
 Patterns of Intelligent and Mobile Agents
Elizabeth A.Kendall, P.V. Murali Krishna, Chirag V. Pathak, C.B. Suresh

Computer Systems Engineering, Royal Melbourne Institute Of Technology
City Campus, GPO Box 2476V, Melbourne, VIC 3001 AUSTRALIA

email : kendall@rmit.edu.au
1. ABSTRACT
Agent systems must have a strong
foundation; one approach that has been
successfully applied to other kinds of
software is patterns. This paper presents a
collection of patterns for agents.
2. MOTIVATION
Almost all agent development to date has been “home
grown” [4] and done from scratch, independently, by
each development team. This has led to the following
problems:
• Lack of an agreed definition: Agents built by

different teams have different capabilities.
• Duplication of effort: There has been little reuse of

agent architectures, designs, or components.
• Inability to satisfy industrial strength

requirements: Agents must integrate with existing
software and computer infrastructure. They must also
address security and scaling concerns.

Agents are complex and ambitious software systems that
will be entrusted with critical applications. As such,
agent based systems must be engineered with valid
software engineering principles and not constructed in an
ad hoc fashion.

Agent systems must have a strong foundation based on
masterful software patterns. Software patterns arose out
of Alexander’s [2] work in architecture and urban
planning. Many urban plans and architectures are
grandiose and ill-fated. Overly ambitious agent based
systems built in an ad hoc fashion risk the same fate.
They may never be built, or, due to their fragile nature,
they may be built and either never used or used once and
then abandoned. A software pattern is a recurring
problem and solution; it may address conceptual,
architectural or design problems.

A pattern is described in a set format to ease its
dissemination. The format states the problem addressed
by the pattern and the forces acting on it. There is also a
context that must be present for the pattern to be valid, a

statement of the solution, and any known uses. The
following sections summarize some key patterns of agent
based systems; for brevity, many of the patterns are
presented in an abbreviated “patlet” form. When known
uses are not listed for an individual pattern, it means that
the pattern has arisen from the JAFIMA activity. The
patterns presented in this paper represent progress toward
a pattern language or living methodology for intelligent
and mobile agents.

3. CONTEXT
An agent [23] is i) autonomous - acts without human
intervention, ii) social - collaborates with other agents via
structured messages, iii) reactive - responds to
environmental changes, and iv) pro- active - acts to
achieve goals. It is the combination of these behaviors
that distinguishes an agent from objects, actors, and
robots. Agents review models of the world and
themselves to select a capability or plan to address the
present situation. Once invoked, each plan executes in its
own thread, and several of these may execute
concurrently. Agents negotiate with each other; agent
collaboration across disciplines may require that
semantics can be exchanged.

4. THE LAYERED AGENT PATTERN
4.1 Problem:
How can agent behavior be best organized and structured
into software? What software architecture best supports
the behavior of agents ?

4.2 Forces:
• An agent system is complex and spans several levels

of abstraction.
• There are dependencies between neighboring levels,

with two way information flow.
• The software architecture must encompass all aspects

of agency.
• The architecture must be able to address simple and

sophisticated agent behavior.

4.3 Solution:
Agents should be decomposed into layers [6] because i)
higher level or more sophisticated behavior depends on
lower level capabilities, ii) layers only depend on their
neighbors, and iii) there is two way information flow
between neighboring layers. The layers can be identified
from the model of the agent’s real world; Fig. 1
structures an agent into seven layers. The exact number
of layers may vary.

Proceeding from the bottom up in Figure 1, an agent’s
beliefs are based on sensory input. When presented with
a problem, an agent reasons to determine what to do.
When the agent decides on an action, it can carry it out

directly, but an action that involves other agents requires
collaboration. Once the approach to collaboration is
determined, the actual message is formulated at
translation and delivered to distant societies by mobility.

MOBILITY

TRANSLATION

COLLABORATION

ACTIONS

REASONING

BELIEFS

SENSORY

 brings in messages from

Figure 1: The Layered Agent Architectural Pattern

Top- down, distant messages arrive at mobility. An
incoming message is translated into the agent’s semantics.
The collaboration layer determines whether or not the
agent should process a message. If the message should be
processed, it is passed on to actions. When an action is
selected for processing, it is passed to the reasoning layer,
if necessary. Once a plan placed in the actions layer, it
does not require the services of any lower layers, but it
utilize higher ones.

