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Abstract

Some requirement modelling languages such as UML’s
statechart diagrams allow developers to specify require-
ments of state-transition behavior in a visual way. These
requirement specifications are useful in many ways, includ-
ing helping program understanding and specification-based
testing. However, there are a large number of legacy sys-
tems that are not equipped with these requirement specifica-
tions. This paper proposes a new approach, called Brastra,
for extracting object state machines (OSM) from unit-test
executions. An OSM describes how a method call transits
an object from one state to another. When the state of an
object is represented with concrete-state information (the
values of fields transitively reachable from the object), the
extracted OSMs are simply too complex to be useful. Our
Brastra approach abstracts an object’s concrete state to an
abstract state based on the branch coverage information ex-
ercised by methods invoked on the object. We have proto-
typed our Brastra approach and shown the utility of the ap-
proach with an illustrating example. Our initial experience
shows that Brastra can extract compact OSMs that pro-
vide useful information for understanding state-transition
behavior.

1 Introduction

The Unified Modelling Languages (UML) [15] provides
a set of notations for describing requirements of artifactsin
software systems. Among these notations, statechart dia-
grams capture state-transition behavior of a class or multi-
ple classes. After requirements specifications are specified,
developers can write source code to implement the specified
behavior. Later when developers want to understand and
maintain the source code, they can refer to requirements
specifications besides directly inspecting the source code.

In addition, developers can use specification-based testing
tools [6, 8, 12, 17] to generate test inputs from the specifi-
cations and check the behavior of implementation with the
behavior specified in requirements specifications. However,
a number of legacy systems are not equipped with speci-
fications. Understanding and testing these legacy systems
present a challenge for developers. To address this chal-
lenge, researchers have developed various reverse engineer-
ing techniques [11] to infer various types of information
from legacy systems.

This paper proposes Brastra, a new approach for auto-
matically extracting object state machines (OSM) [21] for a
class from unit-test executions. These OSMs describe state-
transition behavior exhibited by invoking methods on ob-
jects of a class. An OSM is similar to a UML statechart
diagram. In an OSM for a class, a state represents the state
of an object at runtime. A transition represents method calls
invoked on an object, transiting the object from one state to
another. States in an OSM can be concrete or abstract. A
concrete state of an object is characterized by the values of
object fields transitively reachable from the object. Because
a concrete OSM is often too complicated to be useful, our
previous work [21,22] has developed techniques to abstract
concrete states to abstract states, which are used to con-
struct abstract OSMs. Our previous observer-abstraction
approach [21] represents an abstract state of an object with
the return values of observer methods (methods whose re-
turns are not void) invoked on the object. Our previous
sliced-OSM-extraction approach [22] represents an abstract
state of an object with the values of a specific field. In this
paper, we have developed the new Brastra approach that
does not require appropriate observer methods in class in-
terface (required by our previous observer abstraction ap-
proach [21]) or appropriate object-field structure (required
by our previous sliced OSM extraction approach [22]).

The Brastra approach represents an abstract state of an
object with the branch coverage information produced by
methods invoked on the object. OSMs produced by Brastra
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capture program behavior exhibited by branching points in
method body, complementing program behavior exhibited
by observer methods or specific fields (captured by our pre-
vious approaches). We have implemented the Brastra ap-
proach and demonstrated its utility by applying it on an il-
lustrating example. Our initial experience shows that OSMs
extracted by Brastra are compact and useful for providing
insights to state-transition behavior.

The rest of this paper is organized as follows. Section 2
presents an illustrating example. Section 3 introduces the
formal definition of an OSM. Section 4 illustrates our new
approach for extracting OSMs based on branch coverage
information. Section 5 introduces our implementation of
the approach. Section 6 discusses issues of the approach
and lays out future directions. Section 7 reviews related
work, and Section 8 concludes.

2 Example

As an illustrating example, we use a data structure: a
UBStack class, which is the implementation of a bounded
stack that stores unique elements of integer type. Figure 1
shows the class including two standard stack operations:
push andpop. Stotts et al. coded this Java implementa-
tion to experiment with their algebraic-specification-based
approach for systematically creating unit tests [16]. In the
class implementation, themax is the capacity of the stack,
the arrayelems contains the elements stored in the stack,
andnumberOfElements is the number of the elements and
the index of the first free location in the stack.

