A METHODOLOGY FOR DEVELOPING AGENT BASED
SYSTEMSFOR ENTERPRISE INTEGRATION

Elizabeth A. Kendall, Margaret T. Malkoun and Chong Jiang
Computer Systems Engineering
Royal Melbourne Institute of Technology
GPO Box 2476V
Melbourne, VIC 3001
AUSTRALIA
email address: kendall@rmit.edu.au

ABSTRACT

Potentially one of the most significant opportunities for enterprise integration is the recent
development and advancement of agent based systems. However, before agents can be used as generic
building blocks, a methodology must be established for the development of these systems. This
methodology must encompass modelling, design, and implementation of the systems. This paper
outlines a methodology for the software engineering of agent based systems. The methodology is
based upon the IDEF (ICAM Definition) approach for workflow modelling and analysis, the
CIMOSA enterprise modelling framework, and the use case driven approach to object oriented
software engineering. The methodology is illustrated via a case study in the area of discrete parts
manufacturing.

1.0 INTRODUCTION

Potentially one of the most significant opportunities for enterprise integration is the recent
advancement of agent based systems. Numerous examples can be found in the literature of
applications of agent based systems to enterprise integration (Pan and Tenenbaum, 1991); concurrent
engineering (Cutkosky and Engelmore, 1992), (Tenenbaum, Weber, and Gruber, 1992), and (Olsen,
Cutkosky, Tenenbaum, and Gruber, 1994); and manufacturing (Kwok and Norrie, 1993). These
systems exhibit significant advances in distributed problem solving.

Before agents can be used widely used for enterprise engineering, a methodology must be established
for the development of agent based systems. The need for software engineering methodologies for
agent based systems has been described elsewhere (Huntbach, Jennings, and Ringwood, 1995).
Software engineering is the establishment and use of engineering principles to obtain economical
software that is reliable and works efficiently on real machines (Pressman, 1992).

Work by (Huntbach, Jennings, and Ringwood, 1995) indicated that an agent could be identified as a
process or a data store in a data flow diagram with real time extensions and by a decision table
(Cohen and Ringwood, 1995). Agent behavior is actually quite different from a data flow process or a
data store. The need to consider work flow and not just data flow (Klein, M., 1995) for agents has
been discussed, as agents cooperate much as individuals do in organizations or enterprises. (Klein,
M., 1995) provides the following table for a comparison of dataflow and workflow representations,
and it is evident that workflow representations are more suitable.

Dataflow Workflow

Communication between computer systems Business processes with human participants
Pass information Pass tasks

Pre-defined and rigid Can have exceptions

First in First Out queues Task queues, reasoning about ordering/ merging
Systems are interchangeable Agents have unique skills and positions
Requires input data Requires task execution environment

In this paper, existing methodologies for workflow and object oriented analysis and design are
extended to encompass agent oriented systems. The research proposes that as agents must be
implemented in software, a workflow representation alone can not be used. An object oriented
software engineering methodology is employed, but many aspects of the object oriented model have an

equivalent workflow representation that is discussed. In particular, the IDEF methodology for
integrated computer aided manufacturing (ICAM), the CIMOSA modelling framework for enterprise
engineering, and the use case driven object oriented software engineering (OOSE) approach are
utilized. These tools have been employed because they capture the work flow and active nature of an
agent system. They are also mainstream approaches that are widely used for analysis, design, and
implementation.

2.0 BACKGROUND
2.1 Agents

2.1.1 Definitions
There are two views of agents: weak and strong (Wooldridge and Jennings, 1995). A weak definition
of agency is items i) through iv) while a strong definition adds one of v) through vii) below:

i) autonomous - agents operate without direct intervention ii) social - agents interact with other
agents iii) reactive - agents perceive their environment and respond to changes that occur iv) pro-
active - agents affect their environment rather than passively allowing their environment to affect
them v) mentalistic notions - an agent has knowledge, and desires, intentions, commitments, and
choices (pro- active behavior) vi) rationality - an agent performs actions which further its goals
vii) veracity and viii) adaptability or learning.

Strong agents are also termed reflective in that they reflect on their behavior rather than merely
reacting to stimuli or changes. Strong agents are emphasized in this research, although only items i)
through vi) above are considered; veracity and learning are not addressed. Strong agents reason about
their beliefs to select a plan that could achieve their stated goals. Beliefs in reflective agent oriented
systems are primarily represented in extensions to first order predicate calculus. Two examples are
dMARS (Distributed Multiagent Reasoning System) (Georgeff, Ingrand, et. al) (Brenton, 1995) and
KIF (Knowledge Interchange Format) (Genesereth, Fikes, et. al, 1992).

