
RapidUpdate: Peer-Assisted Distribution of Security Content 
 

Denis Serenyi and Brian Witten 
Symantec Research Labs* 

 
  

Abstract—We describe RapidUpdate, a peer-assisted 
system tailored to the specific needs of distributing 
security content. Its unique features include being able 
to distribute small files while still offloading a vast 
majority of the distribution bandwidth, using central 
planning in order to maximize efficiency and meet 
distribution deadlines, and allowing peers to participate 
fully in the system even if behind a firewall or NAT 
device. We first describe the protocol and server 
scheduling algorithms, then utilize a full 
implementation of the RapidUpdate client and topology 
server to show the system meets its goals. As security 
software vendors face the burden of rapidly increasing 
content distribution load, we believe that this peer-
assisted system has the potential to lower cost while 
increasing quality of service. 
 

I. Introduction 
 
 Today’s security software vendors grapple with the 
burden of responding rapidly to viruses, worms, and other 
threats that emerge at an ever-increasing rate. The 
traditional approach is to distribute security content patches 
to their installed base that include virus signatures to 
protect against the latest threats. These patches are 
typically distributed either via a set of central servers or via 
a HTTP based content distribution network [1, 2]. As these 
threats evolve to spread and cause damage faster, there is 
increasing demand for ever more rapid dissemination of 
security content to minimize the window of time when 
machines are vulnerable. Couple that with growth in the 
number of machines with anti-virus software installed, and 
it is easy to imagine that it will become extremely costly to 
meet these needs via centralized distribution methods. 
 Peer to peer file distribution technologies, such as 
BitTorrent, have been employed to solve similar problems, 
such as distributing software updates [3]. However, several 
major problems stand in the way of applying this type of 
solution to security content. Firstly, these patches are 
small, often less than 200KB, and most P2P networks are 
not tuned to handle small files well. For instance, 
BitTorrent’s HTTP based tracker protocol involves 
overhead that significantly eats into one’s ability to save 
bandwidth, if files are sufficiently small. Secondly, security 
vendors need to be able to make quality of service 
guarantees about patch delivery. The ad-hoc nature of peer 

to peer distribution leads to poor quality of service under 
some conditions, such as when a file is first seeded or when 
a flash crowd has dissipated [4]. Lastly, the prevalence of 
firewalls and NAT devices on home and small business 
networks continues to grow, a trend that will accelerate as 
the pool of available IPv4 addresses dries up [5]. Protocols 
such as BitTorrent have well-documented problems with 
firewalls and NAT—clients suffer degraded download 
speeds and cannot fully participate in the system [6]. 
 To address these limitations we have developed 
RapidUpdate, a peer-assisted distribution system for 
security content. RapidUpdate is similar to other P2P 
systems in that it employs a topology server used to direct 
peers to desired content, and specialized protocol for 
client-server and client-client communication. Where it is 
unique is that the server actively manages the file 
distribution process with the goal of meeting distribution 
deadlines (every client in the community should have a file 
by an administratively controlled time) while minimizing 
vendor bandwidth (data flowing in and out of vendor-
controlled servers, specifically any HTTP file downloads 
for seeding the peer network, and messages exchanged 
with the topology server). For instance, if new security 
content is being generated every 30 minutes, then the 
administrator can supply this interval to the server, and 
have confidence that it will distribute each update within 
that interval, while offloading as much of the distribution 
load as possible onto the clients. 
 Because this system is geared towards a specific 
application, distributing security content, we are able to 
make some simplifying assumptions about the operating 
environment. Patch distribution systems typically involve 
the clients polling a server to check whether a new patch is 
available [7]. Security vendors typically release new 
content at regular intervals, whether it is hourly, daily, etc, 
and have their clients check for updates on that schedule as 
well. Therefore, we take it as a given in RapidUpdate that 
all clients in the community discover that they need a patch 
before the distribution deadline for that patch is reached, 
and that they do so via an out-of-band polling mechanism. 
Additionally, we assume that RapidUpdate is 
supplementing, rather than replacing, an existing 
distribution system, hence peer-assisted. We assume that 
we can instruct a client at any time to fetch the patch from 
this system instead of the peer network, and if we do the 

