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Abstract capacity peers preferred over lower-capacity peers.

For example, among unstructured P2P applications,
Random peer selection is commonly used to provige Chunkyspread overlay multicast system [11] em-
load-balancing in decentralized P2P systems. Thi®ys the Swaplinks unstructured random selection
paper addresses two practical concerns with usigigorithm [12], and the Gia file-sharing system per-
random peer selection for load balancing. The figirms file-search over a graph where high-capacity
has to do withheterogeneous peer selection mech-peers are easier to reach. The CFS structured P2P
anisms that accommodate differences in capacitigérage system [2] uses heterogeneous selection to
of different peers. These heterogeneous selectisiok peers to store files. In all of these examples,
mechanisms are not parameter-free: Each peer @ overhead involved in finding a single random peer
sumes knowledge of a particulsaection-parameter, is negligible when compared to the load that sub-
where correctly setting the parameter requires tBequently results from the application at the chosen
knowledge of the global distribution of peer capageer.

ities. In this paper, we present a method that reaI-TO accommodate heterogeneity, many random se-
izes parameter-free random peer selection by ault j

: . ; n%étion algorithms take as inputsa ection-parameter
matically computing the required parameter at eag C .
: . S : fom the application at each peer, and (ideally) se-
peer, thus making the selection primitive easier to e

ploy by P2P applications. 8¢t each peer with a probability directly proportional
. to the specified parameter. Unfortunately, the selec-
A second common problem addressed by this

i that of . d load-bal i h _?6n parameter impacts the peer’'s overhead as well.
per is that of ensuring good load-balance in heavig, example, in Swaplinks, each peer’s degree in the

!oaded P2P sy_stems, where new requests that “?S%rlay graph is equal (on average) to twice its selec-
in more load still need to be accommodated. We gi N parameter. In CFS [2], each peer spawns “vir-
a method that estimates the overall utilization in tl’fﬁal servers” in- direct propo,rtion to the specified pa-

network, and adaptively thgrmines the number of imeter. Thus, the higher the specified parameter, the
tempts needed to probabilistically accommodate e3G8her the overhead imposed on the peer

new request. o
We implement both these enhancements over thdn order to be efficient as well as accurate, the se-
Swaplinks peer selection algorithm, and show usi tion parameters should therefore be as low as pos-

experimental evaluations that they work as intendect/Ple, while still being directly proportional to the
peers’ capacities. Correctly realizing this, however,

requires knowledge of the global distribution of ca-
1 Introduction pacities — we term this thglobal capacity view. It

would be unrealistic to assume that the application
Load balancing is an important and pervasive prokAows the global capacity view at each peer. In this
lem in all distributed systems. Load balancing in dgaper, we describe a simple and novel method that
centralized P2P systems has usually been perfornpedvides each peer with an approximate global ca-
using a heterogeneous random peer selection pripacity view, thereby enabling the peer to automati-
itive: The peer used to satisfy a request is ranally set the correct selection parameter. In the case
domly chosen from the entire P2P system, with highf Swaplinks, this results in the first parameter-free



random selection system. eterless approach to heterogeneous P2P load bal-
A second, related, issue that this paper addresses is ance, resulting in a specific system (Swaplinks)

that of load balance and request blocking on a heavily that is totally parameter-free.

loaded system. Consider an example network wher@. Design and evaluation of an algorithm that can

more than 50% and less than 75% of the peers are automatically fine-tune the trade-off between re-

overloaded! The first peer selected to handle a re- quest retries and request blocking.

guest here is unlikely to have the spare capacity re-

quired to handle the request, leading to the rejecti
of the request. If requests are allowed to be retrigI Related Work

however, a node W.'th en_oqgh spare capaC|ty_|s IIkell‘}(/vaplinks [12] and Gia [1] are unstructured P2P al-
to be found here with a limited number of retries. On

the other hand. if th tem load i velv h orithms that achieve load-balancing using random
€ otherhand, Ithe sysiem load s excessvely Neai¥ ks, Both of these algorithms build graphs, as-
(say only one peer in a million not overloaded), it

. . sign larger node degrees to nodes with higher capaci-
\c/jvl(;urlsqk;eelsr:;ractable tofind underloaded peers to he}?e_s, and have a notion of the minimum degree a node

. . . ould have. Optimally setting node-degrees here re-
In this paper, we give a method that estimates t’ae P y g g

