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Abstract

The peer-to-peer (P2P) paradigm provides a data distribu-
tion model that may be attractive for Video on Demand (VoD)
as it allows to decrease the costs and to increase the scala-
bility of video distribution. However, VoD is more challeng-
ing for P2P technology than file sharing or live streaming, and
so, practically feasible VoD systems proposed to date rely on
a backend server infrastructure as a fail-over solution. In this
paper we investigate how the dependency on servers can be de-
creased by optimizing the video piece-selection strategy and by
allowing multiple peers to form a collaboration for obtaining
a single video. In a set of simulations of a trace-based system
model we show that for systems such as YouTube the proposed
optimizations would result in savings of as much as 70% of the
server bandwidth. These simulation results confirm the conclu-
sions of an analytical study of our optimizations, the essential
part of which is also included in this paper.

1. Introduction

With the increase of the link capacity offered to Inter-
net users, Video on Demand (VoD) services are rapidly
gaining popularity. Services such as YouTube [1] that al-
low their users to post video files on-line are visited by
millions of people on a daily basis. Providing VoD to
a large population of users requires a significant amount
of bandwidth, which effectively becomes the scalability
bottleneck of VoD infrastructures. For instance, the band-
width provisioning costs of YouTube servers are estimated
at $6M per month [1].

The peer-to-peer (P2P) resource sharing model pro-
vides an attractive architectural solution for bandwidth-
limited applications. Peers employ their upload band-
width to redistribute the downloaded content, decreasing
the dependency and the load on the servers [7]. The con-
tent redistribution capability of a P2P network is, how-
ever, conditioned on the willingness of the peers to con-
tribute their bandwidth. Relying on the altruism of the
users eager to donate their bandwidth does not suffice to
guarantee service of high quality [10], and so, econom-
ically rational incentives are needed to stimulate band-

width contributions of the peers.
The most feasible incentive mechanisms in practice

proposed to date for file sharing [4] and live stream-
ing [11, 8] P2P networks establish bartering relationships
between peers that exchange data pieces. In this paper
we investigate the applicability of bartering incentives to
VoD systems. We measure the efficiency of bartering in
a particular P2P system in terms of the system entropy
which quantifies the probability of establishing a barter-
ing relationship between two randomly selected peers. In
a VoD system the entropy, and so also the bartering possi-
bilities, are negatively affected by the fact that peers at dif-
ferent playback positions are interested in different pieces
of the video file. In order to address this problem, we
propose the biased random piece selection strategy which
optimizes the order in which pieces are downloaded by a
VoD application.

The results of the full analytical study in an extended
version of this paper [5] suggest that the piece selection
strategy increases the number of bartering possibilities in
a VoD system only to a certain extent. A further im-
provement in the number of bartering possibilities can be
achieved only by decreasing the playback bitrate or by
increasing the bandwidth available for a peer. Since the
playback rate determines the video quality, only improve-
ments in the amount of available bandwidth are accept-
able. To this end, we propose a collaborative VoD pro-
tocol that increases the bandwidth available for a peer by
using the idle bandwidth of multiple peers collaborating
in obtaining a single video file rather than requesting the
bandwidth from servers.

We study analytically the impact of the peer bandwidth
capacities, the video playback bitrate, the number of video
pieces, and the collaboration size on the server bandwidth
consumption. This study indicates that the amount of
server bandwidth saved by the collaborative VoD proto-
col increases rapidly with the collaboration size. The con-
clusions of the mathematical analysis are confirmed in a
series of simulations using traces of the YouTube commu-
nity. The results of the simulations suggest that the biased
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Figure 1. Piece exchange possibilities between two
peers for different types of P2P applications. Black and
white rectangles represent pieces already obtained by a
peer and still missing pieces, respectively. An arrow indi-
cates a possible transfer of a piece between peers. Piece
exchange is possible only if there is at least one arrow
from peer A to peer B and at least one arrow in the oppo-
site direction.

random piece strategy and the collaborative VoD proto-
col can reduce the server bandwidth consumption by more
than 70%.