* This work was supported by the United States 
Department of Homeland Security 
 



 

client will be able to get the patch without any 
unreasonable delay. 
 RapidUpdate does not include any method for 
dividing files into pieces, as in BitTorrent. Given that this 
system is geared towards small files (200KB or less), 
dividing them doesn’t result in any acceleration of the 
distribution or any savings of vendor bandwidth. Indeed, 
the typical piece size chosen for BitTorrent files is 256KB 
[8]. Additionally, RapidUpdate does not include tit-for-tat, 
as this requires clients to be exchanging pieces to function 
well. However, RapidUpdate does not assume that peers in 
this community are trustworthy and benevolent. An 
essential part of this system is an integrity check on any 
data received from another peer. Such a check is already 
common in patch distribution systems, even those based on 
HTTP downloads from trusted servers, and typically 
consists of having the client download a signature for the 
patch, in a file that is itself signed by the vendor [7]. 
Additionally, RapidUpdate includes an implementation of 
the EigenTrust peer reputation system to minimize delays 
caused by unreliable or malicious peers [9]. This paper, 
however, focuses exclusively on RapidUpdate’s ability to 
meet distribution deadlines while minimizing vendor 
bandwidth rather than its security features, so in our 
experiments we assume the clients are trustworthy and 
reliable.  
 This paper is organized as follows. After a survey of 
related work in section 2, we describe the RapidUpdate 
protocol, and the algorithms employed by the RapidUpdate 
server in section 3. In section 4, we present the results of 
running RapidUpdate in a test environment. Section 5 
provides the conclusion. 
 

II. Related Work 
 
 Hybrid P2P content distribution networks are an 
ongoing area for research. Skevik et al. propose a hybrid 
where HTTP proxies assist the peer network and assist 
clients behind firewalls [6]. Wu et al. propose a centrally 
scheduled file distribution mechanism [10]. This is perhaps 
the most similar work to RapidUpdate in that it applies the 
idea of central planning to optimize the file distribution 
process. However, this is just a simulation study, and no 
attention is paid to circumventing firewalls and NAT. 
 There have been numerous attempts to improve on 
BitTorrent’s performance and scalability by replacing or 
eliminating tit-for-tat, modifying the peer selection 
algorithm, and improving tracker server scalability [11, 
12]. Indeed, RapidUpdate adopts similar changes for 
similar reasons. But unlike RapidUpdate, none of these 
methods are tuned to small files, include deadline driven 
central planning, or handle firewalls and NAT well.  
 Finally, RapidUpdate leverages STUN-based 
techniques for NAT hole punching [13, 14] that have been 

pioneered in IM applications such as Yahoo messenger, 
and VoIP applications such as Skype [15]. Skype, like 
RapidUpdate, includes a UDP based file transfer protocol. 

 
III. RapidUpdate 

 
 The RapidUpdate system consists of a topology server 
that coordinates distribution primarily by routing clients 
that need a file to clients that already have it. There is also 
a client that interacts with the server in order to obtain 
content when it is available either from other peers or via 
HTTP from the vendor’s servers.  
 The messaging between client and topology server is 
via the UDP based RapidUpdate protocol. In this protocol 
all communication is initiated by the client, which sends a 
request packet to the server. The server then responds to 
the client. Packet sequence numbers, coupled with a client-
side retransmit timeout, are used to provide a simple 
reliability mechanism. This strategy has several advantages 
over a TCP based protocol: 
 1. The protocol facilitates UDP NAT hole punching so 
that clients can ultimately communicate directly with each 
other. Though TCP NAT hole punching is also feasible 
through STUNT or P2PNAT, these techniques are more 
sensitive to differences in behavior between NAT routers 
and therefore ultimately less reliable [16]. 
 2. It is easier to build a highly scalable topology 
server, as there is no need to dedicate a socket per 
connected client. 
 3. UDP incurs lower overhead than TCP. In order to 
provide significant bandwidth savings even when file sizes 
are small, it is essential to keep the RapidUpdate protocol 
lightweight, so eliminating the 3-way handshake and TCP 
ACKs is critical. 
 When a client messages the server, the server initiates 
a session, and creates an in-memory client record. The 
record contains the client’s IP address and port (known as 
its tuple), and eventually also contains a list of files the 
client is serving. The client is required to refresh its session 
by sending requests at a regular interval specified by the 
server called the keepalive interval, generally set to a 
couple of minutes. If the client has nothing to send it 
should send an empty keepalive packet. The session 
persists until the server disconnects the client by setting the 
disconnect flag in a response packet, or an idle timeout 
occurs because no packet was received. 
 As stated earlier RapidUpdate relies on clients 
discovering the presence of a new update via an out-of-
band polling mechanism. When a client is ready to 
download and install the update, it first contacts the 
topology server with a file lookup request message, which 
tells the server the name of a file the client wants to obtain. 
The server responds with a file lookup response message,



