responsibilities identified for Medi@. The Medi@ system is
decomposed into four sub-actors: Store Front, Billing
Processor, Service Quality Manager and Back Store.

Telecom
Cpy

Accounting

Buy Media
Items

Bills
Processing

Customer

Medi@

Store
Front

Manager
Quality
Service

Bank Cpy

Store
Back

Process
On-line Money
Transactions

Data Report

Web

Manager
Media

Delivery
Media

Media
Shop

Usability

Catalogue
Browse

Keyword
Search

Maintainability

Place Order

Security

Network
Tracing

Quality
Monitor

Deliver
Order

Billing
Processor

Figure 5: The web system consists of four inside actors, each with
external dependencies

Store Front interacts primarily with Customer and provides
her with a usable front-end web application. Back Store
keeps track of all web information about customers,
products, sales, bills and other data of strategic importance
to Media Shop. Billing Processor is in charge of the secure
management of orders and bills, and other financial data;
also of interactions to Bank Cpy. Service Quality Manager
is introduced in order to look for security gaps, usability
bottlenecks and maintainability issues.

All four sub-actors need to communicate and collaborate.
For instance, Store Front communicates to Billing
Processor relevant customer information required to
process bills. For the rest of the section, we focus on Store
Front. This actor is in charge of catalogue browsing and
item database searching, also provides on-line customers
with detailed information about media items. We assume
that different media shops working with Medi@ may want
to provide their customers with various forms of
information retrieval (Boolean, keyword, thesaurus,
lexicon, full text, indexed list, simple browsing, hypertext
browsing, SQL queries, etc.).

Store Front is also responsible for supplying a customer
with a web shopping cart to keep track of selected items.
We assume that different media shops using the Medi@
system may want to provide customers with different kinds
of shopping carts with respect to their internet browser,

5

plug-ins configuration or platform or simply personal
wishes (e.g., Java mode, simple browser, frame-based, CGI
shopping cart,…)

Finally, Store Front initializes the kind of processing that
will be done (by Billing Processor) for a given order
(phone/fax, internet standard form or secure encrypted
form). We assume that different media shop managers
using Medi@ may be processing various types of orders
differently, and that customers may be selecting the kind of
delivery system they would like to use (UPS, FedEx, …).

Resource, task and softgoal dependencies correspond
naturally to functional and non-functional requirements.
Leaving (some) goal dependencies between system actors
and other actors is a novelty. Traditionally, functional goals
are “operationalized” during late requirements [7], while
quality softgoals are either operationalized or “metricized”
[8]. For example, Billing Processor may be operationalized
during late requirements analysis into particular business
processes for processing bills and orders. Likewise, a
security softgoal might be operationalized by defining
interfaces which minimize input/output between the system
and its environment, or by limiting access to sensitive
information. Alternatively, the security requirement may be
metricized into something like “No more than X
unauthorized operations in the system-to-be per year”.

Leaving goal dependencies with system actors as
dependees makes sense whenever there is a foreseeable
need for flexibility in the performance of a task on the part
of the system. For example, consider a communication goal
“communicate X to Y”. According to conventional
software development techniques, such a goal needs to be
operationalized before the end of late requirements
analysis, perhaps into some sort of a user interface through
which user Y will receive message X from the system. The
problem with this approach is that the steps through which
this goal is to be fulfilled (along with a host of background
assumptions) are frozen into the requirements of the
system-to-be. This early translation of goals into concrete
plans for their fulfillment makes software systems fragile
and less reusable.

In our example, we have left three goals in the late
requirements model. The first goal is Usability because we
propose to implement Store Front and Service Quality
Manager as agents able to automatically decide at run-time
which catalogue browser, shopping cart and order
processor architecture fit best customer needs or
navigator/platform specifications. Moreover, we would like
to include different search engines, reflecting different
search techniques, and let the system dynamically choose
the most appropriate. The second key softgoal in the late
requirements specification is Security. To fulfil it, we
propose to support in the system’s architecture a number of
security strategies and let the system decide at run-time
which one is the most appropriate, taking into account

environment configurations, web browser specifications
and network protocols used. The third goal is
Maintainability, meaning that catalogue content, database
schema, and architectural model can be dynamically
extended to integrate new and future web-related
technologies.

