
Proceedings of the 1st

International Workshop on
Reverse Engineering To
Requirements (RETR’05)

Collocated with
WICSA/WCRE’05

At Pittsburgh, CMU
November 7, 2005

Proceedings of the 1st International Workshop on

REVERSE ENGINEERING TO
REQUIREMENTS (RETR’05)

Collocated with the Joint conference of WICSA & WCRE’05
Pittsburgh, PA USA

http://www.cs.toronto.edu/km/retr

http://www.cs.toronto.edu/km/retr

Organizers
Yijun Yu
Yiqiao Wang
Sotirios Liaskos
Alexei Lapouchnian
John Mylopoulos
University of Toronto
Ying Zou
Queen's University
Marin Litoiu
IBM Canada, Ltd.
Julio C.S.P. Leite
PUC-Rio, Brazil

Program Committee
Periklis Andritsos
 University of Trento, Italy
Nicolas Anquetil
 Universidade Catolica de Brasilia, Brazil
Daniel M. Berry
 University of Waterloo, Canada
Marsha Chechik
 University of Toronto, Canada
Elliot Chikofsky
 DMR TRECOM, USA
Luiz Marcio Cysneiros
 York University, Canada
Steve Easterbrook
 University of Toronto, Canada
Stan Jarzabek
 University of Singapore, Singapore
Xiaoping Jia
 DePaul University, USA
Kostas Kontogiannis
 University of Waterloo, Canada
Ric Holt
 University of Waterloo, Canada
Chang Liu
 Ohio University, USA
Lin Liu
 Tsinghua University, China
Jianguo Lu
 University of Windsor, Canada
Paulo Cesar Masiero
 Universidade de São Paulo, Brazil
Hausi Muller
 University of Victoria, Canada
John Mylopoulos
 University of Toronto, Canada
Julio Cesar Sampaio do Prado Leite
 PUC-Rio, Brazil
Marin Litiou
 IBM, Canada
Antonio Francisco do Prado
 Universidade Federal de São Carlos, Brazil
Ladan Tahvildari
 University of Waterloo, Canada
Kenny Wong
 University of Alberta, Canada
Tao Xie
 North Carolina State University, USA
Eric S. K. Yu
 University of Toronto, Canada
Yijun Yu
 University of Toronto, Canada
Ying Zou
 Queens University, Canada

A full day workshop collocated with WCRE, Pittsburgh, Pennsylvania, USA (Carnegie Mellon).
Date to be decided, will be one day in the week of 6 November 2005.
[Call for Papers|Topics | Submission | Important Dates |WCRE 2005 Home]

Reverse engineering aims at extracting many kinds of information from existing software,
such as requirements specifications, design documents, and system artifacts, and using this
information in system renovation and program understanding [WCRE].

Existing reverse engineering methods focus on recovering architecture and design of
software products that are often represented in standard formats such as UML, GXL or ADL.
However, few methods recover requirements such as goals of the various stakeholders, non-
functional requirements, early aspects, variability tradeoffs and dynamic/emergent behavior
of autonomic systems.

Therefore a forum is needed to discuss the issues related to recovering requirements. It can
enable the reverse engineered software systems to continuously adapt to the evolving
functional requirements, and to be reengineered to meet the non-functional requirements.

The goal of this full day WCRE'05 workshop is to bring together researchers and practitioners
interested in developing methods and techniques for Reverse Engineering to Requirements
(RETR). The objective of the workshop is to sketch the state-of-the-art of the RETR practice
and to identify current trends and fields of interest, possible paths of collaboration and points
of future research directions.

Topics

The workshop focuses on issues including, but not limited to, the following:
• Early Requirements

o Aspects o Goals
o Scenarios o Use cases
o Variabilies o Viewpoints

• Non-functional Requirements and Qualities
o Understandability o Maintainability
o Performance o Reliability
o Security o Privacy
o Usability o Interoperability

• Evolution of Software Requirements
o Mining and Clustering Software Repositories
o Reconciliation of Requirements and Implementation
o Adaptive Software for Autonomic Computing
o Emergent Behavior in Software Integrations

• Traceability
o Establishing Traceability
o Maintaining Traceability

• Verification and Validation
o Design Rationale and Impact Analysis
o Requirements Testing
o Empirical Case Studies

Submission Details

Participants of RETR 2005 are asked to submit papers relating to the scope of the workshop.
Papers must be original and previously unpublished. The organizing committee will oversee
the reviewing process. Selection will be based on originality, ability to stimulate discussion,
and presentation quality. Authors of accepted papers are expected to participate in the
workshop. Papers must be in WCRE 2005 submission format (i.e. IEEE Proceedings style in
accepted Postscript or PDF form), in AT MOST 6 pages. You can submit your paper to
retr(at)cs.toronto.edu. All accepted position papers will be available electronically without
page limitation before the workshop.

Important Dates

Paper due: October 3, 2005
Notification to Authors: October 17, 2005
Camera-ready Papers due: October 25, 2005
Workshop date: the week of November 6, 2005

1

What’s the mission of RETR’05

Three engineering research communities such as the International Conference on Software Engineering (ICSE),
the Working Conference on Reverse Engineering (WCRE) and the International Conference/Symposium on Re-
quirements Engineering (RE) are known to be highly involved with the software industry. They share largely
common interests among researchers and practitioners, as indicated by an intersection of authorship found from
the (reverse engineered) statistics based on the literature archive DBLP1, see Table 1. It shows that exactly 20%
of the unique authors in WCRE and RE have also published in the ICSE proceedings.

Table 1. Authorship distribution among engineering research communities
Venue years no. papers no. authors ICSE presence (%) The 1st and 2nd most prolific authors
ICSE 27 1966 2921 2921(100%) Victor R. Basili (22), Barry W.Boehm (21)

RE 13 378 662 133(20%) Bashar Nuseibeh (12), Michael Jackson (8)
WCRE 12 344 491 102(20%) Richard C. Holt (15), Kostas Kontogiannis(13)

Among all the 1142 unique authors who have published in either RE or WCRE, however, only 11 have published
papers in both. As detailed in Table 2, interestingly, these 11 authors have published more papers in the RE
proceedings than ever in the WCRE proceedings. Fortunately we have invited 3 of them to our workshop program
committee. We will see more people joining the list after this year, e.g. Mike Godfrey has a paper in RE’05, which
will break the ad hoc pattern that a selected author has more publications in RE than in WCRE.

Table 2. Distribution of publications among the authors who published in both WCRE and RE. RE’05
Publications are added to some of the authors. Three are in the programme committee of RETR’05.

no. name RE WCRE ICSE RETR-PC
1 John Mylopoulos 2 7+2 5 Y
2 Julio Cesar Sampaio do Prado Leite 2 7+1 2 Y
3 Betty H. C. Cheng 2 5+1 4 N
4 Colin Potts 1 8 7 N
5 Margaret-Anne D. Storey 1 5 4 N
6 Harald Gall 1 5 3 N
7 Wojtek Kozaczynski 1 1 6 N
8 Mehdi Jazayeri 1 1 3 N
9 Stan Jarzabek 1 1 2 Y

10 Roland Mittermeir 1 1 1 N
11 Eleftherios Koutsofios 1 1 0 N

Mike Godfrey 4 0+1 0 N

The above data are by no means complete, as some venues attract papers of both RE and WCRE areas. However,
it does clearly indicate that few people (2.2% of WCRE and 1.6% of RE authors) did recognized work in both.

Thus, the mission for RETR is to bridge the gap between the two seemingly connected areas. We shall (1)
aim WCRE higher: e.g. reverse engineering to requirements, not just to architecture and design; (2) ground RE
deeper: e.g. find traceability between requirements and implementations; and (3) reveal newer potentials: e.g.
combine both requirements and reverse engineering in autonomic systems.

1Retrieved from http://dblp.uni-trier.de/xml on November 2, 2005. Note that recent RE’05 and WCRE’05 papers are not listed in
the DBLP records.

2

http://dblp.uni-trier.de/xml

����� ������� ��	
����
�	 �� ���
�������

����� ��� ���� 	
�������� ���� ��� 	���� ������ ����� ������ �����

������ ����� ������� ������

������ ������������

��� ����
 �! "������ #����$ ��� ����
 %&	 ����'� ���()��

�
������*�
+��������������
,�����������'�
����-��,��������� *����,����.*���* �����,��!����(����.�

��������

������� ����������� ��	� �
 ��
���
��� 	�� �����
�� �����	�
��� ���	 ����
��� ���
���� ��� �����
���
�����	�
��� ��� ��
�	 ������
��� ��� ������	 ������
�
������� ��� ���� ��
��� ���� �� ������� ��������
��
� ����
�� 	�
���� ���
����� ��� ��� ������� ���
��������� ���	 ���
����
� �� ����	��
� !����"�

� �	��
����
	

������� ����������� ��	� �
 ��
���
��� 	�� �����
�� �����	�
��� ���	 ����
��� ���
����# ���� �� �� �����
	��
� �����$��
����# ������ ����	��
�� ��� ��
�	 ���

����
�# ��� �����
��� �����	�
��� �� ��
�	 ������
���
��� ������	 ������
������ ���
����
��� ������� ����������� 	�
���� ����� �� ���

�������� �����
��
��� ��� ������ �� ���
���� ������
�

��
 ��� ��
�� ��������
�� �� �
������ ���	�
� ���� ��
���� ��� �� !�� "������� ��� 	�
���� �������
�� ����	��
� ���� �� ���#� ��
�� ������� �
�$���#��
���� ��������
����# ��%����	��
�� ���#& �����
�� �����
�'�#�
&
�����(� ��� �&��	��)�		�����
 '������� ��
��
���	�� �&�
�	��
*�������� � ����	 �� ������
� �������
�� ������

��#�
��
� ���������� ��%����	��
� ���	
�� ���
�����
+
 ��� ���'#�
�� ������� ���������� ���
���� �&�
�	�

� ���
������#& ����

�
�� ���#���� ����
����# ���
%����	��
�� ���
� '� ������������
� 	��

�� ����
����
����# ��%����	��
��

� �
���
� 	������

*����� �� ��
����
 ���#���� '�
 ��� ��
 #�	�
��
�,

� ����� ���	
������

� ������

� �����

� ������
��

� ��� �����

� ���
��
�

��

� �
����
��

� �����	��
���� ���	
������ ��� �	��

��

� �����������
�
� ��� ��
��
���
�
�

� ����������� ����
�
� ��� ���
��
�
�

� ���	�
� ��� ��
!���

� "���������
�
�

� �!��	
�� �� ������� ���	
������

� �
�
�# ��� $�	���
�# ������� �����
��
��

� ������
�
�
�� �� ���	
������ ��� "��������
��

� ����
!� ������� ��� �	����
� $���	
�#

� ����#�� %�&�!
��
� ������� "��#��
���

� '������
�
�

� �����
�&
�# '������
�
�

� ��
��
�
�# '������
�
�

� ���
�
��
�� ��� ���
��
��

� (��
#� ��
����� ��� "���� ������
�

� ���	
������ '��
�#

� ���
�
��� $��� �	�
��

� ���������
� ��� �
����
�

*�� ���# ��
��� ��## ��& -.��/01 ���$���� ��
�
���$ �� 	�
���� ���
�����%��� ��� ������� ���������
��� ���	 ���
����
� ��%����	��
� 2��*�3� *�� �'�
4��
��� ��
�� ���$���� ��
� �$�
��
�� �
�
�����
�����

��
�� ��*� ����
��� ���
� ����
��& ������

�����
��� 5�#�� �� ��
����
� �����'#� ��
�� �� ��##�'���
���
��� ����
� �� ��
��� �������� �����
�����

������	���

��� �� �� ���	
��	 ��� �� �� ��
�� ��� ������� ���������
��� ��� ������ ���
���� � ���
�
�� ���� �������	�
 !�"��#$� � �%%&�

�

3

Workshop Schedule

Time Event
8:30 Opening and Introduce ourselves
9:00 Invited talk: The Challenge to Recover 15 Years of “Why” Behind a Product Design

by Kevin Dunipace
9:30 Invited talk: Learning from Past Trial and Error: Some History of Reverse Engineering to Requirements

by Elliot Chikofsky
10:00 Presentation (pp. 5-11): Automatic Extraction of Abstract-Object-State Machines Based on Branch Coverage

by Hai Yuan & Tao Xie
10:45 Presentation (pp. 24-28): Extracting Business Policy and Business Data from the Three-Tier Architecture System

by Maokeng Hung & Ying Zou
11:30 Panel discussions on RETR from legacy software design
12:00 Lunch break
13:00 Break, you may attend Grady Boochs keynote speech at WICSA
14:30 Invited talk Autonomic Computing: Now You See It, Now You Don’t

by Hausi Muller
15:00 Invited talk

by Kostas Kontogiannis and Ladan Tahvildari
15:30 Presentation (pp. 18-23): Requirements-Driven Configuration of Software Systems

by Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos & John Mylopoulos
16:00 Break
16:30 Presentation (pp. 12-17): Towards a Framework to Incorporate NFRs into UML Models

by Sabrina Anjum Tonu & Ladan Tahvildari
17:00 Panel discussion on RETR for autonomic systems
17:30 Wrap up & conclusions on lessons learnt, next steps
18:00 End of the workshop

Enjoy!

