
From Requirements to Architectural Design –Using Goals and Scenarios

Lin Liu Eric Yu
Faculty of Information Studies, University of Toronto

{liu, yu}@fis.utoronto.ca

Abstract
To strengthen the connection between requirements

and design during the early stages of architectural design,
a designer would like to have notations to help visualize
the incremental refinement of an architecture from
initially abstract descriptions to increasingly concrete
components and interactions, all the while maintaining a
clear focus on the relevant requirements at each step. We
propose the combined use of a goal-oriented language
GRL and a scenarios-oriented architectural notation
UCM. Goals are used in the refinement of functional and
non-functional requirements, the exploration of
alternatives, and their operationalization into
architectural constructs. The scenario notation is used to
depict the incremental elaboration and realization of
requirements into architectural design. The approach is
illustrated with an example from the telecom domain.

1. Introduction

In the context of Requirement Engineering and system
architectural design, goal-driven and scenario-based
approaches have proven useful. In order to overcome some
of the deficiencies and limitations of these approaches
when used in isolation, proposals have been made to
combine goals, scenarios and agents in order to guide the
RE to architectural design process. As there are both
overlaps and gaps between these approaches, their
interactions are complicated and highly dynamic.

In general, goals describe the objectives that the system
should achieve through the cooperation of agents in the
software-to-be and in the environment. It captures “why”
the data and functions are there, and whether they are
sufficient for achieving the high-level objectives that arise
naturally in the requirements engineering process. The
integration of explicit goal representations in requirements
models provides a criterion for requirements completeness,
i.e. the requirements can be judged as complete if they are
sufficient to establish the goal they are refining.

Scenarios present possible ways to use a system to
accomplish some desired functions or implicit purposes.

Typically, it is a temporal sequence of interaction events
between the intended software and its environment
(composed of other systems or humans). A scenario could
be expressed in forms such as narrative text, structured
text, images, animation or simulations, charts, maps, etc.
The content of a scenario could describe either system-
environment interactions or events inside a system. The
purpose and usage of scenarios also vary greatly. They can
be used as a means to elicit or validate system
requirements, as concretization of use-oriented system
descriptions, or as a basis for test cases. Scenarios have
also become popular in other fields, notably human-
computer interaction and strategic planning.

In this paper, we explore the combined use of goal-
oriented and scenario-based models during architectural
design. The GRL language is used to support goal and
agent oriented modelling and reasoning, and to guide the
architectural design process. The UCM notation is used to
express the architectural design at each stage of
development. The scenario orientation of UCM allows the
behavioral aspects of the architecture to be visualized at
varying degrees of abstraction and levels of detail.

In the next section, basic concepts of GRL and UCM are
introduced. In Section 3, we summarize our approach of
using GRL and UCM together to model incrementally
requirements and architectural design. In section 4, a case
study in the wireless telecommunication domain is used to
illustrate the proposed approach. In section 5, related
works are discussed. Conclusions and future work are
discussed in section 6.

2. GRL and UCM

2.1 GRL

Goal-oriented Requirement Language (GRL) is a language
for supporting goal and agent oriented modelling and
reasoning about requirements, especially for dealing with
non-functional requirements (NFRs)[4][11]. It provides
constructs for expressing various types of concepts that
appear during the requirements and high-level architectural
design process. There are three main categories of
concepts: intentional elements, links, and actors. The

2

intentional elements in GRL are goal, task, softgoal and
resource. They are intentional because they are used for
models that allow answers to questions such as why
particular behaviors, informational and structural aspects
were chosen to be included in the system requirements,
what alternatives were considered, what criteria were used
to deliberate among alternative options, and what the
reasons were for choosing one alternative over the other.

A GRL model can either be composed of a global goal
model, or a series of goal models distributed amongst
several actors. If a goal model includes more than one
actor, then the intentional dependency relationships
between actors can also be represented and reasoned
about. In this paper, the distributed goal models will not be
discussed; [12] studies the roles of agent-orientation in
requirements and architectural design.

