
Quasar: A Probabilistic Publish-Subscribe System for Social Networks

Bernard Wong Saikat Guha

Dept. of Computer Science, Cornell University, Ithaca, NY 14853

bwong@cs.cornell.edu saikat@cs.cornell.edu

Abstract

Existing peer-to-peer publish-subscribe systems rely on

structured-overlays and rendezvous nodes to store and relay

group membership information. While conceptually simple,

this design incurs the significant cost of creating and main-

taining rigid-structures and introduces hotspots in the system

at nodes that are neither publishers nor subscribers. In this

paper, we introduce Quasar, a rendezvous-less probabilistic

publish-subscribe system that caters to the specific needs of

social networks. It is designed to handle social networks of

many groups; on the order of the number of users in the sys-

tem. It creates a routing infrastructure based on the proac-

tive dissemination of highly aggregated routing vectors to pro-

vide anycast-like directed walks in the overlay. This primitive,

when coupled with a novel mechanism for dynamically negat-

ing routes, enables scalable and efficient group-multicast that

obviates the need for structure and rendezvous nodes. We ex-

amine the feasibility of this approach and show in a large-scale

simulation that the system is scalable and efficient.

1 INTRODUCTION

The recent advent of social-networking communities

such as MySpace, Facebook, and Twitter has changed

many of the social aspects of communication on the In-

ternet and has, to a degree, disrupted the communication

patterns we are used to seeing between users. Social net-

works provide an avenue for friends and people that share

a common interest to not only communicate, but to be

kept abreast of their minute-to-minute activities.

In contrast to person-to-person communication sys-

tems that have predominated, such as Instant Messaging

and E-mail, or group communication systems where in-

dividuals subscribe to relatively few groups or receive a

low volume of messages, such as Usenet, mailing-lists,

and blogs, social networks have unique requirements

that make them much more demanding to the underlying

communication system. In social networks, it is common

for people to have hundreds of friends, and be a part of

many communities containing thousands of users. Un-

like RSS, where a single publisher originates every mes-

sage, messages in social networks can originate from any

user that must be delivered in a timely manner.

Currently, the popular social-networking systems are

centralized with each network controlled by a single en-

tity. But as the demand for social-networking systems

grows, both privacy and scalability concerns associated

with centralized systems make them undesirable to the

end-users. The privacy concerns are clear; an unwar-

ranted amount of trust is placed on these centralized en-

tities to not reveal or take advantage of sensitive infor-

mation. Poor scalability leads to additional cost which,

in today’s Internet economy, results in exposing the users

to additional advertisements.

In this paper, we outline Quasar, a scalable, peer-to-

peer publish-subscribe system that caters to the specific

needs of social networks. It is designed to handle social

networks with many groups; on the order of the num-

ber of users in the network. Nodes maintain state that

is constant in the number of overlay links and indepen-

dent of the number of groups in the system. The system

is agnostic to the underlying overlay, allowing the social

network designers to decide the type of overlay that best

suits their operational needs.

The key mechanism in Quasar is a rendezvous-

less event routing infrastructure for performing scalable

publish-subscribe to specific groups without requiring

per-group state or specific structure in the underlying

overlay. To accomplish this, the routing infrastructure

provides an anycast-like primitive, allowing messages to

be probabilistically routed to a nearby group member by

specifying the group as the destination. However, un-

like in IP anycast where a group member anycasting to

its own group will have the packets routed back to it-

self, thus making IP anycast unsuitable as a primitive for

group communication, Quasar introduces a novel mech-

anism to avoid these self-loops.

This probabilistic routing mechanism combines proac-

tive dissemination of vectors throughout the network that

point in the direction of nearby group members, with a

reactive lookup that ensures diversity in selecting mem-

bers. Group members create local gradients of aggre-

gated vectors or “gravity wells”, that attract messages

traversing the region in the overlay. A message can se-

lectively negate the effects of gravity wells from specific

nodes, allowing fine-grained control over route diversity.

Quasar’s design obviates the need for rendezvous

nodes and overlay structure that encode group member-

ship information, which is the prevalent design of mod-

ern publish-subscribe systems, as messages are directly

routed to nearby group members. The absence of ren-

dezvous nodes removes a layer of indirection, and elim-

inates potential hotspots, while the absence of structure

reduces complexity and the susceptibility to churn.