2. Video distribution based on bartering

In a P2P system for video distribution that also uses
servers, each byte of video content served by a peer saves
one byte of server bandwidth. Assuming rational behav-
ior [10], peers are willing to contribute their bandwidth
only when clear incentives to do so are provided. The in-
centive models in P2P networks that are arguably the most
feasible in practice, establish bartering relationships [4]
between pairs of peers. Data transfer between bartering
peers is possible only on an exchange basis. More pre-
cisely, peer A can obtain a piece of data from peer B only
if peer A can give peer B some other piece in return.

2.1. Entropy as a measure of bartering
efficiency

The number of bartering possibilities can be expressed
in terms of the system entropy, which is defined as the
probability that two randomly selected peers do not have
any pieces of data to exchange. For instance, if all peers

have the same set of pieces, no exchange can occur, and
the entropy is maximal (equal to 1). If pieces are dis-
tributed randomly across all peers, the entropy is low.
P2P protocols based on the bartering concept can im-
prove the efficiency of data dissemination by optimizing
(decreasing) the entropy. However, the possibility of de-
creasing the entropy depends on the properties of the data
dissemination protocol. We now discuss the entropy in
each of the three models of video distribution.

Entropy in offline file-sharing systems. It is easy to
achieve a low entropy in file-sharing systems where the
data pieces can be downloaded in a random order (see Fig-
ure 1(a)). Assuming that every piece has the same chance
of being selected for download resulting in each piece hav-
ing the same number of replicas in the system, we can
compute the entropy in a file sharing system following a
reasoning similar to one introduced in [9]. The entropy in
a file sharing system can be found from Eq. (7) in [9] as
being roughly equal to ln N/N , where N is the number of
file pieces.

Entropy in live streaming systems. Live streaming is
similar to file sharing in the sense that at a given time, all
peers are interested in the same content pieces (see Fig-
ure 1(b)). Streaming peers usually start the playback with
a certain delay, which allows peers to buffer pieces ahead
of the initial playback position. Pieces in the buffers of
different peers can be exchanged in a bartering fashion.
As shown in [11], Eq. (2), if all peers have buffers of the
same size N , then the entropy in a live streaming system
can be approximated by 1/N .

Entropy in VoD systems. In VoD systems there may
not be sufficient buffer overlap to establish bartering re-
lationships between peers (see Figure 1(c)). In particular,
if the size of the buffer is smaller than the distance be-
tween the playback positions of any two peers, the entropy
equals 1, which means that bartering is not possible at all.

The entropy in a VoD system is directly correlated with
the amount of server bandwidth required to guarantee a
video playback with a low data loss. If each peer is bar-
tering for video fragments with k other peers at a time,
then the probability that none of those peers has any data
to exchange with the peer equals Ek, where E denotes
the system entropy. Hence the fraction of the bandwidth
coming from the servers in a VoD system equals Ek. The
conducted measurements of the YouTube community, de-
scribed in more detail in Section 5.1, indicate that the
number of users watching the same video at a given point
in time is small (even in a flashcrowd [2] on average it
is equal to 5). Although this issue is vastly ignored by
other VoD P2P systems, any protocol assuming that the



number of bartering partners k can be arbitrary large is
unrealistic. So, a reduction in the server bandwidth con-
sumption can only be achieved by decreasing the value of
the entropy, which in turn can be accomplished by allow-
ing peers to download pieces beyond their buffers. Such
optimization requires considering the strategy for select-
ing the next piece to download and providing bandwidth
required for downloading that piece. Before addressing
those issues, we introduce a model of a VoD system which
we use in the analysis of the presented optimizations.

2.2. System model

For the purpose of the analysis of a VoD system, we as-
sume that all peers have the same upload and download
bandwidth capacities denoted by µ and c, respectively.
The video playback rate is denoted by s. The values of
µ, c and s are expressed in units representing the number
of video pieces transferred per unit of time. This way we
avoid introducing a parameter defining the size of a piece.
We assume that µ ≤ c and s ≤ c.

Each peer maintains a buffer of pieces directly after the
playback position. The size of this buffer is negligible
compared to the length of the video. We integrate barter-
ing incentives into our model by assuming that a peer can
download data at the rate not higher than the upload link
capacity, which imposes the constraint s ≤ µ. While se-
lecting a piece to download, a peer chooses a piece in the
buffer with probability s/µ and a piece beyond the buffer
with probability 1−s/µ. Under the assumption that a peer
receives data at a rate equal to its upload link capacity, the
selected probabilities guarantee the buffer filling rate to be
equal to the playback rate.

