
When put to the test, the term Web application
has slightly different meanings to different people.
Some believe a Web application is anything that
uses Java, others consider a Web application any-
thing that uses a Web server. The general consensus
is somewhere in between. In this article, a Web
application will be loosely defined as a Web system

(Web server, network, HTTP, browser) in which
user input (navigation and data input) effects the
state of the business. This definition attempts to
establish that a Web application is a software sys-
tem with business state, and that its front end is in
large part delivered via a Web system.

The general architecture of a Web application is

A new term has entered

the IT vocabulary in the past few years: Web

application. It seems like everyone involved with

business software systems has plans for building

Web applications, with many nonbusiness soft-

ware efforts as well. For many early adopters of

this architecture the term Web application, like the systems themselves, have evolved from

small successful Web site add-ons to robust n-tiered applications. It’s not uncommon for a

Web application to service tens of thousands of simultaneous users, distributed all over the

world. Designing Web applications is serious business.

JIM CONALLEN

�

Modeling business logic in Web-specific components can
be done in a coherent and consistent way.

Modeling
Web Application
Architectures
with UML

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 63

that of a client/server system, with a few notable dis-
tinctions. One of the most significant advantages of a
Web application is its deployment. Deploying a Web
application is usually a matter of setting up the server
side components on a network. No special software or
configuration is required on the part of the client.1

Another significant difference between a Web appli-
cation and a client/server system is the nature of client
and server communication. A Web application’s prin-
cipal communication protocol is HTTP, which is a
connectionless protocol designed for robustness and
fault tolerance instead of maximum communication
throughput. Communication between a client and
server in a Web application typically revolves around
the navigation of Web pages, not direct communica-
tions between server side and client side objects. At
one level of abstraction, all messaging in a Web appli-
cation can be described as the request and reception
of Web page entities. Generally speaking, the archi-
tecture of a Web application is not much different
from that of a dynamic Web site.

The differences between a Web application and a
Web site involve its usage. Web applications imple-
ment business logic, and its use changes the state of the
business (as captured by the system). This is important
because it defines the focus of the modeling effort. Web
applications execute business logic and so the most
important models of the system focus on the business
logic and business state, not on presentation details.
Presentation is important (otherwise the system would-
n’t do anyone any good), however, a clear separation
between business and presentation concerns should be
strived for. If presentation issues are important, or even
complicated, then they too should be modeled, but not
necessarily as an integral part of the business logic
model. Additionally the resources that work on presen-
tation tend to be more artistic, and less concerned with
the implementation of business rules.

One methodology or notation associated with the
development of Web Systems is the Relationship
Management Methodology (RMM) [2]. RMM is a
methodology for the design, construction and main-
tenance of intranet and Internet Web systems. Its
principal goal is to reduce the maintenance costs of
dynamic database-driven Web sites. It advocates a
visual representation of the system to facilitate design
discussions. It is an iterative process that includes the
decomposition of the visual elements in the Web
pages, and their association with database entities.
RMM is a “soup to nuts” approach to the creation
and maintenance of dynamic Web sites.

RMM falls short when building Web applications.
Web applications, being business logic centric,
include a number of technological mechanisms for
implementing business logic that are not adequately
covered by RMM notation. Such technologies as
client side scripting, applets, and ActiveX controls
often make significant contributions to the execution
of the system’s business rules. Additionally, Web
applications can be used as a delivery mechanism for
a distributed object system. Applets and ActiveX con-
trols can contain components that asynchronously
interact with server side components via RMI or
DCOM, independent of the Web server. Sophisti-
cated applications also make use of multiple browser
instances, and frames on the client, which establish
and maintain their own communication mechanisms.

Since all of these mechanisms contribute to the
business logic of the system, they need to be modeled
as such. Additionally, since they only represent part of
the business logic, they need to be integrated with the
rest of the system’s models. In many situations the
bulk of business logic is executed behind the Web
server in one of the server side tiers. The choice of
modeling language and notation is typically decided
by the needs of this side the application. With the
acceptance of the UML by the OMG2 as an official
object modeling language, more and more systems are
being expressed with UML notation. For many,
UML is the language of choice for modeling soft-
ware-intensive systems. The main issue in modeling
Web applications then becomes: “How do I express
the business logic being executed in my Web-specific
components alongside the rest of my application?”
The answer lies in the ability to express the execution
of the system’s business logic in those Web-specific
elements and technologies with UML.

