
Software Architectures as Organizational Structures

Manuel Kolp John Mylopoulos

Department of Computer Science, University of Toronto, Toronto M5S3G4, Canada
{mkolp, jm}@cs.toronto.edu

Abstract

This paper proposes a set of concepts for describing a
software architecture as an organization. These social
structures consist of actors who have goals to fulfil and
social dependencies describing their obligations. The
framework is an adaptation of i* [Yu95] proposed as a
modeling language for early requirements. Based on this
framework, the paper advocates architectural styles for
software which adopt concepts from organization theory
and strategic alliances literature. The styles are modeled
in i* and formalized in terms of Telos metaconcepts. Each
proposed style is evaluated with respect to a set of
software quality attributes, such as predictability,
adaptability and openness. The use of these styles is
illustrated and contrasted with a software architecture for
mobile robots reported in the literature.

1. Introduction

We are interested in narrowing the semantic gap
between a software architecture and the requirements
model from which it was derived . One way to achieve
this is to adopt the same concepts for describing
requirements and software architectures. This paper
reports on an experiment to use concepts from i*, a
modeling framework for early requirements, to model
software architectures.

i* offers concepts such as actor, goal, and social
dependency intended to model social structures involving
social actors, their goals and social inter-dependencies. To
adopt this framework for software architectures, we first
propose a set of architectural styles inspired by
organizational theory and strategic alliance literature, and
formalize these as Telos [Myl90] metaconcepts. To guide
the selection process among the styles, we evaluate them
with respect to a number of software qualities. Finally, we
illustrate their use by applying them to two examples of
software architectures reported in the literature.

This research is being conducted in the context of the
Tropos project [Cas01], which is developing a
requirements-driven methodology for software systems.

Section 2 presents our organization-inspired
architectural styles described in terms of the strategic
dependency model from i* and specified in Telos. Section

3 introduces a set of desirable software quality attributes
for comparing them. Section 4 overviews a mobile robot
example while Section 5 sketches the Tropos project
within which this research has been conducted. Finally,
Section 6 summarizes the contributions of the paper and
points to further research.

2. Organizational Styles

Organizational theory (such as [Sco98]) and strategic
alliances (e.g., [Yos95]) study alternatives for (business)
organizations. These alternatives are used to model the
coordination of business stakeholders -- individuals,
physical or social systems -- to achieve common goals.
Using them, we view a software system as a social
organization of coordinated autonomous components (or
agents) that interact in order to achieve specific, possibly
common goals. We adopt (some of) the styles [Fux01]
defined in organizational theory and strategic alliances to
design the architecture of the system, model them with i*,
and specify them in Telos [Myl90].

In i*, a strategic dependency model is a graph, in
which each node represents an actor, and each link
between two actors indicates that one actor depends on
another for something in order that the former may attain
some goal. We call the depending actor the depender and
the actor who is depended upon the dependee. The object
around which the dependency centers is called the
dependum. By depending on another actor for a
dependum, an actor is able to achieve goals that it is
otherwise unable to achieve, or not as easily or as well. At
the same time, the depender becomes vulnerable. If the
dependee fails to deliver the dependum, the depender is
adversely affected in its ability to achieve its goals.

The model distinguishes among four types of
dependencies -- goal-, task-, resource-, and softgoal-
dependency -- based on the type of freedom that is
allowed in the relationship between depender and
dependee. Softgoals are distinguished from goals because
they do not have a formal definition, and are amenable to
a different (more qualitative) kind of analysis [Chu00].

For instance, in the structure-in-5 style (Figure 1), the
coordination, middle agency and support actors depend on
the apex for strategic management purposes. Since the
goal Strategic Management is not well-defined, it is

represented as a softgoal (cloudy shape). The middle
agency actor depends on both the coordination and
support actors respectively through goal dependencies
Control and Logistics represented as oval-shaped icons.
The operational core actor is related to the coordination
and support actors respectively through the Standardize
task dependency and the Non-operational service resource
dependency.

In the sequel we briefly discuss nine common
organizational styles.