4

Automatic Extraction of Abstract-Object-State Machines
Based on Branch Coverage

Hai Yuan
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
hyuan3@ncsu.edu

Tao Xie
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
xie@csc.ncsu.edu

Abstract

Some requirement modelling languages such as UML’s
statechart diagrams allow developers to specify require-
ments of state-transition behavior in a visual way. These
requirement specifications are useful in many ways, includ-
ing helping program understanding and specification-based
testing. However, there are a large number of legacy sys-
tems that are not equipped with these requirement specifica-
tions. This paper proposes a new approach, called Brastra,
for extracting object state machines (OSM) from unit-test
executions. An OSM describes how a method call transits
an object from one state to another. When the state of an
object is represented with concrete-state information (the
values of fields transitively reachable from the object), the
extracted OSMs are simply too complex to be useful. Our
Brastra approach abstracts an object’s concrete state to an
abstract state based on the branch coverage information ex-
ercised by methods invoked on the object. We have proto-
typed our Brastra approach and shown the utility of the ap-
proach with an illustrating example. Our initial experience
shows that Brastra can extract compact OSMs that pro-
vide useful information for understanding state-transition
behavior.

1 Introduction

The Unified Modelling Languages (UML) [15] provides
a set of notations for describing requirements of artifactsin
software systems. Among these notations, statechart dia-
grams capture state-transition behavior of a class or multi-
ple classes. After requirements specifications are specified,
developers can write source code to implement the specified
behavior. Later when developers want to understand and
maintain the source code, they can refer to requirements
specifications besides directly inspecting the source code.

In addition, developers can use specification-based testing
tools [6, 8, 12, 17] to generate test inputs from the specifi-
cations and check the behavior of implementation with the
behavior specified in requirements specifications. However,
a number of legacy systems are not equipped with speci-
fications. Understanding and testing these legacy systems
present a challenge for developers. To address this chal-
lenge, researchers have developed various reverse engineer-
ing techniques [11] to infer various types of information
from legacy systems.

This paper proposes Brastra, a new approach for auto-
matically extracting object state machines (OSM) [21] for a
class from unit-test executions. These OSMs describe state-
transition behavior exhibited by invoking methods on ob-
jects of a class. An OSM is similar to a UML statechart
diagram. In an OSM for a class, a state represents the state
of an object at runtime. A transition represents method calls
invoked on an object, transiting the object from one state to
another. States in an OSM can be concrete or abstract. A
concrete state of an object is characterized by the values of
object fields transitively reachable from the object. Because
a concrete OSM is often too complicated to be useful, our
previous work [21,22] has developed techniques to abstract
concrete states to abstract states, which are used to con-
struct abstract OSMs. Our previous observer-abstraction
approach [21] represents an abstract state of an object with
the return values of observer methods (methods whose re-
turns are not void) invoked on the object. Our previous
sliced-OSM-extraction approach [22] represents an abstract
state of an object with the values of a specific field. In this
paper, we have developed the new Brastra approach that
does not require appropriate observer methods in class in-
terface (required by our previous observer abstraction ap-
proach [21]) or appropriate object-field structure (required
by our previous sliced OSM extraction approach [22]).

The Brastra approach represents an abstract state of an
object with the branch coverage information produced by
methods invoked on the object. OSMs produced by Brastra

1

5

capture program behavior exhibited by branching points in
method body, complementing program behavior exhibited
by observer methods or specific fields (captured by our pre-
vious approaches). We have implemented the Brastra ap-
proach and demonstrated its utility by applying it on an il-
lustrating example. Our initial experience shows that OSMs
extracted by Brastra are compact and useful for providing
insights to state-transition behavior.

The rest of this paper is organized as follows. Section 2
presents an illustrating example. Section 3 introduces the
formal definition of an OSM. Section 4 illustrates our new
approach for extracting OSMs based on branch coverage
information. Section 5 introduces our implementation of
the approach. Section 6 discusses issues of the approach
and lays out future directions. Section 7 reviews related
work, and Section 8 concludes.

2 Example

As an illustrating example, we use a data structure: a
UBStack class, which is the implementation of a bounded
stack that stores unique elements of integer type. Figure 1
shows the class including two standard stack operations:
push andpop. Stotts et al. coded this Java implementa-
tion to experiment with their algebraic-specification-based
approach for systematically creating unit tests [16]. In the
class implementation, themax is the capacity of the stack,
the arrayelems contains the elements stored in the stack,
andnumberOfElements is the number of the elements and
the index of the first free location in the stack.

The push method first checks whether the element to
be pushed exists already in the stack. If the same ele-
ment already exists in the stack, the method moves the
element to the top of the stack. Otherwise, the method
increasesnumberOfElements after writing the element
into theelems array if numberOfElements does not ex-
ceed the stack capacitymax. If the stack capacity is ex-
ceeded, the method prints an error message and makes
no changes on the stack. Thepop method first checks
whether numberOfElements is greater than zero. If
so, it retrieves the top element of the stack, decreases
numberOfElements, and returns the retrieved element;
otherwise, the method prints an error message and returns
-1 as an error indicator.

To generate tests forUBStack, we first manually config-
urepush’s arguments to be 1, 2, 3, or 4.1. Given the byte-
code ofUBStack our previously developed Rostra tool [19]
automatically generates 263 tests; these generated tests ex-
ercise 41 non-equivalent concrete object states (two con-
crete object states are non-equivalent if their concrete state

1We can use some existing test generation tools such as Parasoft
Jtest [13] or JCrasher [2] to automatically generate method arguments for
UBStack, but these tools may not generate relevant method arguments.

public class UBStack {
private int max;
private int[] elems;
private int numberOfElements;

public UBStack() {
numberOfElements = 0;
max = 3;
elems = new int[max];

}
public void push(int k) {

int index;
boolean alreadyMember = false;
for(index=0; index<numberOfElements; index++) {

if (k==elems[index]) {
alreadyMember = true;
break;

}
}
if (alreadyMember) {

for (int j=index; j<numberOfElements-1; j++)
elems[j] = elems[j+1];

elems[numberOfElements-1] = k;
} else {

if (numberOfElements < max) {
elems[numberOfElements] = k;
numberOfElements++;
return;

} else {
System.out.println("Stack full, cannot push");
return;

}
}

}
public int pop(){

int ret = -1;
if (numberOfElements > 0) {

ret = elems[numberOfElements-1];
elems[numberOfElements-1] = 0;
numberOfElements --;

} else {
System.out.println("Stack empty, cannot pop");

}
return ret;

}
}

Figure 1. A bounded-stack implementation
that accommodates unique integer elements

representations are different).

3 Object State Machine

In our previous work [21], We have defined an object
state machine for a class:

Definition 1 An object state machine(OSM)M of a com-
ponentc is a sextupleM = (I, O, S, δ, λ, INIT) where
I, O, and S are nonempty sets of method calls inc’s in-
terface, returns of these method calls, and states ofc’s ob-
jects, respectively.INIT ∈ S is the initial state that the
machine is in before calling any constructor method ofc.
δ : S × I → P (S) is the state transition function and
λ : S × I → P (O) is the output function whereP (S) and
P (O) are the power sets of S and O, respectively. When the
machine is in a current states and receives a method calli
from I, it moves to one of the next states specified byδ(s, i)
and produces one of the method returns given byλ(s, i).

2
6

The object states in an OSM can be concrete or abstract.
In a concrete OSM, states of an object are represented by
its concrete-state representation. An object’s concrete-state
representation is characterized by the values of all the field
transitively reachable from the object [19]. Because some
object fields may be reference types and their values point to
memory addresses (which can be different in different runs
of the same test), we use a linearization algorithm [19] to
collect the values of these reference-type fields so that com-
paring state representations takes into account comparing
object-graph shapes but without directly comparing mem-
ory addresses. Two states areequivalentif their state repre-
sentations are the same, and arenonequivalentotherwise.

For example, the generated tests forUBStack exercise
41 nonequivalent concrete object states. There are 142 tran-
sitions among these states. Figure 2 shows a concrete OSM
exercised by generated tests and Figure 3 shows a detailed
view of the highlighted area in Figure 2. The OSM is
displayed by using the Grappa package, which is part of
graphviz [5]. States in the OSM are shown as circles in
Figure 3 and the labels inside these circles are the state rep-
resentations, which include field names followed by “:” and
corresponding field values (array-element values are sepa-
rated by “;”). The three states in Figure 3 represent three
full stacks. Although they have the same set of stack ele-
ments, these elements are stored in three stacks in different
orders. Transitions in the OSM are shown as directed edges
that connect circles (states). These edges are labelled with
method names and arguments (for brevity, we do not show
method return values in the edge labels).

We have observed that the concrete OSM is too complex
to be useful in practice. Although we can zoom in to view
details of object states and transitions among them, these
details in such a large OSM are often not very useful for
program understanding or test-result inspection.

4 Approach

To reduce the complexity of an OSM, we can construct
an abstraction function[10] to map concrete states to ab-
stract states. Our Brastra approach constructs such an ab-
straction function by using branch coverage information.
We first define the branch coverage we shall use in repre-
senting an abstract state of an object.

A method m is characterized by its defining classc,
method name and method signature. Then we define condi-
tional set for a methodm.

Definition 2 Conditional setCS of a methodm are a set of
strings, including all the conditional strings (together with
their source-code-line numbers) that appear in the body of
m, m’s direct and indirect callees.

Figure 2. An overview of UBStack concrete
OSM (containing 41 states and 142 transi-
tions) exercised by generated tests

Figure 3. A detailed view of the selected area
in UBStack concrete OSM

A method callmc is a pair〈m,a〉 wherem is a method
anda is a vector of method-argument values.

Definition 3 Given an objecto of classc and a method
call mc:〈m,a〉 of c, assumeCS is the conditional set of
m, branch coverageBC of mc on o is a map fromCS to
{true, false, both, n/a}, where the map is defined based
on whether a conditional’s false branch, true branch, both
branches, or neither branch is covered during the execution
of mc ono.

Definition 4 Given an objecto of classc and a set ofc’s
method callsMC = {mc1, mc2, ..., mcn}, the abstract
state ofo with respect toMC is represented by{BC1, BC2,
...,BCn}, whereBCi is branch coverage ofmci ono.

37

Then we construct an abstract OSM where all states are
abstract states with respect toMC.

For example, assumeMC for UBStack is {pop(),
push(1), push(2), push(3), push(4)} and con-
sider the following tests:

Example Test:
UBStack s = new UBStack();
s.push(1);
s.pop();
s.push(2);
s.push(3);
s.push(4);

After the end of the constructor call, if we invokepop() on
s, thepop method execution covers the false branch of the
following conditional: (numberOfElements > 0). We
represent the map of(numberOfElements>0) → false

as!(numberOfElements>0).
To simplify illustration, we do not display source-code

line numbers for conditional strings. When a conditionalc

is mapped toboth, which indicates both branches of the
conditional are covered, we simply represent the mapping
with two entriesc and!c.

