
Towards a Framework to Incorporate NFRs into UML Models

Subrina Anjum Tonu, Ladan Tahvildari
Software Technologies Applied Research Group
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{subrina, ltahvild}@swen.uwaterloo.ca

Abstract

Despite the fact that Non-Functional Requirements
(NFRs) are very difficult to achieve and at the same time
are expensive to deal with, a few research works have fo-
cused on them as first class requirements in a development
process. We propose a framework to incorporate NFRs, as
reusable components, with standard UML notations. Such
a framework can also integrate those reusable NFRs with
the extracted UML representations of legacy systems during
the reverse engineering process. This novel research work
uses standard XMI representation of UML models without
proposing any extension to it. As a proof of concept, a small
case study of a Credit Card System is presented.

1 Introduction

The demand for high quality software system is increas-
ing day by day. Production of a highly organized software
system requires separation of concerns [7] which is one of
the basic engineering principles. On the other hand, produc-
tion of a high quality software requires the implementation
of all functional and non-functional requirements starting
from the design phase to the end of the software life cycle.

As known, all these requirements are changing during
the maintenance phase of any software system. The re-
engineering of such software systems have gained signifi-
cant attention in today’s software industry. A few research
works provide a re-engineering process that addresses such
problems in order to incorporate any new or modified (func-
tional and non-functional) requirements. Existing reverse
engineering process can extract architectural design of the
legacy systems which can be presented in UML model.
UML tools also exist to automatically generate deployable
source code from UML model specifications. In such an
environment, the legacy systems can be modified by adding
the NFRs with the extracted UML model out of such system
and the source code can be re-generated automatically. In

a nutshell, it is necessary to have an environment to attach
the NFRs to the target system.

Tahvildari et al. proposed a quality-driven reengineering
(QDR) framework which allows specific quality require-
ments for the migrant systems to be modelled as a collection
of soft-goal graphs, and provides a selection of the transfor-
mational steps that needs to be applied at the source code
level of the legacy system being reengineered [14]. They
extended their work and proposed a framework of transfor-
mations that aims to improve error-prone design properties
and assists in enhancing specific qualities of a software sys-
tem using a catalogue of OO software metrics [13].

This research is an extension to that work by focusing
on the extracted UML representation (from source code)
of the legacy systems rather than AST. We also focus on
making reusable NFRs and attaching them with the target
model. In current practice, the join-point (where the NFR
touches the target model) is defined as a part of the NFR it-
self. As a result, there is very little chance to reuse this NFR
in other software design. This research work is a step to re-
move these shortcomings. First, we identify the functional
requirements (FR) and non-functional requirements (NFR)
of a legacy system which needs to be re-engineered. Sec-
ond, we specify the new FRs with the appropriate UML dia-
grams and we specify a template of NFRs using NFR frame-
work [4] and our proposed notations for creating standard
UML diagrams. According to this approach, the NFRs do
not have any hard coded join-points inside it. We used the
concept ofdynamic parameterizationsdescribed in [9]. We
also use a knowledge-based concept for building a reposi-
tory/library of those reusable NFRs. Finally, we integrate
those NFRs with the target model where the necessary pa-
rameters for defining the join-points come dynamically dur-
ing run time. We use UML as our design language as it
is the most popular modelling language in research com-
munity, as well as a general purpose object-oriented lan-
guage [1]. Our proposed framework is developed in a stan-
dard XMI environment.

1

Paper Class Use Case Sequence Interaction State Collaboration Need
Diagram Diagram Diagram Diagram Diagram Diagram Extension of UML

Lawrence Chung et.al [12]
√ √

Ana Moreira et.al [10]
√ √ √

Luiz Marcio Cysneiros et.al [5]
√ √ √ √ √

Evgeni Dimitrov et.al [6]
√ √ √

Table 1. Summary of Related Works

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 describes the frame-
work while Section 4 applies the framework on a case study.
Finally, Section 5 summarizes the contributions of this work
and outlines directions for further research.

2 Related Works

The idea of integrating NFRs with FRs in design level
is not a new one. As shown in Table 1 many researchers
proposed extensions of UML model for the integration pur-
pose.