The push method first checks whether the element to
be pushed exists already in the stack. If the same ele-
ment already exists in the stack, the method moves the
element to the top of the stack. Otherwise, the method
increasesnumberOfElements after writing the element
into theelems array if numberOfElements does not ex-
ceed the stack capacitymax. If the stack capacity is ex-
ceeded, the method prints an error message and makes
no changes on the stack. Thepop method first checks
whether numberOfElements is greater than zero. If
so, it retrieves the top element of the stack, decreases
numberOfElements, and returns the retrieved element;
otherwise, the method prints an error message and returns
-1 as an error indicator.

To generate tests forUBStack, we first manually config-
urepush’s arguments to be 1, 2, 3, or 4.1. Given the byte-
code ofUBStack our previously developed Rostra tool [19]
automatically generates 263 tests; these generated tests ex-
ercise 41 non-equivalent concrete object states (two con-
crete object states are non-equivalent if their concrete state

1We can use some existing test generation tools such as Parasoft
Jtest [13] or JCrasher [2] to automatically generate method arguments for
UBStack, but these tools may not generate relevant method arguments.

public class UBStack {
private int max;
private int[] elems;
private int numberOfElements;

public UBStack() {
numberOfElements = 0;
max = 3;
elems = new int[max];

}
public void push(int k) {

int index;
boolean alreadyMember = false;
for(index=0; index<numberOfElements; index++) {

if (k==elems[index]) {
alreadyMember = true;
break;

}
}
if (alreadyMember) {

for (int j=index; j<numberOfElements-1; j++)
elems[j] = elems[j+1];

elems[numberOfElements-1] = k;
} else {

if (numberOfElements < max) {
elems[numberOfElements] = k;
numberOfElements++;
return;

} else {
System.out.println("Stack full, cannot push");
return;

}
}

}
public int pop(){

int ret = -1;
if (numberOfElements > 0) {

ret = elems[numberOfElements-1];
elems[numberOfElements-1] = 0;
numberOfElements --;

} else {
System.out.println("Stack empty, cannot pop");

}
return ret;

}
}

Figure 1. A bounded-stack implementation
that accommodates unique integer elements

representations are different).

3 Object State Machine

In our previous work [21], We have defined an object
state machine for a class:

Definition 1 An object state machine(OSM)M of a com-
ponentc is a sextupleM = (I, O, S, δ, λ, INIT ) where
I, O, and S are nonempty sets of method calls inc’s in-
terface, returns of these method calls, and states ofc’s ob-
jects, respectively.INIT ∈ S is the initial state that the
machine is in before calling any constructor method ofc.
δ : S × I → P (S) is the state transition function and
λ : S × I → P (O) is the output function whereP (S) and
P (O) are the power sets of S and O, respectively. When the
machine is in a current states and receives a method calli
from I, it moves to one of the next states specified byδ(s, i)
and produces one of the method returns given byλ(s, i).
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The object states in an OSM can be concrete or abstract.
In a concrete OSM, states of an object are represented by
its concrete-state representation. An object’s concrete-state
representation is characterized by the values of all the field
transitively reachable from the object [19]. Because some
object fields may be reference types and their values point to
memory addresses (which can be different in different runs
of the same test), we use a linearization algorithm [19] to
collect the values of these reference-type fields so that com-
paring state representations takes into account comparing
object-graph shapes but without directly comparing mem-
ory addresses. Two states areequivalentif their state repre-
sentations are the same, and arenonequivalentotherwise.

For example, the generated tests forUBStack exercise
41 nonequivalent concrete object states. There are 142 tran-
sitions among these states. Figure 2 shows a concrete OSM
exercised by generated tests and Figure 3 shows a detailed
view of the highlighted area in Figure 2. The OSM is
displayed by using the Grappa package, which is part of
graphviz [5]. States in the OSM are shown as circles in
Figure 3 and the labels inside these circles are the state rep-
resentations, which include field names followed by “:” and
corresponding field values (array-element values are sepa-
rated by “;”). The three states in Figure 3 represent three
full stacks. Although they have the same set of stack ele-
ments, these elements are stored in three stacks in different
orders. Transitions in the OSM are shown as directed edges
that connect circles (states). These edges are labelled with
method names and arguments (for brevity, we do not show
method return values in the edge labels).

