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Abstract

Random peer selection is commonly used to provide
load-balancing in decentralized P2P systems. This
paper addresses two practical concerns with using
random peer selection for load balancing. The first
has to do withheterogeneous peer selection mech-
anisms that accommodate differences in capacities
of different peers. These heterogeneous selection
mechanisms are not parameter-free: Each peer as-
sumes knowledge of a particularselection-parameter,
where correctly setting the parameter requires the
knowledge of the global distribution of peer capac-
ities. In this paper, we present a method that real-
izes parameter-free random peer selection by auto-
matically computing the required parameter at each
peer, thus making the selection primitive easier to em-
ploy by P2P applications.

A second common problem addressed by this pa-
per is that of ensuring good load-balance in heavily
loaded P2P systems, where new requests that result
in more load still need to be accommodated. We give
a method that estimates the overall utilization in the
network, and adaptively determines the number of at-
tempts needed to probabilistically accommodate each
new request.

We implement both these enhancements over the
Swaplinks peer selection algorithm, and show using
experimental evaluations that they work as intended.

1 Introduction

Load balancing is an important and pervasive prob-
lem in all distributed systems. Load balancing in de-
centralized P2P systems has usually been performed
using a heterogeneous random peer selection prim-
itive: The peer used to satisfy a request is ran-
domly chosen from the entire P2P system, with high-

capacity peers preferred over lower-capacity peers.
For example, among unstructured P2P applications,
the Chunkyspread overlay multicast system [11] em-
ploys the Swaplinks unstructured random selection
algorithm [12], and the Gia file-sharing system per-
forms file-search over a graph where high-capacity
peers are easier to reach. The CFS structured P2P
storage system [2] uses heterogeneous selection to
pick peers to store files. In all of these examples,
the overhead involved in finding a single random peer
is negligible when compared to the load that sub-
sequently results from the application at the chosen
peer.

To accommodate heterogeneity, many random se-
lection algorithms take as input aselection-parameter
from the application at each peer, and (ideally) se-
lect each peer with a probability directly proportional
to the specified parameter. Unfortunately, the selec-
tion parameter impacts the peer’s overhead as well.
For example, in Swaplinks, each peer’s degree in the
overlay graph is equal (on average) to twice its selec-
tion parameter. In CFS [2], each peer spawns “vir-
tual servers” in direct proportion to the specified pa-
rameter. Thus, the higher the specified parameter, the
higher the overhead imposed on the peer.

In order to be efficient as well as accurate, the se-
lection parameters should therefore be as low as pos-
sible, while still being directly proportional to the
peers’ capacities. Correctly realizing this, however,
requires knowledge of the global distribution of ca-
pacities – we term this theglobal capacity view. It
would be unrealistic to assume that the application
knows the global capacity view at each peer. In this
paper, we describe a simple and novel method that
provides each peer with an approximate global ca-
pacity view, thereby enabling the peer to automati-
cally set the correct selection parameter. In the case
of Swaplinks, this results in the first parameter-free



random selection system.
A second, related, issue that this paper addresses is

that of load balance and request blocking on a heavily
loaded system. Consider an example network where
more than 50% and less than 75% of the peers are
overloaded.1 The first peer selected to handle a re-
quest here is unlikely to have the spare capacity re-
quired to handle the request, leading to the rejection
of the request. If requests are allowed to be retried
however, a node with enough spare capacity is likely
to be found here with a limited number of retries. On
the other hand, if the system load is excessively heavy
(say only one peer in a million not overloaded), it
would be intractable to find underloaded peers to han-
dle requests.

In this paper, we give a method that estimates the
overall system load, and adaptively tunes the num-
ber of request-retries needed to probabilistically find
a peer capable of handling each request. In addi-
tion, we can leverage the system load estimate to pro-
vide (i) Rate-control, where requests are proactively
blocked if the overall load is excessively high, and
(ii) Different qualities of service (QoS), should the
application need these features.

The above ability to work with overloaded peers
lets us overcome inaccuracies in the computation of
the selection parameter as well. If a few peers have
non-optimal selection parameters and thus are over-
loaded, it is not overly detrimental to the health of the
system: Such peers simply reject requests when they
are overloaded, resulting in the rejected requests be-
ing retried.