5 ARCHITECTURAL DESIGN
A software architecture constitutes a relatively small,
intellectually manageable model of system structure, which
describes how system components work together. For our
case study, the task is to define (or choose) a web-based
application architecture. The canonical web architecture
consists of a web server, a network connection,
HTML/XML documents on one or more clients
communicating with a Web server via HTTP, and an
application server which enables the system to manage
business logic and state. This architecture is not intended to
preclude the use of distributed objects or Java applets; nor
does it imply that the web server and application server
cannot be located on the same machine.

By now, software architects have developed catalogues of
web architectural style (e.g., [6]). The three most common
styles are the Thin Web Client, Thick Web Client and Web
Delivery. Thin Web Client is most appropriate for
applications where the client has minimal computing
power, or no control over its configuration. The client
requires only a standard forms-capable web browser. Thick
Web Client extends the Thin Web Client style with the use
of client-side scripting and custom objects, such as ActiveX
controls and Java applets. Finally, Web Delivery offers a
traditional client/server system with a web-based delivery
mechanism. Here the client communicates directly with
object servers, bypassing HTTP. This style is appropriate
when there is significant control over client and network
configuration.

The first task during architectural design is to select among
alternative architectural styles using as criteria the desired
qualities identified earlier. The analysis involves refining
these qualities, represented as softgoals, to sub-goals that
are more specific and more precise and then evaluating
alternative architectural styles against them, as shown in
Figure 6. The styles are represented as operationalized
softgoals (saying, roughly, “make the architecture of the
new system Web Delivery-/Thin Web-/Thick Web-based”)
and are evaluated with respect to the alternative non-
functional softgoals as shown in Figure 6. Design rationale
is represented by claim softgoals drawn as dashed clouds.
These can represent contextual information (such as
priorities) to be considered and properly reflected into the
decision making process. Exclamation marks (! and !!) are
used to mark priority softgoals while a check-mark “✔”
indicates a fulfilled softgoal, while a cross “✕ ” labels a
unfulfillable one.

The Usability softgoal has been AND-decomposed into

6

sub-goals Comprehensibility, Portability and Sophisticated
Interface. From a customer perspective, it is important for
Medi@ to be intuitive and ergonomic. The look-and-feel of
the interface must naturally guides customer actions with
minimal computer knowledge. Equally strategic is the
portability of the application across browser
implementations and the quality of the interface. Note that
not all HTML browsers support scripting, applets, controls
and plug-ins. These technologies make the client itself
more dynamic, and capable of animation, fly-over help, and
sophisticated input controls. When only minimal business
logic needs to be run on the client, scripting is often an easy
and powerful mechanism to use. When truly sophisticated
logic needs to run on the client, building Java applets, Java
beans, or ActiveX controls is probably a better approach. A
comparable analysis is carried out for Security and
Maintainability.

++

Performance

! !

!!

++

--

+

--

+

+

--

-

!!

!!

!

+ +

!

["Vital Goals"]
Claim

Usability Security

Confidentiality

Integrity Performance

Comprehen-
sibility

Web Delivery Architecture Thick Web ArchitectureThin Web Architecture

Reusability

Availability

--

++

["Restrictions

+
+

+

++

++

Sophisticated
Interface

to browse
the catalogue"]

Claim

Claim
["Anonymous

the system"]
people can use

++

+

--

++ ++

-

-

Dynamicity

++

Maintainability

Portability

Updatibility
+

Time

Figure 6: Refining softgoals in architectural design

As shown in Figure 6, each of the three web architectural
styles contributes positively or negatively to the qualities
of interest. For instance, Thin Web Client is useful for
applications where only the most basic client configuration
can be guaranteed. Hence, this architecture does well with
respect to Portability. However, it has a limited capacity to
support Sophisticated User Interfaces. Moreover, this
architecture relies on a connectionless protocol such as
HTTP, which contributes positively to system availability.

On the other hand, Thick Web Client is generally not
portable across browser implementations, but can more
readily support sophisticated interfaces. As with Thin Web
Client, all communication between client and server is done
with HTTP, hence its positive contribution to Availability.
On the negative side, client-side scripting and custom
objects, such as ActiveX controls and Java applets, may
pose risks to client confidentiality. Last but not least, Web
Delivery is highly portable, since the browser has some
built-in capabilities to automatically download the needed
components from the server. However, this architecture
requires a reliable network.

