
PINTS: Peer-to-Peer Infrastructure for Tagging Systems

Olaf Görlitz, Sergej Sizov, Steffen Staab
University of Koblenz-Landau, Germany

Dept. of Computer Science
{goerlitz, sizov, staab}@uni-koblenz.de

ABSTRACT
Self-organizing structure and availability of almost unlim-
ited resource capacities make the peer-to-peer architecture
very attractive for large-scale sharing of annotated data in
Web 2.0 scenarios. This paper addresses the problem of
information aggregation and utilization in a decentralized
tagging environment. We introduce the vector space model
for characterization of users, resources, and tags. We an-
alyze the problem of constructing a reliable approximation
for feature vectors in a fully decentralized setting and intro-
duce possible solutions. The results of large-scale systematic
evaluation with realistic data sets witness the viability of our
approach.

1. INTRODUCTION
The rapidly growing popularity and data volume of mod-

ern Web 2.0 tagging applications originate in their ease of
operating for even unexperienced users, suitable mechanisms
for supporting collaboration, and attractivity of shared an-
notated material (images in Flickr, videos in YouTube, book-
marks in del.icio.us, etc.). However, existing centralized
(and mainly commercial) systems have a number of seri-
ous limitations, including limited resource allocation (e.g.
users being charged for content beyond the strict limitation
of free space), complete service unavailability due to main-
tenance or denial-of-service attacks, and the need to trust
multiple independent services if different resource types shall
be shared.

Decentralized and self-organizing infrastructures plus huge
amounts of available resources make modern peer-to-peer
(P2P) systems highly attractive for applications with collab-
orative annotation (tagging) of multimedia contents. This
reason has motivated active recent research efforts in the
field of peer-to-peer systems for Web 2.0 environments. A
good recent example of a P2P-based tagging system is the
open source project Tagster 1, which allows for decentral-
ized annotation and distributed sharing of locally stored re-
sources (such as user photos, bookmarks, videos, and the
like) without central coordinating instances or servers at all.

Characterization of available peers, tags, and resources by
IR-like feature vectors (e.g., based on frequencies of their oc-
currences and co-occurrences in the system) may help to con-
struct intelligent algorithms for ranked retrieval. Suggesting
tags for annotating new postings, visualizing so-called tag
clouds, predicting user’s favorite resources, or recommend-
ing to join relevant groups of interest are just few examples.

1available at http://isweb.uni-koblenz.de/Research/tagster

At first glance, it appears natural to adopt the established
information retrieval (IR) methodology. Common IR meth-
ods usually combine document-specific local characteristics
(e.g., term frequency tf (t) of term t in document d) and
collection-specific global characteristics (e.g., inverse docu-
ment frequency idf (t) = logN/Nt for term t, document col-
lection of cardinality N , and its fraction of size Nt of docu-
ments that contain t) in order to assign meaningful weights
to particular dimensions of the feature vector.

Unfortunately, reliable estimation of the feature vector be-
comes non-trivial in a decentralized setting. Of course, each
peer still knows its local statistics (i.e. tf values) and can di-
rectly use them or share them with others. However, global
framework statistics (i.e. idf values) cannot be obtained
directly at zero cost.

In presence of distributed index structures (e.g., DHT-
based Chord index for P2P network maintenance and key
lookups), the value of N can be estimated by periodically
running in a decentralized manner a suitable counting rou-
tine (e.g., [10]). At the same time, values Nt can be obtained
from index peers that are responsible for the key t and main-
tain a list of all ’relevant’ peers that offer some contents as-
sociated with t. We can however expect that the dynamic
nature of a collaborative tagging system will cause frequent
updates of index lists and thus continuously changing values
Nt. Hereby idf values associated with different keys t may
change over time at very different rates. It is clear that com-
prehensive expert tuning of heuristically chosen thresholds
or custom update intervals to address this problem would
cause prohibitively high administration overhead.