We have observed that the concrete OSM is too complex
to be useful in practice. Although we can zoom in to view
details of object states and transitions among them, these
details in such a large OSM are often not very useful for
program understanding or test-result inspection.

4 Approach

To reduce the complexity of an OSM, we can construct
an abstraction function[10] to map concrete states to ab-
stract states. Our Brastra approach constructs such an ab-
straction function by using branch coverage information.
We first define the branch coverage we shall use in repre-
senting an abstract state of an object.

A method m is characterized by its defining classc,
method name and method signature. Then we define condi-
tional set for a methodm.

Definition 2 Conditional setCS of a methodm are a set of
strings, including all the conditional strings (together with
their source-code-line numbers) that appear in the body of
m, m’s direct and indirect callees.

Figure 2. An overview of UBStack concrete
OSM (containing 41 states and 142 transi-
tions) exercised by generated tests

Figure 3. A detailed view of the selected area
in UBStack concrete OSM

A method callmc is a pair〈m,a〉 wherem is a method
anda is a vector of method-argument values.

Definition 3 Given an objecto of classc and a method
call mc:〈m,a〉 of c, assumeCS is the conditional set of
m, branch coverageBC of mc on o is a map fromCS to
{true, false, both, n/a}, where the map is defined based
on whether a conditional’s false branch, true branch, both
branches, or neither branch is covered during the execution
of mc ono.

Definition 4 Given an objecto of classc and a set ofc’s
method callsMC = {mc1, mc2, ..., mcn}, the abstract
state ofo with respect toMC is represented by{BC1, BC2,
...,BCn}, whereBCi is branch coverage ofmci ono.
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Then we construct an abstract OSM where all states are
abstract states with respect toMC.

For example, assumeMC for UBStack is {pop(),
push(1), push(2), push(3), push(4)} and con-
sider the following tests:

Example Test:
UBStack s = new UBStack();
s.push(1);
s.pop();
s.push(2);
s.push(3);
s.push(4);

After the end of the constructor call, if we invokepop() on
s, thepop method execution covers the false branch of the
following conditional: (numberOfElements > 0). We
represent the map of(numberOfElements>0) → false

as!(numberOfElements>0).
To simplify illustration, we do not display source-code

line numbers for conditional strings. When a conditionalc

is mapped toboth, which indicates both branches of the
conditional are covered, we simply represent the mapping
with two entriesc and!c.

After the end of the constructor call, if we invoke any
of push(1), push(2), push(3), and push(4) ons,
thepush method execution covers the following branches
following the preceding notations:
!(index<numberOfElements)

!(alreadyMember)

numberOfElements < max

Figure 4 shows the abstract OSM extracted by Brastra
based on branch coverage information. The top state is la-
belled asINIT, which indicates no state before invoking a
constructor. Then we represent the abstract state after the
constructor call as the second to top state of the abstract
OSM shown in Figure 4. On the top part of the state, we
display the object field values that are common to all the
concrete states represented by the the abstract state. Then
we display the branch coverage forpop (we put method
namepop before the first line of branch coverage). Finally
we display the branch coverage forpush. To simplify the
view, we do not display the method arguments or returns on
the transitions in the OSM.

Interesting behavior occurs when we abstract the con-
crete states resulting from invokingpush(1) or push(2)
on an empty stack (note that in the example test, push(2)
is actually invoked on an empty stack because its preced-
ing method callpop() counteracts the effect ofpush(1),
transiting the state to an empty stack). On a concrete state
resulting frompush(1), invoking push(1) again follows
a path different from invokingpush(2), because the stack
stores only unique elements. Therefore, we can observe in
the middle state of Figure 4 there are two different branch
coverage forpush: one representing the case where the
push’s argument has already existed in the stack and the
other representing the case where thepush’s argument does

Figure 4. An overview of UBStack abstract
OSM based on branch coverage (containing
4 states and 11 transitions) exercised by gen-
erated tests
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not exist in the stack. The branches ofalreadyMember and
!alreadyMember from two sets ofpush branch coverage
give us hints on these two cases.