After the end of the constructor call, if we invoke any
of push(1), push(2), push(3), and push(4) ons,
thepush method execution covers the following branches
following the preceding notations:
!(index<numberOfElements)

!(alreadyMember)

numberOfElements < max

Figure 4 shows the abstract OSM extracted by Brastra
based on branch coverage information. The top state is la-
belled asINIT, which indicates no state before invoking a
constructor. Then we represent the abstract state after the
constructor call as the second to top state of the abstract
OSM shown in Figure 4. On the top part of the state, we
display the object field values that are common to all the
concrete states represented by the the abstract state. Then
we display the branch coverage forpop (we put method
namepop before the first line of branch coverage). Finally
we display the branch coverage forpush. To simplify the
view, we do not display the method arguments or returns on
the transitions in the OSM.

Interesting behavior occurs when we abstract the con-
crete states resulting from invokingpush(1) or push(2)
on an empty stack (note that in the example test, push(2)
is actually invoked on an empty stack because its preced-
ing method callpop() counteracts the effect ofpush(1),
transiting the state to an empty stack). On a concrete state
resulting frompush(1), invoking push(1) again follows
a path different from invokingpush(2), because the stack
stores only unique elements. Therefore, we can observe in
the middle state of Figure 4 there are two different branch
coverage forpush: one representing the case where the
push’s argument has already existed in the stack and the
other representing the case where thepush’s argument does

Figure 4. An overview of UBStack abstract
OSM based on branch coverage (containing
4 states and 11 transitions) exercised by gen-
erated tests

48

not exist in the stack. The branches ofalreadyMember and
!alreadyMember from two sets ofpush branch coverage
give us hints on these two cases.

The second to the bottom state has three sets of different
push branch coverage, in addition to one set ofpop cov-
erage. The first set represents the case where thepush’s
argument does not exist in the stack, the second set repre-
sents the case where thepush’s argument exists in the stack
and the existing element is on the top of the stack (therefore,
the element is not required to be moved to the top), and the
third set represents the case where thepush’s argument ex-
ists in the stack and the existing element is not on the top
of the stack (therefore, the element is required to be moved
to the top). In the example test, the concrete state ofs after
invokingpush(3) falls into this abstract state.

The bottom state indicates a full stack; therefore, no
push method call can further change the object state. Note
that because a full stack with different concrete states can
contain different elements; therefore, unlike in the second
to top state, we do not display the values of theelems[]

field. In the example test, the concrete state ofs after in-
vokingpush(4) falls into this abstract state.

5 Implementation

Given a class, our Rostra tool [19] generates test inputs
to exhaustively exercise object states iteratively. In particu-
lar, if users provide some sample method arguments, Ros-
tra can use them; otherwise, Rostra uses Parasoft Jtest [13]
or JCrasher [2] to generate method arguments. Then Ros-
tra uses these method arguments to explore the object state
space iteratively. Tool users can configure the maximum it-
eration number for Rostra to explore the state space. For
UBStack, which has capacity of three, four iterations are
sufficient to explore all possible states with the method
arguments ofpop, push(1), push(2), push(3), and
push(4). Note that the Rostra’s bounded-exhaustive test
generation enables a better inspection of OSMs extracted
from generated-test executions. For example, when tool
users find out that an expected transition is missing in
OSMs, it can have two reasons: a test that is required to
produce that transition is missing or there is a bug in the
program. Rostra’s bounded-exhaustive test generation re-
duces the chance of the former case. In addition, Rostra’s
bounded-exhaustive test generation also facilitates our ab-
straction based on branch coverage. In order to abstract a
concrete state, we need specific method calls to be invoked
on the concrete state; these method calls are generated by
Rostra. Note that when we invoke a method call on a con-
crete state in order to abstract the concrete state, the method
call could modify the concrete state and later method calls
on this concrete state need a reproduction of the concrete
state; reproductions of concrete states are also supportedby

Rostra.
After Rostra generates test inputs and exports them into

JUnit [4] test classes, we run these test classes with our pre-
viously developed Jusc [23] tool, a Java unit-test selection
tool based on residual structural coverage [14], to output a
path trace file after program executions terminate. We de-
veloped a tool to postprocess the collected path trace file
to collect branch coverage information. Note that we col-
lect branch hit coverage; therefore, when there are loop it-
erations during program executions, we do not count how
many times a branch is hit nor collect execution orders
among branches. This design decision provides further ab-
straction of states.

In addition, we also use the Daikon [3] Java frontend to
run these test classes and collect object states exercised by
these tests. Daikon [3] is a tool that dynamically detects
likely program invariants in the program executions. It can
collect object-field values during program executions, and
reports properties that hold true on these fields during the
executions. In our approach, we use Daikon to collect ob-
ject states during program executions and later use these
states to extract common field values among concrete states
represented by an abstract state and then display the com-
mon field values in the state as an annotation.

6 Discussion and Future Work

Two main factors may affect our approach’s usability in
practice: methods’ control flow graphs and generated test
inputs. Branching points in control flow graphs take the
role of abstraction functions [10]. Although different im-
plementations of the same program behavior can have dif-
ferent control flow graphs, their implied behavior can be
similar across different implementations. As is discussed
in Section 7, we found that branch coverage information
seems to more faithfully reflect interesting program behav-
ior than our previous observer-abstraction approach [21] or
sliced-OSM-extraction approach [22].

Besides the characteristics of control flow graphs, the ex-
ecuted test inputs can also affect the quality or complexity
of an extracted OSM. Rostra’s test generation has two con-
trollable configurations: method arguments and the max-
imum iteration number. But comparing to previous ap-
proaches based on object-field values [22] or return val-
ues of observers [21], our new approach is less affected
by the actual argument values in the generated tests inputs.
But at the same time, choosing right argument values are
also important. For example, if we choose only two differ-
ent method arguments forpush of UBStack, we can never
reach a full stack state forUBStack. The maximum iter-
ation number can have an effect if some boundary states
are not exercised by a low maximum iteration number. For
example, if we specify the maximum iteration number as

59

three, we cannot exercise a full stack state forUBStack.
There are several future directions for us to extend the

Brastra approach. First, we plan to adapt the existing finite-
state-machine-based testing techniques [9] or testing tech-
niques based on UML statechart diagrams [6,8,12,17]. Ex-
tracted OSMs can guide further test generation to improve
OSM extraction. These iterations form a feedback loop be-
tween test generation and specification inference proposed
in our previous work [20].

Second, we plan to extend our specification inference for
multiple classes instead of a single class. This may require
adaptations of our diagram representations as well as infer-
ence algorithms.

Finally, we plan to investigate how human inputs can be
used to improve the effectiveness of Brastra, which is cur-
rently developed as a totally automated tool. For example,
when a Brastra-generated OSM is still too complicated to be
understandable, developers can configure the state abstrac-
tion to be based on only the branches in a specified subset of
public methods or the branches that are related to specified
object fields. In addition, our Brastra approach is currently
a dynamic analysis approach that focuses on functional be-
havior exercised by a class. There exists research on recov-
ering non-functional requirements from legacy code such
as the static analysis approach developed by Yu et al. [24].
In order to identify non-functional requirements, their ap-
proach requires some human manipulations of legacy code
such as program refactoring. We plan to investigate how
human inputs as well as static analysis can guide Brastra to
extract non-functional behavior.

7 Related Work

The observer-abstraction approach was developed in our
previous work [21]. The observer abstraction approach rep-
resents a state of an object by using the return values of
observers invoked on the object. When we applied the ob-
server abstraction onUBStack, we could invokepop, the
only observer, on an object and usespop’s return value to
abstract the state of the object. By consideringpop’s se-
mantic, we basically used the element on the top of the stack
to abstract the whole stack. This abstraction is not help-
ful for us to understandUBStack’s behavior. The sliced-
OSM-extraction approach was developed in our previous
work [22]. It uses the values of an object’s single field
to represent the state of the object. For example, we can
use the values of thenumberOfElements field to repre-
sent states and the resulting OSM is similar to the OSM
extracted by Brastra. But when we set the capacity of
UBStack to be a large number such as 10, the size of the
OSM extracted by usingnumberOfElements would grow
linearly with iteration numbers, whereas the OSM extracted
by Brastra keeps the original shape because loop iterations

have been abstracted away by our mechanism of consider-
ing only branch hit coverage without considering how many
times loop iterations are executed.

Kung et al. [7] statically extract object state models from
a class’s source code and use them to guide test generation.
States in a object state model are defined by value intervals
over object fields, which are derived from path conditions of
method source; the transitions are derived by symbolically
executing methods. Both their approach and our approach
consider branches in method body, but their approach can
exploit a limited types of conditionals (e.g., conditionals
that compare an object field with a constant) and their ap-
proach statically extract state models with a limited capa-
bility.

From system-test executions, both Whaley et al. [18]
and Ammons et al. [1] mine protocol specifications for
component interfaces. They use sequencing order among
method calls in the interfaces without using internal object-
field values or structural coverage information. Both ap-
proaches usually require a good set of system tests for ex-
ercising component interfaces, whereas our approach gen-
erates test inputs to exercise component’s object states in
a small scope. Applying their approaches on our generated
unit tests forUBStackwould yield a circle connectingpush
andpop.

8 Conclusion

We have proposed Brastra, a new approach for automati-
cally extracting object state machines (OSM) from unit-test
executions. Because a concrete OSM extracted based on
concrete states is often too complicated to be useful, Brastra
abstracts the concrete state of an object by using the branch
coverage exercised by methods invoked on the object. We
have implemented the Brastra approach and demonstrated
its utility on an illustrating example. Our initial experience
has shown an OSM extracted by Brastra provides succinct
information for understanding key program behavior of a
class.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
tions. InProc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 4–16, 2002.

[2] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java.Software: Practice and Experience,
34:1025–1050, 2004.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Trans. Softw. Eng., 27(2):99–
123, 2001.

[4] E. Gamma and K. Beck. JUnit, 2003.http://www.
junit.org.

6
10

[5] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering.Soft-
ware: Practice and Experience, 30(11):1203–1233, Sept.
2000.

[6] Y. Kim, H. Hong, D. Bae, and S. Cha. Test cases generation
from UML state diagrams.IEEE Proceedings- Software,
146(4):197–192, 1999.

[7] D. Kung, N. Suchak, J. Gao, and P. Hsia. On object state
testing. InProc. 18th International Computer Software and
Applications Conference, pages 222–227, 1994.

[8] Y. L. L.C. Briand, M. Di Penta. Assessing and improving
state-based class testing: A series of experiments.IEEE
Transactions on Software Engineering, 30(11), 2003.

[9] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. InProc. The IEEE,
volume 84, pages 1090–1123, Aug. 1996.

[10] B. Liskov and J. Guttag.Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

[11] H. A. Mueller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R.
Tilley, and K. Wong. Reverse Engineering: A Roadmap. In
Proc. 22nd International Conference on Software Engineer-
ing (ICSE 2000), 2000.

[12] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. InProc. 2nd International Conference on the
Unified Modeling Language, pages 416–429, October 1999.

[13] Parasoft Jtest manuals version 4.5. Online manual, April
2003.http://www.parasoft.com/.

[14] C. Pavlopoulou and M. Young. Residual test coverage mon-
itoring. In Proc. 21st International Conference on Software
Engineering, pages 277–284, 1999.

[15] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[16] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generation. InProc.
2002 XP/Agile Universe, pages 131–143, 2002.

[17] M. Vieira, M. Dias, and D. Richardson. Object-oriented
specification-based testing using UML state-chart diagrams.
In Proc. Workshop on Automated Program Analysis, Testing,
and Verification at ICSE 2000, June 2000.

