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Abstract

Key based routing (KBR) enables peer-to-peer ap-
plications to create and use distributed services. KBR
is more flexible than distributed hash tables (DHT).
However, the broader the application area, the more
important become performance issues for a KBR ser-
vice.

In this paper, we present a novel approach to
provide a generic KBR service. Its key idea is to use a
predictable address assignment scheme. This scheme
allows peers to calculate the overlay address of the
node that is responsible for a given key and application
ID. A public DHT service such as OpenDHT can then
resolve this overlay address to the transport address
of the respective peer.

We compare our solution to alternative proposals
such as ReDiR and Diminished Chord. We conclude
that our solution has a better worst case complexity for
some important KBR operations and the required state.
In particular, unlike ReDiR, our solution can guarantee
a low latency for KBR route operations.

1. Introduction

Over the last years, peer-to-peer (P2P) overlay net-
works have become more and more popular. At the
beginning, file-sharing was the only major application
of that new paradigm. Meanwhile, the P2P application
landscape evolved into a rich set of various applica-
tions in multiple fields, such as games, content distri-
bution and Internet telephony. Dabek et al. [1] found
that many seemingly different P2P applications such
as, e. g. , Distributed Hash Tables (DHT), Application
Layer Multicast (ALM), and Decentralized Object
Location and Routing (DOLR), can be built upon a
common API, the Key Based Routing (KBR) interface.
Recently, this KBR interface has been implemented as
a network layer routing protocol [2] [3], too.

The basic KBR API primitive is route(key,

value), where the application dependent key is
hashed into a virtual address space that is common
to all applications using the same KBR system. Every
node handles the received value in some manner,
depending on the application type. These endpoint
operations may be more complex than just the storage
and retrieval of objects which are offered by a DHT.
For example, a distributed database may evaluate a
non-trivial query, an online game may perform a non-
trivial update of its distributed state. So, generic DHTs
such as OpenDHT [4] cannot directly support all
potential KBR applications.

In this paper, we address the question: How can
we efficiently provide a generic KBR service to a
potentially large set of applications?

To this end, we first briefly discuss two naive
solutions: (1) all applications straight forwardly share
one KBR overlay, and (2) each application builds its
own KBR overlay. We argue that the first solution
is impractical because nodes and applications might
be too heterogeneous. For example, a bandwidth con-
strained node could still run a small bandwidth KBR
application. But it should not be bothered with high
volume traffic. This could be the case when all appli-
cations naively used one KBR overlay. Furthermore,
we argue that the second solution is inefficient in terms
of bootstrapping and maintenance effort.

We then propose a new KBR overlay system that
combines a basic DHT overlay with application spe-
cific KBR overlays. We show that each of these KBR
overlays has a significantly lower state and mainte-
nance complexity than a full-fledged KBR overlay.

This paper is structured as follows: We first state
the problem this paper deals with in section 2. In sec-
tion 3 we briefly review related work. Then, section 4
gives an overview over our design considerations. We
present our solution in section 5 and compare it to
other solutions in section 6. In section 7 we conclude
with an outlook to future work.



2. Problem Statement

As said above, many applications can benefit from a
KBR service. For the purpose of this paper, we assume
that such a service shall forward any message of an
application or service type A to that node that runs an
instance of A and whose ID is closest to the message
destination.

This requirement can be met most easily if each
application builds up its own independent KBR over-
lay. Obviously, here, the required amount of state and
communication effort scales linearly with the number
of applications. Especially, the need to run the mes-
sage intensive stabilization protocols independently for
each application would lead to a significant waste of
bandwidth.

Another simple solution would be one global KBR
overlay where each application instance joins with
its own identifier. For example, a node N with ap-
plications Ai could join with the concatenated IDs
(Ai : N). This means that the different applications
populate different regions in the KBR address space.
This is impractical for many purposes. Furthermore,
each application instance would again need to stabilize
on its own. In case of the concatenated IDs (N : Ai)
all applications of one node are virtual neighbors in
the KBR overlay. Thus they can share their stabiliza-
tion overhead. However, each node has to store and
maintain additional state for each application that it
does not run so that it can forward these messages to
the node closest in the ID space that does run that
application.