The second to the bottom state has three sets of different
push branch coverage, in addition to one set ofpop cov-
erage. The first set represents the case where thepush’s
argument does not exist in the stack, the second set repre-
sents the case where thepush’s argument exists in the stack
and the existing element is on the top of the stack (therefore,
the element is not required to be moved to the top), and the
third set represents the case where thepush’s argument ex-
ists in the stack and the existing element is not on the top
of the stack (therefore, the element is required to be moved
to the top). In the example test, the concrete state ofs after
invokingpush(3) falls into this abstract state.

The bottom state indicates a full stack; therefore, no
push method call can further change the object state. Note
that because a full stack with different concrete states can
contain different elements; therefore, unlike in the second
to top state, we do not display the values of theelems[]

field. In the example test, the concrete state ofs after in-
vokingpush(4) falls into this abstract state.

5 Implementation

Given a class, our Rostra tool [19] generates test inputs
to exhaustively exercise object states iteratively. In particu-
lar, if users provide some sample method arguments, Ros-
tra can use them; otherwise, Rostra uses Parasoft Jtest [13]
or JCrasher [2] to generate method arguments. Then Ros-
tra uses these method arguments to explore the object state
space iteratively. Tool users can configure the maximum it-
eration number for Rostra to explore the state space. For
UBStack, which has capacity of three, four iterations are
sufficient to explore all possible states with the method
arguments ofpop, push(1), push(2), push(3), and
push(4). Note that the Rostra’s bounded-exhaustive test
generation enables a better inspection of OSMs extracted
from generated-test executions. For example, when tool
users find out that an expected transition is missing in
OSMs, it can have two reasons: a test that is required to
produce that transition is missing or there is a bug in the
program. Rostra’s bounded-exhaustive test generation re-
duces the chance of the former case. In addition, Rostra’s
bounded-exhaustive test generation also facilitates our ab-
straction based on branch coverage. In order to abstract a
concrete state, we need specific method calls to be invoked
on the concrete state; these method calls are generated by
Rostra. Note that when we invoke a method call on a con-
crete state in order to abstract the concrete state, the method
call could modify the concrete state and later method calls
on this concrete state need a reproduction of the concrete
state; reproductions of concrete states are also supportedby

Rostra.
After Rostra generates test inputs and exports them into

JUnit [4] test classes, we run these test classes with our pre-
viously developed Jusc [23] tool, a Java unit-test selection
tool based on residual structural coverage [14], to output a
path trace file after program executions terminate. We de-
veloped a tool to postprocess the collected path trace file
to collect branch coverage information. Note that we col-
lect branch hit coverage; therefore, when there are loop it-
erations during program executions, we do not count how
many times a branch is hit nor collect execution orders
among branches. This design decision provides further ab-
straction of states.

In addition, we also use the Daikon [3] Java frontend to
run these test classes and collect object states exercised by
these tests. Daikon [3] is a tool that dynamically detects
likely program invariants in the program executions. It can
collect object-field values during program executions, and
reports properties that hold true on these fields during the
executions. In our approach, we use Daikon to collect ob-
ject states during program executions and later use these
states to extract common field values among concrete states
represented by an abstract state and then display the com-
mon field values in the state as an annotation.

6 Discussion and Future Work

Two main factors may affect our approach’s usability in
practice: methods’ control flow graphs and generated test
inputs. Branching points in control flow graphs take the
role of abstraction functions [10]. Although different im-
plementations of the same program behavior can have dif-
ferent control flow graphs, their implied behavior can be
similar across different implementations. As is discussed
in Section 7, we found that branch coverage information
seems to more faithfully reflect interesting program behav-
ior than our previous observer-abstraction approach [21] or
sliced-OSM-extraction approach [22].