A goal is a condition or state of affairs in the world that the
stakeholders would like to achieve. In general, how the
goal is to be achieved is not specified, allowing
alternatives to be considered. A goal can be either a
business goal or a system goal. Business goals are about
the business or state of the business affairs the individual
or organization wishes to achieve. System goals are about
what the target system should achieve, which, generally,
describe the functional requirements of the target
information system. In GRL graphical representation,
goals are represented as a rounded rectangle with goal
name inside.

A task specifies a particular way of doing something.
When a task is specified as a sub-component of a (higher-
level) task, this restricts the higher-level task to that
particular course of action. Tasks can also be seen as
solutions in the target system, which will satisfice the
softgoals (called operationalizations in NFR) or achieve
goals. These solutions provide operations, processes, data
representations, structuring, constraints and agents in the
target system to meet the needs stated in the goals and
softgoals. In GRL graphical representation, tasks are
represented as a hexagon with the task name inside.

A softgoal is a condition or state of affairs in the world that
the actor would like to achieve, but unlike a (hard) goal,
there are no clear-cut criteria for whether the condition is
achieved, and it is up to the developer to judge whether a
particular state of affairs in fact sufficiently achieves the
stated softgoal. Softgoals are used to represent NFRs in the
future system. Non-functional requirements, such as
performance, security, accuracy, reusability,
interoperability, time to market and cost are often crucial
for the success of a software system. They should be
addressed as early as possible in the software lifecycle, and
be properly reflected in software architecture before a
commitment is made to a specific implementation. In
GRL graphical representation, a softgoal, which is “soft”

in nature, is shown as an irregular curvilinear shape with
softgoal name inside.

A resource is an (physical or informational) entity, about
which the main concern is whether it is available.
Resources are shown as rectangles in GRL graphical
representation.

Intentional links in GRL include means-ends,
decomposition, contribution, correlation and dependency
links. Means-ends links are used to describe how goals are
in fact achieved. Each task connected to a goal by a
means-ends link is an alternative means for achieving the
goal. Decompositions define what other sub-elements
needs to be achieved or available in order for a task to be
performed. Contribution links describe how softgoals,
tasks and links contribute to others. A contribution is an
effect that is a primary desire during modelling. They can
be either negative or positive, and orthogonally can be
either sufficient or partial. Following are the graphical
representations for links.

(a) (b)

(c)

(d)

Figure 1 (a) Means-Ends; (b)Decomposition;
(c) Contribution; (d) Correlation

2.2 UCM

Use Case Maps (UCM)[2][3] provide a visual notation for
scenarios, which is proposed for describing and reasoning
about large-grained behavior patterns in systems, as well
as the coupling of these patterns. Something new that
UCM offers is that it provides a behavioral framework for
making architectural decisions at a high level of design,
and characterizes behavior at the architectural level once
the architecture has been determined.

Use Case Maps notation employ scenario paths to illustrate
causal relationships among responsibilities. Furthermore,
UCM provides an integrated view of behavior and
structure by allowing the superimposition of scenario paths
on a structure of abstract components. The combination of
behavior and structure in UCMs enables reasoning about
architecture. Scenarios in UCM can be structured and

3

integrated incrementally. This enables reasoning about and
detection of potentially undesirable interactions between
scenarios and components. Furthermore, the dynamic (run-
time) refinement capabilities of the UCM language allow
for the specification of (run-time) policies and for the
specification of loosely coupled systems where
functionality is decided at runtime through negotiation
between components.

The UCM notation is mainly composed of path elements,
and also of components. The basic path notation has
simple operators for causally linking responsibilities in
sequences, as alternatives, and in parallel. More advanced
operators can be used for structuring UCMs hierarchically
and for representing exceptional scenarios and dynamic
behavior. Components can be of different natures,
allowing for a better and more appropriate description of
some entities in a system.

