
November 7, 2005 Requirements-Driven Software Configurations 1

Requirements-Driven
Configuration of Software Systems

Yijun Yu
Alexei Lapouchnian

Sotirios Liaskos
John Mylopoulos

Department of Computer Science
University of Toronto

November 7, 2005 Requirements-Driven Software Configurations 2

Overview

0. The context of the story
1. Motivation: Complexity shift
2. Process, Abstraction and Automation
3. A Case Study: Mozilla Firefox
4. Summary

November 7, 2005 Requirements-Driven Software Configurations 3

0. Context of the story:
A Software Engineering Course

• http://www.cdf.toronto.edu/~csc408h/summer

• The chosen course project is to automatically
reconfigure a large-scale software system (e.g. Firefox,
Eclipse)

• A project is divided into 3 phases:
– Phase A: reverse engineer the high-level requirements of the

software
– Phase B: create a detailed configuration based on a user profile
– Phase C: automate the configuration by generating proper

values of the parameters of the software.

• Phase A, C are done by the same team, while the
module of phase B must be “purchased” from another
team

http://www.cdf.toronto.edu/~csc408h/summer

November 7, 2005 Requirements-Driven Software Configurations 4

1. Motivation: Complexity Shift
• Moore’s law on hardware:

CPU speed doubles every 18 to 24 months

• The 2nd Lehman’s laws on software development:
Complexity of software systems increases

• The relative cost of managing software complexity
increases by a speed of Moore * Lehman

• How to reduce the cost? Shift the complexity from end-
users to the software can gradually make it disappear
from users: the variability of the system increases!

November 7, 2005 Requirements-Driven Software Configurations 5

Complexity in configurations

E.g. Firefox
• What does it mean by

SSL 2.0, SSL 3.0 and
TLS 1.0?

• Not to mention the
number of parameters
for “about:config”:
“… This system is for use by
people who know what they
are doing only, by changing a
value incorrectly you may
damage or destroy your Firefox
installation! Look to Help sites
for handy preferences to tweak
to customize Firefox further”.

November 7, 2005 Requirements-Driven Software Configurations 6

about:config

November 7, 2005 Requirements-Driven Software Configurations 7

An Autonomic Element
for self-management

November 7, 2005 Requirements-Driven Software Configurations 8

Goal model

User profile

2. Towards self-configuring

Requirements
Configurator
(reasoning
& tradeoffs)

Software
Configurator

Goals

Preferences

Softgoals

Skills

Goal configuration

TasksSelected leaf goals

A fact that is either true (satisfied) or false (denied)

A fact that can be partially satisfied as long as its fulfillment is
above a threshold (expectation)

The capability of the user to fulfill the delegated goals.

The partial order between goals to set priority for the planning.

Software
Configuration

Parameters

Rules
A logic rule such as AND, OR, +, -, ++, --

Software independent

Software dependent

MappingsBetween leaf goals
and parameters

Software dependent

November 7, 2005 Requirements-Driven Software Configurations 9

2. Configuration

2.1 Abstraction: goal model (1)

satisfaction
label

November 7, 2005 Requirements-Driven Software Configurations 10

2. Configuration

2.1 Abstraction: goal model (2)

November 7, 2005 Requirements-Driven Software Configurations 11

2. Configuration

2.1 Abstraction: goal model (3)

Intentions
Tradeoffs

Requirements

Architectures

Functions

Code

…
…

LEGACY CODE

BEHAVIOUR MODEL

GOAL MODEL

Reverse engineering

GOAL MODEL

SOA

Web services

customizable
architecture

components

Forward engineering
Level of abstraction

time

November 7, 2005 Requirements-Driven Software Configurations 12

2. Configuration

2.2 Automation
1. Given a goal model, a user’s skills, preferences

and expectations, can we find a task
configuration automatically?

2. Given a task configuration, can we find a set of
configuration items (parameter values) that
satisfy these tasks automatically?

3. Given a set of configuration items, can we
automatically reconfigure the subject software
without changing its source code?

November 7, 2005 Requirements-Driven Software Configurations 13

2.2 Automation

2.2.1 Algorithms for reasoning and tradeoffs

• Label propagation using logic rules:
For example: g = AND(g1, g2)
– Bottom-up reasoning [Giorgini et al @ ER’02]

If g1, g2 are both satisfied, then g is satisfied
– Top-down reasoning [Sebastini et al @ CAiSE’04]

If g is to be satisfied, then both g1, g2 are to be satisfied
• Fitness function design

– A goal/softgoal is not satisfied if (after label propagation) its label is
below expectations (skills or thresholds)

– Preferred goals have heavier weight than less important ones
– Good-enough versus Optimal to allow quick switch between alternatives

• A modified genetic algorithm
– Populations, Fitness, Crossover, Mutation, etc. are classic GA
– Termination condition is changed (to stop at good enough solutions)

November 7, 2005 Requirements-Driven Software Configurations 14

2.2 Automation

2.2.2 Map tasks to configuration items

• A leaf goal has a Boolean value
• A configuration item can be in any domain, such

as integer, string, etc.
• A Boolean expression is used to link a

configuration item to a leaf goal
– Bottom-up: reflect a configuration item into the

satisfaction of a leaf goal ??? Example figure
– Top-down: choose a default value of the

configuration item to satisfy the leaf goal ???
Example figure

• Such mappings have to be given by domain
experts

November 7, 2005 Requirements-Driven Software Configurations 15

2.2 Automation

2.2.3 Generating configuration scripts

• A software can be reconfigured without
changing its source code by:
– Changing its default settings at deployment time (E.g.