This article is intended as an introduction to the
issues and possible solutions for modeling Web appli-
cations. It focuses on the architecturally significant
components particular to Web applications, and how
to model them with UML. It is assumed that the
reader is familiar with UML [1], object-oriented prin-
ciples and Web application development. The work
described in this article is based on some fairly
innocuous assumptions:

• Web applications are software-intensive systems
that are becoming more complex, and are insert-
ing themselves in more mission-critical roles;

• One way to manage complexity in software sys-
tems is to abstract and model them;

64 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

1This, of course, is the general goal of a Web application. There are plenty
of situations where clients of the system may be required to possess a cer-
tain computing power, operating system, or security certificate.

2The Object Modeling Group is a consortium of industry vendors that
defines specifications for the computing industry: www.omg.org.

• A software system typically has multiple models,
each representing a different viewpoint, level of
abstraction and detail;

• The proper level of abstraction and detail depends
on the artifacts and worker activities in the devel-
opment process; and

• UML is the standard modeling language for soft-
ware-intensive systems.

Modeling
Models help us understand the system by simplify-
ing some of the details. The choice of what to model
has an enormous effect on the understanding of the
problem and the shape of the solution [1, p. 8]. Web
applications, like other software-intensive systems,
are typically represented by a set of models: use case
model, implementation model, deployment model,
security model, and so forth. An additional model
used exclusively by Web systems is the site map, an
abstraction of the Web pages and navigation routes
throughout the system.

Most modeling techniques practiced today are well
suited to development of the various models of a Web
application, and do not need further discussion. One
very important model, however, the Analysis/Design
Model (ADM)3 does present some difficulties when
an attempt is made to include Web pages, and the exe-
cutable code associated with them, alongside the other
elements in the model.

When deciding how to model something, deter-
mining the correct level of abstraction and detail is
critical to providing something that will be of benefit
to the users of the model. Generally speaking, it is best
to model the artifacts of the system—those “real life”
entities that will be constructed and manipulated to
produce the final product. Modeling the internals of
the Web server, or the details of the Web browser is
not going to help the designers and architects of a
Web application. Modeling the pages, their links to

each other, all the dynamic content that went into cre-
ating the pages, and the dynamic content of the pages
once on the client is very important. It is these arti-
facts that designers design, and implementers imple-
ment. Pages, hyperlinks, and dynamic content on the
client and server are what need to be modeled.

The next step is mapping these artifacts to model-
ing elements. Hyperlinks, for example, naturally map
to association elements in the model. A hyperlink rep-
resents a navigational path from one page to another.
Extending this thought, pages4 might map to classes
in the logical view of the model. If a Web page is a
class in the model, then the page’s scripts would map
naturally to operations of the class. Any page scoped
variables in the scripts would map to class attributes.
A problem arises when one considers that a Web page
may contain a set of scripts that execute on the server
(preparing the dynamic content of the page) and a
completely different set of scripts that only execute on
the client (JavaScript). In this scenario, when we look
at a Web page class in the model there is confusion
over what operations, attributes and even relation-
ships are active on the server (while the page is being
prepared) and which ones are active when the user is
interacting with the page on the client. Additionally, a
Web page as delivered in a Web application is really
better modeled as a component of the system. Simply
mapping a Web page to a UML class does not help us
understand the system better.

The creators of the UML realized that there would
always be situations in which the UML, out of the
box, would not be sufficient to capture the relevant
semantics of a particular domain or architecture. To
address this purpose, a formal extension mechanism
was defined to allow practitioners to extend the
semantics of the UML. The mechanism allows us to
define stereotypes, tagged values and constraints that
can be applied to model elements.

A stereotype is an adornment that allows us to define

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 65

3In the Rational Unified Process the Analysis and Design model are consid-
ered the same model, that over time evolves from something that describes
the realization of use cases in an architecture neutral way to something that
is an abstraction of the implementation model and source code.

4Depending upon the specific Web application architecture, a Web page
may be a CGI module, Active Server Page, Java Server Page, Servlet, or
Web server extension (ISAPI, NSAPI), or basically anything that can be
requested with HTTP by a browser.

A formal extension mechanism was

defined to allow practitioners to extend the

semantics of the UML.

a new semantic meaning for a modeling element.
Tagged values are key value pairs that can be associated
with a modeling element that allow us to “tag” any
value onto a modeling element. Constraints are rules
that define the well-formedness of a model. They can
be expressed as free-form text or with the more formal
Object Constraint Language (OCL).

The work discussed in this article introduces an
extension to the UML for Web applications. This
extension, in its entirety, is beyond the scope of this
article; however, most of the concepts and explana-
tions are discussed here.