Overall, this paper makes three contributions. First,

it introduces a scale-free, anycast-like, rendezvous-less

routing primitive for overlay networks. Second, it de-

scribes a novel publish-subscribe system that explores a

new point in the design space with benefits that cater to

the requirements of social-networks. Finally, it shows

the system is practical, efficient and hotspot-free in both

a large-scale simulation consisting of a social network

of 32,000 nodes, and a smaller simulation parameterized

with MySpace profile data of over 10,000 users’ friends

lists and communities.

2 SYSTEM ARCHITECTURE

The most common approach to building publish-

subscribe systems is to designate a “rendezvous node”

for each group. In DHT-based systems, for instance, the

rendezvous node of a group corresponds to the node with

the ID closest to the group ID, where IDs are typically

generated from the hashes of the node and group names.

While conceptually simple, there are two practical

problems with this approach. First, the rendezvous node

for a group may be chosen from non-group members, as

node selection is based solely on hash proximity. This

creates an unnatural trust relationship between a group

and its rendezvous. Second, rendezvous nodes of highly-

active groups become overlay hotspots. Systems such as

Corona [10] and Feedtree [12] address this problem by

constructing a replication tree for each group. However,

these systems are fragile in the face of node-churn.

These problems led us to avoid the use of rendezvous

nodes in our design. Instead, Quasar uses an anycast-

like routing for message dissemination. Each message

published by a group member is routed to other members

without a-priori knowledge of the group membership.

There are a number of different ways to provide such

an anycast-like primitive. At one end of the design spec-

trum, the publisher floods the message along overlay

nodes, and recipients discard unwanted messages; this

clearly does not scale as messages quickly saturate the

network. At the other end, nodes can be made into

group aware routers, with routing information for find-

ing the closest group member of every group. This too,

does not scale as the per-node storage cost grows lin-

early with the number of groups in the system. Fur-

thermore, it leads to a system with a high sensitivity

to churn, where local events require global route con-

vergence. Quasars uses a hybrid routing approach that

exploits this communication-space trade-off by making

use of both proactive and reactive routing, in addition to

introducing the use of dynamic negative information to

avoid loops.

2.1 Proactive Dissemination and Directed Walks

In Quasar, group members install a collection of group-

specific routing vectors in nearby overlay neighbors up

to a few hops away. Members publish messages to the

group by issuing multiple copies of the message in ran-

dom directions along the overlay. If a message encoun-

ters a gradient at a node, it is routed to the member that

installed the gradient in a directed walk. A real-world

analogy to astronomy is illustrative. Each group mem-

ber is a black-hole that creates a gravity well around it.

Messages are beams of light. Even without knowing the

exact location of a black-hole, a beam of light traveling

roughly in the direction of the black-hole gets sucked into

the gravity well.

The per-node storage requirement for this group-based

routing scheme is quite modest. Each overlay node needs

to induce gravity to nearby nodes that reflects its group

membership. The number of gravity wells a node is part

of, therefore, is proportional to the density of nodes in

its vicinity and the groups they are members of; further,

aggregation is used to reduced the storage requirements.

While any number of aggregation methods can be used,

we use attenuated bloom filters [8]. This allows the per-

node storage to be proportional only to the degree of a

node — a constant in small-world networks [7].

The routing performance scales with the group size

and the size of the gravity wells in relation to the diame-

ter of the network. The more group members in the sys-

tem, and the deeper into the network their interests are

disseminated, the easier it is for Quasar to discover the

full group membership and select short paths to them. In

social networks, where the diameters tend to be nearly

constant, Quasars allows the network operator to select

the degree of dissemination that suits the application.

2.2 Negative Information

While the above routing mechanism has attractive scal-

ability properties, trivially extending it to provide many-

to-many routing results in routing loops, including self-

loops. In essence, because each group member installs

a gravity well to receive messages for the group, nearby

nodes route messages sent by that member back to it-

self; this is the same problem that prevents IP anycast

Figure 1: Gravity wells created for group G by group mem-

bers A–D during the join process. All wells can be indexed

usingG; individual wells can be indexed using the correspond-

ing node ID. The diameter of the well is 2K , where K is the

depth of the attenuated bloom filter. Gravity wells may overlap

(not shown for clarity).

from being used to discover anycast group members, and

BubbleStorm [13] from being used to discover different

copies of a file. Quasar solves this problem using the

novel notion of negative information.