Basic elements of UCMs are start points, responsibilities,
end points and components. Starting points are filled
circles representing pre-conditions or triggering causes.
End points are bars representing post-conditions or
resulting effects. Responsibilities are crosses representing
actions, tasks or functions to be performed. Components
are boxes representing entities or objects composing the
system. Paths are wiggle lines that connect start points,
responsibilities and end points. A responsibility is said to
be bound to a component when the cross is inside the
component. In this case, the component is responsible for
performing the action, task, or function represented by the
responsibility.

Alternatives and shared segments of routes are represented
as overlapping paths. An OR-join merges two (or more)
overlapping paths while an OR-fork splits a path into two
(or more) alternatives. Alternatives may be guarded by
conditions represented as labels between square brackets.
Concurrent and synchronized segments of routes are
represented through the use of a vertical bar. An AND-join
synchronizes two paths while an AND-fork splits a path
into two (or more) concurrent segments.

When maps become too complex to be represented as a
single UCM, a mechanism for defining and structuring
sub-maps become necessary. A top level UCM, referred to
as a root map, can include containers (called stubs) for
sub-maps (called plug-ins). Stubs are represented as
diamonds. Stubs and plug-ins are used to solve the
problems of layering and scaling or the dynamic selection
and switching of implementation details.

Other notational elements include: timer, abort, failure
point, and shared responsibilities. A detailed introduction
to and examples of these concepts can be found in [2] [3].

Although UCM can represent the alternatives of system
architectural design precisely in a high-level way, the
tradeoffs between these alternatives, and the intentional

features of making a design decision can not be explicitly
shown in UCM models. And inevitably, as in other
scenario-based approaches, UCM models are partial.

GRL provides support for reasoning about scenarios by
establishing correspondences between intentional GRL
elements and functional components and responsibilities in
scenario models of UCM. The modelling of goals and
scenarios is complementary and may aid in identifying
further goals and additional scenarios (and scenario
fragments) important to architectural design, thus
contributing to the completeness and accuracy of
requirements, as well as to the quality of architectural
design.

3. Modelling Methodology with GRL+UCM

A complete requirements specification should clarify the
objectives of a system, the concrete behaviors and
constraints of the system-to-be, and the entities that will be
responsible for certain functions in that system.

The goal-based approach focuses on answering the “why”
questions of requirements (such as “why does the system
need to be redesigned?” or “why is a new architecture for
TSMA necessary?”). The strength of this approach is that
it covers not only functional requirements but also non-
functional requirements (in other words, the quality
requirements). Although goal-orientation is highly
appropriate for requirements engineering, goals are
sometimes too abstract to capture at once. Whereas goals
can often be made explicit only after a deeper
understanding of the system has been achieved, it is often
possible to create operational scenarios about using the
hypothetical system relatively easily.

In our approach, first GRL models are created, the original
business goals and non-functional requirements are refined
and operationalized, until some concrete design decisions
are obtained. These design decisions are then further
elaborated into UCM scenarios. In this step, “how”
questions are asked instead of “what”.

At the same time, UCM scenarios are used to describe the
behavioral features and architectures of the intended
system in the restricted context of achieving some implicit
purposes, which basically answers the “what” questions
such as “what should the system do as providing a in-
coming call service?” or “what is the process of wireless
call transmission?”. Then, by issuing “why” questions
referring to these scenarios (e.g. “why reside a function
entity in this network entity instead of another network
entity?”) some implicit system goals are made explicit.

The GRL-UCM combination aims to elicit, refine and
operationalize requirements incrementally until a
satisfying architectural design is launched. The general
steps of the process are illustrated in Figure 2.