Agent pro-active behavior is represented in terms of a plan library. An agent selects a plan from the
plan library on the basis of the goals that are to be accomplished; goals represent states of affairs that
an agent wants to achieve, test for, or maintain (Georgeff and Rao, 1995). A plan is instantiated
when a triggering event occurs that satisfies its invocation and context conditions, such as the posting
of anew goal. An instantiated plan is an intention. The body of a plan is a set of tasks that can be
subgoals, actions, assertions to and retractions from the belief database, and queries and messages to
other agents. When an intention is formed, these tasks are executed by the agent in an effort to reach
the stated goal.

2.1.2 Agent Cooperation

Agents operate in a distributed environment; therefore, agents require mechanisms and behavior that
allow them to communicate with other agents. KQML (Knowledge Query and Manipulation
Lanugage) (Finin, Weber, et al, 1993) is a language for communication among agent based programs.
With KQML, agents can query for and offer information, along with other options.

Agents must cooperate and negotiate with each other. When agents negotiate, they engage in
conversations that can be represented in speech acts and state machines. Languages have been
developed to support this. COOL is an extension to KQML (Barbuceanu and Fox, 1995), and with it
agents can make proposals and counterproposals, accept and reject goals, and notify other agents of
goal cancellation, satisfaction, or failure. Another language, AgenTalk (Kuwabara, Ishida, and Osato,
1995), has an inheritance or specialization mechanism for introducing new protocols as extensions of
predefined ones.

Related work by (Dunskus et al., 1995) has resulted in a preliminary categorization of the basic types
of agents. Selectors, Estimators, Evaluators, Critics, Praisers, and Suggestors have been considered
as narrow scope, or single function agents. This approach is valuable in that it addresses given
applications at a more abstract level and allows new problems to be viewed as extensions or
specializations of problems that have been seen before. Basic types of negotiation between these
agents, in particular conflict resolution (Klein, 1991), have also been identified.

2.2 Object Oriented Software Engineering

2.2.1 Definition
In a complete view, the notion of an object encompasses all of the following features (Booch, 1994):

1. Compound objects - an object can have properties or attributes that are in fact objects themselves.
Inheritance - an object type can have subtypes (classes can have subclasses).

Encapsulation - an object can hide or protect data and behavior

Identity - a system can distinguish between two objects that “look” the same.

State - an object’s behavior is dependent on its history

Behavior - an object can act and react through receiving and sending messages

ourwWN

2.2.2 Object Oriented Analysis

During object oriented analysis, an object oriented model is developed for a given application. The
Object Modelling Technique (OMT) (Rumbaugh et al., 1991), consists of three complementary
models: the object, dynamic and functional models. The object model indicates objects and
relationships between objects. The dynamic model includes scenarios and event traces of object
interactions. The functional model resembles a data flow diagram, with passive objects as data stores.
State transition diagrams are used to provide an overall view of an object’s dynamic behavior and to
gain insight into inheritance. Subclasses inherit the state diagram of a superclass, adding states and
transitions. Therefore, the protocols of AgenTalk (section 2.1.2) are in fact objects that can be
specialized using inheritance, as stated in (Kuwabara, Ishida, and Osato, 1995).

In the use case approach, also called OOSE (Object Oriented Software Engineering) (Jacobson, 1992),
a use case is a scenario or a description of how users interact with the system in a certain mode of
operation. A user in a particular role is known as an actor, and each actor uses one or more use cases.
Objects relevant to a use case are identified, and their dynamic behavior is analysed. One use case
can extend another one, meaning that it is inserted into the first use case, adding to its definition.
Extend relationships can be conditional, occurring under only certain circumstances. Use cases can
also be described at varying levels of abstraction, and inheritance can be utilized to provide
specialization. A use case may be purely abstract, or it may be concrete and therefore able to be
instantiated.

2.3 Enterprise Modelling M ethodologies

Methodologies have been proposed for enterprise modelling. The IDEF (ICAM Definition) method
(Bravoco and Yadav, 1985a and 1985b) is a standard for requirements definition in manufacturing
and other organizations. IDEF comprises three modeling methodologies: the function model (IDEF),
information model (IDEF;), and dynamic model (IDEF,). In the function model, the manufacturing
or other organization is described in terms of a hierarchy of decisions, activities, or actions. Each
function is given an ICOM (Input, Control, Output, and Resource or Mechanism) representation.

The CIMOSA modelling framework (Computer Integrated Manufacturing Open System Architecture)
(Kosanke, 1992) centers on types of major constructs. In CIMOSA, an enterprise activity is
analogous to an IDEF function, except it can have control input and output, and resource or
mechanism input and output. Both the CIMOSA and IDEF, models can be taken to a high degree of
detail, as shown in Figure 1. Here, an IDEF, function includes decisions that are made on the basis of
control input. Decide Action chooses a method or activity (Method 1 or Method 2), based upon the
Input and the Control Input.