4.4 Variations:
The Layered Agent is a general architecture that
addresses simple and sophisticated agents. All agents do
not have the seven layers. A static agent isn’t mobile, so
layer 7 is not present in these agents. A translation layer
is only needed for multidisciplinary agent societies
(which are presently rare), and many agent societies have
one collaboration layer for its agents to share. If an
agent’s beliefs are simple and do not change, the agent
doesn’t need sensors; mobility and collaboration may be
combined if an agent society is dispersed over several
platforms. Further, aspects of the Layered Agent pattern
may be conceptual rather than architectural if, due to
performance issues, direct connections between non-
adjacent layers are required.

4.5 Known Uses:
There are many layered agent architectures; early ones
did not require mobility or translation. GRATE [23]
features domain, cooperation, and control layers,
equivalent to sensory, beliefs, reasoning, action and
collaboration. TouringMachines [9] consist of
perception, action and control. InterRRaP [18] has four
layers: cooperation, plan-based, behaviour-based and
world interface.

5. SENSORY, BELIEFS, REASONING
5.1 Context and Overview
The Sensory and Beliefs layers maintain the agent’s
models of its environment and itself. Based on these
models, the agent determines what to do next in
Reasoning. There are four conceptual patterns that have
evolved for these three lowest levels of agent capabilities;
these patterns differ according to the presence or absence
of three factors: a symbolic model, a knowledge based,
prescriptive solution, and interaction with a human user.
Table 1 summarizes these four patterns:

Problem Symbolic Prescribed Human Int. Solution Pattern
How can an agent
simply react to a
stimulus or a
request ?

- - - Utilize a
stimulus/response type of
behavior.

Reactive
Agent

How can an agent
select a plan to
achieve a goal ?

X X - The agent reasons about a
symbolic model to select a
capability.

Deliberative
Agent

How can an agent
address problems
when no solution is
known beforehand
?

X - - Represent the problem’s
constraints, and let the
agent opportunistically
solve the problem.

Opportunistic
Agent

How can an agent
adapt to the needs
of a human user ?

- - X Provide the agent with
parametric user models
and sensors to monitor the
user.

Interface
Agent

Table 1: Sensory, Beliefs, and Reasoning Patterns

5.2 The Reactive Agent
5.2.1 Problem
How can an agent react to an environmental stimulus or a
request from another agent when there is no symbolic
representation and no known solution ?

5.2.2 Forces
• An agent needs to be able to respond to a stimulus or a

request.
• There may not be a symbolic representation for an

application.

• An application may not have a knowledge based,
prescriptive solution.

5.2.3 Solution
A Reactive Agent does not have any internal symbolic
models of their environment; it acts using a stimulus/
response type of behavior. It gathers sensory input, but
its Belief and Reasoning layers are reduced to a set of
situated action rules. A single Reactive Agent is not
proactive, but a society of these agents can exhibit such
behavior. A Reactive Agent is known as a weak agent.
5.2.4 Known Uses
Reactive theory was originated by Brooks [5] and Agre
and Chapman [1]; reactive agents have been widely used
[21]. They have been used to simulate the behavior of ant
societies and to utilize such societies for search and
optimization [8].

5.3 The Deliberative Agent
5.3.1 Problem
How can an agent select a capability to proactively
achieve a goal within a given problem context ?
5.3.2 Forces
• An agent should be capable of intelligent behavior,

selecting a plan to achieve a goal.
• For some applications, a symbolic representation or

model of the environment can be specified.
• Some problems have a knowledge based solution that

can be identified by experts.
5.3.3 Solution
A Deliberative Agent possesses an internal symbolic
reasoning model of their environment and themselves
within their Beliefs and Reasoning layers. They select a
plan or capability that can achieve their goal in the
context of the present situation. A Deliberative Agent is
a strong agent, and a sample use involves a society of
agents with knowledge of particular business processes.
5.3.4 Known Uses
Deliberative Agents were originated by Cohen [7] and
Georgeff [11], and they have been widely used by
Jennings [14] and others [20].

5.4 The Opportunistic Agent
5.4.1 Problem
How can an agent opportunistically address problems,
identifying an approach that is not known appriori ?
5.4.2 Forces
• A problem can have a symbolic representation but not

have a knowledge based, prescriptive solution.
• For these applications, only constraints may be

known; these indicate what can not be done.
• An agent needs to be able to avoid known constraints

but still move toward a solution.