The PINTS algorithm aims to overcome stated problems
by considering the history of particular idf values and pre-
dicting their evolution in the future. The quality of peer’s
representation is driven by a (dis)similarity threshold be-
tween true and approximated versions of its feature vector.
Consequently, our algorithm asks responsible index peers
for notification about new idf values only beyond critical
deviations from the estimated pattern (i.e. considerable de-
viations that would lead to the consistency violation). As
a result, the number of required updates of idf values is
drastically reduced.

The rest of this paper is organized as follows. In Section
2 we formalize our notion of the vectors space model for
tagging environments. Section 3 introduces the PINTS al-
gorithm for maintaining reliable estimates of peer’s feature
vectors in a decentralized environment. Section 4 explains
our evaluation methodology and shows results of systematic
evaluation on realistic large-scale data sets obtained from the

http://isweb.uni-koblenz.de/Research/tagster

tagging platforms Flickr and del.icio.us. Section 5 discusses
related work. Section 6 concludes and shows directions of
our future work.

2. THE VECTOR SPACE MODEL
The structure of a collaborative tagging framework can be

seen as a tripartite network [8] with ternary relations (tag
assignments) between users u ∈ U , resources (e.g. images,
media files) r ∈ R and associated tags (arbitrary text labels,
in our case) t ∈ T . The set of all relations of the tagging
framework is therefore Y ⊆ U × T × R [11]. These rela-
tions can be used for characterization of network elements
in a variety of ways. For instance, the user can be char-
acterized by used tags and/or published resources; partic-
ular tags can be characterized by users (which used them)
and/or resources (that the tags annotate). A number of
applications, including personalized recommender systems,
tag suggestions for annotating new resources, or mining of
special interest groups, can be built on top of the corre-
sponding representational model, as we show in our related
work [12] that is conducted in parallel, with respect to the
methodology presented in this paper. To generalize various
forms of mutual element characterization in the tagging sys-
tem, we establish the generic notion of so-called tag clouds
and cloud-specific feature vectors, and then discuss ways of
efficiently approximating them in a decentralized setting.

2.1 Tag clouds
The natural way to characterize elements from U and R in

a tagging framework is a collection of element-specific tags
ti ∈ T, i = 1..k.

Definition 2.1. A tag cloud is defined as the tuple

T := (Y ∗, f) (1)

where Y ∗ ⊆ Y is a context-dependent subset of all tag
relations and

f(t) : Y ∗ → R (2)

is a tag-rank function that computes a score/value for each
t ∈ T ∗ ⊆ Y ∗.

The introduced notion of tag clouds can be directly used
to characterize elements from U and R. For example, the
user-centric tag cloud Tu (i.e. user-specific collection of tags
for the user u ∈ U) and a resource-centric tag cloud Tr

(i.e. all associated tags of a single resource r ∈ R) can be
expressed as

Tu := (Yu, fu), Yu ⊆ u× T ×R, (3)

Tr := (Yr, fr), Yu ⊆ U × T × r, (4)

Analogously, more complex community-centric tag clouds
can be used to summarize all tags used by a group of users
U∗ ⊆ U or for a collection of resources R∗ ⊆ R:

TU∗ := (YU∗ , fU∗), YU∗ ⊆ U∗ × T ×R (5)

TR∗ := (YR∗ , fR∗), YR∗ ⊆ U × T ×R∗ (6)

Finally, a combination of (5) and (6) results in a tag cloud
of a community around users and resources

TU∗R∗ := (YU∗R∗ , fU∗R∗), YU∗R∗ ⊆ U∗ × T ×R∗, (7)

2.2 Constructing Feature Vectors
Due to the tripartite nature of Y ∗ the distinct item sets

(i.e. U , T , R) are mutually characterizing each other. There-
fore, we define the domain d of an item set I to be the set
of the respective other two item sets: d(I) = (J, K). Hence
d(U) = (T, R), d(T) = (U, R), and d(R) = (T, U).

Generic Weighting.
We now present a generic model to characterize any kind

of item set by computing weights for the elements in their
domain. The combination of term frequency and inverse
documents frequency tf ·idf is commonly used in information
retrieval for weighting terms of text documents. Following
the similar motivation, we introduce the notion of item-to-
item frequency and an inverse item frequency.