N
Control Output

d
Control Input |

Input Actionl
Decide Method 1
action
Action2
Function Method 2 >
Output

/|\ Resource or Mechanism

Figure 1: Detailed Function in IDEF,

3.0 APPROACH
3.1 Object Oriented Software Engineering and Enterprise M odelling M ethodologies

The three views of the IDEF methodology all have counterparts in object oriented software
engineering. If the IDEF, function model is reexpressed in terms of an OMT functional model, active
objects and passive objects (data stores) can be distinguished. With this approach, active input and
output objects are identified, and mechanisms can also be modelled as active objects.

When use case diagrams and IDEF, diagrams are completed to the same level of detail, IDEF
functions appear directly as a use case. In an IDEF, diagram, use case actors would appear as
resources or mechanisms. The objects that appear within the use case are the same as those found in
the IDEF, information model. Use case extensions are the same as multi-level (parent and child)
IDEF, diagrams. When actors and objects manage a given use case, they generate control
information and pass it on as input to other components of the system. In this way, policy or decision
making actors and control objects carry out enterprise activities with control output.

3.2 Agentsand Objects

3.2.1 The Difference Between Agents and Objects

Agents are real time, autonomous objects that carry out pro-active behavior. Each object sequentially
executes methods, whereas a strong agent encompasses automated reasoning that allows it to
“intelligently” choose one alternative. Objects encompass data and behavior; agents have beliefs,
goals, plans and intentions. A reflective agent performs automated reasoning to select a plan; an
object does not reason. An object simply responds to messages and events and executes its encoded
behavior, step by step.

Because agents are concurrent, the use of inheritance in agent software requires avoidance of the
inheritance anomaly (Matsuoka and Yonezawa, 1993). Synchronization behavior that works in an
instance of a superclass will not necessarily provide accurate synchronization in an instance of a
subclass; superclass synchronization behavior must often be redefined at the subclass level, negating
any benefit of inheritance. agent behavior that doES not deal with synchronization can be inherited.

Objects communicate via unstructured messages, but agents employ KQML or a similar language to
communicate through structured, meaningful messages. Objects that recognize and respond to
KQML or other structured messages can cooperate with agents. Likewise, agents that can employ
unstructured messaging or an object messaging convention can cooperate with objects. The items
discussed above can be summarized by the following:

Agents and objects:

Compound - agents and objects can have properties or attributes that are objects or agents themselves.
Encapsulation - objects and agents can hide or protect data and behavior

Identity - objects and agents have identity that is not determined solely by their attribute values.
State - objects and agents have state. Their behavior is influenced by their history.

Behavior - objects and agents can act and react through receiving and sending messages
Objects:

Inheritance - an object type can have subtypes but synchronization behavior can not be inherited.
Unstructured messages - objects communicate through unstructured messages

Agents:

Reasoning - agents perform automating reasoning to “intelligently” choose between options
Pro-active behavior - agents have beliefs, knowledge, goals, plans, and intentions

Concurrency - agents act in a distributed manner

Structured messages - agents communicate with each other through structured messages

3.2.2 Objects as Beliefs, Sensors, and Effectors

The first relationship between agents and objects is at the belief level. Passive objects that merely
store attributes frequently appear in belief databases (Georgeff and Ingrand, 1990). The Ontolingua
project (Gruber, 1992) has produced a software system that can translate frame based knowledge
representations into a KIF beliefs database, and vice versa. (A frame, as an object, exhibits the static
aspects but differs in other ways.) Ontolingua can directly translate the static properties of objects that
appear in an agent’s belief database into KIF and other predicate calculus representations.

At a higher level, objects with encapsulation and dynamic behavior can be utilized by agents to
initiate and to carry out pro-active behavior. In this regard, active objects can be sensors and effectors
for agents. Objects in the environment impact the sensors and are impacted by the effectors, and all
interaction between the objects is accomplished through message passing. Sensor objects message an
agent with information about the environment that may impact the agent’s beliefs and knowledge.
These changes to the agent’s beliefs and knowledge may in turn cause triggering events to fire,
instantiating a plan into an intention. Effector objects carry out an agent’s intentions, impacting
objects in the environment.

3.2.3 Actors, Agents, and Use Cases

Use cases depict how humans and/ or organizations enter and interact with an object oriented system.
One use case represents one mode of operation for the system, with each actor as a user(s) in a certain
role. Agents enter applications to augment or automate human reasoning. For a full requirements
analysis, use cases must be specified for each scenario of the application. At this level of detail each
use case maps to an actor’s (or agent’s) plan. Conditional extends relationships --- when one use case
is inserted into another one if certain circumstances exist --- correspond to context conditions that
determine when an agent’s plan is to be intended.

