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Abstract— Recent game-theoretic approaches to con- used to route data according to an application-specific
structing overlay network topologies have not been scal- performance metric.
able. This paper introduces a machine learning approach  Recent approaches, presented in Section Il, for creat-
to constructing overlay networks. The machine learning ing overlay network topologies based on game theory
approach learns characteristics from small networks con- have been proposed [3] [4] [9]. Unfortunately, these

structed using a game-theoretic approach. The knowledge . : S
learned is then used to construct larger networks. The approaches are intractable. The primary contribution of

results show that the machine learing approach closely thiS work is the introduction of a machine learning
approximates the game-theoretic networks for a wide @pproach that approximates the construction of game-
range of network parameters, while being scalable. theoretic overlay networks. The machine learning ap-
proach learns from data generated from the construction
of small networks using the game theory model, pre-
End-to-end routing performance is not optimal in theented in Section Ill, and applies the knowledge to larger
Internet. Since end hosts have no control over the routingtworks in a scalable fashion. The machine learning
of data, providing quality of service (QoS) guarantees &pproach is introduced in Section IV. Section V shows
a difficult problem. Many applications, such as videthat the machine learning approach closely approximates
streaming, voice over IP, and P2P, would like to hawbe game-theoretic approach to constructing overlay net-
performance and reliability guarantees. Unfortunatelyorks, while being computationally inexpensive. Future
the Internet provides zero guarantees. Many solutiomsrk and conclusions are presented in Section VI.
have been proposed to add QoS to the infrastructure of
the Internet. These solutions have little chance of being
accepted due to the inertia of the existing system. Hof- A game-theoretic approach
ever, a popular approach that has been recently proposeRecent approaches to the formation of overlay network
is anoverlay routing networkor overlay network. topologies are derived from game theory. These studies
An overlay network is arapplication-layernetwork propose a network creation model where each node tries
composed of logical links over the existing Interngb minimize its own "cost”, without consideration for the
infrastructure. In an overlay network, the hosts routgobal interests of the network. Nodes seek to minimize
data through intermediate nodes in the overlay netwoekst until an equilibrium, called &lash equilibrium is
according to application specific performance metriceeached where no node can decrease its cost without
Surprisingly, the end-to-end routing performance can Beme other node first increasing its cost.
significantly improved by routing through intermediate In a game-theoretic approach to network creation,
nodes [1] [2]. Obviously, one of the fundamental prokeach node in the network acts as an independent agent,
lems in overlay networks is deciding which intermediateelecting its neighbors, and paying for logical links to
nodes to use. Typically, overlay networks construct those neighbors according a cost model [3]. The subset
virtual topology of logical links toward other nodes irof nodes that form the neighborhood of a node is called
the overlay network. Common routing algorithms, suchstrategy Each node acts selfishly, selecting a strategy
as the link-state or distance vector algorithm, are thétmat reduces its cost. The union of these logical links

. INTRODUCTION

Il. RELATED WORK



forms a network that is created without central desigrode failure and attack. They also conclude that there

or coordination. is a fundamental tradeoff between the performance of a
Obviously, the resulting network topologies are largelgetwork and its resilience.

dependent on the specific cost model used. The cost for

node: to select strategy; as proposed by Fabrikant, et Ill. CosTMOobEL
al is [3]: This paper uses the traffic demand aware cost model
C; = o|B| + ch(i 7) 1) presented in [9] and [10]. We reproduce it here for

convenience. We assume that each node needs to select

its neighbors in a distributed fashion. Each node has im-
whered(i, j) is the cost distance between node®idj perfect information and does not know the other nodes’
in the overlay networky and« is a parameter ba|an0i”9neighbors. LetG = (N, L) be the graph representing
the cost of creating links to other nodes and the distangg overlay network andz, = (N, E) be the graph
to other nodes in the overlay network. These diﬁere%presenting the underlay, or physical, netwaykis the
cost terms can be seen as hardware and quality of sSendge of nodes that are in both the overlay and physical
costs or probing and routing costs, depending on thgwork, while the set of logical link& can be different
application. Fabrikant, et al prove that a wide range @m the set of physical link&. A logical link I € L is
network topologies can be constructed simply by varyingnstructed on a path composed of physical liaks E.
the value ofo [3]. Each nodei € N has a traffic demand toward a node
subsetS; C N. Lett; ; be the traffic demand between
noded and nodej in the subsetS;. The objective for