The scope of the analysis is limited to the set of peers
playing a single video file. We denote by N the number
of video file pieces. We assume a uniform distribution
of the peer playback positions over the video length, so
the probability that a randomly selected peer has i pieces
equals 1/N regardless of i. We consider the least altru-
istic scenario where a peer that has downloaded all video
pieces refuses to upload any more pieces to other peers in
the system.

In addition to the peers, the system contains a num-
ber of servers, i.e., content injectors that possess the en-
tire video file and serve it to the peers without asking any
data in return. The bandwidth at the servers is a scarce
resource and its consumption should be minimized while
making sure that there is enough server bandwidth avail-
able to guarantee close-to-zero data loss (which means a
piece arrives too late for playback, or not at all).

3. Piece selection strategy for VoD

In a VoD system based on bartering, a piece selec-
tion strategy determines the next video piece selected for
download by a peer. Obviously, the next piece to be down-
loaded by a peer has to be selected from among the pieces
that are possessed by at least one of the bartering part-
ners of the peer. A piece selection strategy is a function
that determines the piece number based on the information
available locally at the peer.

3.1. The biased random strategy

An obvious candidate for a piece selection strategy is to
choose the piece closest to the current playback position.
We will further refer to this strategy as earliest first. The
earliest first strategy leads, however, to a strong bias in the
number of piece replicas in the system. Namely, pieces
with small numbers are highly replicated while pieces
close to the end of the video are possessed by only a few
peers. Consequently, earliest first leads to a bottleneck in
obtaining the tail pieces of the video file.

Another possibility for piece selection is the rarest first
strategy adopted directly from file sharing networks [4].
Rarest first increases the entropy in the system, but it also
results in an effect opposite to the one produced by the
earliest first strategy. Namely, a peer using the rarest first
strategy will concentrate on pieces closer to the end of the
video file ignoring the pieces closer to the playback posi-
tion. To better understand that phenomenon, let’s observe
that the number of replicas of a piece depends on the posi-
tion of that piece in the video file with earlier pieces hav-
ing more replicas. The rarest first strategy will try to bal-
ance the number of replicas across the pieces by request-
ing pieces closer to the end of the video file. Pieces im-
mediately following the playback position are disregarded
which affects the playback reliability.

We propose the biased random strategy that opti-
mizes for the entropy by taking into account piece rarity
but at the same time not excluding for selection pieces
close to the playback position. According to the bi-
ased random strategy, each peer selecting the next piece
to prefetch, chooses a piece randomly with a probabil-
ity that is inversely proportional to the number of repli-
cas of that piece. The number of piece replicas is com-
puted by each peer from the locally collected informa-
tion about the pieces possessed by other peers. The
probabilities of selecting individual pieces are normal-
ized across the set of pieces available to download for a
peer to guarantee that the peer will always select one of
the pieces. More formally, if {i1, i2, . . . , ik} is the set
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Figure 2. The entropy as a function of the ratio of the
uplink capacity and the playback rate.

of numbers of the pieces that a peer could prefetch and
r(i1), r(i2), . . . , r(ik) are the numbers of piece replicas
as discovered by the peer, then the peer will select piece il
with probability r(il)−1/

∑k
m=1 r(im)−1.

The biased random piece selection strategy does not ex-
plicitly give priority to the pieces close to the playback
position. However, the introduced nondeterminism gives
any piece, so also a piece directly after the playback po-
sition, a chance of being selected, even if this piece has
more replicas than some other pieces.

3.2. The entropy in a VoD system

Having defined a piece selection strategy, we can now
compute the value of the entropy in a VoD system. Due
to space limitations we present here only the key results
of the elaborate analytical study which is included in an
extended version of this paper [5].

Assuming the system model introduced in Section 2.2,
for large enough values of N , the entropy E in a VoD sys-
tem employing the biased random piece selection strategy
can be estimated as

E = 1−
(µ

s
− 1

)
ln

µ
s

µ
s − 1

+ O

(
lnN

N

)
. (1)

The third term of Eq. (1) encapsulates the probability that
a peer cannot obtain a piece from outside its buffer. Note
that this probability exhibits a similar trend as the entropy
in file sharing P2P systems (see Section 2.1), which is
intuitive as pieces from outside the buffer are exchanged in
a fashion similar to piece exchange in file sharing systems.