4

Add New Scenarios or update existing in
UCM model

Elaboration of Non-
Functional Requirements
(softgoals) in GRL model

Softgoal Refinement in
GRL model

Softgoal
Operationalization in

GRL model

Intentional Elaboration of
Functional requirements
(goals) in GRL model

Goal Operationalization
in GRL model

Goal Decomposition in
GRL model

Elaboration of Scenario
in UCM model

Draw use case path with
responsibilities in UCM model

Refine UCM model by Factoring,
Stubbing and Layering

Problem descriptions,
Business objectives,
Use cases …

New architectural
design decisions

(tasks in GRL) are
made?

Map “Feasible” Design
Decisions into Scenarios
in UCM model

Yes

No

No

Architectural designDesign rationales

New Requirements
are discovered?

Yes
No

Binding Responsibility with
Components in UCM model

No More Factoring,
Stubbing, Layering?

Yes

No

Add New Requirements into GRL
model (FRs and NFRs)

Add new goals (softgoals)
into GRL model

Yes

All goals & softgoals
are sufficiently refined?

Figure 2. Integration of Goal-Oriented and Scenario-based Modelling

5

4. Case Study

To illustrate the interleaved application of GRL and UCM,
we use an example from the mobile telecommunication
systems domain [9]. A mobile switching center (MSC) is
required to support narrowband and wideband voice, data
and imaging services and so on. We use GRL and UCM
together to trace the process from capturing the original
business objective, to refining and operationalizing this
objective, and tradeoffs between architectures.

Step 1: GRL Model- The original functional and non-
functional requirements are represented as three nodes in
Figure 3. The goal node in the middle represents the
functional requirement on the TDMA that it must support
narrowband and wideband voice, data and image services.
There are two quality requirements identified at the very
beginning, one is to maximize the call capacity in the new
TDMA architecture, the other is to minimize the cost of
the infrastructure.

Step 2: UCM Model- The essential scenario that
implements the functional goal in the GRL model is given
in Figure 4. The scenario path (denoted by the wiggly line)
represents a causal sequence of responsibilities (denoted
by a cross) that is triggered by an initial event (denoted by
a filled circle), resulting in a terminating event (denoted by
a bar). The responsibilities are not bound to any
components.

Step 3: UCM Model – Binding Responsibilities to
components of the future system.

The following UCM diagram (Figure 5) shows the existing
TDMA architecture. In this architecture, the decoder of the
voice coder is located in the base station. This implies that
the 64-kb/s PCM of decoded voice will be transmitted out
of the cell site to the switch for each call, requiring an

entire Digital Signal level 0 channel (DS0) to support the
64-kb/s signal.

Step 4: GRL Model – Goal Refinement and
Operationalization. In the goal model in Figure 6, the
original functional goal is connected to the task node
representing the current solution for TDMA. It can be seen
that the current solution can cause some delay per call,
which may negatively influence the voice quality of the
call, and the call capacity of the system. This solution does
not use packet switching protocol enough, so cost savings
are lost. Traffic performance between base station and
switch is also low.

With current infrastructure, the efficiency of TDMA is
barely equivalent to that of an analog system, which means
the requirements on improving the capacity, quality, cost
and performance are all weakly denied.

Step 5: UCM Model – Change the Binding of
Responsibilities.

As the above design could not satisfy the non-functional
requirements, other options should be explored. The UCM
model (in Figure 7) describes a new

Figure 4: Unbound use case path with responsibilities

Figure 7: UCM model of another way of binding

Figure 3: Original Goal Model with one functional goal
and two non-functional goals

Figure 5: Bound use case path with functional objects
and physical entities

6

Figure 8: GRL model evaluating the contribution of the new architecture to NFRs

Figure 10: Goal model evaluating the viability of solution 3

Figure 6: Refined GRL model with one design solution and more non-functional
i

7

architecture to improve the capacity of the TDMA cellular
telecommunications system. In this design, the decoder of
voice coder is relocated into the switch instead of the base
station, so for each call the base station transmits an 8-kb/s
signal – rather than a 64-kb/s signal to the switch. In such
a system, a theoretical maximum of 8� capacity
improvement is possible.