Lawrence Chung et al. [12] proposed to integrate NFRs
with FRs in UML use case model. They implemented the
NFRs by their NFR framework [11, 4] and proposed to
associate those NFRs with four use case model elements:
actor, use case, actor-use case association and the system
boundary. They named these associations as “Actor Asso-
ciation Point”, “Use Case Association Point”, “Actor-Use
Case Association (AU-A) Association Point” and “System
Boundary Association Point”, respectively.

Ana Moreira et al. [10] proposed a model for integrating
crosscutting quality attributes with FRs by UML use case
diagram and interaction diagram. They proposed a tem-
plate for quality attributes with some specific fields (such
as description, focus, source, decomposition) and they inte-
grated those quality attributes with FRs by using standard
UML diagrammatic representations (e. g. use case diagram,
interaction diagrams) extended with special notations.

Luiz Marcio Cysneiros et al. [5] proposed a systematic
approach to assure that conceptual models will reflect the
NFRs elicited. They uses a vocabulary anchor (LEL) to
build both functional and nonfunctional perspectives of a
software system. They also showed how to integrate NFRs
into UML by extending some of the UML sublanguages,
and they presented a systematic way to integrate NFRs into
the functional models.

Evgeni Dimitrov et al. [6] described three approaches
for UML-based performance engineering. The three ap-
proaches are: Approach-1) Direct representation of perfor-
mance aspects using UML, Approach-2) Expanding UML
to deal with performance aspects and Approach-3) Com-
bining UML with formal description techniques. They pro-
posed some extensions to UML use case and state transition
diagram.

Our work is different from all these works in the sense
that we do not apply our framework for a specific UML
diagram, rather than we apply it in a general way for all

types of UML model. Besides, we do not propose any ex-
tension to UML model, rather than we express the NFRs in
a reusable way with the standard UML notations.

3 A Proposed Framework
Building of reusable NFR templates and the integration

of them with the extracted UML models of the legacy sys-
tems requires a comprehensive framework to relate the inte-
gration process with the functional requirements of the tar-
get model. The focal point of the proposed research is to ex-
ploit the synergy between the area of software requirements
analysis (both functional and non-functional) and software
re-engineering.

We assume an extracted UML model is available from a
legacy system after a reverse engineering process is applied.
Our framework starts with such extracted UML model of a
legacy system. It consists of three phases as depicted in Fig-
ure 1: 1) Identification of FRs and NFRs, 2) Specification
of FRs and NFRs and 3) Integration of NFRs.
• Identification of FRs and NFRs

From design documents, release notes, source code,
extracted UML model and new user’s requirements for
a software system, we identify the new functional and
non-functional requirements which need to be added to
the system being re-engineered. Our focus is mainly
on the desired non-functional properties of the soft-
ware that it should meet to assure high quality software
system.

• Specification of FRs and NFRs

This phase consists of two parts. The first part is to
specify the new FRs to be added into the extracted
legacy model using standard UML notations. The sec-
ond part is to search our knowledge-based NFR reposi-
tory for any similar previously designed reusable NFR
that the system may need. In case of the existing NFR
design matches partially with the required NFR, the
former one needs to be modified according to the re-
quired one and to be stored in the repository for future
use. If no such NFR can be found, a new NFR template
will be created according to the requirements.

• Integration of NFRs

After specifying all non-functional requirements this
phase just becomes a NFR weaver that weaves those
desired NFRs with the FRs of the target system as
shown in Figure 1. The following section elaborates

2

Â

Á

¿

À
'

&

$

%
'

&

$

%
'

&

$

%

®
­

©
ªProcess

Legend

º

¹

·

¸

º

¹

·

¸

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸

UML Model Extracted from an Object-oriented Legacy System

Identification of FRs and NFRs

Functional

Requirements

Non-functional

Requirements

Specification of FRs and NFRs

Specifying New FRs

to be Added into

Extracted Legacy Model

Specifying NFRs using

NFR Framework

and NFR Template

Building NFR Library/Repository

Integration of NFRs

Integrating NFRs with FRs of the system as
“Add” component of the XMI

¾

?