When two or more actors appear in a use case, they collaborate or cooperate via their own message
passing and negotiation. In an IDEF representation, resources or individuals collaborate either by
appearing in the same functional block or by exchanging input and output, with one function’s output
serving as control input to another function, and perhaps vice versa. In the agent base system, the
actors and resources become the agents and their negotiation and information exchange becomes a
coordination protocol. Use cases can be abstracted and specialized, as can coordination protocols;
both use cases and coordination protocols are in fact objects or classes of objects.

3.3 An Agent Oriented M ethodology

The key results are summarized in Figure 2 where Figure 1 is modified to indicate the corresponding
agent representation. The inputs and outputs are the same, but the interior to the functional block
now shows an agent. The agent has beliefs, goals, plans, and an interpreter, with passive objects
shown as beliefs. Instantiated plans become intentions via the interpreter. Three kinds of intentions
are indicated. Task 1 involves coordination with other agents, while task 3 invokes an effector. Task
2 impacts the agent’s own beliefs. A sensor and an effector are also shown, with the sensor taking
input from an active object and the effector impacting an active object. A use case extension diagram
is depicted, and this translates into the agent’s plans.

Y‘7 Control /Coordination Coordination

1| Beliefs I::E ;
(Passive Intentions
Input Objects) Output
Active Sensor Effector| | | Active
B itv) FH - Use cases Plans (control){_}{ (entity) [
(Entity) (control) i h
Object Object Object Object
Goals géc&}& = géi&};}
Legend Resources/Actor
) Agent

Figure2: The Correspondence between Enterprise Activities, Use Cases and Agents

The correspondence between IDEF, use case and agent system components is summarized in the
following table.

IDEF Mode

Use Case (OOSE)

Agent Oriented System

Function with
Control Output

Use Case and/ or Use Case Extension

Goal and Plan

Functional Input Entity Object - Coexisting Object via Sensor
Actor Input - Belief

Control Input Entity Object via Control Object - Coexisting Object via Sensor
Actor Input - Belief

Conditional Use Case Extension

- Context or Invocation Condition

Control Output

Control Object to Entity Object

- Goal or Subgoal

- Control Object to Actor - Effector to Coexisting Object
Functional Output - Control Object to Entity Object - Effector to Coexisting Object
- Control Object to Actor
Resource Actor Agent

More than one
resource per function
or resource
information
exchange

- More than one actor per use case
- Use case event trace

- Use case abstraction and
specialization (inheritance)

- Agent collaboration

- Coordination protocol

- Coordination protocol
abstraction and specialization
(inheritance)

Information Model Objects - Beliefs and Coexisting Objects

4.0 CASE STUDY

The methodology is illustrated in a case study from discrete parts manufacturing. Customers place
orders for parts, and the parts are selected for processing and grouped into batches. A batch is
assigned to a machine for processing, and the cost of a batch is determined on the basis of material
used and wasted, and on handling and processing. There are high quality and normal quality batches.
Normal parts can be formed on a high quality machine, but not vice versa.

4.2 IDEF Mode

IDEF, diagrams are provided in Figures 3, 4, and 5. In Figure 3, forming is not shown, and the
system has five functions: Create Parts, Select Parts and Sheets, Create Batch, Assign Machine, and
Determine and Evaluate Cost. Input and output are indicated, along with resources and control.
Control feedback is an important element of the system, as costing impacts the policies used for
selection, batching, scheduling (assigning) machines, and costing itself. These feedback paths are two
way, with selection, batching and scheduling policies also impacting the cost evaluation policy.

* Selection Policy -——————¥
Select Parts L
Prioritized Parts
Create Parts . > and Sheet >
Needed Parts A2 » Part List A3 and Sheets
T Material > T
Sales Selection
Batching Policy - -
l # Machine Scheduling Policy <J
Prioritized Parts .
Create Batch A d Batch
and Sheets Ad —» Batch —»| Assign Machine [Ssigned Batc
A A5
* Machine >
Batch Control ? Y Costing Policy
Scheduling .
Determine
and Evaluate |—m
Cost A Costed Batch
Costing +

Figure3: Level 1 IDEF, Function Model Overview of Case Study

Determination of the part selection policy is addressed in a level 2 IDEF, diagram in Figure 4. Part
selection policy is determined on the basis of parts and material. Information supplied from the
control output of costing is used, along with strategic knowledge. The selection policy is used to
control part and sheet selection; the selection policy decision may also impact costing via control
input. In CIMOSA, the selection policy functional output of Figure 4 would be portrayed as a control
output and the set selection policy function would be an enterprise activity.

Selection policy determination monitors part due dates, qualities, and sizes, and input from costing.
Simple selection policies are to select the first or the largest parts with the earliest due date.
Alternatively, parts may be selected because they match the material that is presently available, and
special orders may occur. Lastly, the selection policy may be based upon collaboration with costing,
giving precedence to parts and sheets that are cost effective. Costing might recommend a sheet that is
available but also large enough for cost effective handling, or suggest a part that is high quality, large,
and due early because these parts are behind on cost trends. If selection is able to satisfy these
requests, this collaboration with costing involves rejecting parts and sheets that have already been
selected. If selection is unable to carry out these recommendations, this result must be fed back to
costing as a control input. These possibilities are depicted in Figure 5, a level 3 IDEF, model. Here
detailed aspects of the function are shown, fitting the format depicted in Figure 1.