This phase also involves the introduction of new system
actors and dependencies, as well as the decomposition of

existing actors and dependencies into sub-actors and sub-
dependencies which are delegated some of the
responsibilities of the key system actors introduced earlier.

Figure 7 focuses on the latter kind of refinement. To
accommodate the responsibilities of Store Front, we
introduce Item Browser to manage catalogue navigation,
Shopping Cart to select and custom items, Customer
Profiler to track customer data and produce client profiles,
and On-line Catalogue to deal with digital library
obligations. To cope with the non-functional requirement
decomposition proposed in Figure 6, Service Quality
Manager is further refined into four new system sub-actors
Usability Manager, Security Checker, Maintainability
Manager and Performance Monitor, each of them
assuming one of the top main softgoals explained
previously. Further refinements are shown on Figure 7.

Manager
ability

Maintain-

Processor
Order

Delivery
Processor

Processor
Statistics

Manager
Usability

Security
Checker

Usable

Secure

Selected
Items

Ratings

Maintainable

Browser
Item

Item
Detail

Shopping
Cart

Profiler
Customer

Customer
Data

Profile
Customer

Information
Billing

Check
Out

Front
Store

Processor
Billing

Back
Store

Service
Quality
Manager

Performance

Performance
Monitor

Catalogue
On-line

Consult
Catalogue

Item
Select

Information
Cart

Processor Invoice
Processor

Accounting

Payment
Request

Process
Invoice

Detail
Delivery

Figure 7: Strategic Dependency Model for Medi@ actors

An interesting decision that comes up during architectural
design is whether fulfillment of an actor’s obligations will
be accomplished through assistance from other actors,
through delegation (“outsourcing”), or through
decomposition of the actor into component actors. Going
back to our running example, the introduction of other
actors described in the previous paragraph amounts to a
form of delegation in the sense that Store Front retains its
obligations, but delegates subtasks, sub-goals etc. to other
actors. An alternative architectural design would have Store
Front outsourcing some of its responsibilities to some other
actors, so that Store Front removes itself from the critical
path of obligation fulfilment. Lastly, StoreFront may be
refined into an aggregate of actors which, by design work
together to fulfil Store Front’s obligations. This is
analogous to a committee being refined into a collection of
members who collectively fulfil the committee’s mandate.
It is not clear, at this point, how the three alternatives
compare, nor what are their respective strengths and
weaknesses.

6 DETAILED DESIGN
The detailed design phase is intended to introduce

7

additional detail for each architectural component of a
software system. In our case, this includes actor
communication and actor behavior. To support this phase,
we propose to adopt existing agent communication
languages, message transportation mechanisms and other
concepts and tools. One possibility, for example, is to adopt
one of the extensions to UML proposed by the FIPA
(Foundation for Intelligent Agents) and the OMG Agent
Work group [16]. The rest of the section concentrates on
the Shopping cart actor and the check out dependency.
Figure 8 depicts a partial UML class diagram focusing on
that actor that will be implemented as an aggregation of
several CartForms and ItemLines. Associations ItemDetail
to On-line Catalogue, aggregation of MediaItems, and
CustomerDetail to CustomerProfiler, aggregation of
CustomerProfileCards are directly derived from resource
dependencies with the same name in Figure 7.

id : long
itemNbr : string
itemTitle : string

MediaItem

itemBarCode : OLE
itemPicture : OLE
category :string
genre : string

publisher : string
editor : string
description : string

date : date

weight : single
unitPrice : currency

CD CDromDVD Book Video

0..*

CustomerProfiler

customerid : long

middleName : string

customerName : string
firstName :string

tel : string
address : string

e-mail : string
dob : date
profession : string
salary : integer
maritalStatus : string
familyComp[0..1] : integer
internetPref[0..10] : boolean
entertPref[0..10]:string
hobbies[0..5] : string
comments : string
creditcard# : integer
prevPurchase[[0..*] [0..*]]

: string
prevPurchPrice[[0..*] [0..*]]

: integer

CustomerProfileCard

itemCount : integer

ShoppingCart

...