[18] J. Whaley, M. C. Martin, and M. S. Lam. Automatic ex-
traction of object-oriented component interfaces. InProc.
International Symposium on Software Testing and Analysis,
pages 218–228, 2002.

[19] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. InProc.
19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[20] T. Xie and D. Notkin. Mutually enhancing test generation
and specification inference. InProc. 3rd International Work-
shop on Formal Approaches to Testing of Software, volume
2931 ofLNCS, pages 60–69, 2003.

[21] T. Xie and D. Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executions. In
Proc. 6th International Conference on Formal Engineering
Methods, Nov. 2004.

[22] T. Xie and D. Notkin. Automatic extraction of sliced object
state machines for component interfaces. InProc. 3rd Work-
shop on Specification and Verification of Component-Based

Systems at ACM SIGSOFT 2004/FSE-12 (SAVCBS 2004),
pages 39–46, October 2004.

[23] T. Xie and D. Notkin. Tool-assisted unit-test generation and
selection based on operational abstractions.Automated Soft-
ware Engineering Journal, 2006.

[24] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian,
and J. C. S. do Prado Leite. Reverse engineering goal mod-
els from legacy code. InProc. International Conference on
Requirements Engineering, pages 363–372, October 2005.

7
11

Towards a Framework to Incorporate NFRs into UML Models

Subrina Anjum Tonu, Ladan Tahvildari
Software Technologies Applied Research Group
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{subrina, ltahvild}@swen.uwaterloo.ca

Abstract

Despite the fact that Non-Functional Requirements
(NFRs) are very difficult to achieve and at the same time
are expensive to deal with, a few research works have fo-
cused on them as first class requirements in a development
process. We propose a framework to incorporate NFRs, as
reusable components, with standard UML notations. Such
a framework can also integrate those reusable NFRs with
the extracted UML representations of legacy systems during
the reverse engineering process. This novel research work
uses standard XMI representation of UML models without
proposing any extension to it. As a proof of concept, a small
case study of a Credit Card System is presented.

1 Introduction

The demand for high quality software system is increas-
ing day by day. Production of a highly organized software
system requires separation of concerns [7] which is one of
the basic engineering principles. On the other hand, produc-
tion of a high quality software requires the implementation
of all functional and non-functional requirements starting
from the design phase to the end of the software life cycle.

As known, all these requirements are changing during
the maintenance phase of any software system. The re-
engineering of such software systems have gained signifi-
cant attention in today’s software industry. A few research
works provide a re-engineering process that addresses such
problems in order to incorporate any new or modified (func-
tional and non-functional) requirements. Existing reverse
engineering process can extract architectural design of the
legacy systems which can be presented in UML model.
UML tools also exist to automatically generate deployable
source code from UML model specifications. In such an
environment, the legacy systems can be modified by adding
the NFRs with the extracted UML model out of such system
and the source code can be re-generated automatically. In

a nutshell, it is necessary to have an environment to attach
the NFRs to the target system.

Tahvildari et al. proposed a quality-driven reengineering
(QDR) framework which allows specific quality require-
ments for the migrant systems to be modelled as a collection
of soft-goal graphs, and provides a selection of the transfor-
mational steps that needs to be applied at the source code
level of the legacy system being reengineered [14]. They
extended their work and proposed a framework of transfor-
mations that aims to improve error-prone design properties
and assists in enhancing specific qualities of a software sys-
tem using a catalogue of OO software metrics [13].

This research is an extension to that work by focusing
on the extracted UML representation (from source code)
of the legacy systems rather than AST. We also focus on
making reusable NFRs and attaching them with the target
model. In current practice, the join-point (where the NFR
touches the target model) is defined as a part of the NFR it-
self. As a result, there is very little chance to reuse this NFR
in other software design. This research work is a step to re-
move these shortcomings. First, we identify the functional
requirements (FR) and non-functional requirements (NFR)
of a legacy system which needs to be re-engineered. Sec-
ond, we specify the new FRs with the appropriate UML dia-
grams and we specify a template of NFRs using NFR frame-
work [4] and our proposed notations for creating standard
UML diagrams. According to this approach, the NFRs do
not have any hard coded join-points inside it. We used the
concept ofdynamic parameterizationsdescribed in [9]. We
also use a knowledge-based concept for building a reposi-
tory/library of those reusable NFRs. Finally, we integrate
those NFRs with the target model where the necessary pa-
rameters for defining the join-points come dynamically dur-
ing run time. We use UML as our design language as it
is the most popular modelling language in research com-
munity, as well as a general purpose object-oriented lan-
guage [1]. Our proposed framework is developed in a stan-
dard XMI environment.

1
12

Paper Class Use Case Sequence Interaction State Collaboration Need
Diagram Diagram Diagram Diagram Diagram Diagram Extension of UML

Lawrence Chung et.al [12]
√ √

Ana Moreira et.al [10]
√ √ √

Luiz Marcio Cysneiros et.al [5]
√ √ √ √ √

Evgeni Dimitrov et.al [6]
√ √ √

Table 1. Summary of Related Works

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 describes the frame-
work while Section 4 applies the framework on a case study.
Finally, Section 5 summarizes the contributions of this work
and outlines directions for further research.

2 Related Works

The idea of integrating NFRs with FRs in design level
is not a new one. As shown in Table 1 many researchers
proposed extensions of UML model for the integration pur-
pose.

Lawrence Chung et al. [12] proposed to integrate NFRs
with FRs in UML use case model. They implemented the
NFRs by their NFR framework [11, 4] and proposed to
associate those NFRs with four use case model elements:
actor, use case, actor-use case association and the system
boundary. They named these associations as “Actor Asso-
ciation Point”, “Use Case Association Point”, “Actor-Use
Case Association (AU-A) Association Point” and “System
Boundary Association Point”, respectively.

Ana Moreira et al. [10] proposed a model for integrating
crosscutting quality attributes with FRs by UML use case
diagram and interaction diagram. They proposed a tem-
plate for quality attributes with some specific fields (such
as description, focus, source, decomposition) and they inte-
grated those quality attributes with FRs by using standard
UML diagrammatic representations (e. g. use case diagram,
interaction diagrams) extended with special notations.

Luiz Marcio Cysneiros et al. [5] proposed a systematic
approach to assure that conceptual models will reflect the
NFRs elicited. They uses a vocabulary anchor (LEL) to
build both functional and nonfunctional perspectives of a
software system. They also showed how to integrate NFRs
into UML by extending some of the UML sublanguages,
and they presented a systematic way to integrate NFRs into
the functional models.

Evgeni Dimitrov et al. [6] described three approaches
for UML-based performance engineering. The three ap-
proaches are: Approach-1) Direct representation of perfor-
mance aspects using UML, Approach-2) Expanding UML
to deal with performance aspects and Approach-3) Com-
bining UML with formal description techniques. They pro-
posed some extensions to UML use case and state transition
diagram.

Our work is different from all these works in the sense
that we do not apply our framework for a specific UML
diagram, rather than we apply it in a general way for all

types of UML model. Besides, we do not propose any ex-
tension to UML model, rather than we express the NFRs in
a reusable way with the standard UML notations.

3 A Proposed Framework
Building of reusable NFR templates and the integration

of them with the extracted UML models of the legacy sys-
tems requires a comprehensive framework to relate the inte-
gration process with the functional requirements of the tar-
get model. The focal point of the proposed research is to ex-
ploit the synergy between the area of software requirements
analysis (both functional and non-functional) and software
re-engineering.

We assume an extracted UML model is available from a
legacy system after a reverse engineering process is applied.
Our framework starts with such extracted UML model of a
legacy system. It consists of three phases as depicted in Fig-
ure 1: 1) Identification of FRs and NFRs, 2) Specification
of FRs and NFRs and 3) Integration of NFRs.
• Identification of FRs and NFRs

From design documents, release notes, source code,
extracted UML model and new user’s requirements for
a software system, we identify the new functional and
non-functional requirements which need to be added to
the system being re-engineered. Our focus is mainly
on the desired non-functional properties of the soft-
ware that it should meet to assure high quality software
system.

• Specification of FRs and NFRs

This phase consists of two parts. The first part is to
specify the new FRs to be added into the extracted
legacy model using standard UML notations. The sec-
ond part is to search our knowledge-based NFR reposi-
tory for any similar previously designed reusable NFR
that the system may need. In case of the existing NFR
design matches partially with the required NFR, the
former one needs to be modified according to the re-
quired one and to be stored in the repository for future
use. If no such NFR can be found, a new NFR template
will be created according to the requirements.

• Integration of NFRs

After specifying all non-functional requirements this
phase just becomes a NFR weaver that weaves those
desired NFRs with the FRs of the target system as
shown in Figure 1. The following section elaborates

2

13

Â

Á

¿

À
'

&

$

%
'

&

$

%
'

&

$

%

®

©
ªProcess

Legend

º

¹

·

¸

º

¹

·

¸

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸

UML Model Extracted from an Object-oriented Legacy System

Identification of FRs and NFRs

Functional

Requirements

Non-functional

Requirements

Specification of FRs and NFRs

Specifying New FRs

to be Added into

Extracted Legacy Model

Specifying NFRs using

NFR Framework

and NFR Template

Building NFR Library/Repository

Integration of NFRs

Integrating NFRs with FRs of the system as
“Add” component of the XMI

¾

?

? ?

?

?

- Control
Flow

?

?
UML representation of system with NFR attached to it

®

©
ª

Figure 1. A Framework for Integrating NFRs

further on our proposed approach to make the reusable
NFRs and to integrate them with the target model.

3.1 A Model for NFR Representation

A number of researchers and practitioners examined
how a software or system successfully achieves quality at-
tributes [2, 3, 4, 8]. To represent information about differ-
ent software qualities, their interdependencies, evaluation
of the NFRs upon the target system, detail techniques for
specifying methods to arrive at the “target” or “destination”
of the design process (operationalizing softgoal), we adopt
the NFR framework proposed in [4]. The visualization of
the operations of the NFR framework is done in terms of
the incremental and interactive construction, elaboration,
analysis, and revision of aSoftgoal interdependency graph
(SIG).

Our work begins after evaluation of SIG. The evaluation
procedure, defined by NFR framework, results in a sub-
graph of the SIG that needs to be integrated with the func-
tional requirements of the target model. Finally, thetarget
systemin NFR framework describes the final solution of
the particular NFR. Our framework maps this solution to

achieve a particular NFR with standard UML notations and
provides a weaver to weave it with the UML representation
of a software system.

3.2 A UML Representation for NFR

We propose a high level notation to design the final solu-
tion of the target system to achieve the particular NFR with
standard UML notations. Our proposed notation is based
on the general actions that can be performed on any entity
of UML model. For example, creating a class, inserting at-
tributes to a class, inserting methods to a class, deleting a
class, deleting attributes from a class, creating states, cre-
ating state-transitions, and so on. The goal of this notation
is to provide all the actions which may be needed to cre-
ate any type of UML diagram, and to specify a template for
the UML representation of the NFR. The template is not
executed at this point, rather it becomes an ordered set of
instructions/commands (similar to a script in UNIX). While
the framework is attaching the NFR to the functional re-
quirements of the system, the template commands need to
be executed to build the proper UML representation of the
NFR.

3
14

3.3 A NFR Library/Repository

We use the same knowledge-based approach as NFR
framework. We propose to build a NFR library/repository
where the past experience, standard techniques and knowl-
edge about particular NFR, the evaluated subgraph of SIG
for achieving that NFR and the proposed NFR template to
integrate it with the target model can be stored for future
use. The library/repository is likely to evolve in the course
of time and can help the developers in saving time by sup-
plying previously designed NFR templates as reusable com-
ponents.

