
Constructing Traffic-Aware Overlay Topologies:
A Machine Learning Approach

Benjamin D. McBride
Kansas State University

2061 Rathbone Hall
Manhattan, KS 66506

Email: bdm7935@ksu.edu

Caterina Scoglio
Kansas State University

2061 Rathbone Hall
Manhattan, KS 66506

Email: caterina@ksu.edu

Abstract— Recent game-theoretic approaches to con-
structing overlay network topologies have not been scal-
able. This paper introduces a machine learning approach
to constructing overlay networks. The machine learning
approach learns characteristics from small networks con-
structed using a game-theoretic approach. The knowledge
learned is then used to construct larger networks. The
results show that the machine learning approach closely
approximates the game-theoretic networks for a wide
range of network parameters, while being scalable.

I. INTRODUCTION

End-to-end routing performance is not optimal in the
Internet. Since end hosts have no control over the routing
of data, providing quality of service (QoS) guarantees is
a difficult problem. Many applications, such as video
streaming, voice over IP, and P2P, would like to have
performance and reliability guarantees. Unfortunately,
the Internet provides zero guarantees. Many solutions
have been proposed to add QoS to the infrastructure of
the Internet. These solutions have little chance of being
accepted due to the inertia of the existing system. How-
ever, a popular approach that has been recently proposed
is anoverlay routing network, or overlay network.

An overlay network is anapplication-layernetwork
composed of logical links over the existing Internet
infrastructure. In an overlay network, the hosts route
data through intermediate nodes in the overlay network
according to application specific performance metrics.
Surprisingly, the end-to-end routing performance can be
significantly improved by routing through intermediate
nodes [1] [2]. Obviously, one of the fundamental prob-
lems in overlay networks is deciding which intermediate
nodes to use. Typically, overlay networks construct a
virtual topology of logical links toward other nodes in
the overlay network. Common routing algorithms, such
as the link-state or distance vector algorithm, are then

used to route data according to an application-specific
performance metric.

Recent approaches, presented in Section II, for creat-
ing overlay network topologies based on game theory
have been proposed [3] [4] [9]. Unfortunately, these
approaches are intractable. The primary contribution of
this work is the introduction of a machine learning
approach that approximates the construction of game-
theoretic overlay networks. The machine learning ap-
proach learns from data generated from the construction
of small networks using the game theory model, pre-
sented in Section III, and applies the knowledge to larger
networks in a scalable fashion. The machine learning
approach is introduced in Section IV. Section V shows
that the machine learning approach closely approximates
the game-theoretic approach to constructing overlay net-
works, while being computationally inexpensive. Future
work and conclusions are presented in Section VI.

II. RELATED WORK

A. A game-theoretic approach

Recent approaches to the formation of overlay network
topologies are derived from game theory. These studies
propose a network creation model where each node tries
to minimize its own ”cost”, without consideration for the
global interests of the network. Nodes seek to minimize
cost until an equilibrium, called aNash equilibrium, is
reached where no node can decrease its cost without
some other node first increasing its cost.

In a game-theoretic approach to network creation,
each node in the network acts as an independent agent,
selecting its neighbors, and paying for logical links to
those neighbors according a cost model [3]. The subset
of nodes that form the neighborhood of a node is called
a strategy. Each node acts selfishly, selecting a strategy
that reduces its cost. The union of these logical links



forms a network that is created without central design
or coordination.

Obviously, the resulting network topologies are largely
dependent on the specific cost model used. The cost for
nodei to select strategyBi as proposed by Fabrikant, et
al is [3]:

Ci = α|Bi| +
∑

j∈N

dG(i, j) (1)

wheredG(i, j) is the cost distance between nodesi andj

in the overlay networkG andα is a parameter balancing
the cost of creating links to other nodes and the distance
to other nodes in the overlay network. These different
cost terms can be seen as hardware and quality of service
costs or probing and routing costs, depending on the
application. Fabrikant, et al prove that a wide range of
network topologies can be constructed simply by varying
the value ofα [3].