which either provides the client with the tuple of another 
client to obtain that file from, tells the client to download 
the file via HTTP, or says to delay and retry in the next 
keepalive interval. When the client successfully gets a file, 
either via HTTP or from a client, it sends a cache add 
message to the server. After this point, the client sends 
keepalive messages to the server to refresh its connection 
timeout. The server may respond to these messages with a 
incoming connection message, instructing the client that it 
should expect to be used as a server, and provides the tuple 
of the client to expect a connection from. This process 
repeats until the server sets the disconnect flag in a 
response packet to the client, signaling that the client 
should cease sending packets to the server until it needs 
another file [figures 1-4]. For client-client communication, 
RapidUpdate clients use a reliable UDP file transfer 
protocol. If the receiver cannot contact the sender or gets 
poor service it will eventually time out and retry its file 
lookup request with the server. 
 This protocol works well for several reasons. Firstly, 
it is lightweight: typically, the client and server will 
exchange 8 packets total to get a file and pass it on, or 
about 600 bytes. Secondly, it gives the topology server 
flexibility in managing the client pool. If necessary, a client 
may be told to back off and wait before receiving the 
requested file, or told to get it via HTTP. A client may be 
asked to serve a file repeatedly at the discretion of the 
server. Lastly, the incoming connection message and the 
file lookup response message together mean that the 
topology server explicitly couples together client pairs 
before a file exchange takes place. In addition to being a 
good security measure (clients only accept peer 
connections from hosts blessed by the topology server), 
this a necessary step in the NAT hole punching process, as 
both clients must begin sending UDP packets to each 
other’s public tuples to establish a mapping inside each 
other’s NAT routers, thus allowing direct communication 
to take place [14]. Guha’s recent study concludes that this 
technique will work with over 80% of deployed NAT 
routers [16]. 
 Internally, the topology server has a linked list of 
available clients for each file in the system. A client is 
available if it has the file in cache and is not currently 
serving the file. The list is modified in response to the 
following events: 

 cache add—this results in both the client that sent the 
file and the client that received the file being added to the 
available list. If the receiver got the file via HTTP, then 
only the receiver is added. 
 file lookup request—first client in the available list is 
removed. This client will serve the file to the client that 
sent the file lookup request. 
 prune—the available list is used to detect spare 
capacity. Too much capacity is wasteful because these 
clients have active sessions and are sending keepalive 
packets regularly. In practice we’ve found that if the list is 
longer than 10% of the number of peer file transfers 
currently taking place, then the excess should be 
disconnected. The server trims the available list, and marks 
each client record with a flag indicating its next response 
packet should contain the disconnect flag. 
 If the available list is empty when a file lookup 
request arrives, which typically happens early on in the 
distribution (when demand for the file exceeds supply), 
then the server may either instruct the client to download 
the file via HTTP, or have it wait and retry in the next 
keepalive interval. Which action the server chooses to take 
is a function of its goal to minimize vendor bandwidth 
while meeting the specified deadline. To decide, it uses a 
simplified model of how the distribution should proceed, 
and then evaluates current conditions based on that model. 
The model we use for the distribution is a binary tree—the 
first client with the file passes it on to another, then the two 
clients pass it on to two more, and so on. The server uses 
the following pieces of information to calculate the size of 
the tree: 
 1. The number of total clients that need each file (# 
clients), necessary to calculate the tree’s height. Because 
RapidUpdate is geared towards distributing security 
content to a controlled community of clients, this number 
can be known in advance within a small margin of error. 
 2. The average upstream bandwidth of each client, 
needed to estimate the time it takes to transfer the file from 
one client to the next (ttrans). The server tracks a running 
average of this number as file transfers complete. Though 
variance of this number can be high, if the community is 
large then using the average still results in a useful model. 
 3. The file’s size, also needed to estimate ttrans. We 
assume that the file name, size, and desired distribution 