I i load d adaptivelv t h tires the global capacity view.
overall system load, and adaptively tunes the nuM-ry . y o qrithm [4] and the load-balancing al-

ber of request-retries nee_ded to probabilistically fi fithm in CFS [2] are DHT-based and use virtual
a peer capable of handling each request. In ad I

i I th temn load estimate t rvers. The number of virtual servers at each peer is
'on, we can leverage he system foad estimate to pflt?éally directly proportional to its capacity; correctly
vide (i) Rate-control, where requests are proactive tting this number again needs the global capacity
blocked if the overall load is excessively high, an

N g ) view.
(i) Different qualities of service (QS), should the In contrast to the above schemes, the selection pa-

apglr:catlgn nee(;_;[_r: este featLlires_ih loaded rameter in the KRB algorithm [13] can be set with
€ above ability 1o work with overioade peerﬁg?al knowledge alone, i.e., it does not require peers

lets us overcome inaccuracies in the computation Lo
the selection parameter as well. If a few peers hato have the global capacity view. However, KRB has
P ' P er parameters to which it is sensitive, so is still not

non-optimal selection parameters and thus are over-
P P arameter-free?

loaded, it is not overly detrimental to the health ofthe 1 "« iher DHT-based load-balancing algo-

system: Such peers simply reject requests when thﬁ%ms that do not depend on global capacity views [9,

%rge r(;\:ﬁggaded, resulting in the rejected requests ,eB]. These however require that load be transferred

. N between different peers in the presence of network
The two issues we address in this paper were tho%e i .
churn. This approach only works where jobs can be

we actually faced when using the Swaplinks alg%reempted and shipped to different nodes before com-

rithm to extend the STUNT NAT traversal infrastruc-, .. o S
ture [5]. Our goal here was to efficiently distributgletlon’ limiting its applicability.
' We believe that this paper is the first to realize

load across a set of nodes where node-capacities vary . .
. an’acceptable response rate in heavily loaded P2P
widely, and where we want to allow for resourc

’ . . stems without resorting to preemption of active
scarcity across the entire set. The particular mech:

. . obs. The schemes mentioned in the previous para-
anisms we developed to address these issues ca

ed with other random selection orimitives as well r %h [9, 3, 6] can also realize acceptable response
used wi rr s ion primitives as w rates, but assume preemption of active jobs.

t'o(n)v'erall, this paper makes the following contribu- The methods we use to estimate global state are
1ons- similar in aim to aggregate computation methods pro-

1. Design and evaluation of a novel general parafPsed in, for example, [7] (see [8] for a survey). The

difference is that our requirements for accuracy are
We use “overloaded” here to denote a peer that is using al-

most all of its allotted capacity, and so cannot supporthient 2KRB is sensitive to the rate at which probes are sent be-
requests. We use “underloaded” to refer to a peer that isvest o tween different peers and the various parameters of the Bamb
loaded. DHT [10] that it is based on.




weaker: For example, even with some inaccuracitsn load, we believe this will not be necessary. When

in the selection-parameter computation, overall loatihe request rate is naturally large however, the speci-

balancing is still largely maintained through our usfiied method has the advantage that it incurs no extra

of request-retries. This fact allows us to use simpleverhead, since each instance of sampling is essen-

and cheaper methods in our estimation. tially piggybacked on the existing request servicing
method.

Each peer compiles a fixed-size window of the
most recently seen samples, and uses this to com-

In Section 1, we noted that optimally setting thgute |.ts. selection pgran;eter. Let.ushdengtzcgyn q
selection parameter at each peer requires that eH?:%m'”'mum capacity of any peer in the window, an

peer’s selection parameter be as low as possible wilElmin the rSn_lnlmuhm va:ue allowed for the sheleli;ugn
also being directly proportional o the peer's capaParameter. Since the selection parameter should be as

ity. There is generally a lower-bound on the selecticlﬂw as pos|5|b!e, a peer that has capac;;ynhshould
parameter as well: E.g., in Swaplinks, each peepé\’e a selection parameter equalpig,. The next

degree should be set to at least a minimum Valuer%quirement of direct proportionality dictates that the

protect against partitions. Optimally assigning the Sgglectlon parametgr of a peer with capacity be set

3 Parameter-free Random Selection

lection parameter requires knowledge of the glob&F fOllows:
capacity distribution. For example, if bandwidth is p=cx Dmin (1)
the bottleneck resource, a completely local solution Cmin

where each peer sets its selection parameter to the )
value of its bandwidth in bits/second results in selec- The use of the window of recent samples lets the

tion parameter values that are not the lowest posdl€thod naturally adapt to churn. We however mod-
ble3 ify the actual selection parameter only when it differs