B. A generalized approach

Chun, et al, generalized the cost model proposed by
Fabrikant, et al, and studied the selfishly constructed
networks formed by the non-cooperative game [4]. They
generalized the cost model in three areas:

1) The link cost is no longer constant, but rather is a
function of the nodej being connected to.

2) The distance function is generalized to be any
performance metric between nodes.

3) The possible neighbors that a node can connect to
is constrained.

The resulting cost model is:

Ci = α
∑

j∈Bi

hi,j +
∑

j∈N

dG(i, j) (2)

wherehi,j is the cost to create a logical link betweeni

andj.
Chun, et al, first consider small network topologies

formed with varying values ofα and different link cost
functions. An iterative exhaustive search, where each
node in turn finds its minimal cost strategy given the rest
of the network, is used until the network reaches equi-
librium. They demonstrate that a wide range of network
topologies can be constructed: complete graphs, densely
connected graphs, sparsely connected graphs, stars,k-
core stars, and trees. When considering a more realistic
search, where an iterative greedy search is done over a
constrained neighborhood set, they find that networks
can be constructed that have desirableglobal proper-
ties. They demonstrate that power-law networks can be
formed as well as networks that are highly resistant to

node failure and attack. They also conclude that there
is a fundamental tradeoff between the performance of a
network and its resilience.

III. C OST MODEL

This paper uses the traffic demand aware cost model
presented in [9] and [10]. We reproduce it here for
convenience. We assume that each node needs to select
its neighbors in a distributed fashion. Each node has im-
perfect information and does not know the other nodes’
neighbors. LetG = (N,L) be the graph representing
the overlay network andGu = (N,E) be the graph
representing the underlay, or physical, network.N is the
set of nodes that are in both the overlay and physical
network, while the set of logical linksL can be different
from the set of physical linksE. A logical link l ∈ L is
constructed on a path composed of physical linkse ∈ E.
Each nodei ∈ N has a traffic demand toward a node
subsetSi ⊆ N . Let ti,j be the traffic demand between
node i and nodej in the subsetSi. The objective for
each node is to create logical links to a subset of nodes,
Bi ∈ 2N−{i}, such that its total cost is minimized. We
define cost using two components:

1) Link cost: cost to create and maintain a logical
link between nodei to nodej

2) Transport cost: cost to transport the traffic de-
mand between nodesi andj

The cost for nodei to connect to each nodej ∈ Bi and
carry traffic demandti,j to each nodej ∈ Si is defined
as the sum of the link cost and transport cost:

Ci = α
∑

j∈Bi

hi,j +
∑

j∈Si

dG(i, j)ti,j (3)

whereα is the relative cost of creating a logical link to
the cost of transporting the traffic demand through the
existing network,hi,j is the linking cost betweeni and
j, anddG(i, j) is the distance in the overlay network to
nodej (∞ if j is unreachable fromi).

It is important to note that the linking cost between
i and j, is a general function that can represent a wide
variety of metrics. The transport cost term in (3) can
also be thought of as a generalized distance function
[4]. Additionally, once a logical link has been established
from i to j any node in the network can use the link.
We do not consider the link to be directed in terms of
its use and for calculation ofdG.

Objective: The objective for each node is to find
its minimal cost strategy, the strategy that
minimizes the nodes cost according to
Equation 3.



Finding the minimal cost strategy for a node is a
NP-hard problem [10] [3]. This means that heuristic
and approximation approaches must be used in order to
scale to larger size networks. Even a greedy search is
O(N3 log N) and does not scale well to large networks
[10]. A better heuristic is needed.

IV. A M ACHINE LEARNING APPROACH

A. Motivation

Since an exhaustive search of a node’s strategy space
is NP-hard and a greedy search isO(N3 log N) heuristic
approaches are needed for the traffic-aware approach
to scale to larger networks. An algorithm with runtime
complexity that is linear in the number of nodes is
desired. Since any approach that relies on a distance
calculation must be at leastO(N log N) a good heuristic
is not obvious.