3.4 Weaving NFR with the Target Model
A meta-model in UML describes the UML model by it-

self . Hence, the manipulation of the meta-model is same as
the manipulation of any UML model. For this purpose, we
have developed a meta-level NFR weaver where the weaver
executes the weaving operations as specified in each NFR
template applied onto the initial model. The weaver actu-
ally executes the commands specified in the NFR template
and generates the corresponding UML representation of the
particular NFR. The target model is also a UML model with
NFR attached to it. For the compatibility of other UML
tools, we are using the standard XMI to generate the UML
model. In our framework, the NFR description resulting
from SIG is a part of comment inside the XMI and the UML
representation of the NFR is a part of the “Add” component
of the XMI. By adding the NFR description resulting from
NFR framework with the XMI of the model as a comment,
we can store all the information for a particular NFR which
can be further viewed using our weaver. The output be-
comes compatible with other tools as it still is in standard
XMI format. By adding the NFR as UML “Add” compo-
nent we can also separate the NFR from the main design
of functional requirements of a software system and other
operations can also be done on the added NFR. For exam-
ple “deletion” and “modification”of the NFRs can be done
without changing the main design of a software system.

4 A Case Study

A prototype has been written in Java programming lan-
guage to implement the proposed framework in a semi-
automated manner. Due to the space constraint, a small case
study is presented as a proof of concept. The case study, we
have chosen is a part of the Credit Card System described
in [4]. Here is short summary of such system:

“We consider an information system for a bank’s
credit card operation. A body of information on
cardholders and merchants is maintained. In this
highly competitive market, it is important to pro-
vide fast response time and accuracy for sales au-
thorization. To reduce losses due to fraud, lost

+().....

−Card Number : String

 CardHolder

−Name : String
−Address : String

−Phone Number : int
−CustomerID : long
−.......

+...()

* 1

 Gold Card

−Rewards Points : int
−Air Miles : long
−....

+CalculatePoints() : int

+CalculateAirMiles() : long
+...()

 Regular Card

−PercentageOfCashBack : float

−TotalCashBack : float
−......

+CalculateCashBack() : float
+.....()

+Invalid−Crad−Status() : void

 Credit Card

−Card Type: String

−Expiry Date : Date

−Credit Limit : int

−Annual Fee : int

−Status−of−Card : int

−CustomerID : long
−

Figure 2. A Class Diagram of Credit Card Sys-
tem

ResponseTime

[retrieve(Card.Status),3]

U

+

X

Claim["Retrieve status is not
imp for cancellation",3]

ResponseTime

[retrieve(Card.Status),3]{non−critical}

PerformLater

[retrieve(Card.Status),3]

Update done in Cancellation(Card)

 imp for cancellation",3]

Claim["Updating status is

!ResponseTime

{critical}

[Update(Crad.Status),3]

PerformFirst

[Update(Card.Status,3]

ResponseTime

[Update(Card.Status),2]

ResponseTime
[implementation Components(Update

 (Card.Status)),2]

ResponseTime

[OtherOperations(Cancel),3]

Components(Cancel(card)),3]

+

ResponseTime
[access(attributes(card),3]

Claim
["Access imp for cancellation",3]

[access(attributes(card),3]{critical}

ResponseTime
[Cancel(card),3]

ResponseTime

[access(Card.Status),3]

Claim
["Status imp for Cancellation"]

!ResponseTime
ResponseTime

["Otherattrs not imp"]

Claim

[access(Card.otherattrs),3]

ResponseTime

[otherops(Cancle),3]{non−critical}

ResponseTime

 ["Other Ops not imp for cancellation"]

 Claim

[OtherOperations(Cancle),3]

ResponseTime

[update(Card.Status),3]{critical}

ResponseTime

[access(Card.Status),3]{critical}

(findOffset(Card.Status),2]

−−

++

+

+ +

Legend

NFR Softgoal

Claim Softgoal

Op target Link

Functional

Requirement

Op Softgoal

Target

Satisfied

U Undecided

Contribution

X Denied

Operation
Components

!ResponseTime

Individual

Attributes

Entity Management

Implementation

Components

X

[Card.Status,2]

StaticOffsetDetermination

ResponseTime

[access(attributes(card),2]

FewAttrPerTuples

[Card.Status,2]

Layer 3
Transaction

Layer2
(Attributes)

Selective Attribute Grouping of Card Status

Cancel(Card)

Operation

Storage of

−−

+

++
++

X
−−

++

++

X

U

−−

++
++

Card Status

ResponseTime

Figure 3. A SIG Performance for Credit Card
System

4

15

and stolen cards must be invalidated as soon as
the bank is notified.”

The following sections elaborate further how each step
of our proposed framework can be applied to the case study.

4.1 Identification of FRs and NFRs

In the selected case study, the functionality of Credit
Card System includes maintaining information onsales,

card holdersand merchants. Transactions are autho-
rized, and accounts are updated. Stolen cards are cancelled.
The non-functional requirements of the credit card system
may be performance and security of the transaction. Per-
formance can also be divided as performance of card au-
thorization and performance of card cancellation and so on.
Here we consider the “Fast Response Time” to invalidate a
card status (when it is lost or stolen) as the target NFR for
the selected case study.

4.2 Specification of FRs and NFRs

Figure 2 shows a part of the class diagram of a Credit
Card System specifying its FRs.

Figure 3 shows a partial SIG specifying the evaluation
of impact of decisions after selecting operationalizing soft-
goals with respect to card cancellation operation. As shown
in Figure 3, the “Performance” quality attribute of Credit
Card System can be achieved by selecting attribute group-
ing of card status. One possible solution for this may be
to physically store the card status separately along with
few other attributes (card number for example). By ap-
plying such a mechanism, when a request comes for the
cancellation of a particular card, the status of the card can
be retrieved very quickly without any need to access ir-
relevant information (such as customer information, bonus
points calculation) and the status can be updated to “in-
valid card” very easily. In the context of UML class di-
agram, one possible way to express this NFR is to cre-
ate a new class (say “FastResponseTime”) for the method
Invalid-Card-Status() along with the attributes “Status-of-
card” and the “Card-Number” (as primary key). This mod-
ification can result in deleting the attribute “Status-of-card”
and the method “Invalid-Card-Status” from the original
“CardHolder” class.

4.2.1 Buidling NFR Template and Repository

Figure 4 shows a possible set of NFR commands, from
our proposed instruction set for class diagram, to specify
the NFR “FastResponseTime”. To create a template for the
above NFR based on the solution discussed in the previous
section, the following steps are required:

1. Accepting the join-point of the NFR “Fast Response
Time” (here, method Invalid-Card-Status()).

 Output: (Step 7(result), Step 8(Operation), Step 9(Operation), Step 11(Operation)
 11: createAssociation(<result3>,<result4>,1,1)
 10: ClassNode<result4> := getParentClass(<param0>)
 9: deleteAttributesFromParentClass(<result1>)
 8: deleteMethodFromParentClass(<param0>)
 7: <result3> := insertMethod(<param0>)
 6: <result3> := insertMultipleAttribute(<result3>,<result1>)
 5: <result3> := insertMultipleAttribute(<result3>,<result2>)
 4: ClassNode<result3> := createNewClass("FastResponseTime"
 3: AttributeList<result2> := getSelectedInput("Primary Keys",<result0>)
 2: AttributeList<result1> := getSelectedInput("Attributes to Move",<result0>)
 1: AttributeList<result0> := getAttributesFromParentClass(<param0>)
 0: Input Parameters: Method(Single)<param0>

 Steps Commands

Figure 4. NFR Template Commands

2. Selecting other attributes to move to the separate
class for card status (here attributes Card-Number and
Status-of-card).

3. Creating a new class (say, FastResponseTime) and
building an association with the parent class.

4. Inserting those attributes defined in Step 2 and the
method defined in Step 1, into this new class.

5. Deleting the attribute Status-of-card from the original
class.

 }
 }
 createAssociation(result3,result4,1,1);
 ClassElement result4 = getParentClass(param0);
 deleteAttributeFromParentClass(result1);
 deleteMethodFromParentClass(param0);
 result3 = insertMethod(result3,param0);
 result3 = insertMultipleAttribute(result3,result2);
 result3 = insertMultipleAttribute(result3,result1);
 ClassElement result3 = createNewClass("FastResponseTime");
 AttributeListresult2 = getSelectedInput("Primary Key", result0);
 AttributeList result1 = getSelectedInput("Attributes to Move", result0);
 AttributeList result0 = getAttributesFromParentClass(param0);
 MethodName param0 = getParameter();
 expectParameter(Method);

 void constructTargetSystem(){

 }
 public FastResponseTime(){
 public class FastResponseTime{

Figure 5. Java Class of NFR Template

In our prototype, we use the advantage ofdynamic class
loading feature of Java. We have built an NFR interpreter
which interprets the commands in NFR template and gener-
ates the corresponding Java source code for the template.
Each template is stored as a Java class in the NFR li-
brary/repository. The desirable template would be trans-
lated into the following piece of Java code as shown in Fig-
ure 5.

5

16

4.3 Integration of NFRs

The last step of our framework is to incorporate this NFR
template with target design in UML notation. In order to
attach the NFR with a method (e.g. Invalidate-Status-of-
Card()in the design), the designer needs to supply the cor-
responding method as a parameter to the template. During
the weaving, he/she needs to provide the necessary dynamic
parameters to complete the process.

Figure 6 shows the new class diagram after the in-
tegration of NFR “FastResponseTime”. After the inte-
gration of NFR “FastResponseTime” with the class dia-
gram of Credit Card System, a new class named “Fas-
tResponseTime” is created with the attributes “Status-of-
Card”, “Card-Number” and the attribute “Status-of-Card”
is deleted from the original class “CardHolder”.

 Credit Card

+...()

+CalculateAirMiles() : long
+CalculatePoints() : int

−....

−Air Miles : long

−Rewards Points : int

+...()

−.......

−CustomerID : long

−Phone Number : int

−Address : String

−Name : String

+().....

 CardHolder

+Invalid−Card−Status():void

FastResponseTime

−CardNumber : String

1 1−Statusof−Card : int

* 1

 Regular Card

+.....()

+CalculateCashBack() : float

−......

−TotalCashBack : float

−PercentageOfCashBack : float

 Gold Card

+Invalid−Crad−Status() : void

−

−CustomerID : long

−Status−of−Card : int

−Annual Fee : int

−Crad Number : String

−Credit Limit : int

−Expiry Date : Date

−Card Type: String

Figure 6. Adding NFR FastResponseTime

5. Conclusion and Future Work

We propose a novel framework for integrating non-
functional-requirements with the UML design of a software
system which can be applied during the re-engineering pro-
cess of such a legacy system. The framework can also be
used during forward engineering if the developers follow
the standard XMI during their model design. Currently, we
have built a prototype of the whole framework where the
weaver supports the NFR design with class diagrams. The
prototype also provides the advantage to draw the Softgoal-
Interdependency graph (SIG) and to store the NFR template
in the NFR library/repository along with the NFR informa-
tion that comes from the NFR framework. We are now
working on extending the prototype to incorporate all types
of UML diagrams.

References

[1] Object management group. Unified Modeling Language
Specification version 1.3 bata 1, 1999. available at
uml.shl.com.

[2] J. Bergey, M. Barbacci, and W. William. Using qual-
ity attribute workshops to evaluate architectural design ap-
proaches in a major system acquisition : A case study. Tech-
nical Report CMU/SEI-2000-TN-010, Software Engineer-
ing Institute, Carnegie Mellon University, 2001.

[3] B. W. Boehm et al. Characteristics of Software Quality.
Elsevier North-Holland Publishing Company, Inc., 1980.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishing, 2000.

[5] L. M. Cysneiros and J. C. S. do Prado Leite. Nonfunctional
requirements: From elicitation to conceptual models.IEEE
Trans. Softw. Eng., 30(5):328–350, 2004.

[6] E. Dimitrov and A. Schmietendorf. Uml-based performance
engineering possibilities and techniques.IEEE Software,
19:74–83, January/February 2002.

[7] W. Hürsch and C. V. Lopes. Separation of concerns. Techni-
cal Report NU-CCS-95-03, Northeastern University, Febru-
ary 1995.

[8] International organization for standardization (iso). Tech-
nical report. Information Technology, Software Product
Evaluation, Quality Characteristics and Guidelines for Their
Use, ISO/IEC 9126, 1996.