Chun, et al, generalized the cost model proposed B¥ch node is to create logical links to a subset of nodes,
Fabrikant, et al, and studied the selfishly constructggl < oN-{i} gych that its total cost is minimized. We

networks formed by the non-cooperative game [4]. Thejfine cost using two components:

JEN

B. A generalized approach

generalized the cost model in three areas: 1) Link cost: cost to create and maintain a logical
1) The link cost is no longer constant, but rather is a link between node to node;
function of the nodej being connected to. 2) Transport cost: cost to transport the traffic de-
2) The distance function is generalized to be any mand between nodesand j

performance metric between nodes. The cost for nodé to connect to each nodec B; and

3) _The possi.ble neighbors that a node can connectctéxrry traffic demand; ; to each nodg € S; is defined
is constrained. as the sum of the link cost and transport cost:

The resulting cost model is:
Ci=a Z hij + Z d (i, j)ti,; 3)

Ci=a Z hi,j + Z dg(z,j) (2) JEB; JES;
jeb JeN whereq is the relative cost of creating a logical link to
whereh; ; is the cost to create a logical link between the cost of transporting the traffic demand through the
andj. existing network,h; ; is the linking cost between and

Chun, et al, first consider small network topologies anddg(i, ) is the distance in the overlay network to
formed with varying values of: and different link cost nodej (oo if j is unreachable from).
functions. An iterative exhaustive search, where eachlt is important to note that the linking cost between
node in turn finds its minimal cost strategy given the restand j, is a general function that can represent a wide
of the network, is used until the network reaches equiariety of metrics. The transport cost term in (3) can
librium. They demonstrate that a wide range of netwoidso be thought of as a generalized distance function
topologies can be constructed: complete graphs, denié{})/Additionally, once a logical link has been established
connected graphs, sparsely connected graphs, gtarsfrom ¢ to j any node in the network can use the link.
core stars, and trees. When considering a more realidff¢ do not consider the link to be directed in terms of
search, where an iterative greedy search is done ovdtsause and for calculation of.
constrained neighborhood set, they find that networksObjective: The objective for each node is to find
can be constructed that have desiraglebal proper- its minimal cost strategy, the strategy that
ties. They demonstrate that power-law networks can be minimizes the nodes cost according to
formed as well as networks that are highly resistant to Equation 3.



TABLE |

Finding the minimal cost strategy for a node is a
ATTRIBUTES AND THEIR DESCRIPTION IN THE FULL DATASET

NP-hard problem [10] [3]. This means that heuristic

and approximation approaches must be used in ordef ®iribute name [ Type | Description
scale to larger size networks. Even a greedy searclj 16 numeric | Number of nodes
O(N3log N) and does not scale well to large networksalPha numeric |
[10]. A better heuristic is needed maxDegreeExceeded | boolean| Is maxzDegree constraint vi-
’ ) olated by adding a link?
IV. A MACHINE LEARNING APPROACH maxDegreeRatio numeric | Ratio of the degree of nodg
o to themax Degree
A. Motivation ijTrafficDemand numeric | Traffic demand fromi to j
Since an exhaustive search of a node’s strategy spptéeanbistance numeric é‘;’ﬁé?% dg':tance frony to
. 3 27, .
is NP-hard and a greedy searctOsN lqg N) heuristic  —5ggree; numeric | The degree of nodg
approaches are needed for the traffic-aware approa@utDegreej numeric | The out degree of nodg
to scale to larger networks. An algorithm with runtime InDegree; numeric | The in degree of nodg¢
complexity that is linear in the number of nodes icjiLinkState boolean | Does a link exist fromy to ¢?