A scalable approach must determinegood nodes to
make logical links towards without knowledge of the
distance between nodes. This is clearly a good domain
for machine learning. A good definition of the learning
task is given by Mitchell [12]:

Definition: A computer program is said tolearn from
experienceE with respect to some class
of tasksT and performance measureP , if
its performance at tasks inT , as measured
by P , improves with experienceE.

For the overlay network learning problem the task is
clearly whether to create a logical link to a node or not.
The performance measure is the number of correctly
classified nodes and the experience is gathered from
topologies formed using iterative exhaustive search.

B. Data Acquisition

The training data for the learning algorithm, was
obtained after a node had selected the low-cost strategy
using iterative exhaustive search. A record of various
attributes for each node in the network and whether the
particular node is a member of the low-cost strategy was
recorded. This was done at each iteration of the iterative
exhaustive search algorithm for networks with 20-nodes.
Various values ofα, different traffic-demand distribu-
tions, and different maximum node degree constraints
were used. Table I gives the names and brief descriptions
of all the attributes used in the training data.

The complete set of attributes represents thefull
dataset. As mentioned previously, it is desirable to re-
move all distance calculations from the classification
task. We also wanted to reduce the number of attributes
that needed to be tested in order to reduce the complexity

TABLE I

ATTRIBUTES AND THEIR DESCRIPTION IN THE FULL DATASET

Attribute name Type Description

N numeric Number of nodes
alpha numeric α

maxDegreeExceeded boolean Is maxDegree constraint vi-
olated by adding a link?

maxDegreeRatio numeric Ratio of the degree of nodej
to themaxDegree

ijTrafficDemand numeric Traffic demand fromi to j

jMeanDistance numeric Average distance fromj to
other nodes.

Degreej numeric The degree of nodej
OutDegreej numeric The out degree of nodej
InDegreej numeric The in degree of nodej
jiLinkState boolean Does a link exist fromj to i?
TrafficDemandToAlpha numeric Traffic-demand to alpha ratio
linkState boolean Is link made towards nodej?

of the learning problem. We ran two attribute selection
algorithms, CfsSubsetEvaland InfoGainAttributeEval,
from the Waikato Environment for Knowledge Analysis
(WEKA) [13] to determine the most relevant attributes.

TABLE II

INFORMATION GAIN OF ATTRIBUTES

Attribute name Information Gain

maxDegreeRatio 0.10409
TrafficDemandToAlpha 0.09422
ijTrafficDemand 0.05008
maxDegreeExceeded 0.04513
Degreej 0.02487
InDegreej 0.02448
alpha 0.02263
jiLinkState 0.02252
jMeanDistance 0.00872
OutDegreej 0.00615
N 0

The information gained from the different attributes is
given in Table II. As it turns out the mean distance from
nodej to other nodes,jMeanDistance, does have low
information gain. This is promising since it is desirable
to neglect the distance attribute. The attributes that were
selected by theCfsSubsetEvalalgorithm were:maxDe-
greeExceeded, jiLinkState, and TrafficDemandToAlpha.
Once again the distance attribute was not selected. Based
on these results thereduceddataset was created that
included the following attributes:maxDegreeExceeded,
maxDegreeRatio, jiLinkState, and TrafficDemandToAl-
pha.



C. Algorithm Selection

The next step in designing a learning system is to
choose the target representation. The representation is
closely tied to the choice of learning algorithm. Ide-
ally, the representation would be human-readable. This
rules out various neural network approaches like multi-
layered perceptrons, radial basis functions, and support
vector machines. For performance reasons, lazy learning
algorithms such as nearest neighbor approaches were
also ruled out. This left primarily decision tree and rule
learning approaches. Since much of the training data
is numeric, the learning algorithm must be capable of
handling numeric as well as nominal valued attributes.
Based on preliminary experiments the following learning
algorithms were selected for further investigation:J48,
JRip, PART, andRidor.