[9] J.-M. J́ezéquel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. InAspect-Oriented
Modeling with UML, AOSD Workshop, Enschede, Nether-
lands, April 2002.

[10] A. Moreira, I. Brito, and J. Arajo. Crosscutting qual-
ity attributes for requirements engineering. InThe four-
teenth International Conference on Software Engineering
and Knowledge Engineering (SEKE’02), pages 167–174,
July 2002.

[11] J. Mylopoulos, L. Chung, and B. Nixon. Representing and
using nonfunctional requirements: a process-oriented ap-
proach. InIEEE Transactions on Software Engineering, vol-
ume 8, pages 483–497, June 1992.

[12] S. Supakkul and L. Chung. Integrating frs and nfrs: A use
case and goal driven approach. In2nd International Con-
ference on Software Engineering Research, Management
and Applications (SERA’04),Los Angeles, CA, pages 30–37,
May 2004.

[13] L. Tahvildari and K. Kontogiannis. Improving design qual-
ity using meta-pattern transformations: a metric-based ap-
proach.Journal of Software Maintenance, 16(4-5):331–361,
2004.

[14] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering.Journal of Systems and Soft-
ware (JSS), 66(3):225–239, 2003.

6

17

Requirements-driven configuration of software systems

Yijun Yu Alexei Lapouchnian Sotirios Liaskos John Mylopoulos
Department of Computer Science, University of Toronto

{yijun, alexei, liaskos, jm}@cs.toronto.edu

Abstract

Configuring large-scale software to meet different
user requirements is a challenging process, since end-
users do not know the technical details of the system in
the first place. We present an automatic process to
connect high-level user requirements with low-level
system’s configurations. The process takes into account
different user preferences and expectations, making
configuration easier and more user-centered. Since it
reuses a software system’s configuration mechanisms, the
configuration process is transparent to the system
development. Moreover, it is very easy to plug different
reasoning frameworks into the configuration process. As
a case study, we have reengineered the Mozilla Firefox
web browser into a requirements-driven software system,
without changing its source code.

1. Introduction

Hardware evolution is governed by Moore's law –
CPU speed doubles every 18 to 24 months [1]; on the
other hand, software evolution is governed by Lehman's
laws – especially the 2nd – increasing complexity [2]. As
a consequence, computer hardware is getting ever-
cheaper, e.g., an average workstation is typically a
Windows box, which costs no more than $1000. On the
other hand, the cost for employing an average developer
is more expensive than buying 50 workstations, per year.

As the gap is widening, software maintenance cost

dominates the operation of a software company.
Managing and using large-scale software systems is
becoming a grand challenge, sometimes even a nightmare,
as too many parameters are to be configured in order for
the software to be working properly by different clients
and users. Configuring these is a headache for everyday
users: Eclipse IDE, e-mail clients and web browsers such
as Mozilla Thunderbird and Firefox, which target at
populous and diverse user groups, several Linux kernels
and distributions, and, of course, popular commercial
software such as Microsoft Windows and Office Suite.
These software systems typically contain millions of lines

of code. The needs for managing such complex software
engender the research in autonomic computing [1, 3].

Figure 1 presents the “Options” dialog window from

Mozilla Firefox. A user is asked to provide very low-level
details, such as “use TLS 1.0” or “Use SSL 2.0” etc. As
shown on the screen, they are related to “Security”, but it
is not clear whether one should select all of them, one of
them, or some combinations of them and how this
impacts the attainment of the “Security” goal.
Furthermore, what will the side-effects of these selections
be on other goals such as “Performance”, “Convenience”,
etc.?

Figure 1. The Options dialog of Firefox

How do we reduce the overhead of controlling large-

scale software systems to serve the clients better? How
(in case the clients change their requirements) do we
agilely reconfigure the software to fit the new client
requirements? In this paper, we propose a way to tackle
this problem by automating the configuration with goal

18

models [4]，which has been shown to be possible for a
desktop application with an average number of
configuration items [5]. Because we consider every
individual’s requirements in customizing large-scale
software, the requirements-driven configuration process
is strongly related to the concept of personal and
contextual requirements engineering [6, 7]. In [5], for
example, user’s goals, skills and preferences are proposed
as specific personalization criteria for customizing
software and tailoring it to particular individuals. On the
other hand, since requirements-driven configuration relies
on the use of goals [8], a process for generating a goal
model that appropriately explains the intentions behind an
existing system needs to be considered [3]. In [9, 10], for
example this is made possible through reverse
engineering directly from the source code.

The process for such automated reconfiguration

consists of two major steps. Firstly, one has to set up a
goal model in order to connect the user’s high-level
requirements with the system’s low-level configuration
items. Secondly, the resulting mapping must be efficiently
used by collecting user preferences over goals (one goal
is more important than another) and expectations (a goal
needs to be satisfied to a certain degree) and
automatically carrying out the configuration.

Using this process, we have successfully configured

the Mozilla Firefox browser and the Eclipse IDE for
different types of users. The configuration step is fully
automated and very efficient, making it well possible for
the user to further analyze the resulting system by
providing feedbacks.

The remainder of the paper is organized as follows.

Section 2 explains the methodology in detail; Section 3
provides implementation details, and Section 4 discusses
a case study of the requirements-driven configuration
process on the Firefox Web browser. Section 5 discusses
further work and concludes the paper.

2. Reengineering into requirements-driven
configurable software

The aim of our process is to reengineer a legacy
software system, such as Mozilla Firefox, into a
requirements-driven reconfigurable system. Therefore, it
calls for two necessary steps: (1) reverse engineering to
understand the legacy system and (2) forward engineering
to improve the legacy system.

In our case, a legacy system may or may not provide

the source code to the reengineer. Thus, we use two kinds
of reverse engineering techniques: (1) if the source code

is available, the system can be reverse engineered to
reveal the implemented goals or purposes of the
programmer [11]; otherwise, (2) the system needs to be
used and empirically examined in order to discover the
alternative ways by which different users may customize
the functionality of the system and consequently the
alternative ways in which they may want their goals to be
fulfilled [10].

Furthermore, once the goal-oriented requirements are

obtained, an end user is simply asked to provide their
preferences and expectations over the top-level abstract
goals. This will drive the software configuration
automatically. The degree of automation will depend on
how advanced the user is and how much awareness of the
low-level configuration details are demanded. Thus,
advanced users may employ the method only to obtain a
suggestion on how they should configure their system in
order to better accommodate their preferences and
expectations.

2.1 Reverse engineering for goal models

The objective of reverse engineering in our process is

to detect traceability between the low-level
implementation with the high-level requirements.
Traceability between user goals and the implementation
allows the users to understand the system and
subsequently configure it in more abstract and less
system-oriented way. It is also important to make the user
aware of why the system makes certain choices.

In our approach, we do the reverse engineering in two
steps:

1. Establish a goal model of the software system;
2. Associate the leaf goals with the configuration

items.
A configuration item is a variable that can take certain

values. A software system can be seen as a huge
variability space induced by a large number of
configuration items. Some of the configuration items are
domain-specific, while others are domain-independent.
For example, to configure the look and feel is a taste of
the individual, whereas to configure the security task is
subject to the software domain. A user’s goal model can
narrow down the search space by assessing the
configuration items.

2.2 Forward engineering with goal models

Having identified the goal models, the objective of
forward engineering in our process is to collect individual
user preferences and expectations and translate them into
software configurations. It is also done in a few steps:

1. Querying. Obtain user’s preferences and
expectations over the high-level goals;

19

2. Reasoning. Convert the user input into
satisficing labels of the high-level goals and
propagate them downward until leaf goals are
reached; Note here the term satisfice was used by
Herbert Simon [12] to denote the idea of partial
satisfaction. The qualitative analysis of the NFR
framework [13] is centered on the idea of
satisfice.

3. Configuring. Convert the leaf goals satisficing
labels into values of the configuration items.

Both steps 1 and 3 depend on the software being
investigated. During the querying step, a user is asked to
either directly provide the preferences and expectations
over the goals, or to indirectly provide this information
though answering an elicitation questionnaire. The
configuring step associates each configuration item with a
default value in order to attain a certain level of
satisfaction for the leaf-level goals.

The reasoning step is independent of the domain of the
system to be configured, and is based on the trade-off
algorithms discussed in the following section.

3. Implementation

In this section, we briefly discuss the implementation
of the methodology. We first describe the reverse
engineering approach to establish a goal model. Then, the
design of the tradeoff algorithms based on existing goal
reasoning algorithms ([8, 14]) is explained. Finally, we
show how the query and configuration steps are carried
out automatically.

3.1 Reverse engineering

A goal model consists of a set of AND/OR

decompositions that refine a high-level goal into a set of
low-level subgoals. On top of these rules, a set of
quantitative contributions shows how the satisficing of
one goal influences the satisficing of the others. Such a
quantification can have probabilistic semantics [8] or it
may be cast into a framework of qualitative contribution
links. Thus, we can use contribution links such as HELP
(+), HURT (-), MAKE (++) or BREAK (--), to show how
the satisfaction of the origin goal influences the
satisfaction of the target goal.

The source of a goal model can be recovered from the
system structure and behavior. In terms of structure, a
system/subsystem decomposition paradigm, which
follows the divide and conquer metaphor, is often a
natural match for the AND/OR goal decompositions. For
example, inheritance can be seen as the implementation of
an OR decomposition of the subject whereas aggregation
may be the implementation of an AND decomposition. In
terms of behavior, the system achieves certain goals by

performing transitions from one state to another. Here,
the state/substate hierarchy that can be defined in a
statechart has been shown to naturally map to the
respective goal/subgoal decomposition graphs[15]. Static
program analysis using program slicing techniques can
reveal the system’s implemented goals [9]. Observing the
execution log/trace of the system can also reveal patterns
in its dynamic behavior [10]. Combined with a testing
framework one can make sure certain functional goals are
indeed satisfied [9, 10].

Leaf-level goals may be associated with Boolean
predicates on the value of one to many configuration
items. For configuration items that are already Boolean,
such as “use SSL 2.0” or “use SSL 1.0”, such mappings
are straightforward. For non-Boolean configuration items,
such as a “keeping history record for N days” an extra
step is required to find the default value of the
configuration item that satisfies the goal. For example, we
can represent the leaf-level goal “Keep a good record of
my web surfing history” as a Boolean predicate “N >= 5”,
and associate the fully satisficed value of the goal with
“N=10” and the fully denied value of the goal with
“N=0”. This way, a direct mapping is set from the
configuration of domain-specific parameters to the
configuration of the goal model.

3.2 Tradeoff algorithms

When a goal is decomposed into multiple alternatives
(OR-subgoals), the contribution of each subgoal to the
satisfaction of top-level goals can be compared with the
expectations and preferences, in order to rate the choices
and thus make decisions.

Bottom-up reasoning propagates the labels that
describe the degree of satisfaction of leaf goals upwards
to obtain the corresponding labels for the top-level goals
[8]. This can be used to validate the requirements.

Top-down reasoning propagates the labels of the top-
level goals downwards to obtain the labels for the
minimal number of leaf-level goals [14]. This can be used
to predict the minimal configuration that can satisfy the
user’s requirements. Since the top-down reasoning relies
on a satisfiability problem1 (SAT) solver [16, 17] which
deals with binary propositions, it is important to design an
encoding mechanism such that at least discrete labels
(full/partial satisficing/denial) of goals can be translated
into the binary propositions.

3.3 User interface and questionnaire design

An interface to the configuration system consists of a
dialog and/or a questionnaire wizard. In the dialog, each

1 That is, deciding whether a given Boolean formula in
conjunctive normal form has an assignment that makes the
formula "true."