CartForm
<<Text>> itemCount : integer

<<Button>>Recalculate

getCart()
buildItemTable()
writeTableRow()
updateItems()
loadCartForm()
updateCartForm()
killCartForm()

0..*

ItemDetail

CustomerData

0..*

0..*

0..*

weight()
cost()

ItemLine

allowsSubs :boolean
qty : integer
id : long

0..* 1

<<Text>> qty[0..*] : integer
<<Text>> currentTotal : currency
<<Checkbox>> selectItem[0..*]

<<Submit>> AddItem
<<Submit>> Checkout

<<Submit>> Confirm
<<Button>> Cancel

tax : currency
taxRate : float
total : currency
totWeight : single
shippingCost : currency
qty[0..*] : integer
subTotals[0..*] : currency
itemCount()

1

getIdentDetails
not_understood
verifyCC
logout
cancel
checkout
addItem
selectItem
initialize

failure
confirm
removeItem
succeded
propose
refuse

Plans :

notification()
calculateTotals()
calculateQty()

initializeReport()
getLineItem()
computeWeight()

inform()

Catalogue
On-line

Figure 8: Partial class diagram for Store Front focusing on
Shopping Cart

Our target implementation model is the BDI model, an
agent model whose main concepts are Beliefs, Desires and
Intentions. As indicated in Figure 11, we propose to
implement i* tasks as BDI intentions (or plans). We
represent them as methods (see Figure 8) following the
label “Plans:”.

To specify the checkout task, for instance, we use AUML -
the Agent Unified Modeling Language [16], which
supports templates and packages to represent checkout as
an object, but also in terms of sequence and collaborations
diagrams.

Figure 9(a) introduces the checkout interaction context
which is triggered by the checkout communication act (CA)
and ends with a returned information status. This diagram
only provides basic specification for an intra-agent order
processing protocol. In particular, the diagram stipulates
neither the procedure used by the Customer to produce the
checkout CA, nor the procedure employed by the Shopping
Cart to respond to the CA.

As shown by Figure 9(b), such details can be provided by
using levelling [16], i.e., by introducing additional
interaction and other diagrams. Each additional level can

express inter-actor or intra-actor dialogues. At the lowest
level, specification of an actor requires spelling out the
detailed processing that takes place within the actor.

Processor

inform

Accounting
Processor Processor

Invoice

inform

checkout

payment request

processOrder

process invoice

billing information

delivery detail

Processor
Delivery

Processor
StatisticsShopping Cart OrderCustomer

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. Figure 10)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

b)

a)

inform

Figure 9: Sequence diagram to order media items (a), and agent
interaction protocol focusing on a checkout dialogue (b)

Figure 9(b) focuses on the protocol between Customer and
Shopping Cart which consists of a customization of the
FIPA Contract Net protocol [16]. Such a protocol describes
a communication pattern among actors, as well as
constraints on the contents of the messages they exchange.

When a Customer wants to check out, a request-for-
proposal message is sent to Shopping Cart, which must
respond before a given timeout (for network security and
integrity reasons). The response may refuse to provide a
proposal, submit a proposal, or express miscomprehension.
The diamond symbol with an “✕ ” indicates an “exclusive
or” decision. If a proposal is offered, Customer has a choice
of either accepting or canceling the proposal. The internal
processing of Shopping Cart’s checkout plan is described in
Figure 10.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Figure 10: A plan diagram for checkout

At the lowest level, we use plan diagrams [12], to specify
the internal processing of atomic actors. The initial
transition of the plan diagram is labeled with an activation
event (Press checkout button) and activation condition

8

([checkout button activated]) which determine when and in
what context the plan should be activated. Transitions from
a state automatically occur when exiting the state and no
event is associated (e.g., when exiting Fields Checking) or
when the associated event occurs (e.g., Press cancel
button), provided in all cases that the associated condition
is true (e.g., [Mandatory fields filled]). When the transition
occurs any associated action is performed (e.g.,
verifyCC()).

An important feature of plan diagrams is their notion of
failure. Failure can occur when an action upon a transition
fails, when an explicit transition to a fail state (denoted by a
small no entry sign) occurs, or when the activity of an
active state terminates in failure and no outgoing transition
is enabled.