Definition 2.2. The item-to-item frequency is defined as

if (i) = (ai, bi) (8)

with ai and bi being the number of occurrences of i in a
relation with either of the other item sets in d(I).

Definition 2.3. The inverse item frequency is defined as
the ratio between cardinalities of d(I) and of its subset ap-
propriate as permutation of elements that have a tag relation
with i:

iif (i) =

„
log

|J |
|J∗|

, log
|K|
|K∗|

«
, j ∈ J∗/k ∈ K∗ : (i, j, k) ∈ Y ∗ (9)

Definition 2.4. The overall weight(i) of the ith element
in the feature vector is defined as a vector product if (i) ·
iif T (i).

Feature vectors for characterization of resources (using re-
lationships to associated users and tags) or tags (using re-
lationships to associated resources and users) can be con-
structed in an analogous manner.

Example: Figure 1 shows a small-sized tag cloud consist-
ing of three users, three resources (e.g. images), three tags,
and the respective tag assignment (red, green, blue lines).
For the sake of clarity, we consider in this example only
tag-centric features for user characterization and remove ir-
relevant relationships (edges) between users and resources.

Figure 1: Cloud example: tag relations

To construct the tag-based feature vector of the user alice
we use the whole tag cloud T for calculating iif (i) and the
subset Talice (c.f. (3)) for calculating the user-centric if (i):

weight(holiday) = (1, 1) · (log 3

1
, log

3

1
)T = 2 · log3 ' 3.2

weight(mountain) = (1, 1) · (log 3

2
, log

3

2
)T = 2 · log 3

2
' 1.2

weight(sea) = (1, 1) · (log 3

2
, log

3

1
)T ' 2.2

We notice that more ’characteristic’ features (e.g. tag ’hol-
iday’ that was used by user alice once to annotate only one
resource) get higher values than less ’discriminative’ ones
(e.g. tag ’mountain’ is shared by two users and annotates
two resources). The resulting feature vectors of the three
users in our example are as follows:

valice = (2 · log3, 2 · log 3
2
, log3 + log 3

2
) ' (3.2, 1.2, 2.2)

vbob = (0, 2 · log 3
2
, 0) ' (0.0, 1.2, 0.0)

vdave = (0, 0, log 3
2

+ log3) ' (0.0, 0.0, 2.2)

For computing similarity between feature vectors v1 and
v2 we use the common notion of IR-style cosine measure:

sim(v1, v2) =
v1 · vT

2

||v1|| · ||v2||
(10)

We notice that users alice and bob from our sample sce-
nario use the same tag mountain but do not have any shared
resources. The second pair alice and dave has the tag sea
in common and shares the resource photo3. These observa-
tions are reflected by similarities (10) between corresponding
feature vectors:

sim(valice, vbob) = 0.29

sim(valice, vdave) = 0.54

To allow for more flexible tuning of feature vectors, we
extend Definition 2.4 by arbitrary weighting coefficients as
follows:

if α(i) = αT · if (i) (11)

α = (α1, α2), |α| = 1 (12)

weightα(i) = if α(i) · iif T (i) (13)

For instance, by defining for our example (α1 = 0, α2 = 1)
or (α1 = 1, α2 = 0), we obtain alternate feature vectors for
the user alice as follows:

α1 = 0, α2 = 1 : vα
alice = (log3, log

3

2
, log3) (14)

α1 = 1, α2 = 0 : vα
alice = (log3, log

3

2
, log

3

2
) (15)

Example (14-15) shows that our general framework can
be used for constructing various application-specific feature
spaces for tunable characterization of users, tags, or re-
sources. In the following sections, we will primarily con-
sider the baseline scenario of user characterization by asso-
ciated tags. However, the same methodology can be used
for other possible feature spaces and application scenarios
without any limitations.

3. THE PINTS APPROACH
This section formalizes the problem of consistent repre-

sentation for peer feature vectors in a decentralized tagging
environment. Consequently, we substantiate our PINTS ap-
proach for continuously maintaining high-quality approxi-
mations of the feature vectors at low communication over-
head.