20

top-level hard goal is presented as a checkbox, whereas
each top-level softgoal (e.g. performance, security,
usability) is presented as a slider by which the satisficing
expectation is set. Preferences are shown by the order of
the sliders from top to bottom. Although a slider-based
user interface design can directly present the needed input,
it is not guaranteed that all the user’s expectations can be
met by the system design at the same time. For example, a
full satisfaction of performance, security, maintainability
and usability goals is simply impossible. The
interdependency and constraints among these goals are
defined by the underlying goal model. Thus we also
designed an alternative wizard to ask user a set of
elicitation questions in order to derive the expectations
and preferences with respect to the goals. In these
questions, we avoid using technical terms, rather, using
familiar terms to everyday user. For example, “Are you
using the browser with a public-domain computer?” The
simple Yes/No answer to such questions can lead to
elicited preference such as whether “Privacy” is important
or not. Thus for elicitation, we can use a goal model
which connect the preferences/expectations of the high
level goals with answers to concrete questions at the leaf
level and use bottom-up label propagation to obtain the
preference/expectation labels as an input for the
configuration step.

3.4 Configuration step

The configuration of the system is done automatically.
First, the software system is analyzed for its
configurability in terms of whether there exists a
persistent record of the configuration (if our configurator
interacts with the subject software through a file interface)
or an in-memory API for its configuration (if our
configurator interacts with the subject software directly
through APIs).

Based on the configuration in the goal model (the

selected leaf-level goals), a script is generated to populate
the configuration data with the default values associated
with the leaf-level goal satisfaction labels. Since the
reverse engineering step has already produced the
appropriate mapping, this task is now quite
straightforward. The last step is to automate the
reconfiguration by running the script, either before
restarting the subject software or during the execution of
the software system.

4. Firefox: a case study

We represent user high-level requirements in an XML-
based input language, as follows.

<input:model>
<soft name= "Performance">

<rule op="AND"/>
<soft name= "Browsing Performance"/>
<soft name= "System Performance"/>

</soft>
<soft name= "Usability">

<rule op="OR"/>
<soft name= "Ease of Search"/>
<soft name= "Convenient access to Information"/>
<soft name= "User Tailorability">

<rule op="OR"/>
<soft name= "Programmability"/>

 <soft name= "User Flexibility"/>
</soft>

</soft>
<soft name= "Security">

<rule op="HURT" target="System Performance"/>
<rule op="HURT" target="Browsing Performance"/>

</soft>
<soft name= "Allow changes in Content Appearance">

<rule op="HELP" target="User Flexibility"/>
</soft>
<goal name= "Filter Advertisement/Spyware/Popups">

<rule op="HELP" target="Performance"/>
<rule op="HELP" target="Security"/>
<rule op="HURT" target="Content Availability"/>

</goal>
</input:model>

In this input language, a model is given by a list of root

goals which are recursively decomposed in a nested XML
element structure. A softgoal is a goal that can be satisfied
to a degree less than 1. It usually represents quality
attributes. A number of rules show what kind of
decomposition was used for a goal or softgoal, or which
kind of contributions was used between a source hardgoal
and a target softgoal.

Each user provides a profile including the preferences

and expectations for the softgoals:

<input:profile>
<soft name="Security" rank="4" value="6" />
<soft name="Allow Interactive Content" rank="8" value="8"
/>
<soft name="Convenient Access to Information" rank="10"
value="10" />
<soft name="Performance" rank="9" value="1" />
<soft name="Content Availability" rank="1" value="10" />
<soft name="Allow changes in Content Appearance"
rank="6" value="4" />
<soft name="User Flexibility" rank="3" value="6" />
<soft name="Speed" rank="7" value="3" />
<soft name="Programmability" rank="3" value="8" />
<soft name="Modularity" rank="5" value="1" />
<soft name="Usability" rank="2" value="6" />
</input:profile>

For every root softgoal, a rank attribute represents the
partial order among the preferences and a threshold value

21

represents the expectation from the user. The profile can
be generated from a user interface dialog (Figure 2).

The reasoning algorithm is invoked by the
configurator command automatically, to produce an
output as follows:

<output:configuration>
<goal name=”adFilterStrength” value=”on” />
<goal name=”tabBrowsingOn” value=”off” />
<goal name=”cookiesEnabled” value=”off” />
<goal name=”daysToCachePages” value=”on” />
</output:configuration>

The goal model can be visualized as a goal graph and

the reasoning can be invoked and its results shown in
OpenOME [18], our requirements engineering tool,
where both bottom-up and top-down goal reasoning
algorithms are implemented and can be invoked by the
two buttons on the toolbar (Figure 3). Behind the scenes,
an XSLT script fully automatically generates the
corresponding property configuration in the Firefox
default installation directory.. The following JavaScript
script code is an example of such property configuration:

Figure 2. A simplified user preference dialog as the
interface to the configurator

Bottom-up
Top-down

Figure 3. The goal model and its reasoning in OpenOME, an Eclipse plugin for requirements engineering

22

user_pref("network.image.imageBehavior", 2);
user_pref("network.cookie.cookieBehavior", 2);
user_pref("webdeveloper.disabled", false);
user_pref("browser.display.use_document_colors", true);
user_pref("javascript.enabled", false);
user_pref("webdeveloper.disabled", false);
user_pref("adblock.enabled", true);
user_pref("tidy.options.browser_disable", false);
user_pref("font.size.variable.x-western", 19);
user_pref("image.animation_mode", "normal");
user_pref("extensions.prefbar.display_on", 0);
user_pref("security.enable_java", false);
user_pref("security.default_personal_cert", "Select
Automatically");
user_pref("browser.cache.disk.enable", false);

5. Conclusion

Through the Mozilla Firefox case study we show how
goal-oriented requirements can be used to guide the
configuration process automatically. The goal models are
provided by domain experts, the user profiles are obtained
by the users directly through a simplified user interface,
and the configuration is carried out without further human
intervention. Currently, we are investigating how to apply
the requirements-driven configuration mechanism to
other applications and how to detect problems that
reconfiguration may cause when it is performed while the
software system is running. We also plan to implement a
Firefox extension plugin to expose our tool to the larger
user community and to solicit feedback from users.

6. Acknowledgement

Much of the implementation is done by all of our 26
undergraduate students in the Software Engineering
course offered in the summer of 2005 at the University of
Toronto [11]. Some examples in this paper are taken from
the codename42 project team including Dimitri Stroupine,
Faiz Hemani, Hareem Arif, Sani Hashmi and Zia Malik.
The authors would also like to thank Xin Gu for giving
XSLT tutorial to the students.

7. References
[1] A. G. Ganek and T. A. Corbi, "The dawning of the

autonomic computing era," IBM Syst. J., vol. 42, pp.
5-18, 2003.

[2] M. M. Lehman and J. F. Ramil, "Evolution in
software and related areas," in Proceedings of the 4th
International Workshop on Principles of Software
Evolution. Vienna, Austria: ACM Press, 2001.

[3] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y.
Yu, "Towards requirements-driven autonomic systems
design," in Proceedings of the 2005 workshop on
Design and evolution of autonomic application
software. St. Louis, Missouri: ACM Press, 2005.

[4] A. Dardenne, A. van Lamsweerde, and S. Fickas,
"Goal-directed requirements acquisition," in Selected
Papers of the Sixth International Workshop on

Software Specification and Design: Elsevier Science
Publishers B. V., 1993.

[5] B. Hui, S. Liaskos, and J. Mylopoulos, "Requirements
Analysis for Customizable Software Goals-Skills-
Preferences Framework," in Proceedings of the 11th
IEEE International Conference on Requirements
Engineering: IEEE Computer Society, 2003.

[6] A. Sutcliffe, S. Fickas, and M. M. Sohlberg, "Personal
and Contextual Requirements Engineering," in
Proceedings of the 13th IEEE International
Conference on Requirements Engineering: IEEE
Computer Society, 2005.

[7] S. Fickas, "Clinical requirements engineering," in
Proceedings of the 27th international conference on
Software engineering. St. Louis, MO, USA: ACM
Press, 2005.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R.
Sebastiani, "Reasoning with Goal Models," in
Proceedings of the 21st International Conference on
Conceptual Modeling: Springer-Verlag, 2002.

[9] Y. Yu, Y. Wang, S. Liaskos, A. Lapouchnian, and J.
Mylopoulos, "Reverse Engineering Goal Models from
Legacy Code," in Proceedings of the 13th IEEE
International Conference on Requirements
Engineering: IEEE Computer Society, 2005.

[10] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S.
Easterbrook, "Configuring Common Personal
Software: A Requirements-Driven Approach," in
Proceedings of the 13th IEEE International
Conference on Requirements Engineering: IEEE
Computer Society, 2005.

[11] Y. Yu, A. Lapouchnian, S. Liaskos, and X. Gu, "The
Software Engineering summer course (CSC408H1S),"
http://www.cdf.toronto.edu/~csc408h/summer, 2005.

[12] H. A. Simon, The Sciences of the Artificial:
Massachusetts Institute of Technology, 1996.

[13] L. Chung, B. A. Nixon, E. S. K. Yu, and J.
Mylopoulos, Non-Functional Requirements in
Software Engineering. Boston Hardbound: Kluwer
Academic Publishers, 1999.

[14] R. Sebastiani, P. Giorgini, and J. Mylopoulos, "Simple
and Minimum-Cost Satisfiability for Goal Models," in
Proc. CAiSE: LNCS, 2004.

[15] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos,
and J. C. S. d. P. Leite, "From stakeholder goals to
high-variability software designs," University of
Toronto CSRG-509, 2005.

[16] S. A. Cook and D. G. Mitchell, "Finding Hard
Instances of the Satisfiability Problem: A Survey " in
Satisfiability Problem: Theory and Applications, vol.
35, Discrete Mathematics and Theoretical Computer
Science, J. G. Dingzhu Du, and Panos M. Pardalos,
Ed.: American Mathematical Society, 1997, pp. 1-17.

[17] D. Le Berre, A. Parrain, O. Roussel, and L. Sais,
"SAT4J: A satisfiability library for Java," 2005.

[18] Y. Yu, E. S. K. Yu, L. Liu, and J. Mylopoulos, "The
OpenOME requirements engineering tool," in
http://www.cs.toronto.edu/km/openome, 2005.

23

Extracting Business Processes from Three-Tier Architecture Systems

Maokeng Hung1 and Ying Zou2

Department of Electrical and Computer Engineering
Queen’s University

Kingston, ON, K7L 3N6, Canada
alex.hung@ece.queensu.ca1, ying.zou@queensu.ca2

Abstract

To minimize the overall expense and to reduce time to
market, organizations either modify existing source code
to meet the new requirements, or reuse existing
components in new systems. Unfortunately, many
software systems never have up-to-date documentation.
Absence of good documentation increases the challenges
for maintenance because the developers must read
through the source code to understand the behaviors of
the systems and to locate business logics manually. In this
paper, we proposed an automatic method to generate the
business processes for the three-tier architecture systems
by identifying the business data and business policies in
the source code.

1. Introduction

Software maintenance has become one of the most
critical and longest stages in the life cycle of software
systems. When the documentation of a system is lost, out-
dated or unavailable, it is essential to extract important
information, such as architectures, designs or
requirements before maintenance or reuse can take place.
Often, the only reliable source for such information is
either in the mind of the developers or deeply buried in
the source code. It is labor-intensive to manually scan the
source code to extract the documentation.

A business logic is "a requirement on the condition
or manipulation of data expressed in terms of the business
enterprise or application domain" [1] and a business
policy specifies the rules and conditions on when and
where the business logic should be executed [2]. The
business logics and policies form the business processes
which organizations specify how they run their business.
For instance, when a book is ordered from an online
store, the business process consists of checking the
availability of the books, restocking the inventory if the
book is out-of-stock, validating the credit card and
shopping to the customer; each of the individual tasks is a
business logic and the condition to execute a specific task
is the business policy (i.e. "book is out-of-stock" is the
condition for "restocking the inventory"). It is, however,
the nature of the business process to change fast in order

to adapt to the market dynamics [3]. As a result,
automatic or semi-automatic methods for business
process extraction are essential for organizations to
remain competitive by increasing the response rate to
customers' demands and by reducing the costs of
reengineering tasks.