5.4.3 Solution
An Opportunistic Agent does not attempt to have
prescriptive plans to address a problem. Rather, their
Beliefs consist of constraints found in the problem, and
their Reasoning or capabilities accomplish constraint
propagation and satisfaction. Problems with a symbolic
representation but with no known appriori, prescriptive
solution can be solved this way.
5.4.4 Known Uses
Fox [19, 21] has pioneered this approach and used it
successfully in distributed scheduling and resource
allocation; these problems typically have no knowledge
based approach.

5.5 The Interface Agent
5.5.1 Problem
How can an agent adapt to the needs of a human user ?
5.5.2 Forces
• Some agents work directly with a human user,

assisting them in using an application or in finding
information or services.

• The needs of human users are variable, but there are
certain categories of users and established patterns of
user behavior.

5.5.3 Solution
An Interface Agent collaborates with a human computer
user. Typically, only one agent is found, although a full
agent society may be used. This kind of agent observes
the user and adapts to their needs by identifying what kind
of user they are and their patterns of computer useage.
An Interface Agent’s beliefs are typically parametric user
models, and their sensors monitor the user’s actions.
5.5.4 Known Uses
Maes [17] has led the development of Interface Agents,
also called Personal Assistants [20].

6. THE ACTION LAYER
6.1 Context and Overview
The Action layer carries out the selected plan. There is a
need for the layer to be able to schedule and prioritize. It
makes use of the patterns summarized in Table 2.

6.2 The Intention
6.2.1 Problem
How can an agent commit to performing reactive and
proactive behavior ?
6.2.2 Forces
• Behavior executes with the beliefs that the agent had

when it (the behavior) was initiated.
• An agent may have many activities or plans executing

concurrently.
• An agent’s plan impacts the environment through the

effectors; it calls on collaboration when it needs to
involve other agents.

Problem: Solution: Pattern:
How can an agent commit to behavior ? An instantiated plan is an Intention that executes in its own

thread of control.
Intention

How can a plan or request be
encapsulated as an object ?

Implement a plan interface for a high level operation with
different subclasses.

Plan as
Command

How can different plans, intentions and Provide an interface for creating families of related objects Plan and

requests be instantiated at runtime ? without specifying their concrete classes. Or, let subclasses
determine which class to instantiate.

Intention
Factory

How do you manage different threads of
control for agent actions and migrations?

Decouple method execution from method invocation to
simplify synchronized access to a shared resource by
methods invoked in different threads of control.

Adaptable
Active
Object

How can priority handling and other
forms of behavior be added to an
intention dynamically ?

Decorate or add behavior to the run () method of the
intention thread, where a plan executes.

Prioritizer

How can messages from other agents be
passed to the agent’s reasoning capability
?

Decouple reasoning execution from invocation to simplify
synchronized access to the agent’s shared reasoning
resource.

Message
Forwarder

Table 2: Patterns of the Action Layer
6.2.3 Solution
An Intention represents the commitment of an agent to
being in a state where it believes it is about to actually
perform a set of actions [7]. An instantiated plan is an
Intention that executes in its own thread of control; it
executes until completion, unless it is suspended awaiting
a reply. A plan’s goals are stated in invocation
conditions; additional criteria, such as environmental
situations or stimuli, are in context conditions.
Conditions and plans reside in the Reasoning layer
(Figure 2). If the conditions are satisfied, the plan is
instantiated and executed by an Intention in the Actions
layer. All variables and expressions in the plan are
evaluated, based on the agent’s beliefs, at the time of
instantiation, when the agent commits to performing the
plan. An Intention can be specialized to a
CollaborationIntention and a ReactionIntention (Figures 4
and 5). Once an Intention is created, it does not require
the services of any of the lower layers; collaboration can
involve higher layers.
6.2.4 Known Uses
Intentions were first introduced by Georgeff and Lansky
[11], as part of their Belief- Desires- Intentions agent
architecture. Intentions provide the proactive and
reactive behavior of many strong and weak agent systems,
including [7] and [14].

6.3 The Prioritizer
6.3.1 Problem
How can priority handling and other forms of behavior be
added to an intention dynamically ?
6.3.2 Forces
• There are two main Intention subclasses: Reaction and

Collaboration. Additional refinement is needed,
especially for priority handling.

• Further subclassification will result in duplication, as
both Reaction and Collaboration Intentions can
feature the same priority handling.

• Priority handling should be attached to an object, and
not a class, because the type of IntentionThread is not
known before run time.

6.3.3 Solution
Additional responsibilities can be attached to an
Intention dynamically using Decorators [10]. The
Prioritizer pattern can be used to decorate the run()
method of the IntentionThread, where action plans are
executed. Additional priority handling can be added
dynamically to it by using the decorator object.