Negative information is attached to each message that

is used to cancel out gravity wells of previous members

along the path, thereby averting loops. This is enabled by

disseminating a unique, but aggregatable, node ID along-

side the proactive dissemination of routes to groups. The

routing algorithm uses the negative information, consist-

ing of a set node IDs, to disable the gravity wells of these

nodes on a per-message basis. Overall, using both proac-

tive dissemination and negative information, Quasar cre-

ates a novel rendezvous-less routing primitive for group

communication.

3 SYSTEM DESCRIPTION

In Quasar, each node in the overlay represents a user in

the social-network. Nodes keep track of the group mem-

bership of their users, and disseminate this information

in an aggregate form to their overlay neighbors. Groups

and nodes are uniquely identified in the system by the

160-bit hash of their names. While group and node IDs

may share the same ID space as a matter of implementa-

tion convenience, unlike DHTs, Quasar does not enforce

a semantic mapping between group and node IDs; node

IDs are not used to discover groups.

3.1 Join Protocol

When a user subscribes to a group, he notifies his overlay

neighbors that, in turn, propagate the notification further

into the network. In addition to the group ID of the sub-

scription, the notification includes the unique node ID of

the node. Subscriptions are aggregated using attenuated

bloom filters [11] and deliveries are batched.

An attenuated bloom filter with depth parameter K is a

collection of K identically-sized bloom filters where the

n-th bloom filter holds information about the groups and

node IDs n-hops away. Each node maintains a home-

attenuated filter to disseminate to its neighbors. To il-

lustrate, a node’s 0-th level bloom filter contains ob-

Algorithm 1 SENDUPDATES(N, B, K, T)

Require: N: Node ID of the local node

Require: B: Bloom filter size

Require: K: Attenuated bloom filter depth

Require: T: Freshness TTL

Ensure: N’s neighbors are notified of groups reachable through N

1: H ← EMPTYATTENUATEDBLOOMFILTER(B, K)

2: for all G in SUBSCRIBEDGROUPS(N) do

3: H[0].INSERT(G)

4: H[0].INSERT(N) {used for negative information}
5: for all O in OVERLAYNEIGHBORS(N) do

6: if LASTUPDATETIME(O) < NOW() - T then

7: continue

8: F ← GETATTENUATEDFILTERFOR(O)

9: for all L in 1. . . K do

10: H[L].MERGE(F[L-1]) {bloom-filter union}
11: for all O in OVERLAYNEIGHBORS(N) do

12: SENDTONODE(O, (N, H))

jects at its own node, consisting of its node ID and its

group memberships. Its 1-st level bloom filter contains

all objects available at 1-hop neighbors and neighbor

IDs, constructed from the union of the level-0 bloom fil-

ters of all its neighbors. Its 2-nd level bloom filter con-

tains all objects and IDs 2-hops away, and so on. As

higher level bloom filters are constructed through unions

of lower level filters, the false positive rate, a function of

the number of entries collected in the filter, increases at

each level. Intuitively, higher level bloom filters have a

broader but more diluted view of the network, while the

lower level filters have a narrower but more precise view.

In practice, each node receives and maintains a depth-

K attenuated bloom filter for each overlay neighbor.

Soft-state with periodic refresh is used to update routes

and reap stale routes.

Algorithm 1 describes the join protocol in pseudo-

code. The size of the attenuated bloom filter (B) and

its depth (K) are system parameters; their effects on per-

formance is explored later in this paper. The soft-state

timeout (T) is selected to balance freshness and commu-

nication costs.

Fig. 1 illustrates the join process for multiple members

in a group. In the figure, each funnel represents a gravity

well created by a single node joining the group. Since

subscription notifications include both the group ID and

the node’s unique ID, each funnel is actually a superposi-

tion of two separate gravity wells — one indexed by the

group ID in the bloom filters, and the other indexed by

the node ID. Messages routed based on the group ID can

sink into any matching gravity well, however, node IDs

in combination with negative information in the message,

steer the message away from individual gravity wells.

Figure 2: Probabilistic message routing to group members. A

publishes a message using parallel random walks (shown in

red). The message is not affected by A’s gravity well due to

negative information. Message encounters gravity wells of B

and C, and is delivered to them. B and C re-publish the mes-

sage using parallel walks (only one shown for clarity) after ap-

pending their respective node IDs to the negative information

of the message.