WEKA’s Experimenter was used to compare the four
learning algorithms against ten data sets. Five datasets
were formed using random sampling from thefull
dataset. Five datasets were formed using random sam-
pling from the reduceddataset. Each dataset contained
10 percent of the examples from the complete dataset.
They were reduced in size because of memory con-
straints associated with WEKA and the Java Virtual
Machine.

Table III gives the percentage of correctly classified
instances for each data set over each algorithm. Each
algorithm was run on each dataset ten times. The per-
centage of correctly classified instances does not tell
the whole story though, especially when considering an
unbalanced dataset. Precision and recall values provide
a different view of the predictive accuracy.

Definition: Precision is the number of true positive
examples compared to the number of ex-
amples that are classified as positive.

Definition: Recall is the number of true positive ex-
amples compared to the number of exam-
ples that are actually positive.

Table IV and Table V provide the precision and accuracy
results of the learning algorithms. It is interesting to note
that the Ridor algorithm has poor precision results, but
high recall results. The final metric used in deciding
which learning algorithm to use was the number of
generated rules. Table VI shows that the JRip algorithm
produces a much smaller set of rules than J48, PART,
or Ridor, while still maintaining comparable predictive
accuracy. Consequently, the JRip learning algorithm was
selected and run on thereduceddataset.

TABLE III

PERCENTCORRECT

Data Set J48 JRip PART Ridor
full1 97.52 97.30• 97.38 96.81•
full2 97.45 97.19• 97.32 96.93
full3 97.59 97.47 97.43 97.03
full4 97.47 97.29• 97.32 96.80
full5 97.63 97.49• 97.53 97.06
reduced1 97.30 97.29 97.34 96.92
reduced2 97.25 97.26 97.24 97.00
reduced3 97.45 97.47 97.38 97.10
reduced4 97.30 97.28 97.27 96.96
reduced5 97.43 97.44 97.44 97.23
◦, • statistically significant improvement or degradation fromJ48

TABLE IV

PRECISION

Data Set J48 JRip PART Ridor
full1 0.94 0.93 0.94 0.84•
full2 0.94 0.94 0.93 0.86•
full3 0.93 0.93 0.92 0.85
full4 0.94 0.93 0.92 0.84•
full5 0.94 0.93 0.95 0.86
reduced1 0.93 0.92 0.93 0.86
reduced2 0.93 0.93 0.92 0.87•
reduced3 0.91 0.91 0.91 0.86
reduced4 0.93 0.92 0.93 0.88
reduced5 0.94 0.93 0.93 0.88
◦, • statistically significant improvement or degradation fromJ48

V. RESULTS

The rules that were learned were used in place of the
exhaustive and greedy search algorithms. Because there
is no implicit pressure to maintain a connected graph a
greedy connection algorithm was also used with the rule-
based approach. If the network is disconnected after a
node selects its strategy according to the rule set, the
node attempts to connect to nodes with high degree in
other subgraphs, so far as the maximum node degree
constraints are not violated. The algorithm was run on
20 node and 100 node networks with varying values
of α and maxDegree. Tables VII, VIII, and IX show
that the graphs generated by the rule-based algorithm
have similar properties to those created by the iterative
exhaustive and greedy searches.

For the 100 node networks, only the iterative greedy
search and rule-based search are used. The exhaustive
search is not used because of computational limits. Ta-
bles X, XI, and XII show that the graphs generated by the
rule-based search have similar properties to those created
by the iterative greedy search. For large values ofα



TABLE V

RECALL

Data Set J48 JRip PART Ridor
full1 0.80 0.78• 0.78 0.84 ◦

full2 0.79 0.76 0.78 0.82◦
full3 0.80 0.79 0.80 0.83
full4 0.79 0.77 0.78 0.82
full5 0.80 0.80 0.79 0.83
reduced1 0.78 0.79 0.79 0.82
reduced2 0.77 0.77 0.78 0.81◦
reduced3 0.80 0.80 0.80 0.82
reduced4 0.77 0.78 0.77 0.80
reduced5 0.78 0.79 0.79 0.82◦
◦, • statistically significant improvement or degradation fromJ48