. . . . TrafficDemandToAlphal numeric | Traffic-demand to alpha ratiq
desired. Since any approach that relies on a d'Sta'""“rﬁksltate P amen : s :

calculation must be at leaSt(NV log N) a good heuristic
is not obvious.

A scalable approach must determigeod nodes to
make logical links towards without knowledge of thef the learning problem. We ran two attribute selection
distance between nodes. This is clearly a good domailgorithms, CfsSubsetEvalnd InfoGainAttributeEval
for machine learning. A good definition of the learnindrom the Waikato Environment for Knowledge Analysis

boolean | Is link made towards nodg?

task is given by Mitchell [12]: (WEKA) [13] to determine the most relevant attributes.
Definition: A computer program is said tearn from
experienceE with respect to some class TABLE Il

of tasksT" and performance measur? if
its performance at tasks ifi, as measured

INFORMATION GAIN OF ATTRIBUTES

by P, improves with experiencé. [ Attribute name | Information Gain|

For the overlay network learning problem the task is maxDegreeRatio 0.10409
learly whether to create a logical link to a node or not TrafficbemandToAlpha 0.09422
c y _g ) ijTrafficDemand 0.05008
The performance measure is the number of correctly maxDegreeExceeded 0.04513
classified nodes and the experience is gathered from Degreej 0.02487
topologies formed using iterative exhaustive search. InDegree; 0.02448
alpha 0.02263

B. Data Acquisition jiLinkState 0.02252
. . . jMeanDistance 0.00872

The training data for the leamning algorithm, was OutDegree] 000615
obtained after a node had selected the low-cost strategy N 0

using iterative exhaustive search. A record of various
attributes for each node in the network and whether the
particular node is a member of the low-cost strategy wasThe information gained from the different attributes is
recorded. This was done at each iteration of the iteratigezen in Table Il. As it turns out the mean distance from
exhaustive search algorithm for networks with 20-nodesode; to other nodesjMeanDistance, does have low
Various values ofw, different traffic-demand distribu- information gain. This is promising since it is desirable
tions, and different maximum node degree constrairits neglect the distance attribute. The attributes that were
were used. Table | gives the names and brief descriptiedected by theCfsSubsetEvalgorithm were:maxDe-
of all the attributes used in the training data. greeExceedediLinkState and TrafficDemandToAlpha
The complete set of attributes represents fh# Once again the distance attribute was not selected. Based
dataset. As mentioned previously, it is desirable to ren these results theeduceddataset was created that
move all distance calculations from the classificatiancluded the following attributesmaxDegreeExceedged
task. We also wanted to reduce the number of attributemxDegreeRatiojiLinkState and TrafficDemandToAl-
that needed to be tested in order to reduce the complextya



TABLE 11l

C. Algorithm Selection
PERCENTCORRECT

The next step in designing a learning system is to
choose the target representation. The representation s Set J48 JRip PART _ Ridor

closely tied to the choice of learning algorithm. Ide-fulll 97.52 97.30e 97.38 96.81e
ally, the representation would be human-readable. Thi#!'2 97.45 97.1% 97.32  96.93

les out various neural network approaches like multifu”3 o159 9747 9743 97.03
ru _ K appro: fulla 97.47 97.29% 97.32  96.80
layered perceptrons, radial basis functions, and suppoxtiis 97.63 97.4% 97.53  97.06

vector machines. For performance reasons, lazy learnirfgducedl 97.30 97.29 ~ 97.34  96.92
algorithms such as nearest neighbor approaches welfgluced2 97.25  97.26  97.24  97.00

. . . .. reduced3 97.45 97.47 97.38  97.10
also ruled out. This left prlmanly decision tree_a_nd rulereduceda 9730 97.28 9727 96.96
learning approaches. Since much of the training dateeduceds 97.43 97.44  97.44 97.23
is numeric, the learning algorithm must be capable of: ® statistically significant improvement or degradation frG48
handling numeric as well as nominal valued attributes.
Based on preliminary experiments the following learning
algorithms were selected for further investigatidds,
JRip, PART, andRidor.