3.2 Routing Protocol

Publishing a message to a group involves routing the

message to multiple group members. The routing com-

bines parallel random walks to find gravity wells, fol-

lowed by directed walks into these wells. Each message

in Quasar is addressed to a group ID, and is tagged with

negative information consisting of the node ID of one or

more publishers. At each hop, a node routing the mes-

sage checks if the message destination matches the ID of

a group it is subscribed to, and delivers it to the user if

it does. Otherwise, the node checks the bloom filter of

each neighbor, in ascending order from level-0 to level-

K . If a match is found, then the message has encountered

a gravity well matching the target group; however, the

gravity well might be that of a publisher and may need

to be negated by the negative information. Negative in-

formation becomes active if the group ID and a publisher

ID in the message is found in the same level bloom filter

of a neighbor node. If this is not the case, the message

is forwarded to the neighbor who’s bloom filter yielded

a match. If the gravity well is negated or no neighbor

yields a match, the message is routed to a random neigh-

bor until the TTL expires.

The routing above delivers a message from a publisher

to a nearby group member. Multiple copies of the mes-

sages are sent out in parallel in different directions to

reach multiple group members. Newly delivered mes-

sages are re-published with the same branching factor to

reach additional group members. Re-published messages

include the ID of the original publisher along with IDs of

all subsequent re-publishers of the message.

Algorithm 2 lists pseudo code for the Quasar routing

algorithm, and Fig. 2 illustrates the routing through an

example. In the figure, the original publisher A issues

three copies of the message, which sink into the grav-

ity wells of two nearby group members B and C . Each

member issues additional copies, some of which are de-

Algorithm 2 ROUTE(M)

Require: M = (G, PUB, TTL): Message to be routed

Require: G: Group ID of message

Require: PUB: List of publishing node IDs

Require: TTL: Time-to-live for message

Ensure: M is routed closer to group member when possible

1: if ISDUPLICATE(M) then

2: return

3: N ← GETLOCALNODEID()

4: if G in SUBSCRIBEDGROUPS(N) then

5: DELIVER(M)

6: PUB← PUB ∪ N {Re-publish message}
7: for all O in OVERLAYNEIGHBORS(N) do

8: SENDTONODE(O, M)

9: return

10: if DECREMENT(TTL) = 0 then

11: return

12: for all L in 0. . . K do

13: for all O in OVERLAYNEIGHBORS(N) do

14: F← GETATTENUATEDFILTERFOR(O)

15: if F[L].CONTAINS(G) then

16: NEGRT← false

17: for all P in PUB do

18: if F[L].CONTAINS(P) then

19: NEGRT← true

20: if not NEGRT then

21: return SENDTONODE(O, M)

22: O ← RANDOMOVERLAYNEIGHBOR(N)

23: SENDTONODE(O, M)

livered to other members, while others are absorbed by

the network through expired TTLs.

3.3 Impact of False Positives

The use of bloom filters to aggregate routing informa-

tion potentially introduces false positives in routing ta-

ble matches. A false positive in matching a target group

to a gravity well represents an induced pull of gravity

from an imaginary source. In such cases, the message

will attempt to descend down the imaginary force vector,

however, at the next hop, a match will not be found at

a lower-level bloom filter. Consequently, message rout-

ing will fallback to a random walk. The result of a false

positive here is a longer route.

A false positive in matching a node ID represents an

imaginary publisher or re-publisher that can nullify the

effects of a real gravity well. In this case, the message

will not spiral down the gravity well, but instead take a

random step. If the random neighbor does not have the

same false positive, the message will sink into the real

gravity well if it is still close enough to be affected by

the well’s gravity. However, with a very small probabil-

ity, the message will be steered away if all the surround-

ing nodes of the gravity well exhibit the same false posi-

tives. Even in this case, a different copy of the message,

with negative information for a different set of publish-

 86

 88

 90

 92

 94

 96

 98

 100

 1024 2048 4096 8192 16384 32768

C
o
v
e
ra

g
e
 (

%
)

Number of nodes (log scale)

Group Size: Myspace samples
Group Size: 100 nodes

Group Size: 2% of nodes

Figure 3: Quasar reaches a consistently high fraction of nodes

independent of system size and group size

ers, can still sink into this real gravity well. The result of

a false positive here, therefore, primarily affects perfor-

mance but has a very small probability preventing mes-

sage delivery to a member. A persistent failure to for-

ward between two nodes is even less likely due to con-

stant group membership changes and node churn.