Figure 10 depicts the plan diagram for checkout, triggered
by pushing the checkout button. Mandatory fields are first
checked. If any mandatory fields are not filled, an iteration
allows the customer to update them. For security reasons,
the loop exits after 5 tries ([i<5]) and causes the plan to fail.
Credit Card validity is then checked. Again for security
reasons, when not valid, the CC# can only be corrected 3
times. Otherwise, the plan terminates in failure. The
customer is then asked to confirm the CC# to allow item
registration. If the CC# is not confirmed, the plan fails.
Otherwise, the plan continues: each item is iteratively
registered, final amounts are calculated, stock records and
customer profiles are updated and a report is displayed.
When finally the whole plan succeeds, the ShoppingCart
automatically logs out and asks the Order Processor to
initializes the order. When, for any reason, the plan fails,
the ShoppingCart automatically logs out. At anytime, if the
cancel button is pressed, or the timeout is more than 90
seconds (e.g., due to a network bottleneck), the plan fails
and the Shopping Cart is reinitialized.

7 GENERATING AN IMPLEMENTATION
JACK Intelligent Agents [4] is an agent-oriented
development environment designed to provide agent-
oriented extensions to Java.

JACK software agents can be considered autonomous
software components that have explicit goals to achieve, or
events to cope with (desires). To describe how they should
go about achieving these desires, agents are programmed
with a set of plans (intentions). Each plan describes how to
achieve a goal under different circumstances. Set to work,
the agent pursues its given goals (desires), adopting the
appropriate plans (intentions) according to its current set of
data (beliefs) about the state of the world.

To support the programming of BDI agents, JACK offers
five principal language constructs. These are agents,
capabilities, database relations, events, and plans.
Figure 11 summarizes the mapping from i* concepts to
JACK constructs and how each concept is related to the

others within the same model.

Actor Resource

i *

Agent Desire IntentionBeliefBDI

Goal TaskSoftgoal

asserted/
retracted as

acts

modifies

achievesarousesperceives

wishes

mapped into

consumes
needed

satisfies

satisfies

needed

dependee
depender

realized as

DB relationJack Agent

JACK

Capability

capable of

PlanBDIGoalEvent BDIMessageEventstores beliefs changes

aggregated into
uses

aggregated into
aggregated into

handles

reads
modifies

posts

send

intends defined

intends less-defined
available

dependum

Dependency

posted as
handled as

planned as

chooses

Figure 11: i*/BDI/JACK mapping overview

I* actors, (informational/data) resources, softgoals, goals
and tasks are respectively mapped into BDI agents, beliefs,
desires and intentions. In turn, a BDI agent will be mapped
as a JACK agent, a belief will be asserted (or retracted) as a
database relation, a desire will be posted (sent internally) as
a BDIGoalEvent (representing an objective that an agent
wishes to achieve) and handled as a plan and an intention
will be implemented as a plan. Finally, a i* dependency
will be directly realized as a BDIMessageEvent (received
by agents from other agents).

Figure 12: Partial implementation of Figure 9 in JACK

Figure 12 depicts the JACK layout presenting each of the
five JACK constructs as well as the implementation of the
first part of the dialogue shown in Figure 10(b). The
request for proposal checkout-rfp is a MessageEvent

9

(extends MessageEvent) sent by Customer and handled by
the Shopping Cart’s checkout plan (extends Plan) as
detailed in Figure 11. Finally, Timeout (which we consider
a belief) is implemented as a closed world (i.e., true or
false) database relation asserting for each Shopping Cart
one or several timeout delays

8 A FORMAL LANGUAGE FOR TROPOS
To supplement diagrams with rigorous definitions of the
actors, dependencies and relevant entities and relationships,
we adopt the language presented in [15]. This language is
inspired by KAOS [7] and offers constructs for the
specification of the social dependencies supported by i*. It
is structured in two layers. The outer layer declares
concepts and has an entity-relationship flavour; the inner
layer expresses constraints on those concepts in a typed
first-order temporal logic with real time constructs [13].