6.4 Adaptable Active Object
6.4.1 Problem
How do you manage different threads of control for agent
actions ? How can the agent’s actions conform to
different environments ?
6.4.2 Forces
• Agent intentions act concurrently in different threads

of control.
Collaboration

Actions

Reasoning

Collaboration
Intention Reaction

Intention
EffectorsThread

Thread

Plan Plan Condition
Condition

All items
indicated
are
objects
or
patterns

Figure 2: Intentions in the Action Layer, Plans and Conditions in the Reasoning Layer
• An object in the environment may need to be affected

or impacted by the agent in a sequential manner.
• Agents may act in various environments, with

different effectors.
• The Active Object pattern uses MethodObjects, but it

is not practical to represent each method as a separate

class and instantiate it at runtime because of the
variability in effectors.

6.4.3 Solution
The Active Object pattern [17] decouples method
exectuion from method invocation in order to simplify
synchronised access to a shared resource. ClientInterface,

Scheduler and ActivationQueue form the Active Object
pattern, along with Method Object; however, new Method
Object classes would be necessary for each method in
each environment. The solution to this problem is
provided by the Adapter pattern [10] and the class
ConcreteAdapter. The user has to provide the
ConcreteAdapter which marshalls the method call when a
method is invoked and later on demarshalls the method
object when it is dispatched.

7. THE COLLABORATION LAYER
7.1 Context and Overview
In the Collaboration layer, the agent determines its
approach to cooperating or working with other agents.
Conceptual, architectural, and design patterns are utilized
for messaging (Conversation), centralization (Facilitator),
decentralization (Agent Proxy), and social policies
(Protocol, Emergent Society); they are summarized in
Table 3:

7.2 The Conversation
7.2.1 Problem
How can structured messaging between agents occur in
sequences rather than in isolated acts ?
7.2.2 Forces
• Successive messages between agents may be related.
• Endless loops of messages need to be avoided.
7.2.3 Solution
A Conversation [4] is a sequence of messages between
two agents, taking place over a period of time. There are
termination conditions for any given occurrence, and
Conversations may give rise to other Conversations. In
some agent societies, messages between agents may occur
only within the context of conversations; isolated
messages are not supported.
7.2.4 Known Uses
AgenTalk [20] supports Conversations between agents, as
does KAoS [4].

7.3 Centralized Collaboration: Facilitator
7.3.1 Problem
How is an agent able to freely collaborate with other
agents without direct knowledge of their existence?
7.3.2 Forces
• Each agent may not have knowledge of every other

agent
• Proliferating interconnections and dependencies

increase complexity, complicate maintenance, and
reduce reusability

7.3.3 Solution
Each Mediator [10] is associated with a multitude of
Colleagues, objects that rely on it for all communication.
The Facilitator is based on the Mediator, and it provides a
gateway or clearinghouse for agent collaboration [5].
With a Facilitator, agents do not have to have direct
knowledge of one another, and agents within the same
society share a single Collaboration layer.
7.3.4 Known Uses
ARCHON [14], PACT [22], and other agent applications
have utilized Facilitators, refering to this approach as a
federated agent architecture [20].

7.4 Decentralized Collaboration: Proxy
7.4.1 Problem:
How can agents collaborate directly with one another?
7.4.2 Forces:
• An agent may not have a Facilitator to represent it.

Then, each agent must communicate directly with
other agents, support different interfaces, and maintain
collaboration knowledge.

• Agents collaborate with each other via structured
messages; there are many agent dialects.

• Bottlenecks encountered in a centralized architecture
need to be avoided.

• An agent must be able to recover Conversations that it
is involved in.

Problem: Solution: Pattern:
How can messaging between agents
occur in sequences ?

Agent messaging can occur within a context established by
previous messages.

Conversation

How can agents collaborate without
direct knowledge of each other ?

Encapsulate agent interaction in a Facilitator that coordinates
agents within a given society.

Facilitator

 How can agents collaborate directly
with one another ?

Provide a Proxy to control access to the agent and to
provide distinct interfaces. Store and retrieve conversations.

Agent Proxy

How can agent collaboration be
prescribed ?

Establish conversation policies that explicitly characterize
communication sequences.

Protocol

How can agents cooperate to achieve
goals when there is no established
protocol ?

Though stimulus/response behavior, each agent can stimulate
its neighbors. Complex patterns of behavior emerge when
viewed globally.