a properties file, or a few command line options)
– Changing the settings that are monitored by the

software
• A “script” here means either a batch file or

property file for the first case, or a sequence of
API calls for the second case

• It is generated based on the settings of
configuration items

November 7, 2005 Requirements-Driven Software Configurations 16

3. Mozilla Firefox

• It is a large-scale open-source software
• It has a large user base (~100 Million

users, or 10% of the Internet surfers)
• The configuration complexity for the

software is huge
• Different needs and tastes make it hard to

predict how to configure the individual
parameters to satisfy a particular user

November 7, 2005 Requirements-Driven Software Configurations 17

An example input

<input:model>
<soft name= "Performance">
<rule op="AND"/>
<soft name= "Browsing Performance"/>
<soft name= "System Performance"/>
</soft>
<soft name= "Usability">
<rule op="OR"/>
<soft name= "Ease of Search"/>
<soft name= "Convenient access to Information"/>
<soft name= "User Tailorability">

<rule op="OR"/>
<soft name= "Programmability"/>
<soft name= "User Flexibility"/>

</soft>
</soft>
<soft name= "Security">
<rule op="HURT" target="System Performance"/>
<rule op="HURT" target="Browsing Performance"/>
</soft>
<soft name= "Allow changes in Content Appearance">
<rule op="HELP" target="User Flexibility"/>
</soft>
<goal name= "Filter Advertisement/Spyware/Popups">
<rule op="HELP" target="Performance"/>
<rule op="HELP" target="Security"/>
<rule op="HURT" target="Content Availability"/>
</goal>
</input:model>

<input:profile>
<soft name="Security" rank="4" value="6" />
<soft name="Allow Interactive Content" rank="8"

value="8" />
<soft name="Convenient Access to Information"

rank="10" value="10" />
<soft name="Performance" rank="9" value="1" />
<soft name="Content Availability" rank="1"

value="10" />
<soft name="Allow changes in Content Appearance"

rank="6" value="4" />
<soft name="User Flexibility" rank="3" value="6" />
<soft name="Speed" rank="7" value="3" />
<soft name="Programmability" rank="3" value="8" />
<soft name="Modularity" rank="5" value="1" />
<soft name="Usability" rank="2" value="6" />
</input:profile>

GOAL MODEL PROFILE

November 7, 2005 Requirements-Driven Software Configurations 18

The profile elicitation

November 7, 2005 Requirements-Driven Software Configurations 19

The goal reasoning

November 7, 2005 Requirements-Driven Software Configurations 20

Softgoal interdependency graph

November 7, 2005 Requirements-Driven Software Configurations 21

The resulting configuration

<output:configuration>
<goal name=”adFilterStrength” value=”on” />
<goal name=”tabBrowsingOn” value=”off” />
<goal name=”cookiesEnabled” value=”off” />
<goal name=”daysToCachePages” value=”on” />
</output:configuration>

user_pref("network.image.imageBehavior", 2);
user_pref("network.cookie.cookieBehavior", 2);
user_pref("webdeveloper.disabled", false);
user_pref("browser.display.use_document_colors", true);
user_pref("javascript.enabled", false);
user_pref("webdeveloper.disabled", false);
user_pref("adblock.enabled", true);
user_pref("tidy.options.browser_disable", false);
user_pref("font.size.variable.x-western", 19);
user_pref("image.animation_mode", "normal");
user_pref("extensions.prefbar.display_on", 0);
user_pref("security.enable_java", false);
user_pref("security.default_personal_cert", "Select

Automatically");
user_pref("browser.cache.disk.enable", false);

PARAMETERS JAVASCRIPTS

XSLT

November 7, 2005 Requirements-Driven Software Configurations 22

4. Summary and Future work
• Through the Mozilla Firefox case study we’ve shown

how goal-oriented requirements can be used to guide
the configuration process automatically

• The goal models are provided by domain experts, the
user profiles are obtained by the users directly through a
simplified user interface, and the configuration is carried
out without further human intervention

• Currently, we are investigating
– how to apply the mechanism to other applications
– how to detect side effects when it is performed at runtime.
– to implement a Firefox extension for the massive user

community
– to solicit feedback from users.

	Requirements-Driven Configuration of Software Systems
	Overview
	0. Context of the story: � A Software Engineering Course
	Motivation: Complexity Shift
	Complexity in configurations
	about:config
	An Autonomic Element �for self-management
	2. Towards self-configuring
	2. Configuration�2.1 Abstraction: goal model (1)
	2. Configuration�2.1 Abstraction: goal model (2)
	2. Configuration�2.1 Abstraction: goal model (3)
	2. Configuration�2.2 Automation
	2.2 Automation�2.2.1 Algorithms for reasoning and tradeoffs
	2.2 Automation �2.2.2 Map tasks to configuration items
	2.2 Automation �2.2.3 Generating configuration scripts
	3. Mozilla Firefox
	An example input
	The profile elicitation
	The goal reasoning
	Softgoal interdependency graph
	The resulting configuration
	4. Summary and Future work