Level 3 diagrams for the Set Batching Policy and Set Scheduling Policy functions have also been
produced but are omitted from this discussion.

Strategic Knowledge ¢ ¢ Costing Control Output Costing Control Input

Parts > Set Part and Sheet
Selection Policy Part and Sheet
. A3-1 ® Selection Policy
Material L
Selection
_ Select Parts and
Sheet for Processing » Prioritized Parts
- A3-2 and Sheets
Selection T

Figure 4: Set Selection Policy IDEF, Level 2 Diagram
Strategy¢ $ Control Output from Costing

| Earliest Due Date -
. »| Earliest Due Date First Part
Decide Selection
Parts > Action Earliest Due Date - Policy
. _ Largest Part
Material > _ _ —
Available Material
Special Order Cost Effective
Material
Cost Effective
Cost Effective Part
Selection T

Figure5: IDEF, Level 3 Diagram of Set Selection Policy

The level 3 diagram for the Evaluate Cost function A6-2 is provided in Figure 6. The control output,
cost evaluation, is used as a control input by costing itself and by the functions in Figure 5. Control
input from Selection, Costing, and Scheduling is utilized, along with strategic knowledge. Each
decision that Costing can make is shown. Costs may meet objectives, an individual batch may have
too much waste or costly processing, or long term cost trends may be problematic. For too much
waste, Selection may be able to select a smaller sheet, or Batching may be able to fill the batch. For
costly processing and/ or handling, Batching may remove parts, Scheduling may assign a new

machine, or Selection may be able to find a larger sheet. Lastly, for long term cost trend problems,

Selection may change its policy.
Control Input from Selection,
Costing, and Scheduling

Strategy l /‘L
Y

> Costs OK
> :I /‘ Smaller Sheet |
Costed Batch P -
Reflde > H|gh Waste \‘I Fill Batch | o
ction =
| Larger Sheet | Cost Evaluation
Costly Processing/ Remove Parts |
> Handling
| Change Assignment |
Long Term o| Change Selection
— Cost Problem Policy

Evaluate Cost A6-2

Costing +
Figure6: Level 3 IDEF, Diagram for Evaluate Cost

4.3 Use Case Modéd

Use case representations are in Figure 7. The stick figures are actors while each ellipse is a use case.
Uses relationships are shown by dashed double headed arrows; an actor uses a case if it appears in the
scenarios. Extends relationships are indicated by a solid and single headed arrow, and one use case
extends another if it adds scenarios under certain condiations. If an actor uses a base use case it also
uses the extensions. Figure 7 depicts the nine functions (five level 1 and four level 2 in IDEF terms)
and the five different resources. The level 2 IDEF functions’ use cases extend the level 1 functions’
use cases. Selection sets selection policy and selects parts, Batching sets batching policy and creates
the batches. Assigning machines and setting scheduling policy are used by Scheduling. As the
Costing actor gives input for policy selection, it uses these cases. Likewise, four actors collaborate for
the cost evaluation.

Figure 8 shows use cases extending Set Selection Policy in the same way that the functions in the
level 3 IDEF diagram are extensions of higher level functions. The Set Part Selection Policy use case
is extended by Earliest Due Date, Special Order, Available Material, and Cost Effective. Earliest Due
Date is refined to First Part and Largest Part, while Cost Effective is extended to Cost Effective Part
and Material. The level 3 use case extensions are conditional. Use case extensions for batching,

scheduling, and costing policy determinations are similar.
- - .) Determine and
Assign Machine Set Scheduling Policy Evaluate Costs
A e I\

\ |
% | v
. £ Qoo
Scheduling T > & -
& Lo Set Batching
) 4 Polic
0 Set Selection Policy y
M % -
Selection ‘ / Batch Control -
Select Parts and
~ % Sales

Figure 7: Use Cases for the Application

Set Selection Policy

Cost Effective
Cost Effective Material

Earliest Due Date Special Order Available Material

arliest Due Date = Earliest Due Date - Cost Effective Part
First Part Largest Part