Step 6: GRL Model – Contributions of the new
architecture to the non-functional requirements. The GRL
model (in Figure 8) shows that the new TDMA
architecture with voice coder relocated in the switch, thus
weakly satisficing the requirements on improving the
capacity, quality and performance, though at the same time
the cost and complexity are negatively influenced. To
minimize call delay somehow increased the complexity
and cost of the architecture (represented in Figure 7 with
correlation links). Comparing the two architectures, if a
cell site supported x calls, the previous architecture would
need x DS0s to support those calls. But the voice coder
relocation architecture would requirement only x/3 DS0s.
Given the evaluation result, we conclude that the new
architecture is an acceptable design.

GRL evaluates the satisfication of softgoal via a qualitative
labeling procedure. The label of a high level node is
propagated from the label of low level nodes, and the
contribution from these nodes.

However, before putting this relocating solution into
practice, other possible solutions should also be
considered. The following is one possible solution without
relocating the decoder of the voice coder.

Step 7: UCM Model – In Figure 9, by adding new
functional units without changing the location of the
decoder of voice coder, a simpler solution is described. For
increasing call capacity, 32-kb/s adaptive differential pulse
code modulation (ADPCM) equipment is used with the
voice decoder still in the base station.

Step 8: GRL Model – Evaluation of the new architecture
according to the non-functional requirements, and

comparison to other options. The GRL model in Figure 10
shows that this simplest solution weakly satisficed the
requirements on improving the capacity, performance, low
cost and low complexity. However, voice quality is
seriously eroded by the electrical echo, the delay for the
extra cycle of speech coding, and the information lost
produced in this kind of architecture. If voice quality is a
lower priority for a user, this architecture could also be an
acceptable choice.

Having analyzed the benefits and tradeoffs of these
architectures, we could see that UCM is a natural
counterpart to GRL in the process from requirements to
high-level design, because it provides a concrete model of
each design alternative. Based on the architectural features
in such a model, new non-functional requirements may be
detected and added to the GRL model. At the same time,
in the GRL model, new means to achieve the functional
requirements could always be explored and be embodied
in a UCM model.

In the case study above, the UCM model are rather
simplistic because we have only tackled the highest level
of architectural design in the wireless telecommunication
protocol. As we go down to a sufficiently detailed design,
a UCM model may be fairly complex, and more modelling
constructs could be used. Figure 11 (From [1]) is a root
map of a mobile system. It illustrates the “big picture” of a
simplified mobile wireless communication system. As
shown in this graph, stubs are used to hide details of
certain sections of a scenario, e.g., the mobility
management functions (MM stub), the communication
management functions (CM stub), the handoff procedures
(HP stub) and handoff failure actions (HFA stub).

A plug-in gives more detail for the stubs. Due to space
limitations, we won’t present all of the plug-ins or explain
the details of each responsibility. However, one thing need
to note is, for each stub (especially a static stub), there may
be more than one ways to refine the plug-ins. This is a
powerful construct to form new design alternatives by
integrating different possible designs of various parts of
the system.

Figure 9: UCM model of solution 3: new responsibilities
and functional units added

Figure 11: The Mobile system Root Map[1];

8

Figure 12 depicts an integrated scenario of establishing a
call between the originating and the terminating parties.
There may be other possible designs, but we won’t
investigate because of space limitation. Components in

Figure 12 include: Originating Mobile Station (MS-O),
Originating Mobile switching Center (MSC-O), Home
Location Register (HLR), Visitor Location Register
(VLR), Terminating Mobile Station (MS-T), Terminating
Mobile switching Center (MSC-T), Originating and
Terminating Mobile Stations (MS-OT).

Although we used a telecommunication system
architecture example, the approach is applicable to
allocation of responsibility in software systems in general,
where there are usually conflicting goals and tradeoffs.