C1 C2 

TS 
file lookup 
request file lookup 

response 

Figure 1. Client 1 obtaining 
a file. Response indicates it 
should get file from client 2 

Figure 2. When client 2 next 
sends a keepalive, topology 
server instructs it to accept a 

connection from client 1 

keepalive incoming 
connection 

Figure 3. Client 2 sends 
file to client 1 

C1 

TS 

C2 C1 C2 C1 C2 

TS 
cache add 

Figure 4. Client 1 sends cache 
add to topology server, indicating 
it now has the file and is available 

to serve it 



deadline are delivered to the topology server at the time the 
file is published. 
 With this information, the topology server knows how 
much time it takes to get from one level of the tree to the 
next, and it knows the height of the tree, so it can estimate 
the total time to distribute the file (tdistr): 
 

tdistr = log2(# clients) * ttrans 
 
But because tdistr assumes only one HTTP seed, it may 
exceed the deadline. By adding HTTP seeds, the server can 
adjust the actual completion time so that it matches up with 
the deadline. Looking at it another way, the server can 
calculate at a given point in time how many clients should 
have the file if we hope to meet the deadline (sreqd). If 
fewer clients have the file, then the server can use seeds to 
catch up. sreqd is calculated as follows: 
 

telapsed = max(0, tdistr – (tdeadline – tnow)) 
 
 
  
 However, in most scenarios a binary tree in and of 
itself doesn’t accurately model the entire file distribution. 
Rather, the first phase, where demand exceeds supply, 
looks like a binary tree, but once the aggregate bandwidth 
of the peer cloud is large enough, the rate of distribution is 
gated by the rate at which clients request the file. In the 
first phase, connected clients accumulate as they are forced 
to wait for their turn to get the file, and in the second phase 
the server’s pruning algorithm acts to disconnect excess 
clients at the same rate that new clients request the file, 
keeping the number of active sessions low and constant. 
Figure 5 illustrates this phenomenon for an hour-long 
distribution where only 1 HTTP seed is used. 
 Given that, it actually lowers overall vendor 
bandwidth in some scenarios to add HTTP seeds in order to 
accelerate the transition to this second distribution phase. 
For instance, adding one additional HTTP seed would 
eliminate all the file lookup activity at the beginning and 
end of the first phase, for ttrans seconds. In general, adding 
2n seeds eliminates file lookups for n * ttrans seconds at the 
beginning and the end of the first phase. 
 To calculate approximately how many seeds are 
needed to minimize vendor bandwidth (smin), we make 
some simplifying assumptions that have proven in our 
experiments to yield good results. Specifically, we 
compute each client’s lookup bw as the size of a file lookup 
request and response pair, divided by the keepalive 
interval. We assume that on average half the clients are 
polling the server at any given time. Given that, smin is 
calculated as: 

 
smin = (lookup bw * # clients * ttrans) / file size 

 So, when the topology server processes a file lookup 
request with an empty available list, it compares the 
number of clients that have the file with sreqd. If sreqd is 
greater, then the distribution needs to be accelerated and 
the requesting client should download the file. 
Additionally, the server looks at the current number of 
clients that have downloaded the file via HTTP, and 
calculates smin. If smin is greater, then the requesting client 
should download the file, otherwise it should wait.  
 

IV. Experimental Results 
 
 In this section, we present results from testing our 
implementation of RapidUpdate. We begin with a 
description of our implementation, followed by a 
description of our experimental setup, and then present our 
goals, methodology, and results. 
 
A. RapidUpdate Implementation 
 
 The RapidUpdate server has been implemented in 
C++ and runs on Linux. We developed the RapidUpdate 
client as a library with a simple API (getfile, putfile), and 
integrated that library into a test program that instantiates 
up to 500 individual clients and performs a single file 
distribution. The clients allow the poll interval and client 
upstream bandwidth to be specified on the command line, 
and they connect and request this file at an even rate over 
the course of the poll interval. The server allows the 
distribution deadline to be specified. Finally, we developed 
a simple TFTP-like UDP file transfer protocol to use for 
client file transfers. The protocol will not work well on a 
WAN but was sufficient for our lab experiments. 
 