Figure 8: Use Case Extensions of Set Part Selection Policy

The dynamic model analyses object interactions. In the Set Selection Policy use case, the actor sets
the selection policy. This policy is then reviewed by the Costing actor during cost evaluation, and the
policy may be accepted or rejected, or a new policy may be suggested. Similar steps occur in Set
Batching and Set Scheduling Policy. The similarity of the event traces and the state diagrams
signifies that these three use cases can be derived from one abstract Set or Select Policy use case. The
evaluate costs use case, however, is derived from an abstract Evaluation use case in that the costing
actor reviews the policies and provides feedback. The two abstract use cases are shown in Figure 9 by
ellipses with double lines. The actual use cases specialize (single headed arrow with double lines) the

abstract cases, inheriting all of the features.
Determine and
Set Scheduling Policy Q Evaluate >

e Set or Select
Set Batching
Policy
Figure 9: Abstract Use Cases with Inheritance

Assign Machine

Select Parts and
Sheets

The actor that sets policy and the actor performing evaluation both use Select and the Evaluate, and
the interaction follows Figure 10. In the event trace, a vertical line is an object or an actor, the
arrows are messaging, and the boxes depict activities. One activity, evaluate, is shown for the
evaluator, but several outcomes are messaged to the selector. In the interactions, the selector responds
back with the results, leading to new activities for the evaluator. For example, the selector performs
select, messaging the evaluator to evaluate. There are several outcomes: the evaluator may request
information, suggest an alternative, reject the selection, or accept it. In these alternatives (except
acceptI), the selector responds by either satisfying or rejecting the evaluator’s recommendation.

evaluator selector]

T
evaluate
'}
select
providelnformation

requestinformation
I rejectGoal

O

requestinformation
I reselec

0=

suggest

rejectGoal

suggest

{

reselect

reject
rejectGoal

et

reject
|

Figure 10: Event Trace of Interaction between Evaluator and Selector in Set or Select Use Case

4.5 The Agent Oriented System

4.5.1 The Agents

The agent oriented system for the case study consists of four agents that are needed to carry out
automated reasoning to set policies and formulate decisions: one each for setting selection, batching,
scheduling, and costing policies. Four of the actors from Figure 7 are manifested as the four agents.
Once the agents have been identified, their goals and plans must be established. The major goal of
the Selection agent is to set selection policy. The agent’s plans arise from the IDEF level 3 diagram
in Figure 5 and the use case extensions in Figure 8. Each of these maps directly to a plan, as shown
in Figure 11. The agent has six different plans: earliest due date - first or largest part, special order,
part material selection, cost effective part and cost effective sheet.

Earliest Due Dete -
Earliest Due Dete |V First Part

Selection Agent

Goals Beliefs

Earliest Due Dete -
Largest Part

Available Material

Cost Effective
Mterial Plans ,—l
Intentions
Cost Effective Part

Figure 11: The Selection Agent’s Plans

4.5.3 Coordination Protocol or Script

The Selection agent does not work alone; it collaborates with the Costing agent. This is evident from
the fact that both the Selection and the Costing actors use the Set Selection Policy use case, and from
the control output from Costing that enters the IDEF level 3 diagram. A plan with collaboration is
not intrinsically different from a plan without it. All plans have a set of tasks that are meant to
achieve the goal; plans with collaboration follow a script for these tasks. As stated in section 3.3,
this script can be derived from the event trace for the use case; further, the script is a specialization of
the script for the abstract use case.

(Dunskus et al., 1995) discusses the conflicts that can arise between a selector single function agent
and an evaluator. If an evaluator gives a negative result, it is a critic. Alternatively a positive
evaluator is a praiser, and an evaluator that can make a suggestion is a suggestor. Rather than make
these distinctions here, we show that these possibilities are extensions or specializations of one
coordination protocol. This approach follows (Kuwabara et al., 1995). There are then three
possibilities: an evaluator may not have enough information to make an assessment, it may make a
positive evaluation, or it may make a negative evaluation or a rejection. If a negative evaluation is
made, the evaluator may be able to make a suggestion, adding a fourth possibility.

State diagrams for the coordination protocols or scripts followed by an evaluator agent are shown in
Figure 12. In Figure 12a, the evaluator is only able to request information. In Figure 12b, the
evaluator can also be a praiser in that it can accept a selector’s findings, or it can be a rejector or a
critic. If the evaluator can also be a suggestor, a further orthogonal addition would be made to the
state diagram. This script maps directly to the role of the evaluator in the event trace and sequence
diagram shown in Figure 12. The corresponding script for the selector agent has states
providelnformation, reselect, and rejectGoal, following the activities and messaging in Figure 10.

start [start]—»[success]

A / \
[requestinformation] [requestinformation]

idelnfo r rejectGoal

ect

Figure 12a: Evaluator Script Figure 12b: Evaluator Script with Rejection and Acceptance

4.5.4 Invocation Conditions

The plans, whether they involve cooperation or not, are enacted or intended based upon strategic
knowledge and on context or invocation conditions. The context conditions can be derived from the
use case extension conditions and the conditions in the determine policy function of Figure 5. Use
case extension conditions are discussed in (Jacobsen, 1992). A use case extension is indicated by a
probe in the sequence diagram for the original or base use case. When the case reaches the probe, it
checks whether the extension condition is true. If it is, the case follows the extension to its
completion.

