
Automatic Extraction of Abstract-
Object-State Machines Based on

Branch Coverage

Hai YUAN Tao XIE

Department of Computer Science
North Carolina State University

hyuan3@ncsu.edu xie@csc.ncsu.edu

Agenda

Motivation
Related Work
Example
Object State Machine (OSM)
Framework
Conclusion and Future work

Motivation

Software specifications are useful
but they often do not exist

Object State Machine (OSM) can be inferred
from program executions

but inferred concrete OSM are too complex to understand

We propose Brastra to abstract concrete OSMs
based on branch coverage
Inferred OSMs are often succinct and useful

Related Work

Use return values of observers to abstract concrete
states [Xie and Notkin ICFEM 04]

Use individual field values to abstract concrete states
[Xie and Notkin SAVCBS 04]

Extract statically object state models from source code
[Kung et al. COMPSAC 94]

Extract state models based on only call sequences,
without using object-field values or structural coverage
[Whaley et al. ISSTA 02].

Example - UBStack

Unique Bounded Stack
Stack capacity is bounded (e.g., set as 3).
No duplicated elements in the stack.
push(x):

push(3) push(3) push(3) push(4)error

Pop():

pop() pop() error

2

3

1

0

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

0

2

1

0

0

0

Specify Object Behavior with Object State
Machine (OSM)

OSM: A sextuple (I, O, S, δ, λ, INIT)
I: set of method calls in the class interface.
O: set of return values of the method calls.
S: set of object’s states.
INIT∈S: initial state of the state machine.
δ : state transition function. S x I P(S)
λ : output function. S x I P(O)
P(S) and P(O) are power set of S and O, respectively.

INIT [0;0;0]
Stack()

push(1)

push(2)

[1;0;0]

[2;0;0]

Build Concrete OSMs

Generate tests for UBStack
Manually configure push’s argument to be 1,2,3,4
Default stack elements are 0.
Automatically generate 263 test cases with Rostra [Xie et al. ASE 04]

Collect test execution information with Daikon [Ernst et
al. TSE 01].
Build concrete OSMs from Daikon traces.

State: values of object fields.
Transition: method calls (with arguments).
41 states and 142 transitions.

Concrete OSM of UBStack - Overview

Concrete OSM of UBStack - Details

Brastra Framework

Basic idea:
Partition concrete states based on the branch coverage of the methods
invoked on these states.

Procedure:
Build concrete OSMs from Daikon traces.
Collect branch coverage using modified jusc tool [Xie&Notkin JASE 06].
Merge concrete states based on branch coverage

[1,2,0]

[2,3,0] [2,0,0]

[1,0,0]
[x,y,0]

[1,0,0]

[2,0,0]

Pop()

Pop()

Pop()

Pop()

Define Branch Coverage with Conditional Set

public int pop(){
int ret = -1;

3:if (numberOfElements > 0) {
…

n:} else { … }
return ret;

}

A. UBStack.

private void private void syncMenusyncMenu(){(){

……
6:6: if if ((bugInstancebugInstance != null!= null) {) {

……

selectSeverity(severityselectSeverity(severity););

……

}}

}}

private void private void selectSeverity(intselectSeverity(int
severity) {severity) {

……

5:5: for (for (intint
i=0;i=0;i<i<severityItemList.lengthseverityItemList.length;i;i++) ++)

{{……}}

……

}}

B. B. findbugs.classify.SeverityClassificationPulldownActionfindbugs.classify.SeverityClassificationPulldownAction

Collect Branch Coverage

UBStack: pop(): numberOfElements > 0 = false

UBStack: pop(): numberOfElements > 0 = true

0

0

0

0

2

1

concrete
states

branch
coverage

Group States by Branch Coverage

UBStack: pop(): numberOfElements > 0 = true

UBStack: pop(): numberOfElements > 0 = true

0

2

1

0

3

2

concrete
states

branch
coverage

Illustrating Example

public void push(int k) {
int index; boolean alreadyMember = false;
for(index=0; index<numberOfElements; index++) {

if (k==elems[index]) {
…

}
}
if (alreadyMember) {

for (int j=index; j<numberOfElements-1; j++)
…

} else {
if (numberOfElements < max) {

…
} else {

System.out.println("Stack full");
return;

}
}

}

Check if k is already in
the stack

k in the stack, switch it to
the top

k is not in the stack, and the
stack is not full

k is not in the stack, and the
stack is full

UBStack – Brastra Result

INIT

elem:[0;0;0]

numberOfElements:0

…

pop: …

push: …

numberOfElements:1

…

pop: …

push: …

push:…

numberOfElements:1

…

pop: …

push: …

push: …

push: …

numberOfElements:1

…

pop: …

push: …

push: …

push: …

push: …

UBStack()

pop()

pop()

push(int)

pop()

push(int)

push(int)

push(int)

push()

push(int)

pop()

States:

41 5

Transitions:

142 11

Abstract State Details

Common field values

pop(): all calls of pop()
on the state will take
the same branch.

push(x):
x not in the stack and

stack not full
x in the stack and not at

the top of the stack.
x in the stack and at the

top of the stack.

Conclusion

Software specifications are useful
but often do not exist

Concrete OSMs can be inferred from program exec
but too complex to be useful.

We proposed Brastra to abstract concrete OSM
group concrete states based on method call branch coverage

Initial results of applying Brastra on UBStack show
Brastra’s utility.

Future Work

Enhance Brastra with existing FSM-based testing
techniques

Test generation
Test reduction

Extend Brastra to multiple classes instead of one
Subsystem behavior

Slice on fields of interests for further reduction
Recover non-functional requirements.

Questions?

Thank You!

	Automatic Extraction of Abstract-Object-State Machines Based on Branch Coverage�
	Agenda
	Motivation
	Related Work
	Example - UBStack
	Specify Object Behavior with Object State Machine (OSM)
	Build Concrete OSMs
	Concrete OSM of UBStack - Overview
	Concrete OSM of UBStack - Details
	Brastra Framework
	Define Branch Coverage with Conditional Set
	Collect Branch Coverage
	Group States by Branch Coverage
	Illustrating Example
	UBStack – Brastra Result
	Abstract State Details
	Conclusion
	Future Work
	Questions?
	Thank You!