The structure-in-5 (Figure 1) style consists of the
typical strategic and logistic components generally found
in many organizations. At the base level one finds the
operational core where the basic tasks and operations --
the input, processing, output and direct support
procedures associated with running the system -- are
carried out. At the top of the organization lies the apex
composed of strategic executive actors.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Figure 1. Structure-in-5.

Below it sit the control/standardization, management

components and logistics, respectively coordination,
middle agency and support. The coordination component
carries out the tasks of standardizing the behavior of other
components, in addition to applying analytical procedures
to help the system adapt to its environment. Actors joining
the apex to the operational core make up the middle
agency. The support component assists the operational
core for non-operational services that are outside the basic
flow of operational tasks and procedures.

Figure 2 specifies the structure-in-5 style in Telos
[Myl90]. Telos is a language intended for modeling
requirements, design, implementation and design
decisions for software systems. It provides features to
describe metaconcepts that can be used to represent the
knowledge relevant to a variety of worlds – subject,
usage, system, development worlds - related to a software

system. Our styles are formulated as Telos metaconcepts,
primarily based on the aggregation semantics for Telos.

The structure-in-5 style is then a metaclass -
StructureIn5MetaClass - aggregation of five (part)
metaclasses: ApexMetaClass, CoordinationMetaClass,
MiddleAgencyMetaClass, SupportMetaClass and
OperationalCoreMetaClass, one for each actor
composing the structure-in 5 style depicted in Figure 1.
Each of these five components exclusively belongs
(exclusivePart) to the composite (StructureIn5MetaClass)
and their existence depend (dependentPart) on the
existence of the composite. A structure-in-5 specific to an
application domain will be defined as a Telos class,
instance of StructureIn5MetaClass (See Section 4).
Similarly each structure-in-5 component specific to a
particular application domain will be defined as a class,
instance of one of the five StructureIn5Metaclass
components.

TELL CLASS StructureIn5MetaClass

IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute

 name: String
part, exclusivePart, dependentPart

 ApexMetaClass: Class
 CoordinationMetaClass: Class
 MiddleAgencyMetaClass: Class
 SupportMetaClass: Class
 OperationalCoreMetaClass: Class

END StructureIn5MetaClass

Figure 2. Structure-in-5 in Telos.

The flat structure has no fixed structure and no

control of one actor over another is assumed. The main
advantage of this architecture is that it supports autonomy,
distribution and continuous evolution of an actor
architecture. However, the key drawback is that it requires
an increased amount of reasoning and communication by
each participating actor.

The pyramid style is the well-known hierarchical
authority structure exercised within organizational
boundaries. Actors at the lower levels depend on actors of
the higher levels. The crucial mechanism is direct
supervision from the apex. Managers and supervisors are
then only intermediate actors routing strategic decisions
and authority from the apex to the operating level. They
can coordinate behaviors or take decisions by their own
but only at a local level. This style can be applied when
deploying simple distributed systems.

Moreover, this style encourages dynamicity since
coordination and decision mechanisms are direct, not
complex and immediately identifiable. Evolvability and
modifiability can thus be implemented in terms of this
style at low costs. However, it is not suitable for huge

distributed systems like multi-agent systems requiring
many kinds of agents.

The joint venture style (Figure 3) involves agreement
between two or more principal partners to obtain the
benefits of larger scale, partial investment and lower
maintenance costs. Through the delegation of authority to
a specific joint management actor that coordinates tasks
and operations and manages sharing of knowledge and
resources they pursue joint objectives and common
purpose. Each principal partner can manage and control
itself on a local dimension and interact directly with other
principal partners to exchange, provide and receive
services, data and knowledge. However, the strategic
operation and coordination of such a system and its
partner actors on a global dimension are only ensured by
the joint management actor. Outside the joint venture,
secondary partners supply services or support tasks for the
organization core.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Figure 3. Joint Venture.

The takeover style involves the total delegation of

authority and management from two or more partners to a
single collective takeover actor. It is similar in many ways
to the joint venture style. The major and crucial difference
is that while in a joint venture identities and autonomies of
the separate units are preserved, the takeover absorbs
these critical units in the sense that no direct relationships,
dependencies or communications are tolerated except
those involving the takeover.