One final point on modeling: a very clear distinc-
tion needs to be made between business logic and pre-
sentation logic. For the typical business application,
only the business logic should be part of the ADM.
Presentation details such as animated buttons, fly-
over help and other UI enhancements do not nor-
mally belong in the ADM. If a separate UI model is
constructed for the application, then this is the place
for such things. The ADM needs to remain focused
on the expression of the business problem and solu-
tion space. In this era of Web artists, the look and feel
of a Web page is better designed and implemented by
a specialist (technical graphic artist) and not by a tra-
ditional developer.

Web Application Architecture
The basic architecture of a Web application includes
browsers, a network, and a Web server. Browsers
request Web pages from the server. Each page is a
mix of content and formatting instructions
expressed with HTML. Some pages include client
side scripts that are interpreted by the browser.
These scripts define additional dynamic behavior for
the display page and often interact with the browser,
page content and additional controls (Applets,

ActiveX controls and plug-ins) contained in the
page. The user views and interacts with the content
in the page. Sometimes the user enters information
in field elements in the page and submits them to
the server for processing. The user can also interact
with system by navigating to different pages in the
system via hyperlinks. In either case, the user is sup-
plying input to the system which may alter the
“business state” of the system.

From the client’s perspective, the Web page is
always an HTML formatted document.5 On the
server, however, a Web page may manifest itself in a
number of different ways. In the earliest Web appli-
cations, dynamic Web pages were built with the
Common Gateway Interface (CGI). CGI defines an
interface for scripts and compiled modules to give
them access to the information passed along with a
page request. In a CGI-based system a special direc-
tory is typically configured on the Web server to exe-
cute scripts in response to page requests. When a CGI
script is requested, the server, instead of just returning
the contents of the file (as it would for any HTML-
formatted file), processes or executes the file with the
appropriate interpreter (usually a PERL shell) and
streams the output back to the requesting client. The
ultimate result of this processing is an HTML-for-
matted stream that is sent back to the requesting
client. Business logic is executed in the system while
processing the file. During that time it has the poten-
tial to interact with server side resources such as data-
bases and middle tier components.

Today’s Web servers have improved upon this basic
design. Current Web servers are much more security
aware, and include features like management of client
state on the server, transaction processing integration,
remote administration, and resource pooling to name
just a few. Collectively the latest generation of Web
servers is addressing those issues important to architects
of mission-critical, scalable, and robust applications.

When looking at the role of CGI scripts, today’s
Web servers can be divided into three major cate-
gories: scripted pages, compiled pages, and a hybrid
of the two. In the first category, each Web page that a
client browser can request is represented on the Web
server’s file system as a scripted file. This file is typi-
cally a mix of HTML and some other scripting lan-
guage. When the page is requested the Web server
delegates the processing of this page to an engine that

66 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Figure 1. Associations between stereotyped classes.

«build»

«link»

0..*

home page

«link»
{productId}

SearchResults Home

ProductDetailGetProduct

5It is expected that native XML browsers will be on the market soon. XML
combined with XSL will provide many of the same features as HTML with
the significant advantage of increased separation of content and presenta-
tion. Although the ideas expressed in this article mostly revolve around
HTML, it is expected they can be extended to handle XML-based systems,
once their usage patterns have been defined.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 67

recognizes it, with the ultimate result being an
HTML formatted stream that is sent back to the
requesting client. Examples of this are Microsoft’s
Active Server Pages and Cold Fusion.

In the second category, compiled pages, the Web
server loads and executes a binary component. This
component, as with scripted pages, has access to all
the information that came with the page request (val-
ues of form fields and parameters). The compiled
code uses the request details, and typically accesses
server side resources to produce the HTML stream
that is returned to the client. Although not a rule,
compiled pages tend to encompass a larger function-
ality than scripted pages. By passing parameters to the
compiled page request different functionality can be
obtained. Any one compiled component may actually
include all the functionality of an entire directory of
scripted pages. The technologies that represent this
type of architecture are Microsoft’s ISAPI and
Netscape’s NSAPI.

The third category represents scripted pages that

once requested are compiled, and this compiled ver-
sion is then used thereafter by all subsequent requests.
Only when the original page’s contents change will
the page undergo another compile. This category is a
compromise between the flexibility of scripted pages
and the efficiency of compiled pages; Java Server
Pages is an example in this category.