? ?

?

?

- Control
Flow

?

?
UML representation of system with NFR attached to it

®
­

©
ª

Figure 1. A Framework for Integrating NFRs

further on our proposed approach to make the reusable
NFRs and to integrate them with the target model.

3.1 A Model for NFR Representation

A number of researchers and practitioners examined
how a software or system successfully achieves quality at-
tributes [2, 3, 4, 8]. To represent information about differ-
ent software qualities, their interdependencies, evaluation
of the NFRs upon the target system, detail techniques for
specifying methods to arrive at the “target” or “destination”
of the design process (operationalizing softgoal), we adopt
the NFR framework proposed in [4]. The visualization of
the operations of the NFR framework is done in terms of
the incremental and interactive construction, elaboration,
analysis, and revision of aSoftgoal interdependency graph
(SIG).

Our work begins after evaluation of SIG. The evaluation
procedure, defined by NFR framework, results in a sub-
graph of the SIG that needs to be integrated with the func-
tional requirements of the target model. Finally, thetarget
systemin NFR framework describes the final solution of
the particular NFR. Our framework maps this solution to

achieve a particular NFR with standard UML notations and
provides a weaver to weave it with the UML representation
of a software system.

3.2 A UML Representation for NFR

We propose a high level notation to design the final solu-
tion of the target system to achieve the particular NFR with
standard UML notations. Our proposed notation is based
on the general actions that can be performed on any entity
of UML model. For example, creating a class, inserting at-
tributes to a class, inserting methods to a class, deleting a
class, deleting attributes from a class, creating states, cre-
ating state-transitions, and so on. The goal of this notation
is to provide all the actions which may be needed to cre-
ate any type of UML diagram, and to specify a template for
the UML representation of the NFR. The template is not
executed at this point, rather it becomes an ordered set of
instructions/commands (similar to a script in UNIX). While
the framework is attaching the NFR to the functional re-
quirements of the system, the template commands need to
be executed to build the proper UML representation of the
NFR.

3

3.3 A NFR Library/Repository

We use the same knowledge-based approach as NFR
framework. We propose to build a NFR library/repository
where the past experience, standard techniques and knowl-
edge about particular NFR, the evaluated subgraph of SIG
for achieving that NFR and the proposed NFR template to
integrate it with the target model can be stored for future
use. The library/repository is likely to evolve in the course
of time and can help the developers in saving time by sup-
plying previously designed NFR templates as reusable com-
ponents.

3.4 Weaving NFR with the Target Model
A meta-model in UML describes the UML model by it-

self . Hence, the manipulation of the meta-model is same as
the manipulation of any UML model. For this purpose, we
have developed a meta-level NFR weaver where the weaver
executes the weaving operations as specified in each NFR
template applied onto the initial model. The weaver actu-
ally executes the commands specified in the NFR template
and generates the corresponding UML representation of the
particular NFR. The target model is also a UML model with
NFR attached to it. For the compatibility of other UML
tools, we are using the standard XMI to generate the UML
model. In our framework, the NFR description resulting
from SIG is a part of comment inside the XMI and the UML
representation of the NFR is a part of the “Add” component
of the XMI. By adding the NFR description resulting from
NFR framework with the XMI of the model as a comment,
we can store all the information for a particular NFR which
can be further viewed using our weaver. The output be-
comes compatible with other tools as it still is in standard
XMI format. By adding the NFR as UML “Add” compo-
nent we can also separate the NFR from the main design
of functional requirements of a software system and other
operations can also be done on the added NFR. For exam-
ple “deletion” and “modification”of the NFRs can be done
without changing the main design of a software system.

4 A Case Study

A prototype has been written in Java programming lan-
guage to implement the proposed framework in a semi-
automated manner. Due to the space constraint, a small case
study is presented as a proof of concept. The case study, we
have chosen is a part of the Credit Card System described
in [4]. Here is short summary of such system:

“We consider an information system for a bank’s
credit card operation. A body of information on
cardholders and merchants is maintained. In this
highly competitive market, it is important to pro-
vide fast response time and accuracy for sales au-
thorization. To reduce losses due to fraud, lost

+().....

