
Extracting Business Processes from Three-Tier Architecture Systems

Maokeng Hung1 and Ying Zou2

Department of Electrical and Computer Engineering
Queen’s University

Kingston, ON, K7L 3N6, Canada
alex.hung@ece.queensu.ca1, ying.zou@queensu.ca2

Abstract

To minimize the overall expense and to reduce time to
market, organizations either modify existing source code
to meet the new requirements, or reuse existing
components in new systems. Unfortunately, many
software systems never have up-to-date documentation.
Absence of good documentation increases the challenges
for maintenance because the developers must read
through the source code to understand the behaviors of
the systems and to locate business logics manually. In this
paper, we proposed an automatic method to generate the
business processes for the three-tier architecture systems
by identifying the business data and business policies in
the source code.

1. Introduction

Software maintenance has become one of the most
critical and longest stages in the life cycle of software
systems. When the documentation of a system is lost, out-
dated or unavailable, it is essential to extract important
information, such as architectures, designs or
requirements before maintenance or reuse can take place.
Often, the only reliable source for such information is
either in the mind of the developers or deeply buried in
the source code. It is labor-intensive to manually scan the
source code to extract the documentation.

A business logic is "a requirement on the condition
or manipulation of data expressed in terms of the business
enterprise or application domain" [1] and a business
policy specifies the rules and conditions on when and
where the business logic should be executed [2]. The
business logics and policies form the business processes
which organizations specify how they run their business.
For instance, when a book is ordered from an online
store, the business process consists of checking the
availability of the books, restocking the inventory if the
book is out-of-stock, validating the credit card and
shopping to the customer; each of the individual tasks is a
business logic and the condition to execute a specific task
is the business policy (i.e. "book is out-of-stock" is the
condition for "restocking the inventory"). It is, however,
the nature of the business process to change fast in order

to adapt to the market dynamics [3]. As a result,
automatic or semi-automatic methods for business
process extraction are essential for organizations to
remain competitive by increasing the response rate to
customers' demands and by reducing the costs of
reengineering tasks.

For e-commerce systems, the three-tier architecture
has many advantages over the one-tier and two-tier
architectures in various ways. The separation of layers
between user interface, business logic and database not
only distinguish the functionalities between components
but also provide additional information including the
business data and the explicitly defined interfaces that
used by business logics to communicate to the database.
In this research, we propose a technique to automatically
extract the business process by analyzing the
communication channel and the information flow
between the business layer and the database layer from
the source code of the three-tier architecture systems.
Based on the database operations and the information
flow of the business data, we are able to identify business
policies, logics and processes from the source code.

The paper is organized as follows. We discuss the
benefits of the three-tier architecture and the relationship
between the three-tier architecture and business logic
extraction in Section 2. Section 3 discusses the method
we proposed to extract business logics by business data
and policies. Our approach identifies the business data
and policies from the database operations explicitly
invoked in the source code. We show a case study of our
approach and the improvements over our previous work
from [4] in Section 4. Finally, Section 5 gives the
conclusion of this paper.

2. Software Architecture and Business Logic

Extraction

Currently, most e-commerce applications adapt three-
tier architecture. The three-tier architecture has higher
maintainability than the traditional one-tier or two-tier
architectures because the components are well separated
and the interface between components is well-defined.

Database Management System

User Interface

Business Logic Layer

Server
(Business Logic & Database)

Client
(User Interface)

User Interface &
Business Logic &
Database

Figure 1 – One-Tier, Two-Tier and Three-Tier Software Architectures

In the three-tier architecture, user interface, business

logic and database management are differentiated, as
opposed to the mixture of functionalities in the one and
two-tier architectures (Figure 1). Three-tier architecture
provides numerous advantages over one-tier and two-tier
architectures for reverse engineering and design recovery.
In one and two-tier architectures, the source code entities
implementing different components are interweaved with
each other. It is therefore very difficult to separate the
business logic components from others because of the
absence of the clear partition. In three-tier architecture,
the business logic and business policy components are
implemented in a separate layer (the middle layer) and
communicate with the user interface (UI) and the
database management systems (DBMS) via external
APIs. This explicit division between different
functionalities not only partitions business data, policy
and logics code in the source code but also clearly points
out the communication of the business data and the
corresponding fetch/update operations (such as J2EE EJB
and embedded SQL) to the DBMS.

3. Business Process Extraction

To extract business logics from the source code, it is
important to identify the relevant business entities that
constitute business logics. The business entities include
the business data and the business policies where the data
are the inputs/outputs affecting the dataflow of the
business logics and the policies control the execution path
and control flow of the business logics. We employ
forward and backward tracing to identify the exact
location of the business logics. After the business logics
are identified, the business process that determines the
communications between the business logics and policies
can be generated by static tracing as proposed in our
previous work in [4].