3.1 Updates in a decentralized environment
According to Definition 2.4, the weight(i) of each compo-

nent i in the feature vector is composed using two parts, if (i)
and iif (i). According to the definition 9, values of iif (i) are

global statistics that depend on all postings captured by the
corresponding tag cloud and thus not directly available to its
particular peers. Each particular peer u needs to estimate
them by communicating with index peers of the framework
which maintain a DHT-based distributed index and are re-
sponsible for collecting information about peers associated
with particular resources r ∈ R and tags t ∈ T , and answer-
ing corresponding key lookups in the network. We assume
that index peers can compute corresponding values iif (i)
exactly. Particular peers u ∈ U do not have transient ac-
cess to this information and use some locally maintained
approximation iif∗(i) which leads to a certain error of their
locally maintained estimate v∗u(θ). The goal is to ensure
that the similarity (cf. (10)) between true and estimated
feature vectors of u remains reasonably high, i.e.

sim(vu, v∗u) > δ (16)

with custom similarity threshold δ (e.g. δ = 0.9). The
consistent approximation iif∗(i) can be maintained using
different update strategies:

Transient propagation. The naive solution would be to
propagate updates after each new posting immediately to all
peers that are interested in knowing iif (i), i.e., all peers that
offer contents associated with i. If the number of such peers
is large, immediate multicast of each minor update would
however cause extremely high message complexity.

Fixed intervals. Updating iif ∗(i) to most recent value
iif (i) periodically with fixed intervals (e.g. daily or weekly)
helps to reduce the required network traffic. Between two
updates, the estimate iif ∗(i) on peer u remains constant.
As long as update periods are properly tuned, this strategy
may provide fairly reasonable results. However, particular
values iif (i1) and iif (i2) for different elements i1 and i2 may
change at fully different rates. It is clear that comprehensive
customization of update intervals would cause prohibitively
high administration overhead.

PINTS approximation. Our approach aims to predict
the evolution of iif (i) using a reasonably small number of
k values iif (i, θ1) . . . iif (i, θk) at timepoints θ1..θk from the
past. In other words, we represent the evolution of iif (i)
by the time series function with time factor θ: iif ∗(i, θ) that
provides the best fit for observations iif 1(i)..iif k(i). Due to
the almost linear evolution of data points within short time
frames PINTS uses the approximation iif ∗(i, θ) = ai · θ + bi

with custom coefficients ai and bi that are estimated e.g. by
linear regression. The entire feature vector vu is represented
by the time series function v∗u(θ).

The update strategy of PINTS can be summarized as
follows. Each peer u maintains locally the approximation
v∗u(θ). Under the assumption that the evolution model for
all features j 6= i is perfect, a compressed form of this func-
tion v∗u,i(θ) is submitted to the index peer that is responsible
for item i. When information about new postings change
the iif value on the index peer to iif NEW

i , it verifies the
consistency condition (16). If this condition is violated, the
index peer notifies the corresponding peer u by submitting
the new approximation iif ∗(i, θ) of iif ’s further evolution;
in turn, the peer provides to the index peer its updated
function v∗u(θ) for further monitoring iif (i).

3.2 Example
As an example, we instantiate the PINTS approach for

the user characterization scenario already discussed before.

In compliance with our notion introduced in Section 2, we
assume that each user u ∈ U acts as a peer in the overlay
network which forms at the same time his ”global” tag cloud
Tu (3). For the sake of clarity, we concentrate on the user
characterization by tags (i.e. using α1 = 0 and α2 = 1 in
our previously introduced notion (13)).

Let N(θ) = |R(θ)| and Nt(θ) = |Rt(θ)|, where R(θ) de-
notes the set of resources in the network at timepoint θ and
Rt(θ) ⊂ R(θ) denotes its subset that is annotated by tag t.
Additionally, let iif (t, θ) = log(N(θ)/Nt(θ)) and if u(t, θ)
denotes the number of resources that the user u annotated
with tag t. In this case v∗u(t, θ) = if u(t, θ) · iif ∗(t, θ). For
each tag t, the peer u uses the approximation iif ∗(t, θ) '
at · θ + bt in order to construct the feature vector v∗u(θ).
These approximations are managed by corresponding index
peers that are responsible for keys t in the overlay network.

