
» 1999 John Mylopoulos Requirements-Driven Software Development -- 1

Requirements-DrivenRequirements-Driven
Software DevelopmentSoftware Development

John John MylopoulosMylopoulos
University of TorontoUniversity of Toronto

Catholic University of Catholic University of LouvainLouvain, ,
October 26, 1999October 26, 1999

» 1999 John Mylopoulos Requirements-Driven Software Development -- 2

AbstractAbstract
Software Development has traditionally been implementation-driven in the

sense that the programming paradigm of the day (structured programming,
object-oriented programming) dictated the design and requirements analysis
techniques widely used (structured analysis and design, object-oriented
analysis and design respectively).

We speculate on what a software development methodology might look like if it
was founded on early requirements analysis concepts and techniques. For
our purposes, we adopt i* [Yu94] as modeling framework. i* supports
concepts such as those of actor, agent, position and role, also resource, task
and goal dependencies among actors. The presentation suggests elements
of late requirements analysis, architectural and detailed design through
examples, and notes a number of areas where such a methodology might
break new ground with respect to traditional software development
techniques, as well as agent-oriented programming.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 3

Software Development TechniquesSoftware Development Techniques
? Software development techniques offer concepts, tools and methods

for building software systems.
? Traditionally, such techniques have been implementation-driven.
? This means that the programming paradigm of the day dictated the

design and requirements paradigms.
? So, structured programming led to structured design and structured

(requirements) analysis, while object-oriented programming led to
object-oriented design and analysis.

? Aligning the paradigms used for requirements, design and
implementation makes perfect sense. But why start with
implementation?

What would What would requirementsrequirements-driven-driven
software development look like??software development look like??

» 1999 John Mylopoulos Requirements-Driven Software Development -- 4

Early Early vsvs Late Requirements Late Requirements

? We need to distinguish between early phases of requirements
analysis, when the analyst is trying to understand an organizational
setting, from late phases when the analyst formulates a solution

OrganizationOrganization

SystemSystem

Organizational model

Contractual requirements

RequirementsRequirements

» 1999 John Mylopoulos Requirements-Driven Software Development -- 5

Early Early vs vs Late RequirementsLate Requirements
? Early requirements amount to the definition of a search space

(“scoping”) and a search among alternatives within that space.
? Late requirements amount to refining, disambiguating and

completing the description of the chosen alternative.

?? StructuredStructured and object-oriented analysesobject-oriented analyses are OK for late
requirements.

?? Goal-oriented analysisGoal-oriented analysis is more appropriate for early requirements
analysis because it focuses on the definition and exploration of a
space of alternatives

» 1999 John Mylopoulos Requirements-Driven Software Development -- 6

Goal-Oriented AnalysisGoal-Oriented Analysis
? Goal-oriented analysis focuses on early requirements phases, when

alternatives are being explored and evaluated.
? During goal-oriented analysis, we start with initial goals such as

“Higher profits”, “Faster time-to-market”, “Schedule meeting”, “Easily
maintainable system”, “Good performance” etc. and keep
decomposing them until we have reduced them to alternative
collections of design decisions each of which can satisfy the initial
goals.

? Initial goals may be organization- or system-oriented; they may also
be conflicting, so the analysis must facilitate the discovery of tradeoffs
and the search of the full space of alternatives, rather than a subset.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 7

Goal-Oriented Analysis is not New!Goal-Oriented Analysis is not New!
? Specification of composite systems -- [Feather87]
? Goal-oriented elaboration of requirements -- ALBERT [Dubois94]
? Goal-oriented requirements acquisition -- KAOS [Dardenne93]
? Knowledge representation and reasoning in the design of

composite systems -- Critter [Fickas92]
? Goal-oriented requirements analysis -- Potts, Anton
? i* and Non-Functional Requirements framework -- Yu, Chung
? NATURE -- [Jarke93]
? F3 -- [Bubenko93]

...and many others...

» 1999 John Mylopoulos Requirements-Driven Software Development -- 8

The i* FrameworkThe i* Framework

Customer Insurance
Company

Car
repaired

Customer
happy

Settle
claim

Maximize
profits

Goals are relative, fulfillment is collaborativeGoals are relative, fulfillment is collaborative

» 1999 John Mylopoulos Requirements-Driven Software Development -- 9

Means-Ends AnalysisMeans-Ends Analysis

Settle
claim

Verify
policy

Claims
Handling
ClaimsClaims

HandlingHandling

Handle
claim

Settlement
cost?