For e-commerce systems, the three-tier architecture
has many advantages over the one-tier and two-tier
architectures in various ways. The separation of layers
between user interface, business logic and database not
only distinguish the functionalities between components
but also provide additional information including the
business data and the explicitly defined interfaces that
used by business logics to communicate to the database.
In this research, we propose a technique to automatically
extract the business process by analyzing the
communication channel and the information flow
between the business layer and the database layer from
the source code of the three-tier architecture systems.
Based on the database operations and the information
flow of the business data, we are able to identify business
policies, logics and processes from the source code.

The paper is organized as follows. We discuss the
benefits of the three-tier architecture and the relationship
between the three-tier architecture and business logic
extraction in Section 2. Section 3 discusses the method
we proposed to extract business logics by business data
and policies. Our approach identifies the business data
and policies from the database operations explicitly
invoked in the source code. We show a case study of our
approach and the improvements over our previous work
from [4] in Section 4. Finally, Section 5 gives the
conclusion of this paper.

2. Software Architecture and Business Logic

Extraction

Currently, most e-commerce applications adapt three-
tier architecture. The three-tier architecture has higher
maintainability than the traditional one-tier or two-tier
architectures because the components are well separated
and the interface between components is well-defined.

24

Database Management System

User Interface

Business Logic Layer

Server
(Business Logic & Database)

Client
(User Interface)

User Interface &
Business Logic &
Database

Figure 1 – One-Tier, Two-Tier and Three-Tier Software Architectures

In the three-tier architecture, user interface, business

logic and database management are differentiated, as
opposed to the mixture of functionalities in the one and
two-tier architectures (Figure 1). Three-tier architecture
provides numerous advantages over one-tier and two-tier
architectures for reverse engineering and design recovery.
In one and two-tier architectures, the source code entities
implementing different components are interweaved with
each other. It is therefore very difficult to separate the
business logic components from others because of the
absence of the clear partition. In three-tier architecture,
the business logic and business policy components are
implemented in a separate layer (the middle layer) and
communicate with the user interface (UI) and the
database management systems (DBMS) via external
APIs. This explicit division between different
functionalities not only partitions business data, policy
and logics code in the source code but also clearly points
out the communication of the business data and the
corresponding fetch/update operations (such as J2EE EJB
and embedded SQL) to the DBMS.

3. Business Process Extraction

To extract business logics from the source code, it is
important to identify the relevant business entities that
constitute business logics. The business entities include
the business data and the business policies where the data
are the inputs/outputs affecting the dataflow of the
business logics and the policies control the execution path
and control flow of the business logics. We employ
forward and backward tracing to identify the exact
location of the business logics. After the business logics
are identified, the business process that determines the
communications between the business logics and policies
can be generated by static tracing as proposed in our
previous work in [4].

3.1. Business Data

Organizations carry out their decisions based on the
business policies, logics and data (input and output of the
business logics). Often the input data of the business
logics are fetched and the output data are updated to the
DBMS. The explicit database fetch and update
operations, such as the getters and setters of the J2EE®
EJB objects respectively, identify the input and output of
the business logics and therefore signal the presences of
the business logics. Once the locations of the inputs and
outputs are recognized from the source code, the static
tracing technique is applied to identify where and how
these data are used.

Fetch operations are often used to retrieve input data
of the business logics from database. Centered on the
business data, the execution of the business logics are
dependent on the values of the data to make decisions and
to compute the outputs of the logics. Therefore we apply
the forward tracing, which analyzes the dataflow toward
the direction of the execution, to the input data until the
end of their lifetime. The usages of the business data of
the fetch operations are discussed in the following:

a) Business policy conditions (also see Section 3.2) -
Most of the decisions are made according to the
information and data fetched from the database.
For instance, the percentage of tax is charged
differently to an online purchase according to the
destination shipping address. As a result, the
business data can indicate the business policy
conditions and direct the execution of the business
logics, as shown in Figure 2.a.

b) Computations of the output values of business
logics - The output values are often computed
from the business data. For instance, the final price
for a purchase is calculated by the original price
plus the tax. The calculated value is either used as

25

input of other business logics (i.e. to calculate the
total) or updated to the database (i.e. to save the
purchase history of a customer). Assignment
statements with the business data on the right hand
side is considered as an example of this
computation, as shown in Figure 2.b.

c) Inputs of the user-defined functions - Method
invocations are user-defined functions that
perform specific tasks. Similar to b), a method can
return a derived value based on the input data
fetched from database; therefore, the method can
be treated as one business logic where the business
data are inputs and return value is the output of the
logic, as shown in Figure 2.c.

Figure 2 – Database Fetch and Update Operations and the

Corresponding Business Logics

 On the other hand, update operations store the
result outputs of the business logics to the database.
Therefore, we apply the backward tracing, which
analyzes the dataflow toward reverse direction of the
execution, to the parameters of the update operations. The
backward tracing is able to identify the conditions and the
locations where the outputs are computed or assigned.
The usages of the business data of the update operations
are discussed in the followings:

d) Computations performed under the same condition
- If all of the parameters of the update operations
are computed under the same condition (i.e. in
sequence), the multiple values should be treated as
a single composite data because the sequential
derivations imply the grouping of the data that are
updated to the database. As a result, the

completion of the update operation (i.e. transaction
committed to database) is the location of the
business logic, as shown in Figure 2.d.

e) Computations performed under the different
conditions - If any of the parameters of the update
operations are computed under the different
conditions, it implies that each value may or may
not be present in the final transaction. Therefore,
we can apply backward tracing to parameters of
the update operations and identify where the
computation is performed. We consider the
individual computation as a business logic, as
shown in Figure 2.e.

3.2. Business Policies

input = DB.get(id);
if (input <= threshod){
…
}

input1 = DB.get(id1);
input2 = DB.get(id2);
if (some condition){
output = input1 + input2 + …
}

input = DB.get(id);
if (some condition){
 output = aMethod(input)
}

(a)

(b)

(c)

output1 = …
output2 = …
DBObject.set(output1);
DBObject.set(output2);
DBObject.commit();

if (condition1)
 output1=…
if (condition2)
 output2=…
DBObject.set(output1);
DBObject.set(output2);
DBObject.commit(); //

Or
if (condition1)
 DB.set(output1);
if (condition 2)
 DB.set(output2);
DB.commit();

(d)

(e)

Fetch Operation Update Operation

Business data are the center of the data flow of the
business logics, and business policies determine the
control flow of the business process and the execution of
the business logics. In other words, business logics will
be executed only when the current system states meet the
conditions of the business policies. As a result, business
policies signal the presences of the business logics.

However, not all conditions that guide the execution
sequence of the business process are business policies.
Many of the conditions are only specific to the
programming languages. For instance, a program may
check for current availability of the external services and
it decides to wait (i.e. stay at the current state instead of
moving to the next one if we treat the business process as
a finite state machine). A program may also check the
initialization of a variable and assign the variable with a
default value if it is not initialized to avoid errors. Such
conditions are only specific to program domains and have
no real meaning in the business domains; thus they cannot
be business policies. In our research, we define the
business policies as the followings:

a) Business Policies specify the constraints that
affect the behaviors, i.e. in an online shop, whether
the purchased items can be downloaded, such as e-
books or software, or it must be physically
shipped, such as real books or computers.

b) Business Policies specify the derivation of
conditions that affect the execution flow, i.e. the
destination region of a shipping item according to
the address and postcode.

c) Business Policies specify the conditions under
which the computation is performed, i.e. the
amount of tax to be charged to the item according
to the regions.

According the above definitions, we can identify and

extract business policies from the following scenarios:

26

1. Inside different branches of a CHOICE, an object
invokes different methods or same method with
different parameters, as shown in Figure 3.a. The
conditions of the CHOICE are business policies.

2. Inside different branches of a CHOICE, a variable
or variables are computed from different values, as
shown in Figure 3.b. The conditions of the
CHOICE are business policies.

3. A condition of a CHOICE is derived from
business data in advance, as shown in Figure 3.c.
Such condition is a business policy.

Figure 3 – Three cases of Business Policies

After business policies are identified from the source

code, each execution sequence under the different
conditions is grouped together as one business logic with
the exception that other business logics are identified
inside the execution sequence.

Business data and business policies have overlaps
over each other in many occasions where the former
handles the dataflow aspect and the latter handles the
control flow aspect. Often, policy conditions are derived
from business data. For instance, the shipping cost might
be calculated based on the destination whose value, such
as postcode, is fetched from the DBMS. Consequently,
the overlap in the business logic identification is not
redundant, but is an enforcement that strengthens our
confidence in the business process and logic extraction.

4. Case Studies

To demonstrate the effectiveness of our proposed

approach to identify the business logics, we performed
case study on industrial e-commerce applications.

We analyze control conditions and entity behaviors
to identify business data, policies and logics from the

source code as discussed in Section 3. Furthermore, we
generate complete trace records by applying static tracing
technique that simulates the control flow of the source
code [5] from the entry to the exit of the process (i.e.
from main method of a program until this program
terminates). The trace records contain the identified
business policies and logics with the inputs and outputs as
well as the execution sequence of the logics. One example
of the extracted process, namely Update TA Spending for
Limit Check, is shown in Figure 4 (simplified version of
our original output).

if (condition1){
 object.action1();
} else if (condition2){
 object.action2();
}

if (condition1){
 object.action(value1);
} else if (condition2){
 object.action(value2);
}

if (condition1){
 value1 = value2 + value3;
} else if (condition2){
 value1 = value4 + value5;
}

condition1 = isConditionMet (data);
if (condition1){
…
}

(a)

(b)

(c)

Figure 4 – “Update TA Spending for Limit Check”
Process Extracted from Implementation

Compared with our previous work in [4], the new

approach is able to identify more business logics
accurately. We were able to identify four business logics
from Update TA Spending for Limit Check by the method
discussed in [4]; the number of business logics is
increased to ten. This improvement has shown the
effectiveness of the new approach.

In Figure 4, the business logics located on Line 3, 6
and 12~15 are newly identified. Furthermore, the pre-
derived condition of the CHOICE on Line 8 is a business
policy for the reason that the same method
convertMonetaryValue was invoked in both branches, as
discussed in Section 3.2. However, before the aid of
business data, this policy had little significance because
both branches contained only an identical logic, namely
convertMonetaryValue (Line 16 and 20), whereas the Yes
branch actually performs a number of additional
computations. By considering business data, we realize
the significance of the computations and capture them as
the business logics (Line 12~15).

As afore mentioned, we are able to prove that
business data and policies play important roles in the
business processes in three-tier architecture systems. By
considering business data and policies, we can identify
business logic and generate complete and precise business
processes from the source code automatically.

27

5. Conclusion

The three-tier architecture defines explicit interfaces
to the DBMS and indicates the input and output data for
the business logics. It offers good starting points for the
business process and logic extraction. We identified the
business data from the database operations and the
business policies from the behaviors of the objects and
the calculation of the outputs. Combining the business
data and policies together, we automatically located the
business logics. By utilizing static tracing technique, we
generated complete records that outline the interactions
between business logics to form business processes.
Finally, our case studies demonstrated the improved
effectiveness of our new approach by doubling the
number of the identified business logics and by extracting
more precise computations performed from the source
code.

References

[1] H. Sneed and K. Erdos, “Extracting Business logics

from Source code”, in proceedings of 4th
International Workshop on Program Comprehension,
1996

[2] D. C.C. Poo, “Explicit Representation of Business
Policies”, in proceedings of Asia Pacific Software
Engineering Conference, 1998

[3] M. Hung and Y. Zou, “A Framework for Exacting
Workflows from E-Commerce Systems”, in
proceedings of Software Technology and
Engineering Practice 2005

[4] Y. Zou et al, “Model-Driven Business Process
Recovery”, in proceedings of the 11th Working
Conference on Reverse Engineering, 2004

[5] T. Eisenbarth et al, “Static Trace Extraction”, in
proceedings of 9th Working Conference on Reverse
Engineering, 2002.

28