−Card Number : String

 CardHolder

−Name : String
−Address : String

−Phone Number : int
−CustomerID : long
−.......

+...()

* 1

 Gold Card

−Rewards Points : int
−Air Miles : long
−....

+CalculatePoints() : int

+CalculateAirMiles() : long
+...()

 Regular Card

−PercentageOfCashBack : float

−TotalCashBack : float
−......

+CalculateCashBack() : float
+.....()

+Invalid−Crad−Status() : void

 Credit Card

−Card Type: String

−Expiry Date : Date

−Credit Limit : int

−Annual Fee : int

−Status−of−Card : int

−CustomerID : long
−

Figure 2. A Class Diagram of Credit Card Sys-
tem

ResponseTime

[retrieve(Card.Status),3]

U

+

X

Claim["Retrieve status is not
imp for cancellation",3]

ResponseTime

[retrieve(Card.Status),3]{non−critical}

PerformLater

[retrieve(Card.Status),3]

Update done in Cancellation(Card)

 imp for cancellation",3]

Claim["Updating status is

!ResponseTime

{critical}

[Update(Crad.Status),3]

PerformFirst

[Update(Card.Status,3]

ResponseTime

[Update(Card.Status),2]

ResponseTime
[implementation Components(Update

 (Card.Status)),2]

ResponseTime

[OtherOperations(Cancel),3]

Components(Cancel(card)),3]

+

ResponseTime
[access(attributes(card),3]

Claim
["Access imp for cancellation",3]

[access(attributes(card),3]{critical}

ResponseTime
[Cancel(card),3]

ResponseTime

[access(Card.Status),3]

Claim
["Status imp for Cancellation"]

!ResponseTime
ResponseTime

["Otherattrs not imp"]

Claim

[access(Card.otherattrs),3]

ResponseTime

[otherops(Cancle),3]{non−critical}

ResponseTime

 ["Other Ops not imp for cancellation"]

 Claim

[OtherOperations(Cancle),3]

ResponseTime

[update(Card.Status),3]{critical}

ResponseTime

[access(Card.Status),3]{critical}

(findOffset(Card.Status),2]

−−

++

+

+ +

Legend

NFR Softgoal

Claim Softgoal

Op target Link

Functional

Requirement

Op Softgoal

Target

Satisfied

U Undecided

Contribution

X Denied

Operation
Components

!ResponseTime

Individual

Attributes

Entity Management

Implementation

Components

X

[Card.Status,2]

StaticOffsetDetermination

ResponseTime

[access(attributes(card),2]

FewAttrPerTuples

[Card.Status,2]

Layer 3
Transaction

Layer2
(Attributes)

Selective Attribute Grouping of Card Status

Cancel(Card)

Operation

Storage of

−−

+

++
++

X
−−

++

++

X

U

−−

++
++

Card Status

ResponseTime

Figure 3. A SIG Performance for Credit Card
System

4

and stolen cards must be invalidated as soon as
the bank is notified.”

The following sections elaborate further how each step
of our proposed framework can be applied to the case study.

4.1 Identification of FRs and NFRs

In the selected case study, the functionality of Credit
Card System includes maintaining information onsales,

card holdersand merchants. Transactions are autho-
rized, and accounts are updated. Stolen cards are cancelled.
The non-functional requirements of the credit card system
may be performance and security of the transaction. Per-
formance can also be divided as performance of card au-
thorization and performance of card cancellation and so on.
Here we consider the “Fast Response Time” to invalidate a
card status (when it is lost or stolen) as the target NFR for
the selected case study.

4.2 Specification of FRs and NFRs

Figure 2 shows a part of the class diagram of a Credit
Card System specifying its FRs.

