
A Goal-Based Organizational Perspective on Multi-
Agent Architectures

Manuel Kolp1 Paolo Giorgini2 John Mylopoulos3

1IAG - Information Systems Research Unit - University of Louvain, 1 Place des Doyens, B-
1348 Louvain-La-Neuve, Belgium, tel.: 32-10 47 83 95, kolp@isys.ucl.ac.be

2 Department of Mathematics - University of Trento, 4 via Sommarive, I-38100, Trento,
Italy, tel.: 39-0461-88 2052, pgiorgini@science.unitn.it

3 Department of Computer Science - University of Toronto, 6 King’s College Road
M5S 3H5, Toronto, Canada, tel.: 1-416-978 5180, jm@cs.toronto.edu

Abstract. A Multi-Agent System (MAS) is an organization of coordinated
autonomous agents that interact in order to achieve common goals. Considering
real world organizations as an analogy, this paper proposes architectural styles
for MAS which adopt concepts from organization theory and strategic alliances
literature. The styles are intended to represent a macro-level architecture of a
MAS, and they are modeled using the i* framework which offers the notions of
actor, goal and actor dependency for modeling multi-agent settings. The styles
are also specified as metaconcepts in the Telos modeling language. Moreover,
each style is evaluated with respect to a set of software quality attributes, such
as predictability and adaptability. The paper also explores the adoption of
micro-level patterns proposed elsewhere in order to give a finer-grain
description of a MAS architecture. These patterns define how goals assigned to
actors participating in an organizational architecture will be fulfilled by agents.
An e-business example illustrates both the styles and patterns proposed in this
work. The research is being conducted within the context of Tropos, a
comprehensive software development methodology for agent-oriented software.

1 Introduction

Multi-Agent System (MAS) architectures can be considered as organizations (see e.g.,
[6, 7, 15]) composed of autonomous and proactive agents that interact and cooperate
with one another in order to achieve common or private goals. In this paper, we
propose to use real world organizations as a metaphor in order to offer a set of generic
architectural patterns (or, styles) for distributed and open systems, such as MAS.
These styles have been adopted from the organization theory and strategic alliances
literature [12]. The styles are modeled using the strategic dependency model of i*
[22], and they are further specified in the Telos modeling language [14]. We also
present multi-agent patterns to design MAS architectures at a finer-grain.

To illustrate the use of these styles and patterns, we use as example a (fictitious)
Media Shop. This is a store selling and shipping different kinds of media items such
as books, newspapers, magazines, audio CDs, videotapes, and the like. Media Shop

customers (on-site or remote) can use a periodically updated catalogue describing
available media items to specify their order. Media Shop is supplied latest releases
and in-catalogue items by Media Supplier. To increase market share, Media Shop has
decided to open up a B2C retail sales front on the internet. With the new setup, a
customer can order Media Shop items in person, by phone, or through the internet.
The system has been named Medi@ and is available on the world-wide-web using
communication facilities provided by Telecom Co. It also uses financial services
supplied by Bank Co., which specializes on on-line transactions.

This research is being conducted within the context of the Tropos project [2].
Tropos adopts ideas from MAS technologies, mostly to define the detailed design and
implementation phase, and ideas from requirements engineering, where agents/actors
and goals have been used heavily for early requirements analysis [4, 22]. In
particular, Tropos is founded on Eric Yu’s i* modeling framework which offers actors
(agents, roles, or positions), goals, and actor dependencies as primitive concepts for
modelling an application during early requirements analysis. The key premise of the
project is that actors and goals can be used as fundamental concepts for analysis and
design during all phases of software development, not just requirements analysis.

Section 2 introduces the macro level catalogue of organization-inspired
architectural styles, and proposes a set of software quality attributes for evaluating
architectural alternatives. Section 3 introduces the micro level catalogue of goal-based
multi-agent patterns for finer-grain design of an organizational architecture. Section 4
presents fragments of an e-business case study to illustrate the use of styles and
patterns proposed in the paper. Finally, Section 5 summarizes the contributions of the
paper and points to further work.

