
A Framework to Incorporate A Framework to Incorporate
NonNon--Functional Requirements into Functional Requirements into

UML ModelsUML Models

Subrina Anjum Tonu, Ladan TahvildariSubrina Anjum Tonu, Ladan Tahvildari
Software Technologies Applied Research LabSoftware Technologies Applied Research Lab

Dept. of Electrical & Computer Engineering Dept. of Electrical & Computer Engineering

{{subrina,ltahvild}@swen.uwaterloo.casubrina,ltahvild}@swen.uwaterloo.ca

November 2005 2

Despite the fact that Non-Functional Requirements
(NFRs) are very difficult to achieve and at the same
time are expensive to deal with, a few research works
have focused on them as first class requirements in a
development process. We propose a framework to
incorporate NFRs, as reusable components, into
standard UML notations. Such a framework can also
integrate those reusable NFRs with the extracted
UML representations of legacy systems during the
reverse engineering process. This novel research
work uses standard XMI representation of UML
models without proposing any extension to it.

AbstractAbstract

November 2005 3

Problem StatementProblem Statement
Production of a high quality software requires implementation of all
functional and non-functional requirements starting from the design
phase to the end of the software life cycle.

All these requirements are changing during the maintenance phase of
any software system.

Existing reverse Engineering process can extract architectural design
of legacy system as UML model.

UML tools also exist to automatically generate deployable source code
from UML model specifications.

It is necessary to have an environment to attach the new FRs and
NFRs to the target system.

In current practice, the join-point (where the NFR touches the target
model) is defined as a part of the NFR itself. As a result, there is very
little chance to reuse this NFR in other software design.

November 2005 4

Research FocusResearch Focus
Design and develop a methodology for

“Making Reusable NFRs Library/Repository with
Dynamic Parameterization of their join-points
with the target model”

Need a comprehensive framework to
Design Reusable NFRs with standard UML
notations

Add NFRs into the extracted UML model of legacy
system from the source code.

November 2005 5

Goals and IssuesGoals and Issues
Provide a high level notation to design NFRs using
UML models

Exploit the synergy between
Requirements analysis (both Functional and NonRequirements analysis (both Functional and Non--functional)functional)
Software reSoftware re--engineeringengineering

Preserve the original system functionality.

Add new NFRs into the original system to improve
its quality

November 2005 6

A Framework to Incorporate NFRsA Framework to Incorporate NFRs

Identification of FRs and NFRs
Functional

Requirements
Non-Functional
Requirements

Specifying New FRs into
Extracted Legacy Model

Specifying NFRs
Using NFR Framework

& NFR Template

NFR Library/
Repository

Integration of NFRs
Integrating NFRs with FRs as “Add” Component Of XMI

UML Representation of System with NFRs attached to it

Specification of FRs &
NFRs

Legend

Process

Control Flow

Repository

Extracted UML Model of a Legacy System

November 2005 7

Framework StepsFramework Steps

• Identification of FRs and NFRs from
Extracted UML model of a legacy system
Design documents
New user’s requirements

• Specification of FRs and NFRs
Specify FRs with UML diagram
Specify NFRs using NFR Framework and our proposed
High level notations for building template of NFRs

• Integration of NFRs
Integrate NFRs as “Add” component of XMI

November 2005 8

Proposed High Level NotationProposed High Level Notation
Providing commands for creating each type of UML entity.
NFR template is a set of ordered commands for creating UML
representations.
The template does not contain any hard-coded join-points of NFR
with the target model.
These commands are executed during the weaving of NFRs with
the target model.
The necessary parameters are supplied during run time.

NFR Library/RepositoryNFR Library/Repository
Building the NFR Library/Repository with those NFR templates.
The Library/Repository can be evolved during the time.

November 2005 9

Case Study Case Study –– Credit Card SystemCredit Card System

FRs
maintaining information on
sales, card holders and
merchants

Transactions are authorized,
and accounts are updated.

Stolen cards are cancelled.

NFRs
Fast Response time
for card cancellation
method

November 2005 10

Class Diagram of Credit Card SystemClass Diagram of Credit Card System
Credit Card

-CardType:String
-ExpiryDate: Date
-CreditLimit: int
-CardNumber: String
-AnnualFee: int
-Status-of-Card: int
-CustomerID: long
-……

+Invalid-Card-Status: void
+…..

GoldCard

-RewardPoint: int
-AirMiles: long
-…
+CalculatePoints(): int
+CalculateAirMiles(): long
+….

Card Holder

-Name: String
-Address: String
-Phone Number: int
-CustomerID: long
-….

+…()

Regular card

-PercentageofCashBack: float
-TotalCashBack: float
-…..
+CalculateCashBack(): float
+…

** 11

November 2005 11

SIG Performance for Credit Card System
√Layer 3(Transactions) ResponseTime

[Cancel(card),3]
ResponseTime

[components(Cancel(card)),3] √

ResponseTime
[access(attributes(card),3] √

ResponseTime
[Otheroperations(Cancel),3]

!ResponseTime
[access(attributes(card),3]{critical}

√

Claim
[“Access imp for cancellation”,3] √

ResponseTime
[access(card.otherattrs),3]