The arm’s-length style implies agreements between
independent and competitive but partner actors. Partners
keep their autonomy and independence but act and put
their resources and knowledge together to accomplish
precise common goals. No authority is delegated or lost
from a collaborator to another.

The bidding style (Figure 4) involves competitivity
mechanisms and actors behave as if they were taking part
in an auction. The auctioneer actor runs the show,

advertises the auction issued by the auction issuer,
receives bids from bidder actors and ensure
communication and feedback with the auction issuer.

The auctioneer might be a system actor that merely
organizes and operates the auction and its mechanisms. It
can also be one of the bidders (for example selling an item
which all other bidders are interested in buying). The
auction issuer is responsible for issuing the bidding.

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Figure 4. Bidding.

The hierarchical contracting style identifies

coordinating mechanisms that combine arm’s-length
agreement features with aspects associated with pyramidal
authority. Coordination mechanisms developed to manage
arm’s-length (independent) characteristics involve a
variety of negotiators, mediators and observers at different
levels handling conditional clauses to monitor and manage
possible contingencies, negotiate and resolve conflicts and
finally deliberate and take decisions. Hierarchical
relationships, from the executive apex to the arm’s-length
contractors (top to bottom) restrict autonomy and underlie
a venture between the contracting parties.

The vertical integration style merges, backward or
forward, one or more system actors engaged in related
tasks but at different stages of a production process. A
merger synchronizes and controls interactions between
each of the participants that can be considered
intermediate workshops. Vertical integrations take place
between exchange partners, actors symbiotically related.

The co-optation style involves the incorporation of
representatives of external systems into the decision-
making or advisory structure and behavior of an initiating
organization. By co-opting representatives of external
systems, organizations are, in effect, trading
confidentiality and authority for resource, knowledge
assets and support.

3. Evaluating Architecture

The organizational styles defined in Section 2 can be

evaluated and compared using the following software
quality attributes identified for architectures involving
coordinated autonomous components (e.g., Web, internet,
agent or peer-to-peer software systems) :

1 - Predictability. Autonomous components like
agents have a high degree of autonomy in the way that
they undertake action and communication in their
domains. It can be then difficult to predict individual
characteristics as part of determining the behavior of a
distributed and open system at large.

2 - Security. Autonomous components are often able
to identify their own data sources and they may undertake
additional actions based on these sources. Protocols and
strategies for verifying authenticity for these data sources
by individual components are an important concern in the
evaluation of overall system quality since there is the
danger of hostile external entities spoofing the system to
acquire information accorded to trusted domain
components.

3 - Adaptability. Components may be required to
adapt to modifications in their environment. They may
include changes to the component’s communication
protocol or possibly the dynamic introduction of a new
kind of component previously unknown or the
manipulations of existing components.

- Coordinability. Autonomous components are not
particularly useful unless they are able to coordinate with
other components. This can be realized in two ways:

4 - Cooperativity. They must be able to coordinate
with other entities to achieve a common purpose.

5 - Competitivity. The success of one component
implies the failure of others.

6 - Availability. Components that offer services to
other components must implicitly or explicitly guard
against the interruption of offered services. Availability
must actually be considered a sub-attribute of security
[Chu00]. Nevertheless, we deal with it as a top-level
software quality attribute due to its increasing importance
in multi-agent system design.

7 - Integrity. A failure of one component does not
necessarily imply a failure of the whole system. The
system then needs to check the completeness and the
accuracy of data, information and knowledge transactions
and flows. To prevent system failure, different
components can have similar or replicated capabilities and
refer to more than one component for a specific behavior.

8 - Modularity increases efficiency of task execution,
reduces communication overhead and usually enables high
flexibility. On the other hand, it implies constraints on
inter-module communication.

9 - Aggregability. Some components are parts of
other components. They surrender to the control of the
composite entity. This control results in efficient tasks
execution and low communication overhead, however
prevents the system to benefit from flexibility.