Figure 3 shows a partial SIG specifying the evaluation
of impact of decisions after selecting operationalizing soft-
goals with respect to card cancellation operation. As shown
in Figure 3, the “Performance” quality attribute of Credit
Card System can be achieved by selecting attribute group-
ing of card status. One possible solution for this may be
to physically store the card status separately along with
few other attributes (card number for example). By ap-
plying such a mechanism, when a request comes for the
cancellation of a particular card, the status of the card can
be retrieved very quickly without any need to access ir-
relevant information (such as customer information, bonus
points calculation) and the status can be updated to “in-
valid card” very easily. In the context of UML class di-
agram, one possible way to express this NFR is to cre-
ate a new class (say “FastResponseTime”) for the method
Invalid-Card-Status() along with the attributes “Status-of-
card” and the “Card-Number” (as primary key). This mod-
ification can result in deleting the attribute “Status-of-card”
and the method “Invalid-Card-Status” from the original
“CardHolder” class.

4.2.1 Buidling NFR Template and Repository

Figure 4 shows a possible set of NFR commands, from
our proposed instruction set for class diagram, to specify
the NFR “FastResponseTime”. To create a template for the
above NFR based on the solution discussed in the previous
section, the following steps are required:

1. Accepting the join-point of the NFR “Fast Response
Time” (here, method Invalid-Card-Status()).

 Output: (Step 7(result), Step 8(Operation), Step 9(Operation), Step 11(Operation)
 11: createAssociation(<result3>,<result4>,1,1)
 10: ClassNode<result4> := getParentClass(<param0>)
 9: deleteAttributesFromParentClass(<result1>)
 8: deleteMethodFromParentClass(<param0>)
 7: <result3> := insertMethod(<param0>)
 6: <result3> := insertMultipleAttribute(<result3>,<result1>)
 5: <result3> := insertMultipleAttribute(<result3>,<result2>)
 4: ClassNode<result3> := createNewClass("FastResponseTime"
 3: AttributeList<result2> := getSelectedInput("Primary Keys",<result0>)
 2: AttributeList<result1> := getSelectedInput("Attributes to Move",<result0>)
 1: AttributeList<result0> := getAttributesFromParentClass(<param0>)
 0: Input Parameters: Method(Single)<param0>

 Steps Commands

Figure 4. NFR Template Commands

2. Selecting other attributes to move to the separate
class for card status (here attributes Card-Number and
Status-of-card).

3. Creating a new class (say, FastResponseTime) and
building an association with the parent class.

4. Inserting those attributes defined in Step 2 and the
method defined in Step 1, into this new class.

5. Deleting the attribute Status-of-card from the original
class.

 }
 }
 createAssociation(result3,result4,1,1);
 ClassElement result4 = getParentClass(param0);
 deleteAttributeFromParentClass(result1);
 deleteMethodFromParentClass(param0);
 result3 = insertMethod(result3,param0);
 result3 = insertMultipleAttribute(result3,result2);
 result3 = insertMultipleAttribute(result3,result1);
 ClassElement result3 = createNewClass("FastResponseTime");
 AttributeListresult2 = getSelectedInput("Primary Key", result0);
 AttributeList result1 = getSelectedInput("Attributes to Move", result0);
 AttributeList result0 = getAttributesFromParentClass(param0);
 MethodName param0 = getParameter();
 expectParameter(Method);

 void constructTargetSystem(){

 }
 public FastResponseTime(){
 public class FastResponseTime{

Figure 5. Java Class of NFR Template

In our prototype, we use the advantage ofdynamic class
loading feature of Java. We have built an NFR interpreter
which interprets the commands in NFR template and gener-
ates the corresponding Java source code for the template.
Each template is stored as a Java class in the NFR li-
brary/repository. The desirable template would be trans-
lated into the following piece of Java code as shown in Fig-
ure 5.

5

4.3 Integration of NFRs

The last step of our framework is to incorporate this NFR
template with target design in UML notation. In order to
attach the NFR with a method (e.g. Invalidate-Status-of-
Card()in the design), the designer needs to supply the cor-
responding method as a parameter to the template. During
the weaving, he/she needs to provide the necessary dynamic
parameters to complete the process.