Emergent
Society

Table 3: Patterns of the Collaboration Layer
7.4.3 Solution:
A Proxy [10] controls access to the Real Subject; it can
also provide a distinct interface. Each Agent Proxy class
would subscribe to a certain interface. An agent must be
able to determine its behavior based upon the state of the
conversation it is involved in. One agent may be engaged
in several conversations simultaneously, requiring context
switching. The Memento pattern [10] externalizes an
object’s state so that the state can be restored later. Agent

Proxies that support conversations must store and recover
their state, delegating this to a Memento.

7.5 Protocol
7.5.1 Problem
How can agent collaborative behavior be prescribed to
follow certain policies ?
7.5.2 Forces
• Agents need to be able to follow certain conventions

or policies for collaboration.

7.5.3 Solution
Conversation policies [4] or Protocols prescriptively
encode regularities that characterize communication
sequences between users of a language. Agent Protocols
explicitly define what sequences of which messages are
permissible between a given set of participating agents.
7.5.4 Known Uses
KAoS [4] and AgenTalk [20] stipulate several protocols
or conversation policies, including contract net, inform,
offer, and request.

7.6 The Emergent Society
7.6.1 Problem
How can agents collaborate without known protocols ?
How can Reactive Agents collaborate ?
7.6.2 Forces
• There may not be known agent protocols for a given

application.
• Reactive Agents need to be able to collaborate and

carry out proactive behavior together.
• Reactive Agents simply react to stimuli and are not

capable of any knowledge based behavior.
7.6.3 Solution
Each individual agent, even a Reactive Agent, can,
through their own actions, provide a stimulus to a
neighboring agent. As each individual agent reacts to
stimuli provided by their neighbors, the net result is the
Emergent Society. Complex patterns of behavior can
emerge from these interactions when the agent society is
viewed globally [20]. No model exists for this behavior,
although economic and game theory have been applied
successfully. Reactive Agents and agents from Emergent
Societies have reduced Collaboration layers; they merely
provide stimuli to neighboring agents.

7.6.4 Known Uses
All Reactive Agent systems [8] rely on the Emergent
Society for collaboration [20].

8. THE MOBILITY LAYER
8.1 Context and Overview
The Mobility layer must support real and virtual
migration. It consists of a region shared across several
agents and agent societies, and a region that belongs to an
individual agent. It is made up of the architectural,
conceptual, and design patterns in Table 4.

8.2 The Clone
8.2.1 Problem
How can an agent relocate itself and become resident in
distant societies ?
8.2.2 Forces
• An agent must be able to bring its capabilities,

facilities, and state with it to a new society.
• The agent must be able to travel to a remote location

and interact, negotiate, and exchange information in
the new society.

8.2.3 Solution
Make a copy or clone of the original agent, and place the
new agent in the distant society. The clone must have all
of the capabilities and facilities of the original agent,
along with any state information.
8.2.4 Known Uses
The original use of agent self replication was cooperating
mobile WAVE agents [3]. More recent approaches that
utilize cloning include IBM Aglets [12], and the Agent
Transfer Protocol (ATP) [13]. An aglet is a Java object
that can move from one host on the Internet to another.

 Problem: Solution: Pattern:
How can an agent become resident in a
distant society ?

Replicate the agent, providing sensors and effectors for the
new environment.

Clone

How can an agent be cloned in a
distant society ?

Define operations for cloning in the destination society
without changing the agent class. Separate the construction
of the agent from its representation.

Remote
Configurator

How is an agent able to gain access to
resources and other agents outside its
society transparently ?

Location transparency is provided by a Broker. Proxies must
be employed for the client and server to be able to respond to
the interface of the Broker.

Broker

 How can an agent migrate virtually or
in reality, dynamically ?

 Provide a Thread Manager and a Handler Creator, and allow
the subclasses for virtual and actual migration to address
thread instantiation.

Migration
Thread
Factory

Table 4: Patterns of the Mobility Layer
When the aglet moves, it takes along its program code as
well as its state (data). Bradshaw [4] refers to agent
cloning as teleportation.

8.3 The Remote Configurator
8.3.1 Problem
How can an agent be appropriately configured for various
destination societies ?
8.3.2 Forces
• For actual migration, an agent has to be cloned in the

destination society. Configuration details are needed
for cloning, such as the plan library and the beliefs.

• The configuration details and their format depend on
the given society’s requirements. Thus each agent
has to support various kinds of configuration access
operations.

• There is a need to represent the configuration
accessing functions separately from the agent
structure; otherwise each agent has to support many
distinct and unrelated operations in object structure.