TABLE VI

NUMBER OF RULES

Data Set J48 JRip PART Ridor
full1 55.00 8.50 • 43.70 50.20
full2 49.10 8.00 • 46.50 48.00
full3 49.60 10.10• 42.20 42.90
full4 51.70 8.00 • 48.70 49.90
full5 55.10 7.30 • 42.90 50.20
reduced1 22.30 8.90• 19.00 53.30◦
reduced2 24.30 9.60• 20.70 53.20◦
reduced3 22.80 9.50• 16.90 47.50◦
reduced4 20.60 8.20• 19.40 56.10◦
reduced5 19.60 9.20• 16.80 54.20◦
◦, • statistically significant improvement or degradation fromJ48

the rules-based networks have smaller characteristic path
lengths and higher spectral radii. This is a because more
nodes make logical links towards the root node in the
network. Additional simulations were run with degree-
constrained nodes and different traffic demand distri-
butions. Like the results presented here, the rule-based
approach results in networks with similar properties to
the exhaustive and greedy search methods. However, the
rule based approach does not behave exactly the same
under these parameters. Further results and discussion
can be found in [9] and [10].

TABLE VII

NUMBER OF EDGES FOR20 NODE NETWORKS

α Exhaustive Greedy Rules

0.5 132.0 132.0 129.3
1 89.0 89.0 79.4
5 19.0 20.3 19.2
60 19.0 19.0 19.2

TABLE VIII

CHARACTERISTIC PATH LENGTH FOR20 NODE NETWORKS

α Exhaustive Greedy Rules

0.5 1.30 1.30 1.31
1 1.53 1.53 1.59
5 1.90 1.91 2.55
60 2.68 3.23 2.55

TABLE IX

SPECTRAL RADIUS FOR20 NODE NETWORKS

α Exhaustive Greedy Rules

0.5 13.58 13.58 13.44
1 9.35 9.35 8.38
5 4.35 4.37 3.44
60 3.29 2.99 3.44

VI. CONCLUSIONS AND FUTURE WORK

Unfortunately, using a game-theoretic approach to
create overlay network topologies is intractable. Even a
greedy search approach is computationally expensive as
the size of the network grows. To solve this problem, a
machine learning approach was used to characterize the
attributes of nodes that logical links were made toward.
Using these attributes, a set of rules were learned that
were used to decide whether to create a logical link
toward a node or not. The resulting topologies were
compared against those formed through the exhaustive
and greedy search approaches. These comparisons show
that the rule-based approach creates similar topologies
to the exhaustive and greedy search approaches in most

TABLE X

NUMBER OF EDGES FOR100 NODE NETWORKS

α Greedy Rules

0.5 3399.0 3399.0
1 2438.0 2332.7
5 99.0 99.1
60 99.0 99.1
200 99.0 99.1
400 99.0 99.4

TABLE XI

CHARACTERISTIC PATH LENGTH FOR100 NODE NETWORKS

α Greedy Rules

0.5 1.31 1.31
1 1.50 1.52
5 1.98 2.71
60 1.98 2.71
200 3.67 2.70
400 4.35 2.68



TABLE XII

SPECTRAL RADIUS FOR100 NODE NETWORKS

α Greedy Rules

0.5 68.36 68.36
1 49.27 47.02
5 9.94 7.50
60 9.94 7.51
200 6.52 7.53
400 5.46 7.54

cases.
An area of future work, would be considering a more

realistic underlay topology, where the distance between
nodes in the underlay are not constant. Other interesting
areas of research, would be exploring the effects of
heterogeneous nodes. What type of effect would nodes
with different α and maxDegree values have on the
topology? How would the rules have to be changed to
handle this? It would also be interesting to investigate
this approach in a dynamic environment, where traffic-
demand between nodes is constantly changing. How
could online learning be used to adjust the rules in a
dynamic environment? All of these issues would need to
be investigated before a real-world implementation and
deployment could be realized.
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