B. Test Setup 
 
 We used 20 dual-core 2.2 GHz Intel based machines 
with at least 8GB of RAM each as clients, and instantiated 
10 client processes for a total of 5,000 clients per machine. 
The server ran on similar hardware. We used RHEL 4 as 
our Linux distribution. The machines were connected via a 
Cisco Catalyst 4506 Gigabit Ethernet switch. 
 
C. Test Goals and Methodology 
  
 Our goal was to validate our assertion that this 
lightweight protocol combined with the algorithms for file 
distribution management offloads a substantial majority of 
vendor bandwidth, even when distributing a small file. 
Secondly, we wanted to validate that RapidUpdate is able 
to meet or exceed the specified distribution deadline in a 
variety of scenarios. Thirdly, we wanted to verify that the 
server front-loads HTTP downloads, so as to maximize 

sreqd = 2 
(telapsed / ttrans) 



their benefit and minimize their number. Finally, we 
wanted to verify that the server’s choice of smin resulted in 
an overall minimization of vendor bandwidth. 
 To measure bandwidth savings, we calculated 
observed vendor bandwidth after each test, and compared 
that to the bytes that would have been needed to distribute 
the file to all clients via HTTP (we did not figure in any 
HTTP or TCP overhead into this latter calculation). Vendor 
bandwidth was calculated using the number of HTTP seeds 
observed, and the total bytes exchanged between clients 
and the topology server. For reporting the latter value, the 
server keeps track of how many packets are received and 
sent, and their sizes. 
 We ran tests with 2 different file sizes within the 
range of today’s security content patches (40K and 150K), 
and also 10K to see how RapidUpdate would perform if 
extremely small files were used. We used 3 different 
deadlines: 15, 30, and 60 minutes, which represent 
deadlines more aggressive than most security content 
distribution systems. Each client was limited to 50kb of 
upstream bandwidth, which is conservative assuming we 
are modeling clients with broadband Internet connections. 
In all cases we used 100,000 clients as our community size, 
which was at the limit of what our test network could 
sustain without significant congestion and packet loss. The 
poll interval was always set to the deadline minus 5 min. 
Our assumption is that administrators will want to tune 
their clients to request the file over a time proportional to 
the deadline, so scaling the poll interval in this fashion 
makes sense. Finally, the keepalive interval was always set 
to 3 min. 
 
D. Test Results 
 
 Table 1 gives our results for these tests. In all cases 
RapidUpdate was able to lower vendor bandwidth 
substantially, even when distributing the 10K file. In fact, 

savings exceeded 80% except when distributing the 10K 
file in 15 min. Savings exceeded 90% when using the 30 
min deadline, regardless of file size. 
 The distribution was able to beat the deadline in all of 
these cases because the server’s initial calculation of sreqd 
led to an accurate model of how future events would play 
out. Consequently, in all these tests most HTTP seeding 
activity occurred at the very outset of the distribution, with 
only minor adjustments later on, thus minimizing the total 
number of seeds required. As an example, figure 7 shows 
the rate of seeding during 30 min test with a 150K file. 
 Comparing figure 6 to figure 5 illustrates the 
improvement when the server uses smin to minimize 
connected clients by accelerating the transition to phase 2 
of the distribution and keeping the number of connected 
clients low. The server calculated smin in this case as 2161 
HTTP seeds. By adding those seeds, bandwidth savings 
jumped from 70.6% to 85.33%, because the number of 
packets exchanged with the topology server was much 
lower. 
 To ascertain whether this choice of smin resulted in the 
greatest overall bandwidth savings, we re-ran this same test 
several times, forcing the server to pick a specific number  
 
 
Deadline 
(min) 

File size  
(KB) 

% savings Num 
seeds 

Beat 
deadline by 

15 150 83 16162 4 s 
30 150 97.88 728 74 s 
60 150 98.67 157 140 s 
15 40 84.19 12434 7 s 
30 40 94.46 512 98 s 
60 40 95.74 552 158 s 
15 10 71.31 16162 4 s 
30 10 90.06 436 7 s 
60 10 85.33 2161 168 s 
 

Phase 1 

Phase 2 

Figure 6. Same test parameters as in Figure 5, 
but server uses smin to accelerate the transition 
to phase 2. Connected clients remain low 
throughout, significantly improving the savings 
in vendor bandwidth. 

Phase 2 

Figure 5. File distribution to 100,000 clients with 1 
hour deadline, 1 HTTP seed, 3m poll interval. The 
black line is the number of clients that have the file, 
the grey line is the number of connected clients. The 
vertical line separates phase 1 from phase 2. 