3.4 Effect of Churn and Failed Nodes

While the effects of churn on the underlying overlay

is out of the scope of this discussion, Quasar itself is

highly resilient to churn. Neighbors engage in periodic

exchange of bloom filters, which, coupled with the soft-

state of gravity wells, provide automatic reaping of stale

gravity wells over time.

During the state of transience when messages already

in transit arrive at nodes that have no next-hop in its

directed-route, the routing falls back to a random walk.

To reduced the likelihood that a message gets induced

back into the same stale gravity well, negative informa-

tion for the node where the routing inconsistency was

first detected is added to the message. This prevents the

message from looping to the same node after traveling

one or more random hops away.

4 EVALUATION

We evaluated Quasar through a large scale simulation pa-

rameterized with MySpace data. Nodes incurred a max-

imum storage overhead of 22 kB of bloom filters. The

depth K of the attenuated bloom filter is set to 3 hops,

and the size B of each bloom filter is set to 512 B.

MySpace data: We crawled MySpace to gather real

data of group sizes in social networks. We crawled

10,930 MySpace profiles and discovered that friend lists,

on average, contain 916 users of which only 37 are on-

line at any given time. Plotting the group sizes on a log-

log plot we noticed, unsurprisingly, two distinct Zipf-like

trends in the data — one for normal users, and one for

user communities focusing on celebrities, music bands,

and TV personalities. We use this data to drive our sim-

ulations and choice of parameters.

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 1024 2048 4096 8192 16384 32768M
a
x
im

u
m

 d
is

ta
n
c
e
 t
o
 p

u
b
lis

h
e
r

(o
v
e
rl
a
y
 h

o
p
s
)

Number of nodes (log scale)

Group Size: 100 nodes

Figure 4: Quasar delivers messages quickly to groupmembers

The primary metric for Quasar’s performance is “cov-

erage”. By design, Quasar lacks perfect information

about group membership, instead dynamically discover-

ing members during message routing. Coverage is de-

fined to be the fraction of group members receiving a

published message out of the total number of members

in that group.

Fig. 3 shows that Quasar has very high coverage across

a wide range of system sizes. The graph plots coverage

as a function of the number of nodes in the system, which

we vary from 1024 to 32768 in powers of two. The un-

derlying network is a random graph with a constant net-

work diameter. Each data point represents the average

of 100 runs, with standard deviation error bars shown for

one representative line.

In Fig. 3, the top line indicates that Quasar delivers

messages to over 97% of group members independent of

the size of the network, where group sizes were sampled

from our MySpace dataset and ranged from between 2 to

1055. The two other lines show that system performance

is consistently high as the system size grows for both a

constant group size, typical for friends lists in social net-

works, and a group size proportional to system size, typ-

ical for growing online communities. Error bars for the

latter confirm our intuition that Quasar’s performance in-

creases, which is manifested as lower variability, as the

group sizes increase.

However, we expected coverage to steadily increase

as we increased group size, but instead found that cov-

erage peaked at around 97%. The reason for this, we

discovered, was that as group size increases, some nodes

are heavily obscured by numerous other group members,

which collectively absorb messages from all directions.

This suggests that combining Quasar with limited polling

may increase coverage to 100%.

The second metric for measuring Quasar’s perfor-

mance is the upper bound on latency between publishing

a message, and the last group member receiving that mes-

sage. Fig. 4 plots the total number of overlay hops taken

as a function of system size for a constant group size. As

can be seen, the number of hops increases modestly as

the system size changes by several orders of magnitude.

The total number of hops observed is orders of magni-

tude smaller than the worst case random walk or dissem-

ination tree, which would be the order of nodes and group

members respectively, demonstrating the effectiveness of

Quasar’s proactive dissemination and negative routing.

The size of our bloom filters are chosen judiciously to

reduce false positives based on our MySpace data. We

detected only 0.5% false positives during routing, all of

which Quasar recovered from at the subsequent hop. Ex-

trapolating from our data, we believe that for a real world

deployment the size of MySpace or Facebook, Quasar

would require a mere 512 kB of storage at a node for

comparable performance.