Besides the characteristics of control flow graphs, the ex-
ecuted test inputs can also affect the quality or complexity
of an extracted OSM. Rostra’s test generation has two con-
trollable configurations: method arguments and the max-
imum iteration number. But comparing to previous ap-
proaches based on object-field values [22] or return val-
ues of observers [21], our new approach is less affected
by the actual argument values in the generated tests inputs.
But at the same time, choosing right argument values are
also important. For example, if we choose only two differ-
ent method arguments forpush of UBStack, we can never
reach a full stack state forUBStack. The maximum iter-
ation number can have an effect if some boundary states
are not exercised by a low maximum iteration number. For
example, if we specify the maximum iteration number as
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three, we cannot exercise a full stack state forUBStack.
There are several future directions for us to extend the

Brastra approach. First, we plan to adapt the existing finite-
state-machine-based testing techniques [9] or testing tech-
niques based on UML statechart diagrams [6,8,12,17]. Ex-
tracted OSMs can guide further test generation to improve
OSM extraction. These iterations form a feedback loop be-
tween test generation and specification inference proposed
in our previous work [20].

Second, we plan to extend our specification inference for
multiple classes instead of a single class. This may require
adaptations of our diagram representations as well as infer-
ence algorithms.

Finally, we plan to investigate how human inputs can be
used to improve the effectiveness of Brastra, which is cur-
rently developed as a totally automated tool. For example,
when a Brastra-generated OSM is still too complicated to be
understandable, developers can configure the state abstrac-
tion to be based on only the branches in a specified subset of
public methods or the branches that are related to specified
object fields. In addition, our Brastra approach is currently
a dynamic analysis approach that focuses on functional be-
havior exercised by a class. There exists research on recov-
ering non-functional requirements from legacy code such
as the static analysis approach developed by Yu et al. [24].
In order to identify non-functional requirements, their ap-
proach requires some human manipulations of legacy code
such as program refactoring. We plan to investigate how
human inputs as well as static analysis can guide Brastra to
extract non-functional behavior.

7 Related Work

The observer-abstraction approach was developed in our
previous work [21]. The observer abstraction approach rep-
resents a state of an object by using the return values of
observers invoked on the object. When we applied the ob-
server abstraction onUBStack, we could invokepop, the
only observer, on an object and usespop’s return value to
abstract the state of the object. By consideringpop’s se-
mantic, we basically used the element on the top of the stack
to abstract the whole stack. This abstraction is not help-
ful for us to understandUBStack’s behavior. The sliced-
OSM-extraction approach was developed in our previous
work [22]. It uses the values of an object’s single field
to represent the state of the object. For example, we can
use the values of thenumberOfElements field to repre-
sent states and the resulting OSM is similar to the OSM
extracted by Brastra. But when we set the capacity of
UBStack to be a large number such as 10, the size of the
OSM extracted by usingnumberOfElements would grow
linearly with iteration numbers, whereas the OSM extracted
by Brastra keeps the original shape because loop iterations

have been abstracted away by our mechanism of consider-
ing only branch hit coverage without considering how many
times loop iterations are executed.

Kung et al. [7] statically extract object state models from
a class’s source code and use them to guide test generation.
States in a object state model are defined by value intervals
over object fields, which are derived from path conditions of
method source; the transitions are derived by symbolically
executing methods. Both their approach and our approach
consider branches in method body, but their approach can
exploit a limited types of conditionals (e.g., conditionals
that compare an object field with a constant) and their ap-
proach statically extract state models with a limited capa-
bility.

From system-test executions, both Whaley et al. [18]
and Ammons et al. [1] mine protocol specifications for
component interfaces. They use sequencing order among
method calls in the interfaces without using internal object-
field values or structural coverage information. Both ap-
proaches usually require a good set of system tests for ex-
ercising component interfaces, whereas our approach gen-
erates test inputs to exercise component’s object states in
a small scope. Applying their approaches on our generated
unit tests forUBStackwould yield a circle connectingpush
andpop.

8 Conclusion

We have proposed Brastra, a new approach for automati-
cally extracting object state machines (OSM) from unit-test
executions. Because a concrete OSM extracted based on
concrete states is often too complicated to be useful, Brastra
abstracts the concrete state of an object by using the branch
coverage exercised by methods invoked on the object. We
have implemented the Brastra approach and demonstrated
its utility on an illustrating example. Our initial experience
has shown an OSM extracted by Brastra provides succinct
information for understanding key program behavior of a
class.
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