
Model Synchronization and
Traceability

Kostas KontogiannisKostas Kontogiannis

University of Waterloo
Canada

Motivation
Software evolution refers to the continuous change that a software-
intensive system endures from its inception to its retirement

Synchronization of various artefacts and models during software
evolution is a practical problem:

Need to ensure that system requirements, business processes, system
architecture, design, and implementation are kept synchronized
throughout the software life-cycle

Need to devise a systematic approach not only for dealing with the
underlying problems but also to fit with modern process models such as
RUP and with modern IDE frameworks such as RSA

The fundamental premise is that software evolution is also part of the
development life cycle and not only part of the software maintenance

Synchronization can be achieved using model transformations

Model Synchornization

Model Synchronization: Schematic

Model A
(e.g. Architecture)

Model A’
(e.g. new Architecture)Evolution Transform

T ?

Fc

≡ ≡

Model B
(e.g. Design)

Model B’
(e.g. new Design)

Model Synchronization Scope

We identify three dimensions of Model Transformations:

InterInter--Level Level
Model TransformationsModel Transformations

(Part 1)(Part 1)

QualityQuality--DrivenDriven
Model TransformationsModel Transformations

(Part 2)(Part 2)

IntraIntra--Level Level
Model TransformationModel Transformation

(Part 0)(Part 0)

Model Transformation Categories

Intra-level Model Transformations, where changes are
propagated across models on the same level of abstraction, e.g.,
changes at the source code update the call graph

Inter-level Model Transformations, where changes are
propagated across models on different levels of abstraction, e.g.,
changes from UML class diagram are propagated to source code in
one direction and to architectural diagrams in the other direction

Quality-Driven Model Transformations, where a particular quality
attribute is the key instigator of change e.g., improve maintainability

Application: Synchronizing Workflow Models

Business applications are subject to constant changes

From the business manager’s standpoint:
Evolution of workflows and business processes
Customization of tasks, activities, and responsibilities

From the developer’s standpoint
Addition of new features
Migration to new software technology, updates, and fixes

Over time, the associations between business workflows and source
code are lost

The objective of this work is to devise a framework that:

Assists on the synchronization of business flows with its underlying
source code implementation, and vice versa
Extend the above for devising a broader model synchronization / model
generation technique for commerce

Top level view: Model Synchronization

Information System Information System
Abstract ModelAbstract Model

Customer Workflow Customer Workflow
Detailed ModelDetailed Model

Information SystemInformation System

Customer Business WorkflowCustomer Business Workflow

Enhance

Abstract

SynchronizeSynchronize

Challenges

Modeling of business flows
Structural models
Behavioral models

Analysis and modeling of source code
Identification of tasks
Abstraction of data and control flows
Source code representation models

Identification and modeling of business flow and source
code dependencies

Design and implementation of the synchronization
algorithms

Customer Business Flows

Depict workflows at a conceptual level
Contain tasks, data, decisions
Objective is to annotate, denote, and represent workflows in a form
that can be read and processed by a software program

Business Flow Domain Model

Business Flow Domain Model

Workflow Domain Model

WC Information System Analysis

Represent the source code flow of controller and task
commands

Model contains software components, database access
beans, conditions

Analyze source code to identify heuristics of business logics

Extract workflow process models from source code and
represent workflow models using XML

Interpret XML represented flows as a graph

Source code analysis performed by Ying Zou’s team at
Queen’s University

WC Source Code Domain Model

Argument
type : String
name : String

MethodInvoation
method : String
linenumer : Integer

0..*0..*

ContainedMethod
method : String
linenumber : Integer

ContainedMethod
method : String
linenumber : Integer

Data Object

ControllerCommand
class : String

Decision

Task
startline : String
endline : String
name : String

0..*0..*

0..*0..*

TaskCommand
class : String
linenumber : Integer
order : Integer

0..*0..*
11

Choice
expression : String
linenumer : String

Loop
condition : yes|no
startline : String
endlien : String

Yes
startline : String
endline : String

No
startline : String
endline : String

Process

0..*0..*

0..*0..*

11

Example Source Analysis

OrderJDBCHelperAccessBean abOrderJDBCHelper =
new OrderJDBCHelperAccessBean();

Vector vOrderItems = abOrderJDBCHelper.findStaleOrderItems(storeId);