We use repeated sampling to automatically prgpm the value as given by the above equation by more

vide peers with an approximate global-capacity vie\_man 10%. This avoids repeated unnecessary changes

allowing each peer to independently set the seIé@-the selection parameter. An additional method (not

tion parameter, thus freeing the application from thf&IMently implemented) we could use to avoid thW'de
" we simply mean a{luctuatlons caused by outliers is to sg};,, to theb

responsibility. By “sampling”, ) S ) )
method that informs peers about capacities of otfrcentile value of the capacities in the window, in-
ad of the absolute minimum. This makes it more

peers in the system in a random fashion. We assuﬁﬁ%
that the application at each peer is capable of gaugli§!y that all peers settle on about the samg,..

the absolute capacity of the peer: the absolute capac- We note here that our selection-parameter compu-
ity is the total bottleneck-resource (e.g., bandwidth tation might occasionally lead to non-optimal values,
a file-sharing application) that the peer is willing t§Wing to its distributed nature, and its approximation
commit. We realize the Samp"ng method by havir@ the gIObaI state from limited information. How-
each peer selected to service a request note the ca4gL, our use of request-retries (Section 4) lets us
ity of the peer that initiated the request. Assumirgaturally overcome these imperfections: Overloaded
that all peers are sending requests frequently enol§ers do not accept further requests, leading to such
and at about the same rates, this results in a distrigdquests eventually finding underloaded peers.

tion where each peer has an approximately uniformWe implement the above scheme on the Swaplinks
global capacity-view. When the request-sending rdteterogeneous selection algorithm [12] resulting in
is too low, we might need to launch dummy “sampldhe first completely parameter-free heterogeneous se-
requests” in order to generate enough samples, gtion primitive. In the original Swaplinks scheme,
since a low request rate also means a low overall sylse only parameter a node needs is its target degree
in the overlay graph, which we set equal to twice its

30n the other hand, if we reduce the value of the seleg- . .
tion parameter by setting it to the value of the bandwidth %elecuon parameter. The selection parameter needs to

megabits/second, the parameter could now be smaller trean B¢ @n _integer here, so we rO_Und the value computed in
allowed minimum (and coarser-grained than required agwell Equation 1 to get the selection parameter.




4 Adaptivity Under Heavy L oad weighting byp; in the above equation accounts for
the fact that peers are selected in proportion to their

In this section, we focus on the problem of ensuringlection parameter. We use a fixed-size window of

acceptable request-response rates in heavily loagiesl most recently seen samples in this computation.

P2P systems. We assume the paradigm where the\§B-note that a request is rejected if all thattempts
plication at each peer uses no more than the amosjt o find an underloaded peer.

of resource allotted to it. This means that if a peeris|n our implementation of this solution over

already close to its allotted maximum load, and if tl@/\/ap”nks’ we usextensions rather than outright re-
peer is selected to service a subsequent request,t#e®. Swaplinks uses fixed-length random walks for
request is dropped. We term tadmission-control.  selection; an extension is where the walk is extended
To ensure that requests are responded to satisfagipone hop when the node found by the walk turns
rily, we have the following goal: Each request shoulgut to be overloaded. Use of extensions reduces the
be successfully handled with probability at least equghposed load by an order of magnitude, while its se-
to a givenassurance value. We denote this the astection quality is comparable to using new full-length
surance requirement. The assurance value typicaifylks [12].
would be a high constant (say 90%) across the sysan alternative to the above solution is to modify
tem. each peer’s selection parameter as a function of how
In a heavily loaded system, admission control rgsaded it is: If it is close to being overloaded, it would
sults in a substantial portion of the requests gettipgduce its selection parameter to prevent new requests
dropped. But unless the systenfitly loaded, there from finding it, and vice-versa. This solution how-
would still be (many) underloaded peers in the Sygver is inherently unstable. For example, if most of
tem that are capable of handling new requests. tHe peers in the system are close to being overloaded,
order to satisfy the assurance requirement, we all@wesults in an avalanche of selection parameter re-

dropped requests to be retried multiple times, therefiyctions, since the reductions do not really help in
increasing the likelihood that an underloaded peeryisgucing theoverall load on the system.

found. We determine the number of retries neededgquation 2 suggests that the number of attempts

as follows: If /' is the probability that a selected peefeeded increases rapidly Agets very close to 1. Our
turns out to be too overloaded to handle a request, @¥imate off can be used here to proactively block
n the number of attempts needed in @ll- /) isthe requests when th¢-estimate is greater than a given
probability that at least one attempt was successfultteshold. This represents a form of rate-control, and
finding an underloaded peer, resulting in the follovgrevents flooding the system with ultimately wasteful

ing equation: messages.
Another abstraction that this setup can naturally
n = [logs(1 — assurance)] (2) support is that of different classes of quality of ser-