Now we assume that the index peer responsible for a cer-
tain tag tm receives at some timepoint θ information about
new postings and updates the corresponding iif value to
iif NEW

tm
. The feature vector v∗u of the peer u and the feature

vector v∗u,tm
of the index peer (responsible for tm) are now

as follows:

v∗u(θ)=

0BBBBB@
if (t1)·(at1 · θ+bt1)

..

.
if (tm)·(atm · θ+btm)

.

.

.
if (tN)·(atN · θ+btN)

1CCCCCA v∗u,tm
(θ)=

0BBBBB@
if (t1)·(at1 · θ+bt1)

..

.
if (tm)·iif NEW

tm.
..

if (tN)·(atN · θ+btN)

1CCCCCA
By rearranging the cosine similarity (10) between these

vectors around powers of θ and iif NEW
tm

, we obtain the con-
sistency condition (16) in the following form:

v∗u(θ) · v∗u,tm
(θ)

||v∗u(θ)|| · ||v∗u,tm
(θ)||

> δ ↔
X

Y · Z
> δ

X = Atmθ2+2Btmθ+Ctm+if (tm)2· iif NEW
tm

· (atmθ+btm)

Y =

q
Atmθ2+2Btmθ+Ctm+if (tm)2· (atmθ+btm)2

Z =

q
Atmθ2+2Btmθ+Ctm+if (tm)2· (iif NEW

tm
)
2

with Atm , Btm , and Ctm defined by

Atm=
X

ti 6=tm

if (ti)
2a2

i , Btm=
X

ti 6=tm

if (ti)
2aibi, Ctm=

X
ti 6=tm

if (ti)
2b2

i

(17)

With each posting, an updated set of Atm , Btm , and Ctm

values is sent to the index peer of tag tm which itself knows
if (tm), iif NEW

tm
and the previously calculated atm and btm .

Thus, the index peer has all the information necessary to
check the consistency condition (16) and to decide whether
a notification to peer u is necessary.

The storage requirement per tag tm and user u at index
peers for the data structure [userid, if tm

, a, b, A, B, C]
is 56 bytes if 8 bytes are used per element. Additional
space is required for the history of iif values per tag tm, e.g.
80 bytes with a history length of five values and 2·8 bytes for
the value/timestamp tuple. Considering the Flickr dataset
with 320,000 users and 1.6 million tags and an average of
50 users per tag, we get an overall space requirement of 4,6
GB. With an even distribution of tags across 1000 index
peers (c.f. section 4.2) each peer would have to store on
average a mere index size of 4,6 MB.

To illustrate the introduced method, we extend the pre-
viously discussed application scenario by assuming N = 3
and the following history of resource-related values Nt for
t ∈ {holiday, mountain, sea} with corresponding iif values
and approximated coefficients at, bt for iif ∗t (θ):

t Nt(θ=0) Nt(θ=1) iift(θ=0) iift(θ=1) at bt

holiday 0 1 0 log3 log3 0
mountain 2 2 log 3

2
log 3

2
0 log 3

2
sea 1 1 log3 log3 0 log3

The dynamic approximation of the feature vector (14) has
now the form v∗alice(θ) = (log3 · θ, log 3

2
, log3).

At the timepoint θ=2, the index peer responsible for t =
holiday receives information about new postings and realizes
that the iif value has changed to iif NEW

holiday = 3 · log3. The
similarity

sim(v∗alice(θ=2), v∗alice,holiday(θ=2)) =

sim((2 · log3, log
3

2
, log3), (3 · log3, log

3

2
, log3)) = 0, 9890

satisfies the consistency condition if δ is set to 0.9, so that an
immediate notification to alice about the changed iif NEW

holiday

is not necessary.