Modeling Web Pages
Web pages, either scripted or compiled, map one-to-
one to components in UML. A component is a
“physical” and replaceable part of the system. The
Implementation View (Component View) of the
model describes the system’s components and their
relationships. In a Web application, this view
describes all the Web pages of the system, and their
relationships with each other (hyperlinks). At one
level, a component diagram of a Web system is like
a site map.

Since components only represent the physical
packaging of interfaces, they are not suitable for mod-

eling the collaborations inside the pages. This level of
abstraction, which is extremely important to the
designer and implementer, still needs to be part of the
model. To start, we could say that each Web page is a
UML class in the model’s Design View (Logical
View), and that its relationships to other pages (asso-
ciations) represent hyperlinks. But this abstraction
breaks down when you consider that any given Web
page can potentially represent a set of functions and
collaborations that exist only on the server and a com-
pletely different set that exist only on the client. Any
server-scripted Web page that employs Dynamic
HTML (client side scripting) as part of its output is
an example of such a page. The knee-jerk reaction to
this problem might be to stereotype each attribute or
operation in the class to indicate whether or not it was
valid on the server or client side. At this point our
model, originally intended to help simplify things, is
becoming quite complex.

A better approach to the problem is to consider the
principle of “separation of concerns.” Logically speak-

ing, the behavior of a Web page on the server is com-
pletely different than it is on the client. While
executing on the server it has access to (that is, rela-
tionships with) server side resources (middle tier com-
ponents, databases, file system). That same page (or
the streamed HTML output of that page) on the
client has a completely different behavior and set of
relationships. On the client, a scripted page has rela-
tionships with the browser itself (via the Document
Object Model or DOM6) and with any Java Applets,
ActiveX controls or plug-ins the page specifies. For
the serious designer there can be additional relation-
ships with other active pages on the client that appear
in another HTML frame or browser instance.

The server side aspect of a Web page can be mod-
eled with one class and the client side aspect with
another, distinguishing the two by using UML’s

6Document Object Model. The DOM is a W3C standard that most
browser vendors have implemented to provide an object interface to the
browser and its content.

The server side aspect of a Web page can be

modeled with one class and the client side aspect with

another, distinguishing the two by using

UML’s extension mechanism.

extension mechanism to define stereotypes and icons
for each: «server page» and «client page». Stereotypes
in the UML allow us to define new semantics for a
modeling element. Stereotyped classes can be ren-
dered in a UML diagram with either a custom icon,
or simply adorned with the stereotype name between
guillemets (« »). The icons are useful for overview dia-
grams; using the simple tags is best when class attrib-
utes and operations are exposed.

For Web pages the stereotypes indicate that the class
is an abstraction of the logical behavior of a Web page

on either the client or the server. The two
abstractions are related to each other
with a directional relationship between
the two. This association is stereotyped:
«build», since it can be said that a server
page builds a client page. Every dynamic
Web page (pages whose content is deter-
mined at runtime) is constructed with a
server page. Every client page is built by
(at most) a single server page, however, it
is possible for a server page to build mul-
tiple client pages.7

A common relationship between
Web pages is the hyperlink. A hyperlink
in a Web application represents a navi-
gational path through the system. This
relationship is expressed in the model
with a «link» stereotyped association.
This association always originates from a
client page and points to either a client
or server page. Hyperlinks are imple-
mented in the system as a request for a
Web page, which are modeled as com-
ponents in the Implementation View. A
link association to a client page is essen-
tially equivalent to a link association to
the server page that builds the client
page.8 This is because a link is actually a
request for a page, not either of the class
abstractions. Since a Web page compo-
nent realizes both the page abstractions,
a link to any of the classes realized by the
page component is equivalent.

Tagged values are used to define the
parameters that are passed along with a
link request. The «link» association
tagged value “Parameters” is a list of para-
meter names (and optional values) that
are expected and used by the server page
that processes the request. In Figure 1, the
SearchResults page contains a variable
number of hyperlinks (0..*) to the Get-
Product server page, where each link has

a different value for the productId parameter. The Get-
Product page builds the ProductDetail page of the
product specified by the productId parameter.

Using these stereotypes makes it easier to model a

68 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Figure 2. Client collaborations.