The sequence diagram for the use case extension Set Selection Policy is given in Figure 13. A probe
is inserted to indicate when an extension should be followed. The extension returns to the base use
case at the second probe. Probes mark the entrance and exit locations for two extensions (four probes
are required for the extensions in Figure 9). If a part is from a special order, this use case extension is
inserted. If the Costing agent has indicated that a more cost effective approach is required, this
extension is followed. When more than one probe appears in a use case, strategic knowledge must be
employed to determine which extension take precedence.

The Selection agent’s behavior is enacted by stating a new goal to determine selection policy. This
goal is stated if the context has changed, corresponding to a new input (a part, or a material) to the
Set Selection Policy function. Once this new goal is posted, the agent decides what plan should be
intended based on the conditions that match the probes.

4.5.4 Agent Beliefs, Sensors, and Effectors

Information must either be retained within the agent as beliefs (passive objects) or obtained from
coexisting objects via sensors. Additionally, achieved goals bring about changes to beliefs or
modifications manifested via effectors. Parts and material are the objects that concern the selection
agent. The agent’s sensors monitor part and material features, raising alarms similar to the probes in
Figure 14 when part or material data meet certain criteria. Sensors interact with the various objects
via messaging to preserve object encapsulation. The agent’s effectors impact instances of parts and
sheets, resetting or newly defining their priorities.

costingControl selectionControl part selectionPolicy
getOrder
setPolicy -
- L]
@ PROBE -
IF special
order

. Special-Order
rejectSelection _O puse case

—Q@ PROBE -

IF rejectSelection
Cost Effective

_O use case

setPolicy

Figure 13: Set Selection Policy Sequence Diagram

Sensors and effectors for setting selection policy are depicted in Figure 14. Sensors monitor part and
material features, in addition to watching for special orders. Based on its own knowledge and the
control output from Costing, the Selection agent may reject a costly batch or sheet, placing the parts
onto the part list and the sheet in inventory. These actions are carried out by effectors. The Part
Selection Filter is responsible for prioritizing the parts, according to the agent’s intentions, and it is
another effector. The Sheet Selection Filter acts similarly.

Sensors Strategic Knowledge Control Output from Costing

Part Si ¢ ¢ Effectors
— - art Size

[— ™ Part Selection Filter

Part Quality Set Selection Policy —® Sheet Selection Filter
A3-1 — Batch Rejector

Sheet Rejector

Material .
—— | Special Order Selection

Parts

— | Part Due Date

Vinteria Dart List Select Parts and Sheets
art Lis i _ Prioritized Parts
— S /_ A3-2 —
Availability Vteria N and Sheets
aterial

—— Material T

Size .

Selection

Figure 14: Sensors and Effectors for the Selection Agent

5.0 SUMMARY AND FUTURE WORK

This paper has described steps toward a methodology for developing agent based systems for
enterprise integration. The methodology is based upon IDEF and CIMOSA modelling frameworks
for enterprise integration and upon object oriented techniques, in particular the use case approach.
With this methodology, agents can be identified, along with their plans, goals, beliefs and sensors and
effectors that allow them to deal with objects that exist in the outside environment. Agent
collaboration through scripts has also been addressed, and the methodology for the analysis and
design of the collaboration is based on use cases and use case abstraction.

The agent oriented system for the case study is presently under development in AMARS and C++.
Whereas the intial system will utilize passive objects as beliefs, an integrated agent and object design
and implementation will be carried out. When this work is finished, a more complete statement of the
agent development methodology will be formulated.

In addition to the case study implementation, several areas have been identified for further work:

1. Additional forms of collaboration and conflict - agent collaboration is often much more
comprehensive than that discussed in this paper; each agent can collaborate with every other agent.
2. Opportunistic behavior - pro- active behavior and context conditions do provide for opportunistic
behavior, but additional capability is needed.

3. Synchronization behavior - the object models must address concurrency and synchronization.

4. Class hierarchies and designs - for agent sensor, effector, and encapsulator objects

5. Structured and unstructured messaging - between agents and objects

6.0 ACKNOWLEDGEMENTS

This project was partly funded by the Cooperative Research Centre for Intelligent Decision Systems
under the Australian Government ® s Cooperative Research Centres Program.

7.0 REFERENCES

Barbuceanu, M. and M. S. Fox, “COOL.: A Language for Describing Coordination in Multi-Agent
Systems,” First International Conference on Multi- Agent Systems, pp. 17 - 24, 1995.

Booch, G., “Object Oriented Analysis and Design with Applications, Second Edition”, The Benjamin/
Cummings Publishing Company, 1994.

Bravoco, R. R., and S. B. Yadav, “Requirement Definition Architecture - An Overview”, Computers
in Industry, Vol. 6, pp. 237- 251, 1985a.