WEKA's Experimenter was used to compare the fourData Set  J48  JRip PART  Ridor

TABLE IV
PRECISION

learning algorithms against ten data sets. Five datasetdl 094 093 094  0.84e

: : fufl2 094 094 093  0.86e
were formed using random sampllng_ from thell 3 093 093 092 085
dataset. Five datasets were formed using random sanut4 0.94 093 092 0.84e
pling from thereduceddataset. Each dataset containedull> 094 093 095 086

reducedl 0.93 0.92 0.93 0.86
10 percent of the exe_lmpl_es from the complete datasertgduceoI2 093 093 092 0.8
They were reduced in size because of memory COneduced3 091 091 091 0.86

straints associated with WEKA and the Java Virtualreduced4 0.93 0.92 0.93 0.88
Machine. reduced5 0.94 0.93 0.93 0.88

. ... o, e statistically significant improvement or degradation frd48
Table Ill gives the percentage of correctly classified y Sl P 9

instances for each data set over each algorithm. Each
algorithm was run on each dataset ten times. The per-
centage of correctly classified instances does not tell
the whole story though, especially when considering anThe rules that were learned were used in place of the
unbalanced dataset. Precision and recall values provédéaustive and greedy search algorithms. Because there
a different view of the predictive accuracy. is no implicit pressure to maintain a connected graph a
Definition: Precisionis the number of true positive €€dY connection algorithm was also used with the rule-
examples compared to the number of e)Qased approa_ch. If the network is disconnected after a
amples that are classified as positive. node selects its strategy according tq the_ rule set, the
o ] - node attempts to connect to nodes with high degree in
Definition: Recallis the number of true positive ex-gipar subgraphs, so far as the maximum node degree
amples compared to the number of exams,nqiraints are not violated. The algorithm was run on
ples that are actually positive. 20 node and 100 node networks with varying values
Table IV and Table V provide the precision and accura®f o and maxDegree. Tables VII, VIII, and IX show
results of the learning algorithms. It is interesting toenothat the graphs generated by the rule-based algorithm
that the Ridor algorithm has poor precision results, bbave similar properties to those created by the iterative
high recall results. The final metric used in decidingxhaustive and greedy searches.
which learning algorithm to use was the number of For the 100 node networks, only the iterative greedy
generated rules. Table VI shows that the JRip algoritheearch and rule-based search are used. The exhaustive
produces a much smaller set of rules than J48, PARSEarch is not used because of computational limits. Ta-
or Ridor, while still maintaining comparable predictivébles X, XI, and XII show that the graphs generated by the
accuracy. Consequently, the JRip learning algorithm wade-based search have similar properties to those created
selected and run on threduceddataset. by the iterative greedy search. For large valuesaof

V. RESULTS



TABLE V
RECALL
Data Set J48 JRip PART  Ridor
fulll 0.80 0.78e¢ 0.78 0.84 o
full2 0.79 0.76 0.78 0.820
full3 0.80 0.79 0.80 0.83
full4 0.79 0.77 0.78 0.82
fulls 0.80 0.80 0.79 0.83
reducedl 0.78 0.79 0.79 0.82
reduced2 0.77 0.77 0.78 0.8%
reduced3 0.80 0.80 0.80 0.82
reduced4 0.77 0.78 0.77 0.80
reduced5 0.78 0.79 0.79 0.82