0..* 0..*

cal

«Client Page»
RoomSchedule

CurrentDay: String
Room: String

OnBodyLoad()
UpdateActivities()
AddEvent()
RemoveEvent()

«Applet»
Calendar

Day: int
Month: int
Year: int
DOW: int

Value()
Refresh()
Today()

«JavaScript»
MeetingEvent

Subject: String
StartDate: Date
StopDate: Date
StartTime: Time
StopTime: Time

Summary()
Conflicts()
AddParticipant()
RemoveParticipant()

«JavaScript»
Participant

Name: String
Title: String
Email: String
Office: String
Phone: String

Summary()

«Form»
EventDetail

«ActiveX»
DatePicker

Day: int
Month: int
Year: int

Value()
Today()

<<Text>> Subject: String
<<Select>> Participants: String
<<Checkbox>> AllDay: Boolean
<<Submit>> Update
<<Submit>> Remove
<<Button>> New

Figure 3. Server collaborations.

Employee

«Server Page»
UpdateMeeting

MeetingDate: Date
Requester: Employee

NewMeeting()
RemoveMeeting()
UpdateMeeting()
FilterParticipants()
CheckForConflict()

MeetingFactory

FindMeeting()
GetMeeting()
CreateMeeting()
RemoveMeeting()

MeetingEvent
Subject: String
StartDate: Date
StopDate: Date
StartTime: Time
StopTime: Time

Summary()
Conflict()
AddParticipant()
RemoveParticipant()

Participant
Name: String
Title:String
Email: String
Office: String
Phone: String

Summary()

Session

7This is typically the case when the server page is a compiled page, and a rel-
atively sophisticated component. In this situation one server page might be
used to define all the behaviors of a shopping cart, or even an entire Web
application.
8The concept does get a little confusing when a server page builds multiple
client pages. In this situation, parameters must be specified with the page
request to identify which client page to build.

page’s scripts and relationships. The
«server page» class’s operations become
functions in the page’s server side scripts,
and its attributes become page scoped
variables (globally accessible by the page’s
functions). The «client page» class’s oper-
ations and attributes likewise become
functions and variables visible on the
client. The key advantage of separating
the server and client side aspects of a page
into different classes is in the relation-
ships between pages and other classes of
the system. Client pages are modeled
with relationships to client side resources:
DOM, Java Applets, ActiveX controls,
and plug-ins (see Figure 2). Server pages
are modeled with relationships to server
side resources, middle tier components,
database access components,
server operating system, and so
forth (see Figure 3).

Using class stereotypes to
model the logical behaviors of
Web pages means their collabo-
rations with the server side com-
ponents can be expressed in
much the same way as any other
server side collaborations. The
«server page» is simply another
class that participates in the busi-
ness logic of the system. At a
more conceptual level, server
pages typically take on the role of
controllers, orchestrating the
necessary business object activity
to accomplish the business goals
initiated by the browser’s page
request.

On the client side, collabora-
tions can get a little complicated,
due in part to the variety of technologies that can be
employed. A client page at its simplest is an HTML
document that contains both content and presenta-
tion information. Browsers render HTML pages
using the formatting instructions in the page, and
sometimes with separate style sheets. In the logical
model this relationship can be expressed with a depen-
dency from a client page to a «Style Sheet» stereotyped
class. Style sheets, however, are principally a presenta-
tion issue, and are often left out of the ADM.

Forms
The principal data entry mechanism for Web pages
is the form. Forms are defined in an HTML docu-

ment with <form> tags. Each form specifies the page
that it is to submit itself to. A form contains a num-
ber of input elements, all expressed as HTML tags.
The most common tags are the <input>, <select>,
and <textarea> tags. The input tag is somewhat over-
loaded since it can be a text field, checkbox, radio
button, push button, image or hidden field, as well
as a few other less common types. Modeling forms
means another class stereotype: «Form». A «Form»
has no operations, since any operations that might
be defined in a <form> tag are really owned by the
client page. A form’s input elements are all stereo-
typed attributes of the «Form» class. A «Form» can
have relationships with Applets or ActiveX controls

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 69

Figure 4. Forms submit to server pages.

«submit»

items

0..*

«Client Page»
OnLineCart

itemCount: integer
subTotal: currency
tax: currency
shippingCost: currency
taxRate: currency

UpdateItems()
recalculateTotals()
updateForm()
asCurrency()
bodyOnLoad()

«Server Page»
UpdateCart

CartStatus()
CreateNewCart()
ValidateCart()
AddItem()
Removeitem()
UpdateItem()
UpdateCart()

«Form»
CartForm

<<Text>> Qty[0..*]: integer
<<Checkbox>> AllowSubs [0..*]: Boolean
<<Text>> Total: currency
<<Submit>> Checkout
<<Button>> Recalculate
<<Submit>> ShopForMore

«Java Script»
Item

productID: long
productNumber: string
productName: string
description: string
allowSubs: Boolean
quality: integer
UnitPrice: currency
weight: float
cost: currency

computeTota()
totalWeight()

Figure 5. Frames example.