The two issues we address in this paper were those
we actually faced when using the Swaplinks algo-
rithm to extend the STUNT NAT traversal infrastruc-
ture [5]. Our goal here was to efficiently distribute
load across a set of nodes where node-capacities vary
widely, and where we want to allow for resource
scarcity across the entire set. The particular mech-
anisms we developed to address these issues can be
used with other random selection primitives as well.

Overall, this paper makes the following contribu-
tions:

1. Design and evaluation of a novel general param-

1We use “overloaded” here to denote a peer that is using al-
most all of its allotted capacity, and so cannot support further
requests. We use “underloaded” to refer to a peer that is not over-
loaded.

eterless approach to heterogeneous P2P load bal-
ance, resulting in a specific system (Swaplinks)
that is totally parameter-free.

2. Design and evaluation of an algorithm that can
automatically fine-tune the trade-off between re-
quest retries and request blocking.

2 Related Work

Swaplinks [12] and Gia [1] are unstructured P2P al-
gorithms that achieve load-balancing using random
walks. Both of these algorithms build graphs, as-
sign larger node degrees to nodes with higher capaci-
ties, and have a notion of the minimum degree a node
could have. Optimally setting node-degrees here re-
quires the global capacity view.

The Y0 algorithm [4] and the load-balancing al-
gorithm in CFS [2] are DHT-based and use virtual
servers. The number of virtual servers at each peer is
ideally directly proportional to its capacity; correctly
setting this number again needs the global capacity
view.

In contrast to the above schemes, the selection pa-
rameter in the KRB algorithm [13] can be set with
local knowledge alone, i.e., it does not require peers
to have the global capacity view. However, KRB has
other parameters to which it is sensitive, so is still not
parameter-free.2

There are other DHT-based load-balancing algo-
rithms that do not depend on global capacity views [9,
3, 6]. These however require that load be transferred
between different peers in the presence of network
churn. This approach only works where jobs can be
preempted and shipped to different nodes before com-
pletion, limiting its applicability.

We believe that this paper is the first to realize
an acceptable response rate in heavily loaded P2P
systems without resorting to preemption of active
jobs. The schemes mentioned in the previous para-
graph [9, 3, 6] can also realize acceptable response
rates, but assume preemption of active jobs.

The methods we use to estimate global state are
similar in aim to aggregate computation methods pro-
posed in, for example, [7] (see [8] for a survey). The
difference is that our requirements for accuracy are

2KRB is sensitive to the rate at which probes are sent be-
tween different peers and the various parameters of the Bamboo
DHT [10] that it is based on.



weaker: For example, even with some inaccuracies
in the selection-parameter computation, overall load-
balancing is still largely maintained through our use
of request-retries. This fact allows us to use simpler
and cheaper methods in our estimation.

3 Parameter-free Random Selection

In Section 1, we noted that optimally setting the
selection parameter at each peer requires that each
peer’s selection parameter be as low as possible while
also being directly proportional to the peer’s capac-
ity. There is generally a lower-bound on the selection
parameter as well: E.g., in Swaplinks, each peer’s
degree should be set to at least a minimum value to
protect against partitions. Optimally assigning the se-
lection parameter requires knowledge of the global
capacity distribution. For example, if bandwidth is
the bottleneck resource, a completely local solution
where each peer sets its selection parameter to the
value of its bandwidth in bits/second results in selec-
tion parameter values that are not the lowest possi-
ble.3

We use repeated sampling to automatically pro-
vide peers with an approximate global-capacity view,
allowing each peer to independently set the selec-
tion parameter, thus freeing the application from this
responsibility. By “sampling”, we simply mean a
method that informs peers about capacities of other
peers in the system in a random fashion. We assume
that the application at each peer is capable of gauging
theabsolute capacity of the peer: the absolute capac-
ity is the total bottleneck-resource (e.g., bandwidth in
a file-sharing application) that the peer is willing to
commit. We realize the sampling method by having
each peer selected to service a request note the capac-
ity of the peer that initiated the request. Assuming
that all peers are sending requests frequently enough
and at about the same rates, this results in a distribu-
tion where each peer has an approximately uniform
global capacity-view. When the request-sending rate
is too low, we might need to launch dummy “sample-
requests” in order to generate enough samples, but
since a low request rate also means a low overall sys-