5. Related work

As existing scenario-based approaches serve different
purposes, use different representational features, and have
different analysis capabilities, the concept of scenario
needs to be differentiated along the dimensions.

In Krutchen’s 4+1 model of software architecture [7],
scenarios are used to show connections across other views
such as logical views, process views, physical views and
development views. The use of a multiple view model of
architecture makes it possible to separately address the
concerns of the various stakeholders. However, with an
model composed of several separate views it is not easy to
keep a coherent track of the incremental design process.
As UCM shows the behavioral and structural aspects
together as one view, it is good for showing the
incremental elaboration of the design.

The Software Architecture Analysis Method (SAAM) [5,
6] is a scenario-based method for evaluating architectures.
It provides a means to characterize how well a particular
architectural design responds to the demands placed on it

by a particular set of scenarios. Based on the notion of
context-based evaluation of quality attributes, scenarios
are used as a descriptive means of specifying and
evaluating quality attributes. For example, to evaluate the
modifiability of a user interface architecture Serpent, two
scenarios are considered, one is "changing the windows
system/toolkit", and the other is "adding a single option to
a menu". The similarities between this paper and SAAM
include: both works are concerned with the quality of
architecture, and both use scenarios to describe
architectures. However, there are obvious differences:
SAAM scenarios are use-oriented scenarios, which are
designed specifically to evaluate certain quality attributes
of architecture. In GRL+UCM, scenarios are more design-
oriented, being concerned with refinement of system
requirements. The quality of the architectures
corresponding to these scenario are judged based on expert
knowledge rather than simulations or tests as in SAAM.

The combined use of goals and scenarios have been
explored within RE, primarily for eliciting, validating and
documenting software requirements. Van Lamsweerde and
Willement studied the use of scenarios for requirement
elicitation and explored the process of inferring formal
specifications of goals and requirements from scenario
descriptions in [8]. Though they thought goal elaboration
and scenario elaboration are intertwined processes, their
work regarding scenarios in [8] mainly focuses on goal
elicitation. Our emphasis is the other way around, i.e., how
to use goal model (especially NFRs) to direct scenario –
based architectural design. The fundamental point is that
both the goal-oriented modelling in GRL and the scenario-
based modelling in UCM run through requirement process
to architectural design, and also their interactions.

In the CREWS project, Collete Rolland et al. have looked
into the coupling of goal and scenario in RE with CREWS-
L’Ecritoire [10]. In CREWS-L’Ecritoire, Scenarios are
used as a means to elicit requirements/goals of the system-
to-be. Their method is semi-formal. Both goals and
scenarios are represented with structured textual prose.
The coupling of goal and scenario could be considered as a
“tight” coupling, as goals and scenarios are structured into
<Goal, Scenario> pairs, which are called “requirement
chunks”. Their work focuses mainly on the elicitation of
functional requirements/goals.

In GRL+UCM, both graphical representations and textual
descriptions (in natural language and XML format) for
goal models and scenario models are provided. The semi-
formal graphical notations are intended to be used during
the early stages of architectural design, to help explore and
prune the space of design alternatives. The current
coupling of goal and scenario is loose, as goal models and
scenario maintain their local completeness, and one
scenario may refer to more than one goal, and vice versa.
There are no rigid constraints on the requirements process.
That is, the goal model and scenario model can be

Figure 12: Integration of Scenario Fragments [1]

9

developed in parallel simultaneously, they interact
whenever there are design decisions that need to be traded
off, or new design alternatives need to be sought, or new
business goals or non-functional requirements are
discovered. Both functional and non-functional
requirements are considered, with perhaps more attention
being devoted to non-functional requirements. The
modelling process involves both requirements engineering
activities and high-level architecture design.