Prepare
offer

Whose
fault?

Get accident
info

Determine
fault

Police

Witness
Doctor

Appraiser

Determine
cost to settle

Accident
info

Sufficient
treatment Injury

info
Appraise
damage

Minimal
repairs

DDD D

D

ActorActor
boundaryboundary

Insurance
Company

» 1999 John Mylopoulos Requirements-Driven Software Development -- 10

Strategic Dependency ModelsStrategic Dependency Models

Body
Shop

Owner

Appraiser

Insurance
Company

Car
repaired

Pay
 repairs

Maximize
estimate

Continue
business

D D

D D

D D

DD

D D

D

D

D

D

D

D

D

D

Claims
payout

Premium
payment

D D

Customer
happy

Repairs
covered

D

D

Appraise
damages Minimize

repairs

Secure
employment

Fair repair
appraisal

GoalGoal

TaskTask

ResourceResource

SoftgoalSoftgoal

» 1999 John Mylopoulos Requirements-Driven Software Development -- 11

Functional AlternativesFunctional Alternatives
Claim be
settled

Verify
policy

Handle
claim centrally

Prepare
offer

Agent
handles claim

Body Shop
handles claim

alternative
one

alternativealternative
oneone alternative

two
alternativealternative

twotwo alternative
three

alternativealternative
threethree

» 1999 John Mylopoulos Requirements-Driven Software Development -- 12

Non-Functional RationaleNon-Functional Rationale
for Choosing Among Alternativesfor Choosing Among Alternatives

Claim be
settled

alternative
one

alternativealternative
oneone

alternative
two

alternativealternative
twotwo

alternative
three

alternativealternative
threethree

Profitable Happy
Customers

Low costs

Low litigation risk Fast claims
processing++

++
++

++
++

++--
++

++-- ++++
--

[Chung93]

» 1999 John Mylopoulos Requirements-Driven Software Development -- 13

Where Are We??Where Are We??

Early

Early

require
ments

require
ments Late

Late

require
ments

require
ments

Archite
ctural

Archite
ctural

design

design
Detaile

d

Detaile
d

design

design

Im
plementatio

n

Im
plementatio

n

i*i*

KAOSKAOS

ZZ

UMLUML

» 1999 John Mylopoulos Requirements-Driven Software Development -- 14

Where Do We Want To Be??Where Do We Want To Be??

Early

Early

require
ments

require
ments Late

Late

require
ments

require
ments

Archite
ctural

Archite
ctural

design

design
Detaile

d

Detaile
d

design

design

Im
plementatio

n

Im
plementatio

n

i*i*
Agent-oriented Agent-oriented
programmingprogramming

Guiding Principle: Push concepts as far down asGuiding Principle: Push concepts as far down as
possible (…and see what happens!)possible (…and see what happens!)

» 1999 John Mylopoulos Requirements-Driven Software Development -- 15

Late Requirements with i*Late Requirements with i*
? The system is now represented as one or more actors which

participate in a strategic dependency model.
? Resource, task and softgoal dependencies correspond naturally to

functional and non-functional requirements.
? Leaving (some) goal dependencies between software system actors

and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements, and quality softgoals are
either operationalized or “metricized”.

? Leaving goal dependencies with system actors as dependees makes
sense whenever there is a foreseeable need for flexibility in the
performance of a task on the part of the system.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 16

Insurance
company

Tracking
actor

Claims
manager

Reporting
actor

System

D
D

D

Information

D
Information

The System as a Cluster of ActorsThe System as a Cluster of Actors
Troubleshooting

done DD

» 1999 John Mylopoulos Requirements-Driven Software Development -- 17

Removing Goals Early OnRemoving Goals Early On
Leads to Fragile Software Systems!Leads to Fragile Software Systems!
? Consider a goal laid out during early requirements “communicate(x,y)”.
? Conventionally, such goals are “operationalized” during late

requirements into “constraints” for the system-to-be, such as having a
user interface, also supporting a dialogue during which information x is
communicated to person y.