4. EVALUATION

4.1 Reference Data Sets
Our large-scale reference datasets were obtained by sys-

tematically crawling the Flickr and Del.icio.us portals during
2006 and 2007. The target of the crawling activity were the
core elements, namely users, tags, resources and tag assign-
ments2. The statistics of the crawled datasets are summa-
rized in Table 1.

users tags resources tag assignm.
flickr 319,686 1,607,879 28,153,045 112,900,000
del.icio.us 532,924 2,481,698 17,262,480 140,126,586

Table 1: Flickr and Del.icio.us dataset statistics

For crawling the Flickr dataset we applied the following
strategy. First, we started a tag centric crawl of all photos
that were uploaded between January 2004 and December
2005 and that were still present in Flickr as of June 2007. For
this purpose, we initialized a list of known tags with the tag
assignments of a random set of photos uploaded in 2004 and
2005. After that, for every known tag we started crawling all
photos uploaded between January 2004 and December 2005
and further updated the list of known tags. We stopped the
process after we reached the end of the list.

For the Del.icio.us crawl, the most recent postings were
monitored over a period of several months to collect an
initial list of user names. Afterwards, all user pages were
crawled for corresponding postings and newly discovered
users were added to the list. For all the users contained in
the data set, we collected the almost complete information
about their postings as of December 2006.

Both datasets show a continuous growth in number of
users, tags and resources. There are also certain points in
time with significant increase of the growth rate as both
systems became more popular.

2The reference data sets used for this evaluation are available at
http://isweb.uni-koblenz.de/Research/DataSets

http://isweb.uni-koblenz.de/Research/DataSets

4.2 Experimental Design
We simulated various application scenarios for the intro-

duced model in order to evaluate its correctness and feasi-
bility. To ensure the objectivity of experiments (an impor-
tant point is that the evaluation framework should not have
been designed with same model behavior in mind), we used
the third-party open source PeerSim modeling framework
[1] that was released fully independently and earlier than
the methodology of this proposal. Each user of the tagging
framework was modeled as an individual peer. The num-
ber of index peers (i.e. online peers that maintain the DHT
based index) was set to 1000 throughout all experiments.
Even with peers joining and leaving the network this min-
imum number can always be ensured for maintaining the
decentralized index. Increasing the number of index peers
only results in a marginal larger message complexity for the
interval and PINTS approach while all similarity measures
remain unchanged.

4.3 Results
In our evaluation, we systematically compared previously

discussed methods of maintaining approximations for fea-
ture vectors of peers: immediate propagation of all changes,
periodic updates with constant intervals, and our PINTS
method. Main metrics of interest were the message com-
plexity (i.e., the number of update messages transmitted in
the network) and the corresponding accuracy of approxima-
tion (reflected by the relative frequency of similarity thresh-
old violations). These statistics were obtained for different
intervals (constant-interval updates) and different similarity
thresholds (PINTS).

Similarity threshold violations. To verify the quality
of approximation, we checked the ability of all algorithms to
maintain the reasonable similarity of predicted feature vec-
tors to their real values. For interval updates we measured
the number of violations at the similarity threshold δ = 0.9,
which was also given to the PINTS algorithm as a tuning
parameter. In figures 2(a) and 3(a) we show the average
relative frequency of threshold violations per user (i.e., the
total count of violations, normalized by the number of users
existing in the system at the corresponding timepoint). In
addition, the immediate update propagation has obviously
always a similarity of 1.0 (to this reason, it is not explicitly
shown in figures 2(a) and 3(a)).

The fluctuations of the interval curves can be explained
by different tagging intensity within particular intervals. In
general, longer intervals between updates lead to worser ap-
proximation of feature vectors and to more violations of the
similarity threshold.

Message complexity. In figures 2(b) and 3(b) we show
the number of update messages that have been transmitted
between peers and index peers in order to propagate changed
iif values. As expected, the immediate (instant) propaga-
tion of all updates causes the highest message complexity.
In all experiments, we observe the natural growth of abso-
lute values due to the rapidly increasing number of tags,
users and postings (i.e. the growth of the tagging frame-
work itself). To this reason, all values in these charts are
normalized by the total number of tags in the framework,
and logarithmically scaled.