• Each agent has a similar object structure as all of them
are created by the same framework

8.3.3 Solution
The Visitor pattern [10] has been utilized to design the
RemoteConfigurator. The ActualMigration handler
transfers the Visitor from a distant society to the
migrating agent. The ClientProxy in the Mobility layer
instantiates the Visitor; this object is passed to the
corresponding layers. As the structure of the layers is
fixed, the Visitor can gather the configuration information
by using the public interface methods. Thus there is no
need to define separate methods for transferring the
configuration details to another society. Moreover,
services can be added by adding new Visitor subclasses,
with no change in the agent structure.

8.4 The Broker
8.4.1 Problem:
How is an agent able to gain access to resources and
agents outside its society without actually migrating ?
8.4.2 Forces:
• Agents must be able to access each other and other

resources across platforms and societies without
having to actually migrate.

• Making every agent responsible for access, security
and interactions for a society is complex.

8.4.3 Solution:
The Broker pattern [6] provides for location transparency
for objects that wish to be clients and servers of one
another. With this, the agent (or its Agent Proxy) can
become a virtual member of open societies managed by
the Brokers. Bridges between societies are also
supported. Agents who wish to be clients and servers for
one another must employ a Broker who is responsible for
locating a server once a client has requested its services.
Both the client and the server must register with the
Broker. The Broker pattern provides virtual agent
migration.
8.4.4 Known Uses:
Bradshaw refers to a Broker as a Matchmaker [4].

9. CONFIGURATION, INTEGRATION
9.1 Context and Overview
The process of creating and configuring an agent consists
of creating the various layers and then integrating them.
The design for creating the object structure of individual
layers and integrating them uses the following patterns:
Agent Builder and Layer Linker.

9.2 The Agent Builder
9.2.1 Problem
How can the construction of the agent be separated from
its representation so that the same construction process
can create different representations?
9.2.2 Forces
• Each agent has fundamentally the same structure.
• The creation process should be isolated so that the

same process can be used for different structures.
9.2.3 Solution
The AgentCreator collects the user configuration details
and passes it to the Creator object. According to the
Builder pattern [10], Creator is a Director. The

AgentCreator instantiates the Creator with seven
Configurator objects, and the Configurator objects are the
builder objects which actually create the object structure
of each individual layer.

9.3 Layer Linker
9.3.1 Problem :
How can the various individual layers of the agent be
integrated together ?
9.3.2 Forces
It is necessary to provide an interface to each layer but
also to decouple the layers as much as possible.
9.3.3 Solution
Each Configurator creates the Facade object and other
objects which form the structure configured by an agent
application developer. Use of the Facade pattern [10]
provides both a simple interface and decoupling between
the layers. The Facade object implements the unified
interface for the layer, promoting layer independence and
portability. The Configurator registers them in the
configuration repository object BlayerConfigInfo. These
repositories are used to get the Facade object reference
during the integration phase executed by the Creator
object’s integrate().

10. CONCLUSIONS
This paper has presented various patterns of use to agent
based systems. Many have been used to design,
implement and document the JAFIMA system at RMIT.
Additional patterns, in particular those pertaining to
security in the mobility layer, are under consideration.
All of this work is aimed at providing a strong software
engineering foundation for agent based systems.

11. REFERENCES
[1] Agre, P. E., and D. Chapman, “Pengi: An

Implementation of a Theory of Activity,” Proceedings
of the 6th National Conference of Artificial
Intelligence, 1987.

[2] Alexander C., The Timeless Way of Building, New
York: Oxford University Press, 1979.

[3] Al- Jabir, S., Sapaty, P. S., and Underhill, M.,
“Integration of Heterogeneous Databases Using
WAVE Cooperative Agents,” Proceedings of the First
International Conference on the Practical Application
of Multi Agent Systems, London, 1996.

[4] Bradshaw, J. M., S. Dutfield, P. Benoit, J. D.
Woolley, “KAoS: Toward an Industrial- Strength
Open Distributed Agent Architecture,” J.M. Bradshaw
(Ed.), Software Agents, AAAI/ MIT Press, 1997.

[5] Brooks, R.A., "A Robust Layered Control System for
Mobile Robot", IEEE Journal of Robotics and
Automation, 1986. RA-2(1).

[6] Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture: A System of Patterns. Wiley and Sons.
1996:

[7] Cohen, P. R., and Levesque, H. J., “Intention is
Choice with Commitment,” Artificial Intelligence, 42
(3), 1990.