3On the other hand, if we reduce the value of the selec-
tion parameter by setting it to the value of the bandwidth in
megabits/second, the parameter could now be smaller than the
allowed minimum (and coarser-grained than required as well).

tem load, we believe this will not be necessary. When
the request rate is naturally large however, the speci-
fied method has the advantage that it incurs no extra
overhead, since each instance of sampling is essen-
tially piggybacked on the existing request servicing
method.

Each peer compiles a fixed-size window of the
most recently seen samples, and uses this to com-
pute its selection parameter. Let us denote bycmin

the minimum capacity of any peer in the window, and
by pmin the minimum value allowed for the selection
parameter. Since the selection parameter should be as
low as possible, a peer that has capacitycmin should
have a selection parameter equal topmin. The next
requirement of direct proportionality dictates that the
selection parameterp of a peer with capacityc be set
as follows:

p = c ×
pmin

cmin

(1)

The use of the window of recent samples lets the
method naturally adapt to churn. We however mod-
ify the actual selection parameter only when it differs
from the value as given by the above equation by more
than 10%. This avoids repeated unnecessary changes
in the selection parameter. An additional method (not
currently implemented) we could use to avoid wide
fluctuations caused by outliers is to setcmin to the5th

percentile value of the capacities in the window, in-
stead of the absolute minimum. This makes it more
likely that all peers settle on about the samecmin.

We note here that our selection-parameter compu-
tation might occasionally lead to non-optimal values,
owing to its distributed nature, and its approximation
of the global state from limited information. How-
ever, our use of request-retries (Section 4) lets us
naturally overcome these imperfections: Overloaded
peers do not accept further requests, leading to such
requests eventually finding underloaded peers.

We implement the above scheme on the Swaplinks
heterogeneous selection algorithm [12] resulting in
the first completely parameter-free heterogeneous se-
lection primitive. In the original Swaplinks scheme,
the only parameter a node needs is its target degree
in the overlay graph, which we set equal to twice its
selection parameter. The selection parameter needs to
be an integer here, so we round the value computed in
Equation 1 to get the selection parameter.



4 Adaptivity Under Heavy Load

In this section, we focus on the problem of ensuring
acceptable request-response rates in heavily loaded
P2P systems. We assume the paradigm where the ap-
plication at each peer uses no more than the amount
of resource allotted to it. This means that if a peer is
already close to its allotted maximum load, and if the
peer is selected to service a subsequent request, the
request is dropped. We term thisadmission-control.

To ensure that requests are responded to satisfacto-
rily, we have the following goal: Each request should
be successfully handled with probability at least equal
to a givenassurance value. We denote this the as-
surance requirement. The assurance value typically
would be a high constant (say 90%) across the sys-
tem.

In a heavily loaded system, admission control re-
sults in a substantial portion of the requests getting
dropped. But unless the system isfully loaded, there
would still be (many) underloaded peers in the sys-
tem that are capable of handling new requests. In
order to satisfy the assurance requirement, we allow
dropped requests to be retried multiple times, thereby
increasing the likelihood that an underloaded peer is
found. We determine the number of retries needed
as follows: Iff is the probability that a selected peer
turns out to be too overloaded to handle a request, and
n the number of attempts needed in all,(1−fn) is the
probability that at least one attempt was successful in
finding an underloaded peer, resulting in the follow-
ing equation:

n = ⌈logf (1 − assurance)⌉ (2)

We termf , the probability that a selected peer is
overloaded, thefailure probability. If all peers know
this value, they can use the above equation to find the
number of retries needed. We again use a sampling
method to estimatef . Whenever a peerA initiates a
request that results in the selection of peerB, A con-
veys toB a 1-bit indicator (1 or 0) of whether it is
currently overloaded or not, and its selection parame-
ter. Each peer then estimatesf as follows:

f =
Σi (overi · pi)

Σipi

(3)

whereoveri is the 1-bit overload indicator, andpi the
selection parameter conveyed in theith sample. The

weighting bypi in the above equation accounts for
the fact that peers are selected in proportion to their
selection parameter. We use a fixed-size window of
the most recently seen samples in this computation.
We note that a request is rejected if all then attempts
fail to find an underloaded peer.