Note that contrary to file sharing and live streaming sys-
tems, the entropy in a VoD system cannot be reduced to an
arbitrarily low value by increasing the number of pieces N
into which the (video) file is divided. For large values of
N , the last term in Eq. (1) is small, and the value of the
entropy is determined by the ratio µ/s. Figure 2 presents
the decreasing trend of the entropy value as the ratio µ/s

increases ignoring the third term in Eq. (1). Note that
the entropy converges to 1 when s is close to µ. This is
intuitive as a peer that plays the video at the rate of its up-
load capacity does not have any bandwidth left to spend on
bartering for pieces ahead of the playback position, which
would result in more bartering options.

Obviously, the entropy can be decreased by reducing
the playback rate s, which would have a direct impact on
the video quality. In the next section we propose a proto-
col that increases the amount of upload bandwidth µ avail-
able for a peer, resulting in a decrease of the entropy while
preserving the current playback rate.

4. Collaborative Video on Demand

In this section we introduce a protocol that supplements
the VoD system with bandwidth shared by idle peers, ef-
fectively decreasing the entropy without sacrificing the
video playback quality.

4.1. Idle bandwidth sharing

In our previous research [6] we have shown that the
performance of file sharing P2P networks can be signif-
icantly improved by allowing peers downloading data to
form collaborations with idle peers having excess band-
width, the so called helpers. Formally, a helper is a peer
that is not directly interested in the content it is download-
ing but that employs its idle bandwidth to fetch content
pieces for a peer requesting the content. Helpers forming
a collaboration with a peer downloading data act on behalf
of that peer and use their bandwidth to barter with peers in
other collaborations. Helpers may be attached exclusively
to a single peer and download pieces that are not present at
that peer [6], or they can act as microseeds and be shared
by all interested peers in the system [12]. In this paper we
assume the former model in which a helper acts on behalf
of a single peer at a time.

VoD systems open a new area of application for the
collaborative bandwidth sharing concept. VoD imposes
stricter service quality requirements than file sharing as
each video fragment has to be obtained before the play-
back reaches its position. The high instability of P2P ar-
chitectures caused by their dynamics has a negative im-
pact on the probability that a piece will be obtained from
the P2P network on time. This probability obviously de-
pends on the amount of bandwidth available for a peer to
download its pieces, which in turn is a direct consequence
of the number of helpers collaborating with the peer.



4.2. The impact of helpers on the entropy

Each additional helper increases the total upload band-
width capacity of a collaboration, which is defined as the
aggregate upload bandwidth of all peers in the collabora-
tion available for bartering with peers in other collabora-
tions. We denote the upload bandwidth capacity of a col-
laboration by µh, where h is the number of helpers in the
collaboration. Of course, a helper has to divide its upload
bandwidth between obtaining data from other peers (by
bartering) and forwarding the downloaded data to the peer
playing the video. A helper cannot send data to the peer
playing the video faster than it is downloading the data
(so, in particular, not faster than half of its upload link ca-
pacity) and the peer playing the video cannot receive data
faster than its download bandwidth c. This gives us the
following formula for µh:

µh = µ + hµ−min(c− µ, h
µ

2
). (2)

In Eq. (2), the first term on the right hand side accounts for
the upload bandwidth of the peer watching the video, the
second term represents the total upload bandwidth of the
helpers, while the third term is the upload bandwidth of
the helpers spent on sending pieces to the peer watching
the video.

The expression for the value of the entropy in a collabo-
rative VoD system where each peer uses h helpers can now
trivially be obtained by replacing µ with µh in Eq. (1).
Since the value of µh increases linearly with h for h large
enough (when hµ/2 > c− µ, or when h > 2(c− µ)/µ),
the shape of the entropy as a function of h is similar to the
shape presented in Figure 2.

5. Experimental evaluation

We assess the impact of the optimizations proposed in
this paper on server bandwidth consumption in a series of
simulations. Before presenting the results of the simula-
tions we discuss the experimental setup.

5.1. Experimental setup

For the purpose of the simulations, we have crawled the
YouTube site collecting statistics about almost 1.4 million
randomly selected videos. These statistics contain the du-
rations of the videos, the dates and times when they were
posted, and the total numbers of views. We simulate the
distribution of a single video file with a running time equal
to the average duration of a YouTube video, which is 265
seconds.