? Such “operationalizations” lead to fragile systems; …what if y doesn’t
engage in dialogue with the system?… y doesn’t understand the
message?… the system crashes during the dialogue?… etc.

Reporting
actor

D D

Customer

Communicate(x)

» 1999 John Mylopoulos Requirements-Driven Software Development -- 18

Leaving SystemLeaving System
Goals Enhances System FlexibilityGoals Enhances System Flexibility
? Leaving the communication goal as part of the late requirements

spec, or even the design means that the system-to-be will be
designed with several alternative strategies for satisfying the goal,
including getting help from outside.

? The goal may be dealt with during architectural design, by including
a variety of user interface modes, or it may be dealt with at run-time
by having a “communication” agent which specializes in
communicating with people; such an agent may or may not have a
planning capability.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 19

? Now we focus on actors that are part of the system.
? Add “helper” actors, to help existing (system) actors meet their

obligations. This leads to conventional hierarchical architectures,
? Add actors that are delegated obligations; here one obligation (e.g.,

delivering some resource) is broken down to several obligations.
? Decide whether actors will be assigned a (software) agent, a

position or a role. This assignment determines how tighly coupled
an actor is to the agent that fulfills its obligations.

Architectural Design with i*Architectural Design with i*

» 1999 John Mylopoulos Requirements-Driven Software Development -- 20

Architectural Design with i*Architectural Design with i*

Tracking
actor

Claims
manager

Reporting
actor

D

D

D

Information

D
Information

Interface
manager

D

Clerk

D

D

Transformer

DInformation

D
DInformation’

D

» 1999 John Mylopoulos Requirements-Driven Software Development -- 21

More Architectural DesignMore Architectural Design
? Agent infrastructure is defined, including communication, and

negotiation protocols, also planning and perception capabilities.
? Infrastructure actors are introduced, such as

• Hiring actors, i.e., ones for filling positions;
• Headhunters, i.e., actors who look for agents to fill positions at

run time;
• Dependency managers who supervise dependencies and

determine whether they remain viable.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 22

Detailed DesignDetailed Design
? The skills of all actors and their input/output data are refined using

some specification technique.
? As with detailed design for other techniques, the idea here is to

specify completely the behaviour and I/O of each actor.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 23

Implementing Agent-Oriented SoftwareImplementing Agent-Oriented Software
? Agents are implemented using some agent-oriented implementation

platform. Such platforms offer a communication protocol, possibly a
negotiation protocol, perhaps some generic planning facility, a generic
agent architecture, knowledge base management facilities, and more
[Wickler99].

? If there are dangling goal dependencies, I.e., goal dependencies for
which no one has undertaken the responsibility to fulfill, build into the
responsible agent skills for meeting these goals.
E.g., a communication goal might be met through repeated email,

asking a third party to communicate etc.
? If there are dangling softgoal dependencies, build into the responsible

agent skills for addressing such softgoals.
E.g., a security agent would have a number of ways of meeting

security goals

» 1999 John Mylopoulos Requirements-Driven Software Development -- 24

A Multi-Perspective View of SoftwareA Multi-Perspective View of Software
? We are working towards an agent-oriented software development

methodology, founded on the key concepts of actor, goal, (goal,
task, resource) dependency, etc.

? Software is viewed from four perspectives:

•• OrganizationalOrganizational -- who are the relevant actors, what do they
want? What are their obligations? …capabilities??

•• IntentionalIntentional -- what are the relevant goals and how they
interrelate? How are they being met? … by whom??

•• Process-orientedProcess-oriented -- what are the relevant business/computer
processes? Who is responsible for what?

