

Requirements-driven configuration of software systems

Yijun Yu Alexei Lapouchnian Sotirios Liaskos John Mylopoulos
Department of Computer Science, University of Toronto

{yijun, alexei, liaskos, jm}@cs.toronto.edu

Abstract

Configuring large-scale software to meet different
user requirements is a challenging process, since end-
users do not know the technical details of the system in
the first place. We present an automatic process to
connect high-level user requirements with low-level
system’s configurations. The process takes into account
different user preferences and expectations, making
configuration easier and more user-centered. Since it
reuses a software system’s configuration mechanisms, the
configuration process is transparent to the system
development. Moreover, it is very easy to plug different
reasoning frameworks into the configuration process. As
a case study, we have reengineered the Mozilla Firefox
web browser into a requirements-driven software system,
without changing its source code.

1. Introduction

Hardware evolution is governed by Moore's law –
CPU speed doubles every 18 to 24 months [1]; on the
other hand, software evolution is governed by Lehman's
laws – especially the 2nd – increasing complexity [2]. As
a consequence, computer hardware is getting ever-
cheaper, e.g., an average workstation is typically a
Windows box, which costs no more than $1000. On the
other hand, the cost for employing an average developer
is more expensive than buying 50 workstations, per year.

As the gap is widening, software maintenance cost

dominates the operation of a software company.
Managing and using large-scale software systems is
becoming a grand challenge, sometimes even a nightmare,
as too many parameters are to be configured in order for
the software to be working properly by different clients
and users. Configuring these is a headache for everyday
users: Eclipse IDE, e-mail clients and web browsers such
as Mozilla Thunderbird and Firefox, which target at
populous and diverse user groups, several Linux kernels
and distributions, and, of course, popular commercial
software such as Microsoft Windows and Office Suite.
These software systems typically contain millions of lines

of code. The needs for managing such complex software
engender the research in autonomic computing [1, 3].

Figure 1 presents the “Options” dialog window from

Mozilla Firefox. A user is asked to provide very low-level
details, such as “use TLS 1.0” or “Use SSL 2.0” etc. As
shown on the screen, they are related to “Security”, but it
is not clear whether one should select all of them, one of
them, or some combinations of them and how this
impacts the attainment of the “Security” goal.
Furthermore, what will the side-effects of these selections
be on other goals such as “Performance”, “Convenience”,
etc.?

Figure 1. The Options dialog of Firefox

How do we reduce the overhead of controlling large-

scale software systems to serve the clients better? How
(in case the clients change their requirements) do we
agilely reconfigure the software to fit the new client
requirements? In this paper, we propose a way to tackle
this problem by automating the configuration with goal

models [4]，which has been shown to be possible for a
desktop application with an average number of
configuration items [5]. Because we consider every
individual’s requirements in customizing large-scale
software, the requirements-driven configuration process
is strongly related to the concept of personal and
contextual requirements engineering [6, 7]. In [5], for
example, user’s goals, skills and preferences are proposed
as specific personalization criteria for customizing
software and tailoring it to particular individuals. On the
other hand, since requirements-driven configuration relies
on the use of goals [8], a process for generating a goal
model that appropriately explains the intentions behind an
existing system needs to be considered [3]. In [9, 10], for
example this is made possible through reverse
engineering directly from the source code.

The process for such automated reconfiguration

consists of two major steps. Firstly, one has to set up a
goal model in order to connect the user’s high-level
requirements with the system’s low-level configuration
items. Secondly, the resulting mapping must be efficiently
used by collecting user preferences over goals (one goal
is more important than another) and expectations (a goal
needs to be satisfied to a certain degree) and
automatically carrying out the configuration.

Using this process, we have successfully configured

the Mozilla Firefox browser and the Eclipse IDE for
different types of users. The configuration step is fully
automated and very efficient, making it well possible for
the user to further analyze the resulting system by
providing feedbacks.

The remainder of the paper is organized as follows.

Section 2 explains the methodology in detail; Section 3
provides implementation details, and Section 4 discusses
a case study of the requirements-driven configuration
process on the Firefox Web browser. Section 5 discusses
further work and concludes the paper.