2 Organizational Styles

Organizational theory [13, 19] and strategic alliances [9, 20, 21] study alternative
styles for (business) organizations. These styles are used to model the coordination of
business stakeholders -- individuals, physical or social systems -- to achieve common
goals. We propose a macro level catalogue adopting (some of) these styles for
designing MAS architectures.

A strategic dependency model is a graph, where each node represents an actor (an
agent, position, or role) and each link between two actors indicates that one actor
depends on another for a goal to be fulfilled, a task to be carried out, or a resource to
be made available. We call the depending actor of a dependency the depender and the
actor who is depended upon the dependee. The object around which the dependency
centers (goal, task or resource) is the dependum. The model distinguishes among four
types of dependencies -- goal-, task-, resource-, and softgoal-dependency -- based on
the type of freedom that is allowed in the relationship between depender and
dependee. Softgoals are distinguished from goals because they do not have a formal
definition, and are amenable to a different (more qualitative) kind of analysis [3].

For instance, in Figure 1, the Middle Agency and Support actors depend on the Apex
for strategic management. Since the goal Strategic Management does not have a
precise description, it is represented as a softgoal (cloudy shape). The Middle Agency

depends on Coordination and Support respectively through goal dependencies Control
and Logistics represented as oval-shaped icons. Likewise, the Operational Core actor is
related to the Coordination and Support actors through the Standardize task dependency
and the Non-operational Service resource dependency, respectively.

The structure-in-5 (s-i-5) style (Figure 1) consists of five typical strategic and
logistic components found in many organizations. At the base level one finds the
Operational Core where the basic tasks and operations -- the input, processing, output
and direct support procedures associated with running the system -- are carried out. At
the top lies the Apex composed of strategic executive actors. Below it, sit the
control/standardization, management components and logistics: Coordination, Middle
Agency and Support, respectively. The Coordination component carries out the tasks of
standardizing the behavior of other components, in addition to applying analytical
procedures to help the system adapt to its environment. Actors joining the Apex to the
Operational Core make up the Middle Agency.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Fig. 1. Structure-in-5

The Support component assists the Operational Core for non-operational services that
are outside the basic flow of operational tasks and procedures.

Figure 2 specifies the structure-in-5 style in Telos. Telos is a language intended for
modeling requirements, design and implementation for software systems. It provides
features to describe metaconcepts used to represent the knowledge relevant to a
variety of worlds – subject, usage, system, development worlds - related to a software
system. Our organizational styles are formulated as Telos metaconcepts, using heavily
aggregation semantics, as proposed in [16].

MetaClass is a metametaclass with all metaclasses as instances. ApexClass,
CoordinationClass, MiddleAgencyClass, SupportClass, and
OperationalCoreClass are also metaclasses whose instances are actor classes
of five different kinds, as indicated by their names. The structure-in-5 style is then a
metaclass defined as an aggregation of five (part) metaclasses. Each of these five

components exclusively belongs (exclusivePart) to the aggregate and their
existence depends (dependentPart) on the existence of the composite. A
structure-in-5 architecture specific to an application domain can now be defined as a
Telos class, which instantiates StructureIn5MetaClass. Similarly, each
structure-in-5 component specific to a particular application domain will be defined as
a class, instance of one of the five StructureIn5Metaclass components.

TELL CLASS StructureIn5Class IN MetaClass WITH
attribute name: String

part, exclusivePart, dependentPart
 apex: ApexActorClass
 coordination: CoordinationActorClass
 middleAgency: MiddleAgencyActorClass
 support: SupportActorClass
 operationalCore: OperationalCoreClass

END StructureIn5MetaClass

Fig. 2. Structure-in-5 in Telos

Figure 3 formulates in Telos one of these five structure-in-5 components: the
Coordination actor. Dependencies are described following Telos specifications for i*
models. The Coordination actor is a metaclass, CoordinationMetaclass.
According to Figure 1, the Coordination actor is the dependee of a task dependency
StandardizeTask and a goal dependency ControlGoal, and the depender of a
softgoal dependency StrategicManagementSoftGoal.