«targeted link»
{target=content}

«targeted link»
{target=content}

«targeted link»
{target=content}

{row=1
col=2}

{row=1
col=1}

Book

TOC

Chapter1

Preface

Chapter2

Content

70 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

that act as input controls. Each form also has a rela-
tionship with a server page that processes the form’s
submission. This relationship is stereotyped «sub-
mit». Since forms are completely contained in a
HTML document, they are expressed in a UML
diagram with an a strong form of aggregation. Fig-
ure 4 shows a simple shopping cart page that defines
a form, and shows the submit relationship to the
processing server page.

In Figure 4, the «JavaScript» stereotyped class is an
object that represents the items in the shopping cart.
Array syntax is used in the description of the form’s
properties for those fields that have a variable num-
ber of instances. In the case of this shopping cart it
means that the cart can have from zero to many
items, each with a Qty, AllowSubs, Cost, and Total
<input> element.

Since all the activity in the client page is executed
with JavaScript, and JavaScript is a type-less language,
the data types specified for any of these attributes are
used only for implementer clarification. When imple-
mented in JavaScript or as HTML input tags, the
type is ignored. This also applies to function parame-
ters, which, although not fully displayed in this fig-
ure, are part of the model.

Frames
The use of HTML frames in a Web site or applica-
tion has been a subject of polarized debate since its
introduction. Frames allow multiple pages to be
active and visible to the user at any given time. The
latest feature set of the most common browsers
today also allow multiple browser instances to be
active on the user’s machine. Using Dynamic
HTML scripts and components in these pages can
interact with each other. The potential for complex
interactions on the client is significant, and the need
for modeling this even greater.

Whether to employ frames or multiple browser
instances in an application is a decision for the archi-
tect. If so, then for the same reasons as previously men-
tioned, the model of this client side behavior needs to
be represented in the ADM. To model frame usage we
define two more class stereotypes: «frameset» and «tar-
get», and an association stereotype «targeted link». A
frameset class represents a container object, and maps
directly to the HTML <frameset> tag. It contains
client pages and targets. A target class is a named frame
or browser instance that is referenced by other client
pages. A targeted link association is a hyperlink to
another page, but one that gets rendered in a specific
target. In the example of Figure 5, a common outline
view is presented in a browser using two frames. One
frame is named with a target (Content), the other

frame simply contains a client page. This client page
frame is the book’s table of contents (TOC). Hyper-
links in this page are targeted, so that they render in
the Content frame. The effect is a static table of con-
tents on the left-hand side and the book’s contents,
chapter by chapter, on the right-hand page.

Many of the actual presentation specifics are cap-
tured by tagged values in the frameset and the associ-
ations. Two tagged values on the aggregation
relationship between a frameset and a target or client
page specify the frameset row and column in which
the target or page belongs. The tagged value “Target”
on the targeted link association identifies the «tar-
get» where the page should be rendered.

When a target is not aggregated with a frameset it
means that a separate browser instance is used to ren-
der the pages. It is important to keep in mind that this
notation is expressing a single instance of a client
machine. Multiple independent targets are all
assumed to be running on the same machine, and the
diagram expresses the client side behavior of one
client instance. Any other deployment configuration
would need to be heavily documented in the model
for better understanding.

Conclusion
The ideas and concepts discussed in this article are
an introduction to issues and solutions for modeling
Web application specific elements with UML. The
goal of this work is to present a coherent and com-
plete way integrate the modeling of Web-specific
elements with the rest of the application such that
the level of detail and abstraction is appropriate for
designers, implementers, and architects of Web
applications. A first version of a formal extension to
the UML for Web applications is near completion.
This extension will provide a common way for
architects and designers to express the entirety of
their Web applications design with UML. The most
recent information on this extension can be found
on the Internet in the Rose and UML sections of
Rational Software’s Web site: www.rational.com.

References
1. Booch, G., Jacobson, I., Rumbaugh, J. The Unified Modeling Language

Users Guide. Addison Wesley, Reading, MA, 1998.
2. Isakowitz, T., Stohr, A., and Balasubramanian, E. RMM: A methodol-

ogy for structured hypermedia design. Commun. ACM 38, 8 (Aug.
1995), 34–44.

Jim Conallen (jconalle@rational.com) is Web Modeling Evangelist
with Rational Software Corporation.

© 1999 ACM 0002-0782/99/1000 $5.00

c