In our implementation of this solution over
Swaplinks, we useextensions rather than outright re-
tries. Swaplinks uses fixed-length random walks for
selection; an extension is where the walk is extended
by one hop when the node found by the walk turns
out to be overloaded. Use of extensions reduces the
imposed load by an order of magnitude, while its se-
lection quality is comparable to using new full-length
walks [12].

An alternative to the above solution is to modify
each peer’s selection parameter as a function of how
loaded it is: If it is close to being overloaded, it would
reduce its selection parameter to prevent new requests
from finding it, and vice-versa. This solution how-
ever is inherently unstable. For example, if most of
the peers in the system are close to being overloaded,
it results in an avalanche of selection parameter re-
ductions, since the reductions do not really help in
reducing theoverall load on the system.

Equation 2 suggests that the number of attempts
needed increases rapidly asf gets very close to 1. Our
estimate off can be used here to proactively block
requests when thef -estimate is greater than a given
threshold. This represents a form of rate-control, and
prevents flooding the system with ultimately wasteful
messages.

Another abstraction that this setup can naturally
support is that of different classes of quality of ser-
vice. Different requests here could have differing
“importances”, i.e., different desired assurances. Us-
ing Equation 2, we can compute the number of at-
tempts required in the different classes.

5 Results

The results we present in this section are of a C imple-
mentation of the Swaplinks algorithm [12], extended
with the enhancements presented in this paper. This
implementation is part of an extension of the STUNT
NAT traversal infrastructure [5]: random selection
is used here to find publicly accessiblerelay nodes
that help nodes behind NATs communicate with each
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Figure 1: Comparing actual selection parameters to
optimal values

other.
We use a network size of about 100 in our experi-

ments: the relatively small size is due to the fact that
we use a real implementation, and that we conducted
our experiments on a single (Linux) host. Unless
otherwise mentioned, peer-capacities in our experi-
ments range uniformly from 1200 to 8000 units, ex-
cept for a singlesupernode with a capacity of 50,000
units. Each experiment lasts about 45 minutes. Every
several seconds (between five and ten) each node re-
quests between 200 and 600 units of resources from
a randomly selected peer. If accepted, each request
lasts between two and five minutes. We use an assur-
ance value (Section 4) of 0.8. The selection parame-
ter in case of a Swaplinks peer is half its target degree
in the Swaplinks overlay graph, with a minimum al-
lowed valuepmin of 3. We use a window-size of 30 in
the sampling methods used to compute the selection
parameter and the failure probability.

We do not include node churn in our experiments
because we assume that robustness to churn is guar-
anteed by the selection primitive. We do include a
form of “request churn” however, because the above
pattern of random incoming requests change the spare
capacity of the system with time.

We first evaluate how well the automatic selec-
tion parameter computation works. Ideally, the se-
lection parameters are directly proportional to peer-
capacities. Each peer’s ratio of its selection parameter
to its capacity should therefore be identical, and equal
to pmin

cmin
(see Equation 1), wherecmin is the minimum

capacity across the system (1200). We see that this
optimal ratio is 3

1200
= 2.5 × 10−3.

Figure 1 shows the distance between the above
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Figure 2: Improvements due to extensions.

optimal ratio and the actual ratios of selection-
parameters to capacities, aggregated over all peers
in the system. This result shows that for a majority
of the peers (more than 70%), the selection param-
eter is within about 30% of the ideal value, indicat-
ing that the automatic selection parameter computa-
tion gives mostly acceptable results. Note again that
inaccuracies in the selection parameter can be over-
come through the use of request-retries.