The interval curves clearly show that small update inter-
vals result in higher message complexity. On the other hand,
we observe that the PINTS message complexity (e.g. with

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Jan 04 Mar 04 May 04 Jul 04 Sep 04 Nov 04 Jan 05 Mar 05 May 05 Jul 05 Sep 05 Nov 05 Jan 06

vi

ol
at

io
ns

 p
er

 u
se

r

Flickr - Violations of similiarity threshold 0.9

5 days interval
1 day interval

PINTS 0.9

(a) Relative frequency of violations of the similarity threshold
δ = 0.9 with different update strategies

10^-1

10^0

10^1

10^2

10^3

10^4

10^5

Jan 04 Mar 04 May 04 Jul 04 Sep 04 Nov 04 Jan 05 Mar 05 May 05 Jul 05 Sep 05 Nov 05 Jan 06

of

 u
pd

at
e

m
es

sa
ge

s
(lo

g)

Flickr - Message complexity

instant update
1 day interval

5 days interval
PINTS 0.9

(b) Message complexity for different update strategies

Figure 2: Results for the Flickr data set

δ = 0.9) is two orders of magnitude lower than for interval
updates at the comparable level of accuracy (interval 1-day).

Summary. The presented results can be summarized as
follows. The PINTS approach allows for flexible tuning of
the tradeoff between the approximation accuracy for feature
vectors of peers, and the resulting communication overhead.
The predictive model for evolution of feature vectors helps to
drastically reduce the number of required update messages
at the very reasonable price of additional storage overhead
on particular index peers for coefficients of the approxima-
tion function. At the same level of approximation accuracy,
the PINTS approach causes a substantially lower message
complexity than interval-based updates and instant propa-
gation of changes. On the other hand, at the same level
of message complexity, its accuracy is substantially higher.
These results were systematically reproduced for both large-
scale evaluation datasets (Flickr and del.icio.us) at different
experimental settings.

5. RELATED WORK
The high adoption rate of tagging systems has spurn of

a large number of research efforts in order to understand
tagging behavior and to improve access to data found in such
tagging systems. For instance, [4] have proposed folkrank,
a PageRank like mechanism for recommending resources.
In this paper, we have focused on approaches based on the
vector space model that are suitable for DHT-based P2P
systems.

An important problem in peer-to-peer systems is the car-
dinality estimation for item sets, which is necessary for con-
structing feature weights in our approach. One solution is
to directly exploit the underlying network structure [3, 7],

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Jan 03 Apr 03 Jul 03 Oct 03 Jan 04 Apr 04 Jul 04 Oct 04 Jan 05 Apr 05 Jul 05 Oct 05 Jan 06

of

 v
io

la
tio

ns
 p

er
 u

se
r

Delicious - Violation of similarity threshold 0.9

5 days interval
1 day interval

PINTS 0.9

(a) Relative frequency of violations of the similarity threshold
δ = 0.9 with different update strategies

10^-1

10^0

10^1

10^2

10^3

10^4

10^5

10^6

Jan 03 Apr 03 Jul 03 Oct 03 Jan 04 Apr 04 Jul 04 Oct 04 Jan 05 Apr 05 Jul 05 Oct 05 Jan 06

of

 u
pd

at
e

m
es

sa
ge

s
(lo

g)

Delicious - Message complexity

instant update
1 day interval

5 days interval
PINTS 0.9

(b) Message complexity for different update strategies

Figure 3: Results for the Del.icio.us data set

as with distributed hashtables. However, tracking a huge
number of cardinalities cannot be efficiently implemented in
such a way. A different type of counting is the gossip-based
approach [5, 6] where respective count information is ex-
changed iteratively between peers. In a stable network the
count information converges toward the exact value. Albeit
its good resilience to network changes it is not applicable for
the highly dynamic tagging scenario with a huge number of
required counters for particular tags.

Sampling-based counting algorithms [2] query a random
subset of all peers to estimate the item frequency or derive
histograms. A recent approach[9] combines sampling with
gossipping to increase the accuracy. However, the results of
these methods are not accurate for infrequently used tags.

A cardinality estimation method that fits well with dis-
tributed hashtables is the probabilistic counting with dis-
tributed hash sketches [10]. Our solution uses this approach
for estimating the total number(s) of resources, users, or tags
in the tagging environment with corresponding DHT-based
index structures.