 1 2 3 4 5 6 7 8 9

Struct-5 + + + - + ++ ++ ++

Pyramid ++ ++ + ++ - + -- -

Joint-Vent + + ++ + - ++ + ++

Bid -- -- ++ - ++ - -- ++

Takeover ++ ++ - ++ -- + + +

Arm’s-Lgth - -- + - ++ -- ++ +

Hierch Ctr + + + + + +

Vert Integr + + - + - + -- -- --

Coopt - - ++ ++ + -- - --

Table 1. Correlation catalogue.

Table 1 summarizes the correlation catalogue for the
organizational patterns and top-level quality attributes we
have considered. Following notations used by the NFR
(non functional requirements) framework [Chu00], +, ++,
-, --, respectively model partial/positive,
sufficient/positive, partial/negative and sufficient/negative
contributions.

4. Example

To motivate our styles, we consider an application
domain where distributed and open architectures are
increasingly important: mobile robots.

The mobile robot example presented in [Sha96]
studies notably the layered architecture (Figure 5)
implemented in the Terregator and Neptune robots and
office delivery robots. According to [Sha96] at the lowest
level, reside the robot control routines (motors, joints,...).
Levels 2 and 3 deal with the input from the real world.
They perform sensor interpretation (the analysis of the
data from one sensor) and sensor integration (the
combined analysis of different sensor inputs). Level 4 is
concerned with maintaining the robot's model of the
world. Level 5 manages the navigation of the robot. The
next two levels, 6 and 7, schedule and plan the robot's
actions. Dealing with problems and replanning is also part
of the level-7 responsibilities. The top level provides the
user interface and overall supervisory functions.

The following software quality attributes are relevant
for the robot's architecture [Sha96]: Cooperativity,
Predictability, Adaptability, Integrity. Take for instance,
consider Cooperativity and Predictability.

Cooperativity: the robot has to coordinate the actions
it undertakes to achieve its designated objective with the

reactions forced on it by the environment (e.g., avoid an
obstacle). The idealized layered architecture (Figure 5)
implemented on some mobile robots does not really fit the
actual data and control-flow patterns [Sha96]. The layered
architecture style suggests that services and requests are
passed between adjacent layers. However, data and
information exchange is actually not always straight-
forward. Commands and transactions may often need to
skip intermediate layers to establish direct
communication. A structure-in-5 proposes a more
distributed architecture allowing more direct interactions
between component.

Figure 5. Classical mobile robot layered architecture.

Another recognized problem is that the layers do not

separate the data hierarchy (sensor control, interpreted
results, world model) from the control hierarchy (motor
control, navigation, scheduling, planning and user-level
control). Again the structure-in-5 could better differentiate
the data hierarchy - implemented by the operational core,
and support components - from the control structure –
implemented by the operational core, middle agency and
strategic apex as will be described in Figure 6.

Adaptability: application development for mobile
robots frequently requires customization, experimentation
and dynamic reconfiguration. Moreover, changes in tasks
may require regular modification. In the layered
architecture, the interdependencies between layers prevent
the addition of new components or deletion of existing
ones. The structure-in-5 style separates independently
each typical component of an organizational structure but
a joint venture isolating components and allowing
dynamic manipulation should be a better candidate.

Partner components, except the joint manager, can be
added or deleted in a more flexible way.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Figure 6. A structure-in-5 mobile robot architecture.

Figure 6 depicts a mobile robot architecture following

the structure-in-5 style from Figure 1. The control
routines component is the operational core managing the
robot motors, joints, etc. Planning/Scheduling is the
coordination component scheduling and planning the
robot’s actions. The real world interpreter is the support
component composed of two sub-components: Real world
sensor accepts the raw input from multiple sensors and
integrates it into a coherent interpretation while World
Model is concerned with maintaining the robot’s model of
the world and monitoring the environment for landmarks.
Navigation is the middle agency component, the central
intermediate module managing the navigation of the
robot. Finally, the user-level control is the human-oriented
strategic apex providing the user interface and overall
supervisory functions.