6. Conclusion and future works

In summary, goal-orientation and scenario-orientation
complement each other not only in requirement
engineering but also during the incremental architectural
design process. The combined use of GRL and UCM
enables the description of functional and non-functional
requirements, abstract requirements and concrete system
architectural models, intentional strategic design rationales
and non-intentional details of concurrent, temporal aspects
of the future system.

In the future, we hope to look into visualizing the
connections between GRL and UCM to support a more
formal combination of the two notations. This would allow
the mapping and interaction between the two kinds of
models to be less dependent on expert users.

GRL and UCM are knowledge containers. To make good
use of them, we need to acquire both software design
knowledge and more knowledge of various domains, and
represent this knowledge in GRL and UCM. The
development of such a repository would enable the reuse
of knowledge and aid in guiding the design process.

7. Acknowledgements

The work of this paper is motivated by an original
submission to ITU-T study group 10 on the topic of User
Requirements Notation (URN). The kind cooperation of
people from Mitel Networks, Nortel Networks and other
institutions is gratefully acknowledged.

8. References
[1] Andrade, R. and Logripo, L. Reusability at the Early

Development Stages of Mobile Wireless Communication

Systems. In Proceedings of the 4th World Multiconference
on Systemics, Cybernetics and Informatics (SCI 2000), 12,
Computer Science and Engineering: Part I, July 2000.
Orlando, Florida, 11-16.

[2] Amyot, D. Use Case Maps Quick Tutorial Version 1.0. On-
line at:
http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial
.pdf.

[3] Buhr, R.J.A. and Casselman, R.S. Use Case Maps for Object
Oriented Systems, Prentice-Hall, USA, 1995.

[4] Chung, L., Nixon, B.A., Yu, E.and Mylopoulos, J. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[5] Kazman, R. Using Scenarios in Architecture Evaluations.
SEI Interactive, June 1999. On-line at
http://interactive.sei.cmu.edu/Columns/The_Architect/1999/
June/Architect.jun99.htm

[6] Kazman, R., Bass, L., Abowd, G. and Webb, M. SAAM: A
Method for Analyzing the Properties of Software
Architectures. In Proceedings of the 16th International
Conference on Software Engineering. May 1994. Sorrento,
Italy. 81-90.

[7] Kruchten, P. The 4+1 view Model of Software Architecture.
IEEE Software, 12, 6 (November 1995). 42-50.

[8] Lamsweerde, A.V., Willemet, L. Inferring Declarative
Requirements Specifications from Operational Scenarios.
IEEE Transactions on Software Engineering, Special Issue
on Scenario Management, December 1998.

[9] Lee, A.Y. and Bodnar, B.L. Architecture and Performance
Analysis of Packet-Based Mobile Switching Center-to-Base
Station Traffic Communications for TDMA. Bell Labs
Journal. Summer 1997. 46-56.

[10] Rolland, C. , Grosz, G. and Kla, R. Experience With Goal-
Scenario Coupling In Requirements Engineering. In
Proceedings of the IEEE International Symposium on
Requirements Engineering 1998. June 1999. Limerick,
Ireland.

[11] Yu, E. and Mylopoulos, J. Why Goal-Oriented
Requirements Engineering. In Proceedings of the 4th
International Workshop on Requirements Engineering:
Foundations of Software Quality. June 1998, Pisa, Italy. E.
Dubois, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de
Namur, 1998. pp. 15-22.

http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial.pdf
http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial.pdf
http://interactive.sei.cmu.edu/Columns/The_Architect/1999/June/Architect.jun99.htm
http://interactive.sei.cmu.edu/Columns/The_Architect/1999/June/Architect.jun99.htm

	To strengthen the connection between requirements and design during the early stages of architectural design, a designer would like to have notations to help visualize the incremental refinement of an architecture from initially abstract descriptions to
	Introduction
	GRL and UCM
	2.1GRL
	UCM

	Modelling Methodology with GRL+UCM
	Case Study
	Related work
	Conclusion and future works
	Acknowledgements
	References