We term f, the probability that a selected peer i¥ice. Different requests here could have differing
overloaded, théailure probability. If all peers know Importances”, i.e., different desired assurances. Us-
this value, they can use the above equation to find A€ Equation 2, we can compute the number of at-
number of retries needed. We again use a sampli§§Pts required in the different classes.
method to estimatg¢. Whenever a peeA initiates a
request that regu!ts i.n the selection of pBeA con- 5 Results
veys toB a 1-bit indicator (1 or 0) of whether it is

currently overloaded or not, and its selection paramgne results we present in this section are of a C imple-
ter. Each peer then estimatéss follows: mentation of the Swaplinks algorithm [12], extended
with the enhancements presented in this paper. This
(3) implementation is part of an extension of the STUNT
NAT traversal infrastructure [5]: random selection
whereover; is the 1-bit overload indicator, ang the is used here to find publicly accessibigay nodes
selection parameter conveyed in # sample. The that help nodes behind NATs communicate with each

Y (over; - p;)

f= ipi
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Figure 1. Comparing actual selection parameters to Figure 2: Improvements due to extensions.

optimal values
optimal ratio and the actual ratios of selection-

other. parameters to capacities, aggregated over all peers
We use a network size of about 100 in our expeii the system. This result shows that for a majority
ments: the relatively small size is due to the fact thaf the peers (more than 70%), the selection param-
we use a real implementation, and that we conducti@r is within about 30% of the ideal value, indicat-
our experiments on a single (Linux) host. Unledsg that the automatic selection parameter computa-
otherwise mentioned, peer-capacities in our expelien gives mostly acceptable results. Note again that
ments range uniformly from 1200 to 8000 units, expaccuracies in the selection parameter can be over-
cept for a singlesupernode with a capacity of 50,000 come through the use of request-retries.
units. Each experiment lasts about 45 minutes. EveryWe next look at how well our mechanisms cope
several seconds (between five and ten) each nodewigh heavy loads. Figure 2 shows the improvement
quests between 200 and 600 units of resources fregalized by the controlled use of extensions (Sec-
a randomly selected peer. If accepted, each requist 4). It shows the proportion of requests rejected
lasts between two and five minutes. We use an assned the overall utilization both with and without the
ance value (Section 4) of 0.8. The selection paramsse of extensions. Ultilization here is the ratio of
ter in case of a Swaplinks peer is half its target degréee total active load in the system to the total node-
in the Swaplinks overlay graph, with a minimum aleapacity in the system. The plot shows that the use of
lowed valuep,,;, of 3. We use a window-size of 30 inextensions improves both the likelihood that requests
the sampling methods used to compute the selectame successfully handled, and the overall system uti-
parameter and the failure probability. lization: Without extensions, there are times when
We do not include node churn in our experimentsore than 50% of requests are denied, while with ex-
because we assume that robustness to churn is gtensions the proportion of rejected requests rarely ex-
anteed by the selection primitive. We do include Geeds 10%.
form of “request churn” however, because the aboveWe show the overhead incurred by the use of ex-
pattern of random incoming requests change the sp@esions in Figure 3. In this plot, we track the number
capacity of the system with time. of extensions granted to requests, aggregated over all
We first evaluate how well the automatic seleg@eers. The actual overhead incurred actually is likely
tion parameter computation works. Ideally, the s& be smaller than this figure, since the number of
lection parameters are directly proportional to peezxtensions used is possibly smaller than the number
capacities. Each peer's ratio of its selection paramegeganted. The number of extensions granted is com-
to its capacity should therefore be identical, and equmlted using Equation 2. The result indicates that the
to ’Z"—n (see Equation 1), whes,;,, is the minimum overhead is acceptable: No more than two or three
capacity across the system (1200). We see that tligensions are granted on average, and the worst case
optimal ratio is% =2.5x 1073, number of extensions is limited by ten.
Figure 1 shows the distance between the abovéNe next present a simple experiment that demon-



Number of Extensions Needed

‘ lection primitives for the purpose of load-balancing
in P2P applications: They are, namely, collabora-
” ] tively determining the selection parameter, and the
| problem of maintaining good request response rates
under heavy loads. We gave methods to solve both
problems, implemented them over the Swaplinks het-
erogeneous selection algorithm, and showed that the
methods work as intended through a small-scale ex-
perimental evaluation.
»»»»»»» - ;b”” In terms of future work, we need to conduct a
Time (min) larger-scale evaluation of the mechanisms proposed
in this paper under realistic churn rates. We should
also test the mechanisms on other peer selection prim-
itives, like the one used by CFS [2].
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Figure 3: Cost of request retries
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