TELL CLASS CoordinationMetaclass IN MetaClass WITH
attribute name: String
taskDepended

 s:StandardizeTask
WITH depender
 opCore: OperationalCoreClass
END

goalDepended
 c:ControlGoal

WITH depender
 midAgency: MiddleAgencyClass
END

softgoalDepender
 s:StrategicManagementSoftGoal

WITH dependee
 apex: ApexClass
END

END CoordinationMetaclass

Fig. 3. Structure-in-5 coordination actor.

The pyramid (pyr) style is the well-known hierarchical authority structure
exercised within organizational boundaries. Actors at the lower levels depend on and
report to actors of higher levels. The crucial mechanism here is direct or indirect
supervision by the apex. Managers and supervisors are then only intermediate actors
routing strategic decisions and authority from the apex to the operating level. They
can coordinate behaviors or take decisions on their own, but only at a local level. This

style can be applied when designing simple distributed systems. Moreover, this style
encourages dynamicity since coordination and decision mechanisms are direct and
immediately identifiable. For applications which require a high degree of evolvability
and modifiability, this is a good style to use. However, this style is not suitable for
complex distributed systems requiring many kinds of agents and supervision
relationships. On the other hand, it can be used by such systems to manage and
resolve crisis situations. For instance, a complex multi-agent system faced with a non-
authorized intrusion from external agents could dynamically reconfigure itself into a
pyramid structure in order to resolve the security problem in an effective way.

The joint venture (jo-ve) style (Figure 4a) involves agreement between two or
more principal partners to obtain the benefits of larger scale operation, with only
partial investment and lower maintenance costs. This is accomplished by delegating
authority to a specific Joint Management actor who coordinates tasks and manages
sharing of knowledge and resources. Each principal partner can manage and control
its own operations on a local dimension, but also interact directly with other principal
partners to provide and receive services, data and knowledge. However, the strategic
operation and coordination of such a system and its partner actors on a global
dimension are only ensured by the Joint Management actor. Outside the joint venture,
secondary partners supply services or support tasks for the organization core.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Fig. 4. Joint Venture (a) and bidding (b)

The bidding (bidd) style (Figure 4b) is founded on competition mechanisms and
actors behave as if they were taking part in an auction. The Auctioneer actor runs the
whole show. It advertises the auction issued by the auction Issuer, receives bids from
bidder actors and ensure communication and feedback with the auction Issuer. The
auction Issuer is responsible for issuing the bidding.

The arm’s-length (ar-le) style implies agreement between independent and
competitive actors who are willing to join a partnership. Partners keep their autonomy
and independence but act and put their resources and knowledge together to
accomplish precise common goals. Authority is not delegated by any partner.

The hierarchical contracting (hi-co) style identifies coordinating mechanisms that
combine arm’s-length agreement features with aspects of pyramidal authority.
Coordination here uses mechanisms with arm’s-length (i.e., high independence)
characteristics involving a variety of negotiators, mediators and observers. These
work at different levels and handle conditional clauses, monitor and manage possible
contingencies, negotiate and resolve conflicts and finally deliberate and take
decisions. Hierarchical relationships, from the executive apex to the arm’s-length
contractors (top to bottom) restrict autonomy and underlie a cooperative venture
between the contracting parties. Such, admittedly complex, contracting arrangements
can be used to manage conditions of complexity and uncertainty deployed in high-
cost-high-gain (high-risk) applications.

 s-i-5 pyr jo-ve bidd ar-le hi-co co-op

Predictability + ++ + -- - -
Security + ++ + -- -- -

Adaptability + ++ ++ + + ++
Cooperativity + ++ + - - + ++
Competitivity - - - ++ ++ + +
Availability + + ++ - -- + --

Failability-Tolerance -- -- ++ -
Modularity ++ - + ++ + + --

Aggregability ++ ++ +

Table 1. : Correlation catalogue.