Entity Order
Has orderId: Number, cust: Customer, date: Date,

items: SetOf [MediaItem]

Entity MediaItem
Has itemId: Number, itemTitle: String, description: Text, editor:

String …

Actor Customer
Has customerId: Number, name: Name, address: Address,

tel: PhoneNumber, …
Capable of MakeOrder, Pay, Browse, …
Goal ∀order:Order ∃buy:BuyMediaItems[order]

(order.cust=self ∧ Fulfil(buy))

Actor MediaShop
Has name: {MediaLive}, address: {“735 Yonge Street”},

phone#: 0461-762-883
Capable of Sell, Ship, SendInvoice, …
Goal ∃ ms:IncreaseMarketShare(Fulfil(ms))

GoalDependency BuyMediaItems
Mode Fulfil
Has order: Order
Defined ItemsReceivedOK(order)
Depender Customer
Dependee MediaShop
Necessary Fulfil(PlaceOrder(order))

SoftGoalDependency IncreaseMarketShare
Mode Maintain
Depender MediaShop
Dependee Customer
Necessary ∀cust:Customer ∃place:PlaceOrder[order]

(order.cust=cust) ∧ Fulfil(place))

Action MakeOrder
Performed By Customer
Refines PlaceOrder
Input cust : Customer, date : Date, items : SetOf [MediaItem]
Output order : Order
Post order.cust = cust ∧ order.date = date ∧ order.items ⊆ items

Figure 14: Formal specifications of elements from Figure 3

Figure 14 represents some of the definitions for concepts
shown in Figure 3. First, we define the non-intentional
entities Order and MediaItem. Then, we specify the actors
in terms of their attributes, goals and the actions they are
capable of. For instance, the actor Customer can perform

the actions MakeOrder, Pay and Browse. Its goal is that all
its orders be successful, in the sense that they should be
related to some goal BuyMediaItems that is eventually
fulfilled.

Goal dependencies are defined in terms of their modality,
attributes, involved agents and constraints. The goal
BuyMediaItems has modality Fulfil, which means that it
should be achieved at least once. The Defined clause gives a
formal definition of the goal in terms of the logic predicate
ItemsReceivedOK. The clause Necessary specifies mandatory
conditions for the goal to be achieved: in this case, a
necessary condition for buying a media item is that the
associated order must have been successfully placed. The
softgoal IncreaseMarketShare has modality Maintain, which
means that it should never cease to hold. Its (soft)
necessary condition is that all the customers eventually
place an order.

In addition to the goal model, the language makes it
possible to define an operational model that consists of
actions that operationalize (refine) the goals. Actions are
input-output relations over entities, characterized by pre-
and post-conditions; action applications define state
transitions. As an example, we show the action MakeOrder
that operationalizes the goal PlaceOrder by creating an
entity of class Order.

9 CONCLUSIONS AND DISCUSSION
We have proposed a software development methodology
founded on intentional concepts, and inspired by early
requirements modeling. We believe that the methodology is
particularly appropriate for generic, componentized
software that can be downloaded and used in a variety of
operating environments and computing platforms around
the world. Preliminary results suggest that the methodology
complements well proposals for agent-oriented
programming environments.

There already exist some proposals for agent-oriented
software development, most notably [10, 11, 16, 18]. Such
proposals are mostly extensions to known object-oriented
and/or knowledge engineering methodologies. Moreover,
all these proposals focus on design -- as opposed to
requirements analysis -- for agent-oriented software and are
therefore considerably narrower in scope than Tropos.

Of course, much remains to be done to further refine the
proposed methodology and validate its usefulness with real
case studies. We are currently working on the development
of formal analysis techniques for Tropos, also the
development of tools which support different phases of the
methodology.

ACKNOWLEDGEMENTS
The Tropos project has been partially funded by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada, and Communications and Information Technology

10

Ontario (CITO), a centre of excellence, funded by the
province of Ontario.

We are grateful to Ariel Fuxman and Eric Yu (University
of Toronto) for helpful suggestions and feedback to this
research.

This work was carried out while Jaelson Castro was
visiting the Department of Computer Science, University of
Toronto (partially supported by the CNPq – Brazil grant
203262/86-7).

REFERENCES
 [1]Booch, G., Rumbaugh, J. and Jacobson, I., The Unified

Modeling Language User Guide, The Addison-Wesley
Object Technology Series, Addison-Wesley, 1999.