2. Reengineering into requirements-driven
configurable software

The aim of our process is to reengineer a legacy
software system, such as Mozilla Firefox, into a
requirements-driven reconfigurable system. Therefore, it
calls for two necessary steps: (1) reverse engineering to
understand the legacy system and (2) forward engineering
to improve the legacy system.

In our case, a legacy system may or may not provide

the source code to the reengineer. Thus, we use two kinds
of reverse engineering techniques: (1) if the source code

is available, the system can be reverse engineered to
reveal the implemented goals or purposes of the
programmer [11]; otherwise, (2) the system needs to be
used and empirically examined in order to discover the
alternative ways by which different users may customize
the functionality of the system and consequently the
alternative ways in which they may want their goals to be
fulfilled [10].

Furthermore, once the goal-oriented requirements are

obtained, an end user is simply asked to provide their
preferences and expectations over the top-level abstract
goals. This will drive the software configuration
automatically. The degree of automation will depend on
how advanced the user is and how much awareness of the
low-level configuration details are demanded. Thus,
advanced users may employ the method only to obtain a
suggestion on how they should configure their system in
order to better accommodate their preferences and
expectations.

2.1 Reverse engineering for goal models

The objective of reverse engineering in our process is

to detect traceability between the low-level
implementation with the high-level requirements.
Traceability between user goals and the implementation
allows the users to understand the system and
subsequently configure it in more abstract and less
system-oriented way. It is also important to make the user
aware of why the system makes certain choices.

In our approach, we do the reverse engineering in two
steps:

1. Establish a goal model of the software system;
2. Associate the leaf goals with the configuration

items.
A configuration item is a variable that can take certain

values. A software system can be seen as a huge
variability space induced by a large number of
configuration items. Some of the configuration items are
domain-specific, while others are domain-independent.
For example, to configure the look and feel is a taste of
the individual, whereas to configure the security task is
subject to the software domain. A user’s goal model can
narrow down the search space by assessing the
configuration items.

2.2 Forward engineering with goal models

Having identified the goal models, the objective of
forward engineering in our process is to collect individual
user preferences and expectations and translate them into
software configurations. It is also done in a few steps:

1. Querying. Obtain user’s preferences and
expectations over the high-level goals;

2. Reasoning. Convert the user input into
satisficing labels of the high-level goals and
propagate them downward until leaf goals are
reached; Note here the term satisfice was used by
Herbert Simon [12] to denote the idea of partial
satisfaction. The qualitative analysis of the NFR
framework [13] is centered on the idea of
satisfice.

3. Configuring. Convert the leaf goals satisficing
labels into values of the configuration items.

Both steps 1 and 3 depend on the software being
investigated. During the querying step, a user is asked to
either directly provide the preferences and expectations
over the goals, or to indirectly provide this information
though answering an elicitation questionnaire. The
configuring step associates each configuration item with a
default value in order to attain a certain level of
satisfaction for the leaf-level goals.

The reasoning step is independent of the domain of the
system to be configured, and is based on the trade-off
algorithms discussed in the following section.

3. Implementation

In this section, we briefly discuss the implementation
of the methodology. We first describe the reverse
engineering approach to establish a goal model. Then, the
design of the tradeoff algorithms based on existing goal
reasoning algorithms ([8, 14]) is explained. Finally, we
show how the query and configuration steps are carried
out automatically.

3.1 Reverse engineering

A goal model consists of a set of AND/OR

decompositions that refine a high-level goal into a set of
low-level subgoals. On top of these rules, a set of
quantitative contributions shows how the satisficing of
one goal influences the satisficing of the others. Such a
quantification can have probabilistic semantics [8] or it
may be cast into a framework of qualitative contribution
links. Thus, we can use contribution links such as HELP
(+), HURT (-), MAKE (++) or BREAK (--), to show how
the satisfaction of the origin goal influences the
satisfaction of the target goal.

The source of a goal model can be recovered from the
system structure and behavior. In terms of structure, a
system/subsystem decomposition paradigm, which
follows the divide and conquer metaphor, is often a
natural match for the AND/OR goal decompositions. For
example, inheritance can be seen as the implementation of
an OR decomposition of the subject whereas aggregation
may be the implementation of an AND decomposition. In
terms of behavior, the system achieves certain goals by

performing transitions from one state to another. Here,
the state/substate hierarchy that can be defined in a
statechart has been shown to naturally map to the
respective goal/subgoal decomposition graphs[15]. Static
program analysis using program slicing techniques can
reveal the system’s implemented goals [9]. Observing the
execution log/trace of the system can also reveal patterns
in its dynamic behavior [10]. Combined with a testing
framework one can make sure certain functional goals are
indeed satisfied [9, 10].