The co-optation (co-op) style involves the incorporation of representatives of
external systems into the decision-making or advisory structure and behavior of a
newly-created organization. By co-opting representatives of external systems, an
organization is, in effect, trading confidentiality and authority for resource, knowledge
assets and support.

The evaluation of these styles can be done with respect to desirable software
quality attributes identified as relevant for distributed and open architectures such as
multi-agent ones. For lack of space, we do not detail them here and refer to [12]
where a full description of such attributes is presented. Table 1 summarizes
correlations for our styles and the quality attributes: +, ++, -, -- respectively model
partial/positive, sufficient/positive, partial/negative and sufficient/negative
contributions [3].

3 Multi-agent patterns

A further step in the architectural design of MAS consists of specifying how the goals
delegated to each actor are to be fulfilled. For this step, designers can be guided by a
catalogue of multi-agent patterns which offer a set of standard solutions. Design
patterns have received considerable attention in Software Engineering [8, 17] and
some of these could be adopted for MAS architectures. Unfortunately, they focus on
object-oriented rather than agent-oriented systems.

In the area of MAS, some work has been done in designing agent patterns, e.g.,[1,
5, 11]. However, these contributions focus on agent communication, while we are
interested in specifying how a goal is to be achieved at an organization level.

In the following we present a micro level catalogue of often-encountered multi-
agent patterns in the MAS literature. In particular, some of the federated patterns
introduced in [10, 23] will be used in Section 4.

A broker is an arbiter and intermediary accessing services from a provider to
satisfy the request of a consumer. It is used in vertical integration and joint venture
architectures.

A matchmaker (Figure 5a) locates a provider for a given consumer service
request, and then lets the consumer interact directly with the provider. In this respect,
matchmakers are different from brokers who directly handle all interactions between
the consumer and the provider. This pattern is also useful for horizontal integration
and joint venture architectures.

A monitor (Figure 5b) alerts a subscriber when certain events occur. This type of
agent accepts subscriptions, requests notifications from subjects of interest, receives
such notifications of events and alerts subscribers accordingly. The subject provides
notifications of state changes as requested. The subscriber registers for notification of
state changes to subjects, and receives notifications of changes. This pattern is used in
horizontal contracting, vertical integration, arm’s-length and bidding styles all of
which require monitoring activities.

Consumer

Provider

Matchmaker

Advertise
Service

Requested
Service

Locate
Provider

Monitor

Change

Subscriber

NotifySubject

Change

Forward
Subscribed

Fig. 5. Matchmacker (a) and monitor (b)

A mediator (Figure 6a) mediates interactions among different agents. An initiator
addresses the mediator instead of asking directly another agent, the performer. A
mediator has acquaintance models of other actors and coordinates cooperation among
them. Conversely, other agents have an acquaintance model for the mediator. While a
matchmaker simply matches providers with consumers, a mediator encapsulates
interactions and maintains models of initiators and performers behaviors over time. It
is used in pyramid, vertical integration and horizontal contracting styles because it
underlies direct cooperation and encapsulation features reinforcing authority.

An embassy (Figure 6b) routes a service requested by an external agent to a local
agent and hands back to the foreigner the response. If the request is granted, the
external agent can submit messages to the embassy for translation. The content of
each such message is translated in accordance with a standard ontology. Translated
messages are forwarded to requested local agents. The results of the query are passed
back out to the foreign agent, after translation. This pattern is useful for the structure-
in-5, arm’s-length, bidding and co-optation styles because it copes well with security
issues that arise because of the competition mechanisms inherent to these styles.

Map
Performer

MediatorInitiator

Performer

Route

Service
Performs

Service
Requested

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

Fig. 6. Mediator (a) and embassy (b)

A wrapper incorporates a legacy system into a multi-agent system. The wrapper
interfaces system agents with the legacy system by acting as a translator between
them. This ensures that communication protocols are respected and the legacy system
remains decoupled from the rest of the system. This pattern can be used in the co-
optation style when one of the co-optated actor is a representing a legacy system.