We next look at how well our mechanisms cope
with heavy loads. Figure 2 shows the improvement
realized by the controlled use of extensions (Sec-
tion 4). It shows the proportion of requests rejected
and the overall utilization both with and without the
use of extensions. Utilization here is the ratio of
the total active load in the system to the total node-
capacity in the system. The plot shows that the use of
extensions improves both the likelihood that requests
are successfully handled, and the overall system uti-
lization: Without extensions, there are times when
more than 50% of requests are denied, while with ex-
tensions the proportion of rejected requests rarely ex-
ceeds 10%.

We show the overhead incurred by the use of ex-
tensions in Figure 3. In this plot, we track the number
of extensions granted to requests, aggregated over all
peers. The actual overhead incurred actually is likely
to be smaller than this figure, since the number of
extensions used is possibly smaller than the number
granted. The number of extensions granted is com-
puted using Equation 2. The result indicates that the
overhead is acceptable: No more than two or three
extensions are granted on average, and the worst case
number of extensions is limited by ten.

We next present a simple experiment that demon-
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Figure 4: Different qualities of service

strates our ability to support different qualities of ser-
vice (QoS). We have two classes of nodes, one requir-
ing a 75% assurance that requests are granted, and the
other 25%. All nodes are otherwise identical: they all
have the same capacity. Figure 4 shows the average
number of extensions granted to nodes in each service
class. As expected, peers in the 75% class use more
extensions than peers in the other class. At the start
of the experiment though, both classes show similar
behavior. This is because nodes do not act on their
failure probability estimates until they have a window
of at least 30 samples. Once nodes start accumulating
the required number samples, the two curves start to
diverge. This result shows that requests from classes
with higher required assurances use more extensions,
which results in them being accordingly more likely
to succeed.

6 Conclusions

In this paper, we identified two real problems that
come up when employing heterogeneous random se-

lection primitives for the purpose of load-balancing
in P2P applications: They are, namely, collabora-
tively determining the selection parameter, and the
problem of maintaining good request response rates
under heavy loads. We gave methods to solve both
problems, implemented them over the Swaplinks het-
erogeneous selection algorithm, and showed that the
methods work as intended through a small-scale ex-
perimental evaluation.

In terms of future work, we need to conduct a
larger-scale evaluation of the mechanisms proposed
in this paper under realistic churn rates. We should
also test the mechanisms on other peer selection prim-
itives, like the one used by CFS [2].

References
[1] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and

S. Shenker. Making Gnutella-like P2P systems scalable. In
Proc. ACM SIGCOMM, 2003.

[2] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. InProc.
ACM SOSP, 2001.

[3] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in dynamic structured P2P sys-
tems. InProc. IEEE Infocom, 2004.

[4] P. B. Godfrey and I. Stoica. Heterogeneity and load balance
in distributed hash tables. InProc. IEEE Infocom, 2005.

[5] S. Guha and P. Francis. Characterization and Measurement
of TCP Traversal through NATs and Firewalls. InProc.
IMC, 2005.

[6] D. R. Karger and M. Ruhl. New algorithms for load bal-
ancing in peer-to-peer systems. InIRIS Student Workshop,
2003.

[7] D. Kempe, A. Dobra, and J. Gehrke. Computing aggregate
information using gossip. InProc. FOCS, 2003.

[8] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. De-
mers. Active and passive techniques for group size esti-
mation in large-scale and dynamic distributed systems. In
Elsevier Journal of Systems and Software, 2007.

[9] J. Ledlie and M. Seltzer. Distributed, secure load balancing
with skew, heterogeneity, and churn. InProc. IEEE Info-
com, 2005.

[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. InProc. Usenix Annual Technical Confer-
ence, 2004.

[11] V. Venkataraman and P. Francis. Chunkyspread: Hetero-
geneous unstructured tree-based peer to peer multicast. In
Proc. ICNP, 2006.

[12] V. Vishnumurthy and P. Francis. On heterogeneous overlay
construction and random node selection in unstructured P2P
networks. InProc. IEEE Infocom, 2006.

[13] V. Vishnumurthy and P. Francis. A comparison of structured
and unstructured P2P approaches to heterogeneous random
peer selection. InProc. Usenix Annual Technical Confer-
ence, 2007.