Figure 7. HTTP seeds 
per second (150K file, 
30m deadline) as a 
function of time. 
Seeding activity is high 
at the beginning and 
quickly tails off. 

Table 1. Test results 

Table 1. Test results 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of seeds each time. We then computed the bandwidth 
savings in each test, and graphed the results [figure 8]. 
Though the server’s actual choice of number of seeds was 
not the absolutely optimal one, it was extremely close. We 
also repeated this same technique with other file sizes and 
the shape of the curve was the same, leading us to believe 
that the algorithm works well independent of the specific 
parameters we chose. 

 
V. Conclusion and Future Work 

 
 We have presented RapidUpdate, the first peer-
assisted patch distribution system geared towards 
distributing security content. Unlike other peer-assisted or 
P2P file distribution systems, RapidUpdate is able to 
offload a vast majority of the bandwidth required to 
distribute a file, even for small files. It additionally allows 
the administrator to set a distribution deadline, with the 
topology server automatically managing the distribution to 
meet the deadline. Our experiments show that the topology 
server’s algorithms for seeding the file and managing the 
client pool work effectively in a controlled lab setting. 
Future work focuses on analyzing how well the algorithms 
hold up in a more chaotic WAN environment. 
 
Bibliography 
 
[1]  http://kaspersky.com/updates.html 
[2]  http://symantec.com/avcenter/defs.download.html 
[3]  http://torrent.fedoraproject.org 
[4]  L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. 
 Zhang. Measurements, analysis, and modeling of 
 BitTorrent-like systems. Internet Measurement 
 Conference, October 2005.  

 [5] G. Huston. IPv4 Exhaustion Nears. The ISP 
 Column, July 2007. 
[6]  K. Skevik, V. Goebel, T. Plagemann. Analysis of 
 BitTorrent and its use for the design of a P2P based 
 streaming protocol for a hybrid CDN. Delft  University 
 of Technology Parallel and Distributed Systems 
 Report Series, June 2004. 
[7]  C. Gkantsidis, T. Karagiannis, P. Rodriguez, 
 Μ. Vojnovic. Planet scale software updates. ACM 
 SigComm, September 2006. 
 [8]  B. Cohen. Incentives Build Robustness in 
 BitTorrent. Proceedings of the 1st Workshop on 
 Economics of Peer-to-Peer Systems, June 2003. 
 [9]  S. Kamvar, M. Schlosser, H. Garcia-Molina. The 
 Eigentrust algorithm for reputation management  in 
 P2P networks. Proceedings of the 12th international 
 world wide web conference, May 2003. 
 [10] G. Wu, T. Chiueh. How efficient is BitTorrent? 13th 
 Annual Multimedia Computing and Networking, 
 January 2006. 
[11] R. Sherwood, R. Braud, B. Bhattacharjee. Slurpie: 
 A Cooperatie Bulk Data Transfer Protocol. IEEE 
 Infocom, March 2004. 
[12]  D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat. 
 Bullet: High Bandwidth Data Dissemination 
 Using an Overlay Mesh. 19th ACM Symposium on 
 Operating Systems Principles, October 2003. 
 [13] J. Rosenberg, J. Weinberger, C. Huitema, R. 
 Mahy. RFC 3489: STUN—Simple Traversal of User 
 Datagram Protocol (UDP) Through Network Address 
 Translators (NATs), 2003. 
[14] B. Ford, P. Srisuresh, D. Kegel. Peer-to-Peer 
 Communication Across Network Address 
 Translators. USENIX Annual Technical 
 Conference, April 2005. 
[15] S. Baset, H. Schulzrinne. An Analysis of the 
 Skype Peer-to-Peer Internet Telephony Protocol. 
 IEEE Infocom, April 2006. 
[16] S. Guha, P. Francis. Characterization and 
 Measurement of TCP Traversal through NATs and 
 Firewalls. Internet Measurement Conference, October 
 2005. 
 

Figure 8. Bandwidth savings as a function of the number of 
seeds. The solid line was generated by varying the number 
of seeds in the 10K, 60 min test, and the dashed line was 
generated from the 40K, 60 min test. The square points are 
the number of seeds picked by smin. smin results in a close to 
optimal lowering of bandwidth. 