Leaf-level goals may be associated with Boolean
predicates on the value of one to many configuration
items. For configuration items that are already Boolean,
such as “use SSL 2.0” or “use SSL 1.0”, such mappings
are straightforward. For non-Boolean configuration items,
such as a “keeping history record for N days” an extra
step is required to find the default value of the
configuration item that satisfies the goal. For example, we
can represent the leaf-level goal “Keep a good record of
my web surfing history” as a Boolean predicate “N >= 5”,
and associate the fully satisficed value of the goal with
“N=10” and the fully denied value of the goal with
“N=0”. This way, a direct mapping is set from the
configuration of domain-specific parameters to the
configuration of the goal model.

3.2 Tradeoff algorithms

When a goal is decomposed into multiple alternatives
(OR-subgoals), the contribution of each subgoal to the
satisfaction of top-level goals can be compared with the
expectations and preferences, in order to rate the choices
and thus make decisions.

Bottom-up reasoning propagates the labels that
describe the degree of satisfaction of leaf goals upwards
to obtain the corresponding labels for the top-level goals
[8]. This can be used to validate the requirements.

Top-down reasoning propagates the labels of the top-
level goals downwards to obtain the labels for the
minimal number of leaf-level goals [14]. This can be used
to predict the minimal configuration that can satisfy the
user’s requirements. Since the top-down reasoning relies
on a satisfiability problem1 (SAT) solver [16, 17] which
deals with binary propositions, it is important to design an
encoding mechanism such that at least discrete labels
(full/partial satisficing/denial) of goals can be translated
into the binary propositions.

3.3 User interface and questionnaire design

An interface to the configuration system consists of a
dialog and/or a questionnaire wizard. In the dialog, each

1 That is, deciding whether a given Boolean formula in
conjunctive normal form has an assignment that makes the
formula "true."

top-level hard goal is presented as a checkbox, whereas
each top-level softgoal (e.g. performance, security,
usability) is presented as a slider by which the satisficing
expectation is set. Preferences are shown by the order of
the sliders from top to bottom. Although a slider-based
user interface design can directly present the needed input,
it is not guaranteed that all the user’s expectations can be
met by the system design at the same time. For example, a
full satisfaction of performance, security, maintainability
and usability goals is simply impossible. The
interdependency and constraints among these goals are
defined by the underlying goal model. Thus we also
designed an alternative wizard to ask user a set of
elicitation questions in order to derive the expectations
and preferences with respect to the goals. In these
questions, we avoid using technical terms, rather, using
familiar terms to everyday user. For example, “Are you
using the browser with a public-domain computer?” The
simple Yes/No answer to such questions can lead to
elicited preference such as whether “Privacy” is important
or not. Thus for elicitation, we can use a goal model
which connect the preferences/expectations of the high
level goals with answers to concrete questions at the leaf
level and use bottom-up label propagation to obtain the
preference/expectation labels as an input for the
configuration step.

3.4 Configuration step

The configuration of the system is done automatically.
First, the software system is analyzed for its
configurability in terms of whether there exists a
persistent record of the configuration (if our configurator
interacts with the subject software through a file interface)
or an in-memory API for its configuration (if our
configurator interacts with the subject software directly
through APIs).

Based on the configuration in the goal model (the

selected leaf-level goals), a script is generated to populate
the configuration data with the default values associated
with the leaf-level goal satisfaction labels. Since the
reverse engineering step has already produced the
appropriate mapping, this task is now quite
straightforward. The last step is to automate the
reconfiguration by running the script, either before
restarting the subject software or during the execution of
the software system.

4. Firefox: a case study

We represent user high-level requirements in an XML-
based input language, as follows.