Figure 6 shows the new class diagram after the in-
tegration of NFR “FastResponseTime”. After the inte-
gration of NFR “FastResponseTime” with the class dia-
gram of Credit Card System, a new class named “Fas-
tResponseTime” is created with the attributes “Status-of-
Card”, “Card-Number” and the attribute “Status-of-Card”
is deleted from the original class “CardHolder”.

 Credit Card

+...()

+CalculateAirMiles() : long
+CalculatePoints() : int

−....

−Air Miles : long

−Rewards Points : int

+...()

−.......

−CustomerID : long

−Phone Number : int

−Address : String

−Name : String

+().....

 CardHolder

+Invalid−Card−Status():void

FastResponseTime

−CardNumber : String

1 1−Statusof−Card : int

* 1

 Regular Card

+.....()

+CalculateCashBack() : float

−......

−TotalCashBack : float

−PercentageOfCashBack : float

 Gold Card

+Invalid−Crad−Status() : void

−

−CustomerID : long

−Status−of−Card : int

−Annual Fee : int

−Crad Number : String

−Credit Limit : int

−Expiry Date : Date

−Card Type: String

Figure 6. Adding NFR FastResponseTime

5. Conclusion and Future Work

We propose a novel framework for integrating non-
functional-requirements with the UML design of a software
system which can be applied during the re-engineering pro-
cess of such a legacy system. The framework can also be
used during forward engineering if the developers follow
the standard XMI during their model design. Currently, we
have built a prototype of the whole framework where the
weaver supports the NFR design with class diagrams. The
prototype also provides the advantage to draw the Softgoal-
Interdependency graph (SIG) and to store the NFR template
in the NFR library/repository along with the NFR informa-
tion that comes from the NFR framework. We are now
working on extending the prototype to incorporate all types
of UML diagrams.

References

[1] Object management group. Unified Modeling Language
Specification version 1.3 bata 1, 1999. available at
uml.shl.com.

[2] J. Bergey, M. Barbacci, and W. William. Using qual-
ity attribute workshops to evaluate architectural design ap-
proaches in a major system acquisition : A case study. Tech-
nical Report CMU/SEI-2000-TN-010, Software Engineer-
ing Institute, Carnegie Mellon University, 2001.

[3] B. W. Boehm et al. Characteristics of Software Quality.
Elsevier North-Holland Publishing Company, Inc., 1980.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 2000.

[5] L. M. Cysneiros and J. C. S. do Prado Leite. Nonfunctional
requirements: From elicitation to conceptual models.IEEE
Trans. Softw. Eng., 30(5):328–350, 2004.

[6] E. Dimitrov and A. Schmietendorf. Uml-based performance
engineering possibilities and techniques.IEEE Software,
19:74–83, January/February 2002.

[7] W. Hürsch and C. V. Lopes. Separation of concerns. Techni-
cal Report NU-CCS-95-03, Northeastern University, Febru-
ary 1995.

[8] International organization for standardization (iso). Tech-
nical report. Information Technology, Software Product
Evaluation, Quality Characteristics and Guidelines for Their
Use, ISO/IEC 9126, 1996.

[9] J.-M. J́ezéquel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. InAspect-Oriented
Modeling with UML, AOSD Workshop, Enschede, Nether-
lands, April 2002.

[10] A. Moreira, I. Brito, and J. Arajo. Crosscutting qual-
ity attributes for requirements engineering. InThe four-
teenth International Conference on Software Engineering
and Knowledge Engineering (SEKE’02), pages 167–174,
July 2002.

[11] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
using nonfunctional requirements: a process-oriented ap-
proach. InIEEE Transactions on Software Engineering, vol-
ume 8, pages 483–497, June 1992.

[12] S. Supakkul and L. Chung. Integrating frs and nfrs: A use
case and goal driven approach. In2nd International Con-
ference on Software Engineering Research, Management
and Applications (SERA’04),Los Angeles, CA, pages 30–37,
May 2004.

[13] L. Tahvildari and K. Kontogiannis. Improving design qual-
ity using meta-pattern transformations: a metric-based ap-
proach.Journal of Software Maintenance, 16(4-5):331–361,
2004.

[14] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering.Journal of Systems and Soft-
ware (JSS), 66(3):225–239, 2003.

6