// Turn the Vector into an Enumeration for performance considerations
Enumeration enumOrderItems = vOrderItems.elements();

getCommandContext().getTransactionCache().flush();

try {
Action.proceed();
}

catch (javax.transaction.RollbackException ex) {
throw new ECSystemException(……);

}

Java API Class

Accessor Method

Routine Class

Exception Class

Business
Logic

Source Code Domain Model

OrderJDBCHelperAccessBean abOrderJDBCHelper =
new OrderJDBCHelperAccessBean();

Vector vOrderItems =
abOrderJDBCHelper.findStaleOrderItems(storeId);

// Turn the Vector into an Enumeration for performance considerations
Enumeration enumOrderItems = vOrderItems.elements();

getCommandContext().getTransactionCache().flush();

try {
TransactionManager.commit();
}

catch (javax.transaction.RollbackException ex) {
throw new ECSystemException(……);

}

Establishing Dependencies

Common, matched, or
established features

Establishing dependencies

Establishing dependencies between models of different type systems and
levels of abstraction is based on:

1. Incremental convergence of the domain models through type
association rules

2. Use of Formal Concept Analysis to cluster elements that relate to the
same concept

Elements that cluster together they are considered that they relate to the
same concept or are dependent

Synchronization becomes a problem of traversing dependencies and
maintaining valid associations between model elements

Modeling Dependencies

Results of the Matching Process

Results based on: Order, Member, Catalogue, Contract

Prototype System

Prototype System (Dependencies view)

Prototype System

The Next Steps: Model Driven System
Development

Process composed of Services

Service Implementation

Business Architecture

P
S

M
P

IM

Data Model

(Class Diagram)

Service Imle Flow

(Activity Diagram)

Service / Task Interface

(Class Diagram)

Access Control Policy

(? Diagram)

?

(Use Case Diagram)

UML

Interim WC SOA Programming Model

(Commands, EJB, SOA interface, OAGBOD …)

Current WC Programming Model

(Commands, EJB, AccessBean …)

UML Future WC SOA Programming Model

(SDO, JService, SOA interface, OAGBOD …)

Java code (skeleton)

Schema DDL

Command Registry SQL

Access Control Policy XML

Implementation Code

N
FR

s
&

 re
fin

em
en

t

Iterative Model Enhancements

Business Models
(BOM)

UML
(Use Cases, Roles, Initial
Domain Model, interfaces)

Business
Modeling

Software
Design

XMI

BOM + Extended
Business Model
(EBM) Level 1

(Sequencing, Use
Cases, Input and

Output flows)

UML [richer]
(Activity, State, Sequence,

Collaboration)
XMI

BOM + Extended
Business Model
(EBM) Level 2

(Run times,
Services,

Architectures)

UML [richer]
(Component, Deployment)XMI

BOM + Extended
Business Model
(EBM) Level N

XMI UML [richer]
(MDA compliant PIM)

Platform Specific Model
(PSM) Code

………

Platform Specific Models
(PSM)

Summary and Uses

Objective is on devising techniques to analyze, synchronize, and
simulate Commerce models

Specific application focuses on synchronizing WBI process models
and WCS source code models

Semi-automatic extraction of dependencies between model
elements is possible and synchronization can be automated

A prototype system is being developed and is being ported as a
plug-in to Eclipse

Potential uses include:
Extraction of Process descriptions from source code (Reverse engineering use)
Compliance checking of WBI models with WCS source code models
Support of evolution and customization activities (development teams, field teams)
Application code generation with emphasis on satisfying specific NFRs

Model Synchronization and
Traceability

Kostas KontogiannisKostas Kontogiannis

University of Waterloo
Canada

	Model Synchronization and Traceability
	Motivation
	Model Synchornization
	Model Synchronization Scope
	Model Transformation Categories
	Application: Synchronizing Workflow Models
	Top level view: Model Synchronization
	Challenges
	Customer Business Flows
	 Business Flow Domain Model
	 Business Flow Domain Model
	Workflow Domain Model
	WC Information System Analysis
	WC Source Code Domain Model
	Example Source Analysis
	Source Code Domain Model
	Establishing Dependencies
	Establishing dependencies
	Modeling Dependencies
	Results of the Matching Process
	Prototype System
	Prototype System (Dependencies view)
	Prototype System
	The Next Steps: Model Driven System Development
	Iterative Model Enhancements
	Summary and Uses
	Model Synchronization and Traceability