The Contract-Net pattern selects an agent to which it assigns a task. This pattern
includes a manager and any number of participants. The manager issues a request for
proposals for a service to all participants and then accepts "proposals" that offer the
service for a particular "cost". The manager selects one participant who performs the
contracted work and informs the manager upon completion. This pattern is useful in
the arm’s-length, bidding and co-optation styles due to their competition mechanisms.

MATCHMAKER

Agent Capabilities

Customer
− Build a request to query the matchmaker
− Handle with a services ontology
− Query the matchmaker for a service
− Find alternative matchmakers
− Request a service to a provider
− Manage possible provider failures
− Monitor the provider’s ongoing processes
− Ask the provider to stop the requested service

Provider

− Handle with a services ontology
− Advertise a service to the matchmaker
− Withdraw the advertisement
− Use an agenda for managing the requests
− Inform the customer of the acceptance of the request service
− Inform the customer of a service failure
− Inform the customer r of success of a service

Matchmaker

− Update the local database
− Handle with a services ontology
− Use an agenda for managing the customer requests
− Search the name of an agent for a service
− Inform the customer of the unavailability of agents for a service

Table 2. : Agents’ capabilities for the matchmaker pattern.

A detailed analysis of each pattern allows us to define a set of capabilities for
agents playing a role in the pattern. Such capabilities are not exhaustive and concern
exclusively agents activities related to each pattern’s goal. For lack of space, we only
present a set of capabilities for the matchmaker pattern (Table 2).

A capability states that an agent is able to act in order to achieve a given goal. In
particular, for each capability the agent has (knows) a set of plans that may apply in
different situations. A plan describes the sequence of actions to perform and the
conditions under which the plan is applicable. At this stage we do not need to define
the plans in detail. Instead, we simply specify that the agent needs to be capable of
achieving in one or more ways a given goal. In the Tropos methodology plans are
defined in the detail design phase. Sometimes several agents participating in a pattern
need to have common capabilities. For instance, the capability handle with services
ontology is common to all three agents of the Matchmaker pattern. This suggests a
need for a capability pattern repository to be used during the implemention phase.

4 An E-business Example

E-business systems are essential components of “virtual enterprises”. By now,
software architects have developed catalogues of web architectural styles. Common
styles include the Thin Web Client, Thick Web Client and Web Delivery. These
architectural styles focus on web concepts, protocols and underlying technologies but
not on business processes nor on non-functional requirements for a given application.
As a result, the organizational architecture styles are not described well within such a
framework. Three software quality attributes are often important for an e-commerce
architecture, according to [12]: Security, Availability and Adaptability.

To cope with these software quality attributes and select a suitable architecture for
a system under design, we go through a means-ends analysis using the non functional
requirements (NFRs) framework. This framework analyses desirable qualities by
going through an iterative goal refinement and decomposition as shown in Figure 7.
The analysis is intended to make explicit the space of alternatives for fulfilling the
top-level qualities. The styles are represented as design decisions (saying, roughly,
“make the architecture of the system respectively pyramid, co-optation, joint venture,
arm’s-length-based, …”).

The evaluation results in contribution relationships from architectural styles to
quality attributes, labeled “+”, “++”, “-”, “--”. Design rationale is represented by
claims drawn as dashed clouds. These can represent priorities and other meta-
information about the decision making process. Exclamation marks (! and !!) are used
to mark priorities while a check-mark indicates an achieved quality, while and a cross
indicates an un-achievable one.

In Figure 7, Adaptability has been AND-decomposed into Dynamicity and
Updatability. For our e-commerce example, dynamicity is concerned with the use of
generic mechanisms that allow web pages and user interfaces to be dynamically and
easily changed. Indeed, information content and layout need to be frequently
refreshed to give correct information to customers or simply follow fashion trends for
marketing reasons. Using frameworks such as Active Server Pages (ASP) and Server

Side Includes (SSI) to create dynamic pages goes some distance towards addressing
this quality. Updatability is strategically important for the viability of an application.
For our example, Media Shop employees have to update regularly the catalogue for
inventory consistency. This type of analysis is to be carried out in turn for newly
identified sub-qualities as well as for other top-level qualities such as Security and
Availability.