In this paper we discuss how a KBR overlay can
efficiently provide seemingly the same service as in-
dependent per-application KBR overlays would do. We
present two insights about KBR overlays whose com-
bination yields an efficient solution to this problem. Of
course, other authors have already addressed similar
overlay designs. We will briefly review the relevant of
them in section 3. We believe that our proposal has
significant advantages over all of them.

3. Related Work

Several authors have already discussed how to pro-
vide KBR services for multiple applications. Depend-
ing on the authors the different application domains
are called “namespace” [4], “subgroup” [5], or “clus-
ter” [6].

In their work on OpenDHT [4] Rhea et al. also
proposed ReDiR, a recursive distributed rendezvous

scheme. It uses a shared DHT to construct a per-
application (per-namespace) KBR system. ReDiR di-
vides the DHT address space in partitions at different
levels. Each partition in each level contains one ren-
dezvous point (RP) for one application. A partition of
level i covers b sub-partitions of level i + 1, where
b is often set to 2. At the finest level, a RP stores
the addresses of all the nodes in this partition that run
the respective application. RPs in coarser levels just
store the extremal node addresses for each of their sub-
partitions.

For routing a lookup message for a given key in
a given namespace, ReDiR first computes the RP at
the finest partition level for the message destination. A
node query message is sent to this RP. If there is no
hit, ReDiR uses the RPs in coarser levels to recursively
look up the node that the requested namespace belongs
to.

Karger et al. [5] proposed Diminished Chord for
the formation of subgroups in a Chord overlay. Each
subgroup corresponds to a binary search tree that is
embedded into the Chord ring. These trees are rooted at
the hashed name of the subgroup. When a node joins a
subgroup, it registers with one other node in the Chord
ring. Note that this node does not necessarily belong to
the same subgroup. But there is a well defined process
to retrieve the stored information from the embedded
tree. It is guaranteed that a node stores information
about only up to one other node for each subgroup
that exists in the entire system.

For routing a key within a subgroup, it is first routed
according to the regular Chord rules. Then the binary
search tree is traversed to find the actual destination
node. This requires the Chord ring to be equipped
with additional pre-fingers. Both steps take O(log N)
overlay hops on average.

Ganesan et al. [7] proposed “Canon”, a general
technique to construct hierarchical DHTs. In Canon,
each subdomain has its individual overlay. Nodes in
one subdomain merge into a larger overlay network
by adding links to nodes in the other DHT domains.
Cyclone [6] uses an idea similar to Canon to merge in-
dividual Chord rings into one hierarchy. Unlike Canon,
Cyclone uses a suffix which is appended to the node
ID. This results in a more uniform distribution of the
Cyclone nodes in the Chord ring. But as described in
section 2 it requires additional state at the nodes.

Joung et al. [8] suggest a two tier Chord to reduce
the overhead required by stabilizing the Chord ring.
Stable nodes become super peers in the first tier Chord
ring. All other nodes form the second tier Chord ring.
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A binary search tree that is embedded in the second tier
Chord ring enables each node to find its closest super
node. Thereby, the complexity of join/leave operations
is reduced from O(log2 N) to O(log N).

4. Overview and Design Considerations

Our proposal is based on two observations:
1. In a KBR overlay such as Chord, each node

stores O(log N) fingers where N is the total number
of nodes. Thus, in total, there are N ·O(log N) fingers
stored distributedly in the entire system. Each finger
is a tuple that maps a KBR address I to a transport
endpoint T in the underlying network, e. g. an IP
address and port number. Thus, a KBR overlay is a
distributed implementation of that mapping I → T .

In fact, this implementation is quite redundant: In
an overlay with N uniquely identified nodes there
exist actually only N different fingers altogether. This
redundancy is costly, not only in terms of space but
more importantly in terms of maintenance overhead.

2. Assume an idealized Chord ring with address
space [0, 1[. Assume further that the nodes join se-
quentially at 0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , . . . Then, given the
own address and the predecessor’s address, a node can
(almost exactly) calculate which node is responsible
for any given KBR address. Here, ‘almost exactly’
means that in up to 50% of the cases the calculation
may erroneously yield the responsible node’s direct
virtual neighbor. Summarizing this insight we can say
that if the nodes join the KBR overlay in such a
predictable pattern, we have a mapping I → I1,2 where
either I1 or I2 is known to be responsible for I .