 [2] Castro, J., Kolp, M. and Mylopoulos, J., Developing
Agent-Oriented Information Systems for the Enterprise,
Proceedings of the Second International Conference On
Enterprise Information Systems (ICEIS00), Stafford,
UK, July 2000.

[3] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos,
J., Non-Functional Requirements in Software
Engineering, Kluwer Publishing, 2000.

[4] Coburn, M., Jack Intelligent Agents: User Guide
version 2.0, AOS Pty Ltd, 2000.

[5] Cohen, P. and Levesque, H., “Intention is Choice with
Commitment”, Artificial Intelligence, 32(3), 1990, pp.
213-261.

[6] Conallen, J., Building Web Applications with UML, The
Addison-Wesley Object Technology Series, Addison-
Wesley, 2000.

[7] Dardenne, A., van Lamsweerde, A. and Fickas, S.,
“Goal–directed Requirements Acquisition”, Science of
Computer Programming, 20, 1993, pp. 3-50.

[8] Davis, A., Software Requirements: Objects, Functions
and States, Prentice Hall, 1993.

[9] DeMarco, T., Structured Analysis and System
Specification, Yourdon Press, 1978.

 [10] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey
of Agent-Oriented Methodologies”, Proceedings of the
5th International Workshop on Intelligent Agents: Agent
Theories, Architectures, and Languages (ATAL-98),
Paris, France, July 1998, pp. 317-330.

[11] Jennings, N. R., “On agent-based software
engineering”, Artificial lntelligence, 117, 2000, pp. 277-
296.

 [12] Kinny, D. and Georgeff, M., “Modelling and Design
of Multi-Agent System”, Proceedings of the Third
International Workshop on Agent Theories,
Architectures, and Languages (ATAL-96), Budapest,
Hungary, August 1996, pp. 1-20.

[13] Koymans, R, Specifying message passing and time-
critical systems with temporal logic. In Springer-Verlag
LNCS 651. Springer-Verlag, Berlin, 1993.

[14] Mylopoulos, J. and Castro, J., “Tropos: A Framework
for Requirements-Driven Software Development”,
Brinkkemper, J. and Solvberg, A. (eds.), Information
Systems Engineering: State of the Art and Research
Themes, Springer-Verlag, June 2000, pp. 261-273.

[15] Mylopoulos, J., Fuxman, A. and Giorgini, P. From
Entities and Relationships to Social Actors and
Dependencies. To appear in Proceedings of the 19th
International Conference on Conceptual Modeling
(ER2000), Salt Lake City, USA, October 2000.

 [16] Odell, J., Van Dyke Parunak, H. and Bauer, B.,
“Extending UML for Agents”, Proceedings of the
Agent-Oriented Information System Workshop at the 17
National Conference on Artificial Intelligence, pp. 3-17,
Austin, USA, July 2000.

[17] Wirfs-Brock, R., Wilkerson, B. and Wiener, L.,
Designing Object-Oriented Software, Englewood Cliffs,
Prentice-Hall, 1990.

[18] Wooldridge, M., Jennings, N. R. and Kinny D., “The
Gaia Methodology for Agent-Oriented Analysis and
Design”, Journal of Autonomous Agents and Multi-
Agent Systems, 3(3), to appear, 2000.

[19] Yourdon, E. and Constantine, L., Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design, Prentice-Hall, 1979.

[20] Yu, E., Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

[21] Yu, E., “Modeling Organizations for Information
Systems Requirements Engineering”, Proceedings of
the First IEEE International Symposium on
Requirements Engineering, San Jose, USA, January
1993, pp. 34-41.

[22] Yu, E. and Mylopoulos, J., “Understanding 'Why' in
Software Process Modeling, Analysis and Design”,
Proceedings of the Sixteenth International Conference
on Software Engineering, Sorrento, Italy, May 1994,
pp. 159-168.

[23] Yu, E. and Mylopoulos, J., “Using Goals, Rules, and
Methods to Support Reasoning in Business Process
Reengineering”, International Journal of Intelligent
Systems in Accounting, Finance and Management, 5(1),
January 1996, pp. 1-13.