Eventually, the analysis shown in Figure 6 allows us to choose the joint venture
architectural style for our e-commerce example (qualities that have been achieved are
marked with a check mark). The analysis uses the correlation catalogue shown in
Table 1 and the top level qualities Adaptability, Security and Availability. These are
respectively marked ++, +, ++ for the selected style. More fine-grain qualities have
been identified during the decomposition process, such as Integrity (Accuracy,
Completeness), Usability, Response Time, Maintainability, and more.

Pyramid

Claim

can aquire
trusted information"]

["External Agents

Availability

Consistency
ExternalValidation

Integrity

Adaptability

++

-
+

+++

++

-

-

+ +

+
Identification

++

Claim

Completness
Usability Authentication Confidentiality Run-time

Maintainability
Extensibility

Modifiability
Run-time

Updatability

Elasticity Authorization

["Possible Conflicts"] Dynamicity

!

Security

!

Evolvability

++

Co-optation

Adjustability
ResponseTime

Claim
["Possible Conflicts"]

+

+

+

Joint Venture

--

+
-

++

++

++

++

++

++

+

+
+

-

Accuracy

+

++

......
Other Styles

- - - - ++

+
+

Fig. 7. Partial architecture evaluation for organizational styles.

Figure 8 offers a possible assignment of system responsibilities for our example,
based on the joint venture style. The system consists of three principal partners, Store
Front, Billing Processor and Back Store. Each of them delegates authority to, and is
controlled and coordinated by, the joint management actor (Joint Manager) managing
the system on a global dimension. Store Front interacts primarily with Customer and
provides her with a usable front-end web application. Back Store keeps track of all web
information about customers, products, sales, bills and other data of strategic
importance to Media Shop. Billing Processor is in charge of the (secure) management of
orders and bills, as well as other financial data. It is also in charge of interactions with
Bank Cpy. Joint Manager manages all of the above, controlling security, availability and
adaptability concerns.

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Database
Product

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

Fig. 8. An e-commerce system in joint venture architecture.

To accommodate the responsibilities of Store Front, we introduce Item Browser to
manage catalogue navigation, Shopping Cart to select and custom items, Customer
Profiler to track customer data and produce client profiles, and Product Database to
manage media items information.

To cope with the identified software qualities (security, availability and
adaptability), Joint Manager is further refined into four new sub-actors: Availability
Manager, Security Checker and Adaptability Manager assume one of the main softgoals
(and their subgoals). They are all monitored by Monitor. Further refinements are
shown on Figure 8.

Figure 9 shows a possible use of some of the multi-agent patterns for designing in
terms of agents the architecture of the e-business system shown in Figure 8. In
particular, the broker pattern is applied to the Info Searcher, which satisfies requests of
searching information by accessing Product Database. The Source Matchmaker applies
the matchmaker pattern locating the appropriate source for the Info Searcher, and the
monitor pattern is used to check both the correct use of the user data and the security
for the sources accesses. Finally, the mediator pattern is applied to mediate the
interaction among Info Searcher, Source Matchmaker and the Wrapper, while the wrapper
pattern makes the interaction between Item Browser and Product Database possible.
Other patterns can be applied as well. For instance, we could use the contract-net
pattern to delegate to a wrapper the interaction with the Product Database, or the
embassy to route the request of a wrapper to the Product Database.

Processor
Statistics

Policies

Profile
Customer

Access

Database
Product

Shopping
Cart

Item
Browser

Policy
Checker Monitor

Locate
Source

Route Info
Request

Mediator

Source
Matchm.