From these two observations we can construct an
efficient KBR overlay for multiple applications. To see
this, let us start with our design goal:

If it was not for the efficiency, we would like each
application to have their own KBR overlay. In other
words, we want to perform the lookup (I,A) → T
where T denotes the transport address of the node
running application A and whose ID is closest to I .
Assume that the nodes that run an instance of applica-
tion A are assigned their application specific identifiers
IA in a predictable pattern (as described above). Then
we know that there is an application specific mapping
(I,A) → {I1, I2} where either I1 or I2 are responsible
for I with respect to application A. A global KBR
overlay can then map (I1,2, A) → T1,2. Note that this
global KBR overlay needs only O(log N) state per
node and can perform this lookup in O(log N) steps.

We elaborate on this idea and present an in-depth
analysis of its scaling behavior in the following section.

5. A Light-weight Application Overlay

In order to accommodate the different application
types we extend the KBR API to route({key,
app-id}, value). Upon joining the KBR overlay
for an application A, the node obtains a KBR address
IA for that application. Thus, in general, the node has
different IDs for its different applications. But unlike
with the naive approach, the node does not need to
join a KBR overlay for each application. It only needs
to register with a DHT which stores the mapping of
these application keys to transport addresses in the
underlying network. Similar to ideas from Joung et al.
[8] this DHT could be formed of the rather powerful
and stable nodes, only. For the purpose of this paper,
we propose to use OpenDHT here.

5.1. Addressing Scheme

Unlike many other KBR overlays where nodes
are assigned random overlay addresses, here, the ap-
plication overlay addresses are assigned sequentially
according to the following pattern:{

addr0 = 0
addri = 2m

2k · (i− 2k + 1
2) for i ≥ 1 (1)

where m denotes the size of the application address
space and k = dlog2 ie denotes the division depth of
the application ring.

In fig. 1 the application ring can accommodate up
to 16 nodes (m = 4). In the figure, 10 nodes have
already been assigned. The allocation sequence is: {0,
8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15}. This
is a pre-order walk through a binary tree (cf. fig. 2).

5

Last joined node

Address allocator

Next address to allocate
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Fig. 1. Application overlay ring with 10 appli-
cation instances already assigned

This addressing scheme distributes the application
addresses uniformly in the address space. If there are
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Fig. 2. Address allocation tree

exactly 2k application instances in the system, this
distribution is strictly uniform. In any case, we have
the following lemma:

Lemma 1. Let the address density at a given node
be the average multiplicative inverse of the distance
between that node and its neighbors in the application
overlay ring. The ratio of all address densities in the
ring will always be less than or equal to 2.

We omit the formal proof because of the limited
space. Just consider the example in fig. 1. There exist
two address densities. For some nodes the density is 1

2
(e. g. node 10), for some it is 1 (e. g. node 1). For node
0 and node 4 the density is 3

4 . This special property of
node 0 and 4 (in this example) is used for the address
allocation process.

5.2. Address Allocation

The particular sequential order of the address as-
signment requires coordination. Therefore, we assign
the node that has non-equal distances to its neighbors
in the address ring the role of an address allocator. If
the ring contains exactly 2k nodes, node 0 will assume
that role. If the sequential order has been temporarily
disturbed because nodes have left the ring, multiple
nodes have non-equal distances to their neighbors, and
thus multiple address allocators exist.

There are two ways to bring a joining node together
with the address allocator: 1. The address allocator
registers its transport address with the DHT using the
hashed application ID as key. A newly joining node
queries the DHT for the current address allocator and
sends it a join request. 2. Newly arriving nodes register
with the DHT, and the address allocator regularly polls
the DHT.

In both cases, when the allocator receives a join re-
quest or when it retrieved a joining node’s registration,
the address allocator assigns that node its address and
hands the allocator role over to the next node in the
ring. The joining node registers its transport address
with the DHT using the hash of the (application ID,
node ID) tuple. It does not need to perform any further
registration because the new node can calculate the

addresses of its neighbors in the application ring from
the allocator address and its assigned address:

Lemma 2. Let addralloc be the address allocator and
addrjoin the address that it assigns to a joining node.
Then δ = addrjoin−addralloc is the distance between
the joining node’s address and that of its neighbors.