The collected YouTube statistics do not include the ex-
act times when each video has been viewed. Since the
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Figure 3. The fraction of the bandwidth provided by the
servers.

content popularity in on-line communities usually follows
a flashcrowd pattern, we use a flashcrowd model proposed
in [2] to generate peer arrivals. To find parameter val-
ues of the flashcrowd model we estimate the number of
concurrent video views by dividing the product of the to-
tal number of views and the video length by the age of
the video. The computed parameter values result in a
flashcrowd model that peaks at 8 concurrent views, and
that exhibits an average of 5 views during the flashcrowd
and of 0.4 views outside of the flashcrowd. Our peer band-
width model uses uniform values for all peers in the sys-
tem with 1500 kbps download and 384 kbps upload link
capacity. These specific link capacity values describe the
most common Internet connection type of a P2P network
user [3]. The number of helpers is the same for all peers
in a single simulation, but it varies across different simu-
lations.

Each of the simulated peers maintains a list of ran-
domly selected bartering partners. The number of bar-
tering partners is set to 4, which is the default value in
BitTorrent [4] — the most popular P2P data bartering pro-
tocol. A peer always gives priority as a data source to its
bartering partners and downloads a piece from a server
only if this piece cannot be downloaded on time from the
P2P network. Each video piece has a size of 100 kB.

5.2. Results of the experiments

In the first series of experiments we evaluate how the
idle bandwidth provided by the helpers influences the
server bandwidth consumption. Figure 3 shows the frac-
tion of the total bandwidth required to satisfy all peers that
has to be provided by the servers. The results are pre-
sented for different numbers of helpers in a collaboration
and different playback bitrates. All peers in this experi-
ment use the random biased piece selection strategy.
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Figure 4. Server bandwidth usage for different piece se-
lection strategies and playback bitrate equal to 1500 kbps.

Obviously, the server bandwidth consumption is lower
for lower bitrates and higher numbers of helpers involved
in the data distribution. Starting with no helpers and up to
a breaking point in which the number of helpers is suffi-
cient to guarantee that the total upload capacity of a col-
laboration is not lower than the playback bitrate, the server
bandwidth consumption decreases slowly. E.g., for a play-
back rate of 1300 kbps, the breaking point occurs for 5
helpers. Before the breaking point, a peer concentrates on
obtaining the next piece to be played, which makes barter-
ing possible only if this piece is possessed by one of the
bartering partners of the peer. Bartering with the biased
random strategy becomes effective only after the num-
ber of helpers passes over the breaking point. The server
bandwidth consumption cannot drop to zero as the servers
have to constantly inject pieces to compensate for peers
that leave the network. Observing that the average number
of peers watching the video at a given time is 5, the frac-
tion of bandwidth contributed by the server (slightly lower
than 0.3) is only twice as high as the fraction of bandwidth
consumed by each peer watching the video (estimated as
0.14 by dividing the fraction of bandwidth provided by
the P2P network, roughly equal to 0.7, by the number of
peers).

In the second set of experiments we investigate the im-
pact of the piece selection strategy on the server band-
width consumption. Figure 4 presents the fraction of
bandwidth provided by the servers for the three strategies
described in Section 3.1. We keep a constant playback
bitrate of 1500 kbps and vary the number of helpers.

Similarly as in the first set of experiments, for all three
strategies, the reduction in server bandwidth consumption
is small until the system reaches the breaking point with
6 helpers. After this point the differences between the
strategies clearly emerge. The earliest first strategy with

its fixed preference for pieces closer to the playback po-
sition is the least efficient of the three. The rarest first
and the biased random strategies exhibit a similar trend,
although the latter strategy leads to higher savings in the
server bandwidth consumption.

6. Conclusion

In this paper we have investigated mechanisms of a
bartering-based P2P VoD system which have an impact
on the server bandwidth consumption. We have found
that relatively simple optimizations such as an improved
video piece selection strategy and a protocol extending
peer download capacity by using bandwidth of idle peers
result in tremendous savings of the server bandwidth. Our
optimizations are generic to the extent that they can be in-
tegrated with existing P2P VoD systems built around the
bartering principle.
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