<input:model>
<soft name= "Performance">

<rule op="AND"/>
<soft name= "Browsing Performance"/>
<soft name= "System Performance"/>

</soft>
<soft name= "Usability">

<rule op="OR"/>
<soft name= "Ease of Search"/>
<soft name= "Convenient access to Information"/>
<soft name= "User Tailorability">

<rule op="OR"/>
<soft name= "Programmability"/>

 <soft name= "User Flexibility"/>
</soft>

</soft>
<soft name= "Security">

<rule op="HURT" target="System Performance"/>
<rule op="HURT" target="Browsing Performance"/>

</soft>
<soft name= "Allow changes in Content Appearance">

<rule op="HELP" target="User Flexibility"/>
</soft>
<goal name= "Filter Advertisement/Spyware/Popups">

<rule op="HELP" target="Performance"/>
<rule op="HELP" target="Security"/>
<rule op="HURT" target="Content Availability"/>

</goal>
</input:model>

In this input language, a model is given by a list of root

goals which are recursively decomposed in a nested XML
element structure. A softgoal is a goal that can be satisfied
to a degree less than 1. It usually represents quality
attributes. A number of rules show what kind of
decomposition was used for a goal or softgoal, or which
kind of contributions was used between a source hardgoal
and a target softgoal.

Each user provides a profile including the preferences

and expectations for the softgoals:

<input:profile>
<soft name="Security" rank="4" value="6" />
<soft name="Allow Interactive Content" rank="8" value="8"
/>
<soft name="Convenient Access to Information" rank="10"
value="10" />
<soft name="Performance" rank="9" value="1" />
<soft name="Content Availability" rank="1" value="10" />
<soft name="Allow changes in Content Appearance"
rank="6" value="4" />
<soft name="User Flexibility" rank="3" value="6" />
<soft name="Speed" rank="7" value="3" />
<soft name="Programmability" rank="3" value="8" />
<soft name="Modularity" rank="5" value="1" />
<soft name="Usability" rank="2" value="6" />
</input:profile>

For every root softgoal, a rank attribute represents the
partial order among the preferences and a threshold value

represents the expectation from the user. The profile can
be generated from a user interface dialog (Figure 2).

The reasoning algorithm is invoked by the
configurator command automatically, to produce an
output as follows:

<output:configuration>
<goal name=”adFilterStrength” value=”on” />
<goal name=”tabBrowsingOn” value=”off” />
<goal name=”cookiesEnabled” value=”off” />
<goal name=”daysToCachePages” value=”on” />
</output:configuration>

The goal model can be visualized as a goal graph and

the reasoning can be invoked and its results shown in
OpenOME [18], our requirements engineering tool,
where both bottom-up and top-down goal reasoning
algorithms are implemented and can be invoked by the
two buttons on the toolbar (Figure 3). Behind the scenes,
an XSLT script fully automatically generates the
corresponding property configuration in the Firefox
default installation directory.. The following JavaScript
script code is an example of such property configuration:

Figure 2. A simplified user preference dialog as the
interface to the configurator

Bottom-up
Top-down

Figure 3. The goal model and its reasoning in OpenOME, an Eclipse plugin for requirements engineering

user_pref("network.image.imageBehavior", 2);
user_pref("network.cookie.cookieBehavior", 2);
user_pref("webdeveloper.disabled", false);
user_pref("browser.display.use_document_colors", true);
user_pref("javascript.enabled", false);
user_pref("webdeveloper.disabled", false);
user_pref("adblock.enabled", true);
user_pref("tidy.options.browser_disable", false);
user_pref("font.size.variable.x-western", 19);
user_pref("image.animation_mode", "normal");
user_pref("extensions.prefbar.display_on", 0);
user_pref("security.enable_java", false);
user_pref("security.default_personal_cert", "Select
Automatically");
user_pref("browser.cache.disk.enable", false);

5. Conclusion

Through the Mozilla Firefox case study we show how
goal-oriented requirements can be used to guide the
configuration process automatically. The goal models are
provided by domain experts, the user profiles are obtained
by the users directly through a simplified user interface,
and the configuration is carried out without further human
intervention. Currently, we are investigating how to apply
the requirements-driven configuration mechanism to
other applications and how to detect problems that
reconfiguration may cause when it is performed while the
software system is running. We also plan to implement a
Firefox extension plugin to expose our tool to the larger
user community and to solicit feedback from users.