The first mechanism is well suited for application
overlays where nodes join only rarely. If the join
frequency becomes too high, the DHT node that is
responsible for the respective application ID might
become overloaded.

With the second mechanism, there is a clear trade-
off between the DHT traffic and the delay for joining
the application overlay. If the polling interval is too
large, a joining node will have to wait quite long
before it can actually join the application overlay. If
the interval is too small, the DHT is bothered with
too much query traffic. The lower the join frequency
in the respective application overlay, the more severe
becomes this trade-off.

Thus, we recommend using the one or the other
mechanism depending on the join frequency of the
respective application.

With both mechanisms, we can exploit the DHT’s
aggregation properties and thereby further reduce the
load in the DHT. Assume that a registration in the
DHT is only slowly propagated to the root of the
respective aggregation tree, i.e. the node in the DHT
that is responsible for the respective application. In
that case, the match between a joining node and the
address allocator can be made early, in the sense that
a request is answered before it has reached the root. If
the DHT exploits proximity route selection, this match
is likely to happen in the vicinity of the joining node.

The address allocator role is sequentially assumed
by various nodes across the network. During this
course the allocators pick up the joining nodes from
their vicinity, thereby creating additional locality in the
application ring.

5.3. Maintenance

In order to maintain the particular order of the
address assignments in the application ring, the nodes
need to regularly probe their neighbors and their par-
ents in the address tree. If an inner node in the address
tree detects the absence of its successor, it implicitly
becomes address allocator for the respective address
(again). If a node detects the absence of its parent, it
registers its own transport address under its parent’s
address. That means, it (temporarily) assumes more
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than one address in the application overlay ring to
fill the gap. For a given time span that node becomes
address allocator, and it will assign its original address
to the joining node. If no joining node is found within
this time, it will release its original address. As a
consequence, the stable nodes tend to move up in the
address tree. This reduces the probability of churn for
the inner nodes of the tree.

In order to keep the address tree balanced even
under heavy churn, the nodes regularly report the
number of their children to their parents. When a
node thereby detects that its two subtrees have become
unbalanced, it notifies (some of) the leaves of the
overpopulated subtree to additionally assume addresses
in the underpopulated subtree. Similarly to the above,
the resulting dual address assignments will be resolved
the next time such a node becomes address allocator.
If it does not become address allocator within a given
time span, it may release one of its addresses, namely
that address that belongs to the lower level in the
address tree.

5.4. Routing

For each of its application instances, a node must
only store the respective application overlay address
and its current address density. From that it can cal-
culate the addresses of its successor and predecessor
in the application overlay ring. Furthermore, it can
calculate the addresses of many other nodes in the
application overlay ring.

Lemma 3. Supposing there are N nodes in the
application overlay ring, a node can calculate the
application overlay addresses of at least N

2 other nodes
in that overlay.

For example, in fig. 1, node 10 knows the tree height
propagated from the tree root. It knows which ad-
dresses have already been assigned in this application
overlay — namely all the addresses allocated in the
first 4 levels of the allocation tree. These are addresses
{0, 8, 4, 12, 2, 6, 10, 14}. The node cannot decide
whether the addresses {1, 3, 5, 7, 13, 15} have been
assigned yet. It can however exclude the existence of
any other nodes.

In fig. 2 we see that this ignorance about the
existence of some nodes is confined to the lowest level
of the address allocation tree. Hence, each node can
calculate more than half of the allocated addresses with
the help of its own address and its height of allocation
tree. (The formal proof is given in the long version of
this paper.)

When routing a given key, the sending node calcu-
lates the application address that it knows to be closest
to the key. With respect to the uncertain addresses ({1,
3, 5, ..., 15} in the example above), it presumes their
existence.

Lemma 4. In 25% of the cases, the calculated node
does not exist (assuming equal key distribution). The
position of this node is exactly between two existing
nodes.