TELL CLASS MobileRobotClass

IN StructureIn5MetaClass WITH
attribute name: String
part, exclusivePart, dependentPart
 ControlRoutinesClass: OperationalCoreMetaClass
 RealWorldInterpreter: SupportMetaClass
 NavigationClass: MiddleAgencyMetaClass
 PlanningClass: CoordinationMetaClass
 UserLevelControl: ApexMetaClass

END MobileRobotClass

Figure 7. Robot structure-in-5 architecture in Telos.

Figure 7 formulates the media robot structure-in-5 in
Telos. MobileRobotClass is a Telos class, instance of the
StructureIn5Metaclass specified in Figure 2. This
aggregation is composed of five exclusive and dependent
parts ControlRoutinesClass, RealWorldInterpreterClass,

NavigationClass, PlanningClass and UserLevelControl-
Class, each of them is instance of one metaclass,
component of StructureIn5MetaClass.

5. A Requirements-Driven Methodology

This research is conducted in the context of Tropos
[Cas01], a software system development methodology
which is founded on the concepts of actor and goal.
Tropos describes in terms of the same concepts the
organizational environment within which a system will
eventually operate, as well as the system itself. The
proposed methodology supersedes traditional
development techniques, such as structured and object-
oriented ones in the sense that it is tailored to systems that
will operate within an organizational context and is
founded on concepts used during early requirements
analysis. To this end, we adopt the concepts offered by i*
[Yu95], a modeling framework offering concepts like
actor, agent, position, role, and social dependencies
among actors, including goal, softgoal, task and resource
ones.

Tropos spans four phases of software development:

- Early requirements, concerned with the
understanding of a problem by studying an organizational
setting; the output is an organizational model which
includes relevant actors, their goals and dependencies.

- Late requirements, in which the system-to-be is
described within its operational environment, along with
relevant functions and qualities.

- Architectural design, in which the system's global
architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

- Detailed design, in which behaviour of each
architectural component is defined in further detail.

6. Conclusion

The paper proposes a set of concepts for specifying
software architectures which is inspired by requirements
modeling research. As such, we believe that our proposal
narrows the gap between a requirements specification and
the software architecture to be produced from it. The
software architectures produced within our framework are
intentional in the sense that components have associated
goals that are supposed to fulfil. The architectures are also
social in the sense that each component has
obligations/expectations towards/from other components.
Obviously, such architectures are best suited to open,
dynamic and distributed applications, such as those Web,
internet, agent, and peer-to-peer software systems.

We are working on formalizing precisely the styles
that have been identified and formalizing the sense in

which a particular architecture is an instance of such a
pattern.

The organizational styles we have described will
eventually define a software architectural macrolevel. At a
micro level we will be focusing on the notion of patterns
like the broker, matchmaker, embassy, mediator, wrapper
are more appropriate [Hay99]. Another direction for
further work is to relate the architectural styles proposed
in this work to extentional, classical architectural
components such as (software) components, ports,
connectors, interfaces, libraries and configurations.

References

[Cas01] J. Castro, M. Kolp and J. Mylopoulos. “A
Requirements-Driven Development Methodology”, Proc. 13th
Int. Conf. on Advanced Information Systems
Engineering,CAiSE’01, Interlaken, Switzerland, June 2001.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos.
Non-Functional Requirements in Software Engineering, Kluwer
Publishing, 2000.

[Fux01] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos.
“Information Systems as Social Structures”, Proc. 2nd Int. Conf.
on Formal Ontologies for Information Systems, FOIS’01,
Ogunquit, USA, Oct. 2001.

[Hay99] S. Hayden, C. Carrick and Q. Yang. “Architectural
Design Patterns for Multiagent Coordination”, Proc. 3th Int.
Conf. on Agent Systems '99,Agents'99, Seattle, USA, May 1999.

[Myl90] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis.
“Telos: Representing Knowledge About Information Systems”,
ACM Trans. Info. Sys., 8(4), 1990, pp. 325 – 362.

[Sco98] W. Richard Scott. Organizations : rational, natural,
and open systems, Prentice Hall, 1998.

[Sha96] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall, 1996.

[Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic
alliances: an entrepreneurial approach to globalization,
Boston, Mass., Harvard Business School Press, 1995.

[Yu95] E. Yu. Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer Science,
University of Toronto, Canada, 1995.