6. Acknowledgement

Much of the implementation is done by all of our 26
undergraduate students in the Software Engineering
course offered in the summer of 2005 at the University of
Toronto [11]. Some examples in this paper are taken from
the codename42 project team including Dimitri Stroupine,
Faiz Hemani, Hareem Arif, Sani Hashmi and Zia Malik.
The authors would also like to thank Xin Gu for giving
XSLT tutorial to the students.

7. References
[1] A. G. Ganek and T. A. Corbi, "The dawning of the

autonomic computing era," IBM Syst. J., vol. 42, pp.
5-18, 2003.

[2] M. M. Lehman and J. F. Ramil, "Evolution in
software and related areas," in Proceedings of the 4th
International Workshop on Principles of Software
Evolution. Vienna, Austria: ACM Press, 2001.

[3] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y.
Yu, "Towards requirements-driven autonomic systems
design," in Proceedings of the 2005 workshop on
Design and evolution of autonomic application
software. St. Louis, Missouri: ACM Press, 2005.

[4] A. Dardenne, A. van Lamsweerde, and S. Fickas,
"Goal-directed requirements acquisition," in Selected
Papers of the Sixth International Workshop on

Software Specification and Design: Elsevier Science
Publishers B. V., 1993.

[5] B. Hui, S. Liaskos, and J. Mylopoulos, "Requirements
Analysis for Customizable Software Goals-Skills-
Preferences Framework," in Proceedings of the 11th
IEEE International Conference on Requirements
Engineering: IEEE Computer Society, 2003.

[6] A. Sutcliffe, S. Fickas, and M. M. Sohlberg, "Personal
and Contextual Requirements Engineering," in
Proceedings of the 13th IEEE International
Conference on Requirements Engineering: IEEE
Computer Society, 2005.

[7] S. Fickas, "Clinical requirements engineering," in
Proceedings of the 27th international conference on
Software engineering. St. Louis, MO, USA: ACM
Press, 2005.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R.
Sebastiani, "Reasoning with Goal Models," in
Proceedings of the 21st International Conference on
Conceptual Modeling: Springer-Verlag, 2002.

[9] Y. Yu, Y. Wang, S. Liaskos, A. Lapouchnian, and J.
Mylopoulos, "Reverse Engineering Goal Models from
Legacy Code," in Proceedings of the 13th IEEE
International Conference on Requirements
Engineering: IEEE Computer Society, 2005.

[10] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S.
Easterbrook, "Configuring Common Personal
Software: A Requirements-Driven Approach," in
Proceedings of the 13th IEEE International
Conference on Requirements Engineering: IEEE
Computer Society, 2005.

[11] Y. Yu, A. Lapouchnian, S. Liaskos, and X. Gu, "The
Software Engineering summer course (CSC408H1S),"
http://www.cdf.toronto.edu/~csc408h/summer, 2005.

[12] H. A. Simon, The Sciences of the Artificial:
Massachusetts Institute of Technology, 1996.

[13] L. Chung, B. A. Nixon, E. S. K. Yu, and J.
Mylopoulos, Non-Functional Requirements in
Software Engineering. Boston Hardbound: Kluwer
Academic Publishers, 1999.

[14] R. Sebastiani, P. Giorgini, and J. Mylopoulos, "Simple
and Minimum-Cost Satisfiability for Goal Models," in
Proc. CAiSE: LNCS, 2004.

[15] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos,
and J. C. S. d. P. Leite, "From stakeholder goals to
high-variability software designs," University of
Toronto CSRG-509, 2005.

[16] S. A. Cook and D. G. Mitchell, "Finding Hard
Instances of the Satisfiability Problem: A Survey " in
Satisfiability Problem: Theory and Applications, vol.
35, Discrete Mathematics and Theoretical Computer
Science, J. G. Dingzhu Du, and Panos M. Pardalos,
Ed.: American Mathematical Society, 1997, pp. 1-17.

[17] D. Le Berre, A. Parrain, O. Roussel, and L. Sais,
"SAT4J: A satisfiability library for Java," 2005.

[18] Y. Yu, E. S. K. Yu, L. Liu, and J. Mylopoulos, "The
OpenOME requirements engineering tool," in
http://www.cs.toronto.edu/km/openome, 2005.

http://www.cdf.toronto.edu/%7Ecsc408h/summer
http://www.cs.toronto.edu/km/openome