Bravoco, R. R., and S. B. Yadav, “A Methodology to Model the Functional Structure of an
Organization”, Computers in Industry, Vol. 6, pp. 345- 361, 1985b.

Brenton, A., “The dMARS Plan Language Reference Manual”, Australian Artificial Intelligence
Institute (AAII), 1995.

Cohen, D., and G. Ringwood, “Decision Table Languages and Guarded Definite Cleauses: Old Wine
in New Bottles”, Queen Mary and Westfield College, Dept of Computer Science Report, 1995.
Cutkosky, M., R. Engelmore, et al., “PACT: An Experiment in Integrating Concurrent Engineering
Systems”, IEEE Computer, 1992.

Dunskus, B. V., D. L. Grecu, D. C. Brown, and |. Berker, “Using Single Functions Agents to
Investigate Conflict”, Al in Engineering Design and Manufacturing, special issue in Conflict
Management in Multi-Agent Systems, to appear, 1995.

Finin, T., J. Weber, et al, “Specification of the KQML Agent- Communcation Language”, The
DARPA Knowledge Sharing Initiative External Interfaces Working Group, February, 1993.
Genesereth, M., R. E. Fikes, et al, “Knowledge Interchange Format, Version 3.0, Reference Manual,”
Report Logic- 92- 1, Computer Science Department, Stanford University, 1992.

Georgeff, M. P., F. Ingrand, et al, “Research on Procedural Reasoning Systems”, SRI International,
1990.

Gruber, T. R, “Ontolingua: A Mechanism to Support Portable Ontologies”, Reference Manual, June,
1992.

Gruber, T. R., J. M. Tenenbaum, and J. C. Weber, “Toward a Knowledge Medium for Collaborative
Product Development”, in Artificial Intelligence and Design ‘92, etd. by J. S. Gero, Proceedings of
the Second International Conference on Artificial Intelligence in Design, 1992.

Huntbach, M. M., N. R. Jennings, and G. A. Ringwood, “How Agents Do It In Stream Logic
Programming”, Proc. First International Conference on Multi- Agent Systems, pp. 177- 184, 1995
Jacobsen, I., Object- Oriented Software Engineering: A Use Case Driven Approach, Addison Wesley,
1992.

Klein, M., “Supporting Conflict Resolution in Cooperative Design Systems”, in IEEE Transactions on
Systems, Man, and cybernetics, Vol. 21, No. 6, November/ December 1991,

Klein, M., “Business Process (Re-)Engineering: Methodologies and Multi- Agent Technologies,”
Tutorial at First International Conference on Multi-agent Systems, 1995.

Kuwabara, K., T. Ishida, and N. Osato, “AgenTalk: Describing Multiagent Coordination Protocols
with Inheritance,” submitted to Tools for Artificial Intelligence Conference, 1995.

Kwok, A., and D. Norrie, “Intelligent Agent Systems for Manufacturing Applications”, J. of
Intelligent Manufacturing, Vol 4, pp. 285- 293, 1993.

Matsuoka, S., and A. Yonezawa, "Analysis on Inheritance Anomaly in Object-Oriented Concurrent
Programming Languages", in Research Directions in Concurrent Object-Oriented Programming (ed.
Gull Agha, P. Wegner, and A. Yonezawa), The MIT Press, Cambridge, MA., 1993.

Olsen, G. R., M. Cutkosky, J. M. Tenenbaum, and T. R. Gruber, “Collaborative Engineering Based on
Knowledge Sharing Agreements”, Proc. of the 1994 ASME Database Symposium, 1994,

Pan, J. Y. C.,J. M. Tenenbaum, and J. Glicksman, “A Framework for Knowledge- Based Computer
Integrated Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, Vol. 2, No. 2, May
1989.

Pan, J. Y. C., and J. M. Tenenbaum, “An Intelligent Agent Framework for Enterprise Integration”,
IEEE Trans. on Systems, Man and Cybernetics, Vol. 21, No. 6, November/ December 1991.
Pressman, R. S., Software Engineering: A Practitioner’s Approach, 3rd Edition, McGraw- Hill, 1992.
Rumbaugh, J., M. Blaha, et al., Object Oriented Modeling and Design, Prentice Hall, 1991.
Tenenbaum, J. M., J. C. Weber, and T. R. Gruber, “Enterprise Integration: Lessons from SHADE and
PACT”, in Enterprise Integration Modeling, Proceedings of the First International Conference, Etd.
by C. J. Petrie, MIT Press, 1992.

Wooldridge, M. J., and N. R. Jennings, “Agent Theories, Architectures, and Languages: a Survey”,
1994.

Wooldridge, M. J., and N. R. Jennings, “Agent Theories, Architectures, and Languages”, Tutorial,
First International Conference on Multi- Agent Systems, 1995.