5 RELATED WORK

Application-level publish-subscribe systems has been a

rich area of research in recent years. Much of the work

has been focused on constructing efficient single-source

multi-cast overlays [4, 1, 5] for specific workloads and

environments. However, these systems are unsuitable for

event dissemination in social networks as they can not

be trivially made to support multiple groups, or multiple

sources within a single group.

There have been many systems that provide the any-

cast primitive in an application-level overlay. Some [3]

make use of a rendezvous node per group running on top

of a structured overlay, while others make use of random-

walk searches coupled with replication [6, 13]. Quasar is

similar to the search-based systems, but disseminates ag-

gregated routes rather than replicas, and introduces nega-

tive information, allowing it to be the basis for multicast.

Quasar is most closely related to systems that provide

multi-cast for many simultaneous groups [14, 2, 10, 12,

9]. These systems rely on structured overlays and ren-

dezvous nodes to keep track of and relay group informa-

tion. Quasar provides a different point in the design space

that requires significantly less complexity and mainte-

nance than structured overlays and avoids hotspots from

non-uniform popularity distribution of groups.

6 SUMMARY

In this paper, we described Quasar, a scalable, peer-to-

peer publish-subscribe system that caters to the specific

needs of social networks. It explores a new point in the

publish-subscribe design space that uses a combination

of proactive dissemination of aggregated routing vectors

together with directed walks to provide an efficient any-

cast primitive for finding nearby group-members. This

primitive, when coupled with negative information, a

novel mechanism for dynamically negating routes, en-

ables a scalable multicast to be built of top of the anycast

primitive. The system shows much promise; evaluation

on a MySpace trace shows that more than 95% of nodes

are covered in the multicast, and the number of overlay

hops from the source of the tree to the furthest leaf is

modest and grows logarithmically to the system size.

References
[1] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu and Y.

Minsky. Bimodal Multicast. ACM ToCS 17, 1999.

[2] M. Castro, P. Druschel, A. Kermarrec and A. Rowstron.

SCRIBE: A Large-Scale and Decentralised Application-Level

Multicast Infrastructure. JSAC, 2002.

[3] M. Castro, P. Druschel, A. Kermarrec and A. Rowstron. Scal-

able Application-Level Anycast for Highly Dynamic Groups.

InWorkshop on Networked Group Communications, 2003.

[4] Y. Chu, S. Rao and H. Zhang. A Case for End SystemMulticast.

In SIGMETRICS, Santa Clara, CA, June 2000.

[5] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek and J.

O’Toole. Overcast: Reliable Multicasting with an Overlay Net-

work. In OSDI, San Diego, CA, Oct. 2000.

[6] D. Katabi and J. Wroclawski. A Framework for Global IP-

Anycast (GIA). In SIGCOMM, Stockholm, Sweden, Aug. 2000.

[7] J. Kleinberg. The Small-World Phenomenon: An Algorithmic

Perspective. In STOC, Portland, OR, May 2000.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.

Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.

Wells and B. Zhao. OceanStore: An Architecture for Global-

Scale Persistent Storage. In ASPLOS, Cambridge, MA, Nov.

2000.

[9] A. Nandi, A. Ganjam, P. Druschel, E. Ng, I. Stoica, H. Zhang

and B. Bhattacharjee. SAAR: A Shared Control Plane for Over-

lay Multicast. In NSDI, Cambridge, MA, Apr. 2007.

[10] V. Ramasubramanian, R. Peterson and E. G. Sirer. Corona:

A High Performance Publish-Subscribe System for the World

Wide Web. In NSDI, San Jose, CA, May 2006.

[11] S. Rhea and J. Kubiatowicz. Probabilistic Location and Rout-

ing. In INFOCOM, New York, NY, June 2002.

[12] D. Sandler, A. Mislove, A. Post and P. Druschel. FeedTree:

Sharing Micronews with Peer-to-Peer Event Notification. In

IPTPS Workshop, Ithaca, NY, Feb. 2005.

[13] W. Terpstra, J. Kangasharju, C. Leng and A. Buchmann. Bub-

bleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer

Search. In SIGCOMM, Kyoto, Japan, Aug. 2007.

[14] S. Zhuang, B. Zhao, A. Joseph, R. Katz and J. Kubiatowicz.

Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-

Area Data Dissemination. In NOSSDAV, Port Jefferson, NY,

June 2001.