6. CONCLUSION AND FUTURE WORK
In this proposal we addressed the problem of constructing

and maintaining reliable feature vectors for characterization
of users and resources in a decentralized tagging environ-
ment. We adopted fundamental ideas of the IR-like vector
space model and defined the notion of feature vectors for
representing users, resources and tags in the collaborative
tagging environment.

In a decentralized setting, cardinality estimations for com-
puting particular features would require a noticeable amount

of additional communication between peers in order to re-
construct missing global statistics. At this point, our solu-
tion PINTS aims to avoid unnecessary high network traffic
by constructing predictive estimators that capture the evo-
lution of the tagging framework. As a result, the required
communication overhead for maintaining approximated fea-
ture vectors of users is substantially reduced.

In the future, we will conduct further refinements of the
PINTS prediction model by using polynomial approximation
instead of linear regression, capturing significant correlations
between evolution of statistics for particular tags, and pro-
viding formal probabilistic quality guarantees for the results
achieved so far. Our long-term objective is a P2P tagging
system with reliable, efficient, and effective search and rec-
ommendation algorithms.

Acknowledgements. We thank Klaas Dellschaft and
the Tagora Project (http: // tagora-project. eu) for pro-
viding us with the Flickr and Del.icio.us reference data sets.

7. REFERENCES
[1] Peersim peer-to-peer simulator. (http://peersim.sf.net/).
[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.

Estimating aggregates on a peer-to-peer network. Technical
report, Computer Science Dept., Stanford University, 2003.

[3] Keren Horowitz and Dahlia Malkhi. Estimating network
size from local information. Inf. Process. Lett.,
88(5):237–243, 2003.

[4] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and ranking.
In York Sure and John Domingue, editors, The Semantic
Web: Research and Applications, volume 4011 of LNAI,
pages 411–426, Heidelberg, June 2006. Springer.

[5] Márk Jelasity and Alberto Montresor. Epidemic-style
proactive aggregationin large overlay networks. In
Proceedings of The 24th International Conference on
Distributed ComputingSystems (ICDCS 2004), pages
102–109, Tokyo, Japan, 2004. IEEE Computer Society.

[6] David Kempe, Alin Dobra, and Johannes Gehrke.
Gossip-based computation of aggregate information. In
FOCS ’03: Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, page
482, Washington, DC, USA, 2003. IEEE Computer Society.

[7] Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta,
Ken Birman, and Al Demers. Decentralized schemes for
size estimation in large and dynamic groups. In NCA ’05:
Proceedings of the Fourth IEEE International Symposium
on Network Computing and Applications, pages 41–48,
Washington, DC, USA, 2005. IEEE Computer Society.

[8] R. Lambiotte and M. Ausloos. Collaborative tagging as a
tripartite network. ArXiv Computer Science e-prints,
December 2005.

[9] L. Massoulié, E. Le Merrer, A.M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay
networks: random walk methods. In Proceedings of the
twenty-fifth annual ACM symposium on Principles of
distributed computing, New York, NY, USA, 2006. ACM.

[10] N. Ntarmos, P. Triantafillou, and G. Weikum. Counting at
large: Efficient cardinality estimation in internet-scale data
networks. In Proceedings of the 22nd International
Conference on Data Engineering, page 40, Washington,
DC, USA, April 2006. IEEE Computer Society.

[11] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining
association rules in folksonomies. In Proceedings of the 10th
Conference on Data Science and Classification IFCS, pages
261–270, Ljubljana, July 2006. Springer.

[12] S. Sizov and S. Siersdorfer. Towards social recommender
systems for collaborative web 2.0 applications. In Technical
Report, University of Koblenz, available at http://www.
uni-koblenz.de/FB4/Publications/Reports, November 2007.

http://tagora-project.eu

	Introduction
	The Vector Space Model
	Tag clouds
	Constructing Feature Vectors

	The PINTS Approach
	Updates in a decentralized environment
	Example

	Evaluation
	Reference Data Sets
	Experimental Design
	Results

	Related Work
	Conclusion and Future Work
	References