o, e statistically significant improvement or degradation fra48

TABLE VI
NUMBER OF RULES

Data Set J48 JRip PART  Ridor
fulll 55.00 8.50 e 43.70 50.20
full2 49.10 8.00 ¢ 46.50 48.00
full3 49.60 10.10e 42.20 42.90
full4 51.70 8.00 ¢ 48.70  49.90
fulls 55.10 7.30 e¢ 4290 50.20
reducedl 22.30 8.90e¢ 19.00 53.30
reduced2 24.30 9.60e 20.70 53.20
reduced3 22.80 9.50e 16.90 47.50
reduced4 20.60 8.20e¢ 19.40 56.10
reduced5 19.60 9.20e¢ 16.80 54.20

o, e statistically significant improvement or degradation fra48

TABLE VI
CHARACTERISTIC PATH LENGTH FOR20 NODE NETWORKS

| @ | Exhaustive| Greedy| Rules ]

0.5 1.30 130 | 131

1 1.53 153 | 159

5 1.90 191 255

60 2.68 3.23| 255
TABLE IX

SPECTRAL RADIUS FOR20 NODE NETWORKS

| @ | Exhaustive| Greedy | Rules ]

0.5 13.58 13.58 | 13.44
1 9.35 9.35| 8.38
5 4.35 437 | 3.44
60 3.29 299 | 3.44

VI. CONCLUSIONS ANDFUTURE WORK

Unfortunately, using a game-theoretic approach to
create overlay network topologies is intractable. Even a
greedy search approach is computationally expensive as
the size of the network grows. To solve this problem, a
machine learning approach was used to characterize the
attributes of nodes that logical links were made toward.
Using these attributes, a set of rules were learned that
were used to decide whether to create a logical link
toward a node or not. The resulting topologies were
compared against those formed through the exhaustive
and greedy search approaches. These comparisons show
that the rule-based approach creates similar topologies

the rules-based networks have smaller characteristic piifhe exhaustive and greedy search approaches in most

lengths and higher spectral radii. This is a because more
nodes make logical links towards the root node in the TABLE X
network. Additional simulations were run with degree- NUMBER OF EDGES FORLOONODE NETWORKS

constrained nodes and different traffic demand distri-
butions. Like the results presented here, the rule-based
approach results in networks with similar properties to

the exhaustive and greedy search methods. However, the 5 990 991
rule based approach does not behave exactly the same 60 99.0| 99.1
under these parameters. Further results and discussion 200 9.0 991

can be found in [9] and [10].

NUMBER OF EDGES FOR2Z0 NODE NETWORKS

TABLE VI

[ @ | Exhaustive] Greedy| Rules]

0.5 132.0| 132.0| 129.3
1 89.0 89.0| 794
5 19.0 20.3| 19.2
60 19.0 19.0 | 19.2

[a | Greedy| Rules]

0.5 | 3399.0| 3399.0
1 2438.0| 2332.7

400 99.0 99.4

TABLE XI
CHARACTERISTIC PATH LENGTH FORLOONODE NETWORKS

[ @ | Greedy] Rules |
0.5 1.31 1.31
1 1.50 1.52
5 1.98 2.71
60 1.98 2.71
200 3.67 2.70
400 4.35 2.68




TABLE XII
SPECTRAL RADIUS FOR100NODE NETWORKS

| @ [ Greedy| Rules |
0.5 68.36 | 68.36
1 49.27 | 47.02
5 9.94 7.50
60 9.94 7.51
200 6.52 7.53
400 5.46 7.54

cases.

(8]

(9]

[10]

[11]

[12]

An area of future work, would be considering a morg3]
realistic underlay topology, where the distance between
nodes in the underlay are not constant. Other interesting

areas of research, would be exploring the effects

of

heterogeneous nodes. What type of effect would nodes

with different o« and mazDegree values have on the
topology? How would the rules have to be changed

to

handle this? It would also be interesting to investigate
this approach in a dynamic environment, where traffic-
demand between nodes is constantly changing. How

could online learning be used to adjust the rules in
dynamic environment? All of these issues would need

a
to

be investigated before a real-world implementation and

deployment could be realized.
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