Access

Searcher
Info

Information
Hits

Translate
Response

Provide
Information

Wrapper

Fwd unsafe

Violation
Fwd Privacy

Notify
Source
Access

Query
Information

Source

Info
Ask for

Advertising

Fig. 9. Multi-agents patterns for item browser

5 Conclusions

Designers rely on styles, patterns, or idioms, to describe the architectures of their
choice. We propose that MAS can be conceived as organizations of agents that
interact to achieve common goals. This paper proposes a catalogue of architectural
styles and agent patterns for designing MAS architectures at a macro- and micro-
level. The proposed styles adopt concepts from organization theory and strategic
alliances literature. The proposed patterns are based on earlier research within the
agents community. The paper also includes an evaluation of software qualities that are
relevant to these styles.

Future research directions include formalizing precisely the organizational styles
and agent patterns that have been identified, as well as the sense in which a particular
model is an instance of such a style and pattern. We also propose to compare and
contrast them with classical software architectural styles and patterns proposed in the
literature, and relate them to lower-level architectural components involving
(software) components, ports, connectors, interfaces, libraries and configurations.

References

[1] Y. Aridor and D. B. Lange. “Agent Design Patterns: Elements of Agent Application
Design” In Proc. of the 2nd Int. Conf. on Autonomous Agents (Agents’98), New York, USA,
May 1998.

[2] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development
Methodology”, In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, June 2001.

 [3] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[4] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal–directed Requirements
Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.

[5] D.Deugo, F. Oppacher, J.Kuester, I. V. Otte. “Patterns as a Means for Intelligent Software
Engineering”. In Proc. of the Int. Conf. of Artificial Intelligence (IC-AI’99), Vol II, CSRA
Press, 605-611, 1999.

[6] J. Ferber and O. Gutknecht.“A meta-model for the analysis and design of organizations in
multi-agent systems”. In Proc. of the 3rd Int. Conf. on Multi-Agent Systems (ICMAS’98),
June, 1998.

[7] M.S. Fox. “An organizational view of distributed systems”. In IEEE Transactions on
Systems, Man, and Cybernetics, 11(1):70-80, January 1981.

[8] E. Gamma., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, 1995

[9] B. Gomes-Casseres. The alliance revolution : the new shape of business rivalry, Harvard
University Press, 1996.

[10] S. Hayden, C. Carrick, and Q. Yang. “Architectural Design Patterns for Multiagent
Coordination”. In Proc. of the 3rd Int. Conf. on Autonomous Agents (Agents’99), Seattle,
USA, May 1999.

[11] E. Kendall, P.V. Murali Krishna, C. V. Pathak, and C.B. Suersh. “Patterns of Intelligent
and Mobile Agents”. In Proc. of the 2nd Int. Conf. on Autonomous Agents (Agents’98), pages
92—98, New York, May 1998.

[12] M. Kolp, J. Castro and J. Mylopoulos, “A Social Organization Perspective on Software
Architectures”. In Proc. of the First Int. Workshop From Software Requirements to
Architectures (STRAW'01), Toronto, May 2001.

[13] H. Mintzberg, Structure in fives : designing effective organizations, Prentice-Hall, 1992.
[14] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: “Telos: Representing Knowledge

About Information Systems”. In ACM Trans. Info. Sys., 8 (4), Oct. 1990, pp. 325 – 362.
[15] T.W. Malone. “Organizing Information Processing Systems: Parallels Between Human

Organizations and Computer Systems”. In W. Zachry, S. Robertson and J. Black, eds.
Cognition, Cooperation and Computation, Norwood, NJ: Ablex, 1988.

[16] R. Motschnig-Pitrik, “The Semantics of Parts Versus Aggregates in Data/Knowledge
Modeling”, Proc. of the 5th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’93), Paris, June 1993, pp 352-372.

[17] W. Pree. Design Patterns for Object-Oriented Software Development, Addison-Wesley,
1995.

[18] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall, 1996.

[19] W. Richard Scott. Organizations: rational, natural, and open systems, Prentice Hall, 1998.
[20] L. Segil. Intelligent business alliances : how to profit using today's most important

strategic tool, Times Business, 1996.
[21] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances : an entrepreneurial approach

to globalization, Harvard Business School Press, 1995.
[22] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,

Department of Computer Science, University of Toronto, Canada, 1995.