3.1. Business Data

Organizations carry out their decisions based on the
business policies, logics and data (input and output of the
business logics). Often the input data of the business
logics are fetched and the output data are updated to the
DBMS. The explicit database fetch and update
operations, such as the getters and setters of the J2EE®
EJB objects respectively, identify the input and output of
the business logics and therefore signal the presences of
the business logics. Once the locations of the inputs and
outputs are recognized from the source code, the static
tracing technique is applied to identify where and how
these data are used.

Fetch operations are often used to retrieve input data
of the business logics from database. Centered on the
business data, the execution of the business logics are
dependent on the values of the data to make decisions and
to compute the outputs of the logics. Therefore we apply
the forward tracing, which analyzes the dataflow toward
the direction of the execution, to the input data until the
end of their lifetime. The usages of the business data of
the fetch operations are discussed in the following:

a) Business policy conditions (also see Section 3.2) -
Most of the decisions are made according to the
information and data fetched from the database.
For instance, the percentage of tax is charged
differently to an online purchase according to the
destination shipping address. As a result, the
business data can indicate the business policy
conditions and direct the execution of the business
logics, as shown in Figure 2.a.

b) Computations of the output values of business
logics - The output values are often computed
from the business data. For instance, the final price
for a purchase is calculated by the original price
plus the tax. The calculated value is either used as

input of other business logics (i.e. to calculate the
total) or updated to the database (i.e. to save the
purchase history of a customer). Assignment
statements with the business data on the right hand
side is considered as an example of this
computation, as shown in Figure 2.b.

c) Inputs of the user-defined functions - Method
invocations are user-defined functions that
perform specific tasks. Similar to b), a method can
return a derived value based on the input data
fetched from database; therefore, the method can
be treated as one business logic where the business
data are inputs and return value is the output of the
logic, as shown in Figure 2.c.

Figure 2 – Database Fetch and Update Operations and the

Corresponding Business Logics

 On the other hand, update operations store the
result outputs of the business logics to the database.
Therefore, we apply the backward tracing, which
analyzes the dataflow toward reverse direction of the
execution, to the parameters of the update operations. The
backward tracing is able to identify the conditions and the
locations where the outputs are computed or assigned.
The usages of the business data of the update operations
are discussed in the followings:

d) Computations performed under the same condition
- If all of the parameters of the update operations
are computed under the same condition (i.e. in
sequence), the multiple values should be treated as
a single composite data because the sequential
derivations imply the grouping of the data that are
updated to the database. As a result, the

completion of the update operation (i.e. transaction
committed to database) is the location of the
business logic, as shown in Figure 2.d.

e) Computations performed under the different
conditions - If any of the parameters of the update
operations are computed under the different
conditions, it implies that each value may or may
not be present in the final transaction. Therefore,
we can apply backward tracing to parameters of
the update operations and identify where the
computation is performed. We consider the
individual computation as a business logic, as
shown in Figure 2.e.

3.2. Business Policies

input = DB.get(id);
if (input <= threshod){
…
}

input1 = DB.get(id1);
input2 = DB.get(id2);
if (some condition){
output = input1 + input2 + …
}

input = DB.get(id);
if (some condition){
 output = aMethod(input)
}

(a)

(b)

(c)

output1 = …
output2 = …
DBObject.set(output1);
DBObject.set(output2);
DBObject.commit();

if (condition1)
 output1=…
if (condition2)
 output2=…
DBObject.set(output1);
DBObject.set(output2);
DBObject.commit(); //

Or
if (condition1)
 DB.set(output1);
if (condition 2)
 DB.set(output2);
DB.commit();

(d)

(e)

Fetch Operation Update Operation

Business data are the center of the data flow of the
business logics, and business policies determine the
control flow of the business process and the execution of
the business logics. In other words, business logics will
be executed only when the current system states meet the
conditions of the business policies. As a result, business
policies signal the presences of the business logics.

However, not all conditions that guide the execution
sequence of the business process are business policies.
Many of the conditions are only specific to the
programming languages. For instance, a program may
check for current availability of the external services and
it decides to wait (i.e. stay at the current state instead of
moving to the next one if we treat the business process as
a finite state machine). A program may also check the
initialization of a variable and assign the variable with a
default value if it is not initialized to avoid errors. Such
conditions are only specific to program domains and have
no real meaning in the business domains; thus they cannot
be business policies. In our research, we define the
business policies as the followings:

a) Business Policies specify the constraints that
affect the behaviors, i.e. in an online shop, whether
the purchased items can be downloaded, such as e-
books or software, or it must be physically
shipped, such as real books or computers.

b) Business Policies specify the derivation of
conditions that affect the execution flow, i.e. the
destination region of a shipping item according to
the address and postcode.

c) Business Policies specify the conditions under
which the computation is performed, i.e. the
amount of tax to be charged to the item according
to the regions.