•• Object-orientedObject-oriented -- relevant objects
? We have focused on organizational and intentional perspectives

because they are novel. For the others we propose to use UML-
type modelling techniques.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 25

From Diagrams to Formal SpecsFrom Diagrams to Formal Specs
? Diagrams are not complete nor formal as software specifications.
? We propose to offer three levels of software modelling:

• Diagrams, as discussed
• Partially formal annotations, to complement diagrammatic

notations, e.g., annotations maty specify that some obligation
takes precedence over another

• Formal specs, using some form of logic, which are amenable to
analysis

? Diagrams are great for communication, partially formal annotations
can help in defining some forms of analysis, formal specs can serve
as foundation for a range of analysis techniques, including proofs of
correctness, process simulation, goal analysis etc.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 26

TroposTropos
? A research project whose aim is to develop a software development

methodology for agent-oriented systems.
? The list of participants includes Eric Yu (University of Toronto), Yves

Lesperance (York University), also Alex Borgida (Rutgers), Matthias
Jarke and Gerhard Lakemeyer (Technical University of Aachen)

? The concepts of i* will be embedded in a modeling framework which
also supports generalization, aggregation, classification and
contexts. Some elements of UML will be adopted as well for
modeling object and process perspectives.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 27

ConclusionsConclusions
From a Software Engineering perspective, this proposal, however

speculative, has advantages:
? Leads to more flexible, robust and open software architectures;
? Offers a coherent framework which encompasses all phases of

software development, from early requirements to implementation
? Is consistent with the next generation programming paradigm, I.e.,

agent-oriented programming.
? This paradigm is already gaining a foothold in key application

areas, such as telecommunications, electronic commerce and web-
based systems.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 28

...More Conclusions...More Conclusions
As well, from an Agent-Based Systems perspective the proposal
? Suggests a comprehensive methodology for building agent-oriented

software;
? Offers a design dimension along which one decides how to

accommodate tradeoffs among qualities such as flexibility,
robustness, and performance.

? Some preliminary work on development methodologies for agent-
oriented software systems can be found in [Wooldridge99],
[Singh99].

…BUT,…all this is just a proposal, which needs to be…BUT,…all this is just a proposal, which needs to be
elaborated and validated by research.elaborated and validated by research.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 29

ReferencesReferences
? [Bubenko93] Bubenko, J., “Extending the Scope of Information Modelling”, Proceedings

Fourth International Workshop on the Deductive Approach to Information Systems and
Databases, Costa Brava, 1993.

? [Chung93] Chung, L., Representing and Using Non-Functional Requirements: A Process-
Oriented Approach, PhD thesis, Department of Computer Science, University of Toronto,
June 1993.

? [Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S.,”Goal-Directed
Requirements Acquisition”, in The Science of Computer Programming 20, 1993.

? [Feather87] Feather, M., “Language Support for the Specification and Development of
Composite Systems”, ACM Transactions on Programming Languages and Systems 9(2),
1987.

? [Fickas92] Fickas, S. and Helm, R., “Knowledge Representation and Reasoming in the
Design of Composite Systems”, IEEE Transactions on Software Engineering 18(6), June
1992.

? [Greenspan84] Greenspan, S., Requirements Modelling: A Knowledge Representation
Approach to to Software Requirements Definition, PhD thesis, Department of Computer
Science, University of Toronto, 1994.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 30

References (References (cont’dcont’d))
? [Singh99] Singh, M., “Synthesizing Requirements for Heterogeneous Autonomous

Agents”, Autonomous Agents and Multi-Agent Systems, Kluwer, (to appear).

? [Wickler99] Wickler, G., “Intelligent Agent Platform and Environment -- I-APE,” ITC-
IRST lecture slides, IRST, Trento, Italy, 1999.

? [Wooldridge99] Wooldridge, M., Jennings, N., Kinny, D., “A Methodology for Agent-
Oriented Analysis and Design”, Proceedings ACM Conference on Autonomous
Agents (Autonomous Agents’99), Seattle, May 1999.

? [Yu94] Yu, E., Modelling Strategic Relationships for Process Reengineering, PhD
thesis, Department of Computer Science, University of Toronto, December 1994.

? [Yu95] Yu, E., Du Bois, P., Dubois, E. and Mylopoulos, J., “From Organization
Models to System Requirements: A ‘Cooperative Agents’ Approach”, Proceedings
Third International Conference on Cooperative Information Systems, Vienna, May
1995.

» 1999 John Mylopoulos Requirements-Driven Software Development -- 31

Participant

Initiator

ContributeToMtg

AttendMtg

UsefulMtg

Scheduler

CalendarInfo

ScheduledMtg

SuitableTime

Sally

MichaelDeptChair

assignedTo
assignedTo

assignedTo

role

position

agent
Actor AssignmentsActor Assignments