ResponseTime
[otherops(cancel),3]{noncriticalU

Claim
[“Other ops not imp”For cancellation,3]√

ResponseTime
[access(Card.Status),3] √

Claim
[“Status imp for cancellation”] + ResponseTime

[Otheroperations(Cancel),3]
√

ResponseTime
[retrieve(card.status),3]√

!ResponseTime
[access(Card.Status),3]{critical}

ResponseTime
[update(Card.Status),3]{critical}

ResponseTime
[retrieve(card.status),3]{noncriticalX

Claim
[“retrieve status is not imp”For cancellation,3]√

PerformLater[retrieve(card.status),3]
√

!ResponseTime
[update(card.status),3]{critical}

√

Claim
[“Updating status is imp for imp for cancellation”,3]

√

√PerformFirst[update(card.status),3]

Update done first in Cancel(card)

√Layer 2(Attributes) ResponseTime[Update(card.status),2]

√

ResponseTime[findoffset(card.status),2] √

ResponseTime
[implementation Components(update(card.status)),2]

√
ResponseTime[access(attributes(card),3]

StaticOffsetDetermination[card.status,3]
√ √

FewAttributesPerTuples[card.status,2]

Selective Attribute Grouping of Card Status

Storage of
Card Status

Cancel(Card)
operation+

++
++

X --

U

√ Claim[“other attr is not imp]X
--

++

++

++
++

+

++

--

--

+

+ +

NFR Softgoal

OP Softgoal

Claim Softgoal

Op targetlink

Target

Functional
Requirement

√ Satisfied

U undecided

contribution

X Denied

November 2005 12

Process for Incorporating NFR FastResponseTime

Step 1:Accepting the join-point of the NFR ``Fast Response Time'‘.
Here, method Invalid-Card-Status().

Step 2:Selecting other attributes to move to the separate class for card
status (here attributes Card-Number and Status-of-card).

Step 3:Creating a new class (say, FastResponseTime) and building an
association with the parent class.

Step 4:Inserting those attributes defined in Step 2 and the method
defined in Step 1, into this new class.

Step 5:Deleting the attribute Status-of-card from the original class.

November 2005 13

NFR Template for NFRNFR Template for NFR
Steps Commands

0: InputParameters: Method(Single)<param0>
1: AttributeList<result0> := getAttributesFromParentClass(<param0>)
2: AttributeList<result1> := getSelectedInput(“Attributes to Move”, <result0>)
3: AttributeList<result2> := getSelectedInput(“Primary Keys”, <result0)
4: ClassNode<result3> := createNewClass(“FastResponseTime”)
5: <result3> := insertMultipleAttribute(<result3>, <result2>)
6: <result3> := insertMultipleAttribute(<result3>, <result1>)
7: <result3> := insertMethod(<result3>, <param0>)
8: deleteMethodFromParentClass(<param0>)
9: deleteAttributeFromParentClass(<result1>)
10: ClassNode<result4> := getParentClass(<param0>)
11: createAssociation(<result3>, <result4>,1,1)
12: Output: (Step 7(result), Step8 8(Operation), Step 9 (Operation),

Step11(Operation))

November 2005 14

Java Class of NFR TemplateJava Class of NFR Template
public class FastResponseTime{

public FastResponseTime(){

}
void constructTargetSystem(){

expectParameter(Method);
MethodName param0 = getParameter();
AttributeList result0 = getAttributesFromParentClass(param0);
AttributeList result1 = getSelectedInput("Attributes to Move", result0);
AttributeListresult2 = getSelectedInput("Primary Key", result0);
ClassElement result3 = createNewClass("FastResponseTime");
result3 = insertMultipleAttribute(result3,result1);
result3 = insertMultipleAttribute(result3,result2);
result3 = insertMethod(result3,param0);
deleteMethodFromParentClass(param0);
deleteAttributeFromParentClass(result1);
ClassElement result4 = getParentClass(param0);
createAssociation(result3,result4,1,1);

}
}

November 2005 15

Adding NFR FastResponseTime
Credit Card

-CardType:String
-ExpiryDate: Date
-CreditLimit: int
-CardNumber: String
-AnnualFee: int
-Status-of-Card: int
-CustomerID: long
-……

+Invalid-Card-Status: void
+…..

GoldCard

-RewardPoint: int
-AirMiles: long
-…
+CalculatePoints(): int
+CalculateAirMiles(): long
+….

Card Holder

-Name: String
-Address: String
-Phone Number: int
-CustomerID: long
-….

+…()

Regular card

-PercentageofCashBack: float
-TotalCashBack: float
-…..
+CalculateCashBack(): float
+…

** 11

FastResponseTimeFastResponseTime

--CardNumber: StringCardNumber: String
--StatusStatus--ofof--Card: intCard: int

+Invalid+Invalid--CardCard--Status(): voidStatus(): void

11 11

November 2005 16

ConclusionsConclusions
Propose a framework to integrate NFRs using UML
models.
Improve the quality of a legacy system by applying
the framework.

Need to accomplish the following steps:
Extract the UML representation of an object-oriented legacy system
Identify FRs and NFRs
Specify new FRs (UML model) and NFRs (template for UML model)
Integrate NFRs with the FRs
Get the output as UML models of the legacy system with NFRs
attached to it

	A Framework to Incorporate �Non-Functional Requirements into UML Models
	Problem Statement
	Research Focus
	Goals and Issues
	A Framework to Incorporate NFRs
	Framework Steps
	Proposed High Level Notation
	Case Study – Credit Card System
	Class Diagram of Credit Card System
	SIG Performance for Credit Card System
	Process for Incorporating NFR FastResponseTime
	NFR Template for NFR
	Java Class of NFR Template
	Adding NFR FastResponseTime
	Conclusions