Again, we omit the formal proof here and only
briefly sketch the argument. Consider fig. 2. In the
worst case, only 50% of the existing nodes are known
(cf. lemma 3). In the best case, all existing nodes are
known. Assuming equal distribution we thus know on
average 75% of the existing nodes. Thus, in 25% of
the cases the calculated node does not exist. From the
construction of the tree in fig. 2 follows that these
nodes lie exactly between two existing nodes.

The node that is responsible for that unoccupied
position in the overlay ring, lies in the second deepest
level of the address tree. In order to fill this gap, that
node registers its transport address with the respective
address, too. As a result a lookup will always yield the
correct transport address. This resolution of overlay
addresses to transport addresses in the underlying
network will be detailed in following section.

5.5. Address Lookup

As said above, each node stores its transport address
in OpenDHT upon joining an application overlay.
Thus, when routing a key in an application overlay,
the nodes need to look up the transport addresses in
OpenDHT. The lookup complexity depends on that
DHT. For OpenDHT it is logarithmical. In practice, we
can expect this lookup to be fast, because OpenDHT
adopts proximity neighbor selection (PNS) [9]. From
a study by Gummadi et al. [10] we know that the
overhead is typically only about 30% as compared with
the direct path in the underlying network.

Note that OpenDHT is just one means to implement
the mapping of application to transport addresses.
This choice is beneficial because OpenDHT is well
established and runs on comparably stable nodes.
Nevertheless, any DHT would suffice for our proposed
KBR service. Such a DHT could be implemented on
top of a basic KBR service that some or all nodes
provide when they join for their first application. This
KBR service could be implemented as overlay or on
the network layer.
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ReDiR Isolated Overlays DimChord Our Proposal

App. Inst. Join O(log N · log M∗) O(log2 N) O(log M) O(log M∗)

State per App. Inst. O(1) O(log N) O(log M) O(1)

Load Ratio O(1) O(1) O(log M) O(1)

Routing (worst case) O(log N · log M∗) O(log N) O(log M∗ + log M) O(log M∗)

TABLE I. Complexity Comparison

6. Comparison

In this section we compare our proposal to ReDiR,
Diminished Chord, and the naive ‘one isolated ring per
application’ approach. Let M be the overall number of
nodes, M∗ be the number of nodes in OpenDHT, and
N the average number of instances per application.

Table I gives the complexity classes for several
operations and states. Their derivation can be found
in [4] [5] and sec. 5. The complexity for the isolated
KBR rings follows directly from the complexities in
e. g. Chord.

Note that by distinguishing M and M∗ we also
incorporate the effect of proximity neighbor and route
selection (PNS/PRS) in DHTs. Even though an opera-
tion in OpenDHT takes O(log M∗) overlay hops, these
hops have greatly differing actual cost and latency. As
a result, the complexity of OpenDHT operations scales
sub-logarithmically in practice.

As we see in table I, our proposal has several
advantages. Most notably, our proposal requires only
one lookup in OpenDHT to route a message for a given
key and application, whereas ReDiR may require up to
O(log N) lookups in OpenDHT. This is due to the fact
that the predictable overlay address assignment enables
us to calculate the responsible node’s overlay address
directly. We then only need to resolve its transport
address via one OpenDHT lookup.

In ReDiR, the level predictor guesses the right ren-
dezvous point. If it fails or if the requested key happens
to fall into the subsequent partition, more lookups are
required – in the worst case up to O(log N) lookups.

7. Conclusion and Outlook

In this paper, we have presented a novel solution
to build application specific KBR overlays. Our so-
lution is light-weight because it requires only O(1)
state per application instance. Similarly to ReDiR,
this state is stored in OpenDHT so that applications
can benefit from the stability and proximity aware-
ness of that DHT. Unlike ReDiR, we do not need
to look up the destination address at a rendezvous

point, but can calculate it directly. This is achieved
by a predictable overlay address assignment scheme.
As a result, we achieve a worst case performance
of only one OpenDHT lookup. We expect that this
will enable latency critical applications to benefit from
KBR overlays, too.

Currently, we are implementing this approach to
study its performance both in simulations and on planet
lab. We are also exploring the effect of concurrently
joining nodes and the possibility to combine our solu-
tion with network layer KBR systems such as VRR.
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