According the above definitions, we can identify and

extract business policies from the following scenarios:

1. Inside different branches of a CHOICE, an object
invokes different methods or same method with
different parameters, as shown in Figure 3.a. The
conditions of the CHOICE are business policies.

2. Inside different branches of a CHOICE, a variable
or variables are computed from different values, as
shown in Figure 3.b. The conditions of the
CHOICE are business policies.

3. A condition of a CHOICE is derived from
business data in advance, as shown in Figure 3.c.
Such condition is a business policy.

Figure 3 – Three cases of Business Policies

After business policies are identified from the source

code, each execution sequence under the different
conditions is grouped together as one business logic with
the exception that other business logics are identified
inside the execution sequence.

Business data and business policies have overlaps
over each other in many occasions where the former
handles the dataflow aspect and the latter handles the
control flow aspect. Often, policy conditions are derived
from business data. For instance, the shipping cost might
be calculated based on the destination whose value, such
as postcode, is fetched from the DBMS. Consequently,
the overlap in the business logic identification is not
redundant, but is an enforcement that strengthens our
confidence in the business process and logic extraction.

4. Case Studies

To demonstrate the effectiveness of our proposed

approach to identify the business logics, we performed
case study on industrial e-commerce applications.

We analyze control conditions and entity behaviors
to identify business data, policies and logics from the

source code as discussed in Section 3. Furthermore, we
generate complete trace records by applying static tracing
technique that simulates the control flow of the source
code [5] from the entry to the exit of the process (i.e.
from main method of a program until this program
terminates). The trace records contain the identified
business policies and logics with the inputs and outputs as
well as the execution sequence of the logics. One example
of the extracted process, namely Update TA Spending for
Limit Check, is shown in Figure 4 (simplified version of
our original output).

if (condition1){
 object.action1();
} else if (condition2){
 object.action2();
}

if (condition1){
 object.action(value1);
} else if (condition2){
 object.action(value2);
}

if (condition1){
 value1 = value2 + value3;
} else if (condition2){
 value1 = value4 + value5;
}

condition1 = isConditionMet (data);
if (condition1){
…
}

(a)

(b)

(c)

Figure 4 – “Update TA Spending for Limit Check”
Process Extracted from Implementation

Compared with our previous work in [4], the new

approach is able to identify more business logics
accurately. We were able to identify four business logics
from Update TA Spending for Limit Check by the method
discussed in [4]; the number of business logics is
increased to ten. This improvement has shown the
effectiveness of the new approach.

In Figure 4, the business logics located on Line 3, 6
and 12~15 are newly identified. Furthermore, the pre-
derived condition of the CHOICE on Line 8 is a business
policy for the reason that the same method
convertMonetaryValue was invoked in both branches, as
discussed in Section 3.2. However, before the aid of
business data, this policy had little significance because
both branches contained only an identical logic, namely
convertMonetaryValue (Line 16 and 20), whereas the Yes
branch actually performs a number of additional
computations. By considering business data, we realize
the significance of the computations and capture them as
the business logics (Line 12~15).

As afore mentioned, we are able to prove that
business data and policies play important roles in the
business processes in three-tier architecture systems. By
considering business data and policies, we can identify
business logic and generate complete and precise business
processes from the source code automatically.

5. Conclusion

The three-tier architecture defines explicit interfaces
to the DBMS and indicates the input and output data for
the business logics. It offers good starting points for the
business process and logic extraction. We identified the
business data from the database operations and the
business policies from the behaviors of the objects and
the calculation of the outputs. Combining the business
data and policies together, we automatically located the
business logics. By utilizing static tracing technique, we
generated complete records that outline the interactions
between business logics to form business processes.
Finally, our case studies demonstrated the improved
effectiveness of our new approach by doubling the
number of the identified business logics and by extracting
more precise computations performed from the source
code.

References

[1] H. Sneed and K. Erdos, “Extracting Business logics

from Source code”, in proceedings of 4th
International Workshop on Program Comprehension,
1996

[2] D. C.C. Poo, “Explicit Representation of Business
Policies”, in proceedings of Asia Pacific Software
Engineering Conference, 1998

[3] M. Hung and Y. Zou, “A Framework for Exacting
Workflows from E-Commerce Systems”, in
proceedings of Software Technology and
Engineering Practice 2005

[4] Y. Zou et al, “Model-Driven Business Process
Recovery”, in proceedings of the 11th Working
Conference on Reverse Engineering, 2004

[5] T. Eisenbarth et al, “Static Trace Extraction”, in
proceedings of 9th Working Conference on Reverse
Engineering, 2002.

