
Achievable Catalog Size in Peer-to-Peer Video-on-Demand Systems∗
Yacine Boufkhad† Fabien Mathieu‡ Fabien de Montgolfier† Diego Perino‡ Laurent Viennot§

Abstract We analyze a system where n set-top boxes with sameupload and storage capacities collaborate to serve r videos simul-taneously (a typical value is r = n). We give upper and lowerbounds on the catalog size of the system, i.e. the maximal numberof distinct videos that can be stored in such a system so that anydemand of at most r videos can be served. Besides r/n, the catalogsize is constrained by the storage capacity, the upload capacity,and the maximum number of simultaneous connections a box canopen. We show that the achievable catalog size drastically in-creases when the upload capacity of the boxes becomes strictlygreater than the playback rate of videos.
1 IntroductionVideo on Demand (VoD) is the next challenge in Content Distribu-tion over the Internet. Bandwidth requirements for serving qualitycontent to a large number of customers are very high: VoD oper-ators have to operate a large number of servers with high-speednetwork links, and other expensive resources.An innovative approach consists in taking advantage of peer-to-peer algorithms. Currently, home Internet bandwidth access isrelatively scarce with respect to video playback rate, and thus peerscan only alleviate the load of servers, which are still mandatory.However, server-free architectures become possible as the accessbandwidth increases, for example by the dint of new technologiessuch as fiber to the home. Most recent work in that trend studythe problem of single video distribution, where peers viewing thesame video collaborate [6, 4, 2]. The challenge is then to reduceas much as possible startup and seek delays.Another issue is to manage a distributed catalog of videos. Weindeed consider the problem of fully decentralizing the server in aset of entities with storage and communicating capacities, called
boxes. A challenging task then resides in offering to the user thelargest possible catalog. This is where a peer-to-peer approachbecomes powerful as the storage capacity of the system increaseswith the number of boxes operated for the server part. A keyproblem to solve is then video allocation: how to store a maximumnumber of videos on n boxes so that any request of at most rvideos can be satisfied. Notice that such an allocation schememust be combined with a scheduling algorithm to decide whichboxes handle each request.

∗Supported by Project-team GANG between INRIA and LIAFA.
†Université Paris Diderot, Paris, France
‡Orange Labs, Issy-les-Moulineaux, France
§ INRIA Paris Rocquencourt, France

An interesting target for operating such a fully decentralizedVoD system is to build a distributed server using a set of boxeson the company’s side for serving r >> n customers. Relying ona single video distribution algorithm between peers, the problemis then to serve at most r distinct requests (one video sourceper single video distribution swarm). We may thus consider theparticular case where requests are pairwise distinct.Another interesting target resides in the set-top boxes operatedby an Internet Service Providers (ISP) on the customer’s side. Asthese boxes may contain a hard drive, this mass storage capacity,combined with the upload power of the set-top boxes, may be usedboth as a cooperative video viewing system and as a distributedserver. In that case, using a single video distribution scheme re-duces the upload of participating boxes to serve as sources. Wewill then typically consider r ≤ n requests (assuming that eachbox either watch a video or is idle).Using the storage capacity of set-top boxes of a P2P VoD sys-tem as a cache is proposed in [1], but that still relies on serversfor sourcing the system. Our approach mostly follows the trackopened by Push-to-Peer [7] where set-top boxes are really usedas sources of the system (after a push phase has been completed).However, Push-To-Peer combines both a queuing model and anallocation scheme tailored for boxes with upload capacity smallerthan playback rate. In particular, the catalog size achieved in [7] donot increase with n when the number of simultaneous connectionsis constrained. We focus on the allocation problem for boxes withupload capacity greater or equal to the playback rate and studyhow the catalog size may increase with n.
Contribution In this paper, we derive upper and lower bounds onthe catalog size of a distributed VoD system with regards to boxcapacities. We assume that each box has storage space equiv-alent to d videos and upload capacity of u video streams splitamong c connections at most (see Table 1 for a complete list ofthe parameters used). A trivial upper bound on the catalog size is
dn. Note that for serving r requests it is necessary that un ≥ r(that is u ≥ 1 when r = n). We thus define b = un

r the upload
provisioning.When the upload capacity is scarce (i.e. b ≈ 1), we show thatthe catalog size is bounded by m = (d − u)c nr + un. That holdseven if all requests are pairwise distinct. On the other hand, wepropose a simple cyclic scheme that achieves a catalog size of
dc nr and enables incremental arrivals of requests. Moreover, thisscheme can be modified to achieve the optimal (d − u)c nr + uncatalog size when all requests are distinct. (c nr can be viewed as

n Number of boxes for serving videos
m Catalog size (# of videos stored)
r Maximum # of simultaneous video requests
d Storage capacity of a box, in # of videos
u Upload capacity of a box, in # of full video streams
b Upload provisioning w.r.t. requests (b = un

r).
c # of simultaneous upload connections per box
s # of stripes of videos (a video can be viewed by down-loading its s stripes simultaneously)
q Number of distinct videos in a request (q ≤ r)
` Single video schemes threshold (see Section 5.3).

Table 1: Key parameters
a bound on the number of connections for downloading a video).In the case where b > 1, we propose random allocation schemesthat offer a catalog size of Ω(dn) up to some logarithmic factor.This shows that the catalog size of the system may increase al-most proportionally to its storage capacity as soon as the uploadprovisioning b is greater than the playback rate. More precisely,we first show that a random allocation of O(log n) copies per videoallows to offer a catalog size of Ω(dn/ log n) and to answer a setof r distinct requests with high probability. We then use expandergraph techniques to derive a scheme that can always serve anyset of r distinct requests with catalog size Ω(dn/ log d).These results are then generalized in various ways to the gen-eral case where some videos can be multiply requested. First, thevideos can be copied according to their popularity under the real-istic assumption that the popularity of videos follows a power lawdistribution. In that case, the lower bounds obtained for distinctrequests then still hold up to a 1/ log r factor. Another possibil-ity it to use multicast (if available) at the cost of some startupdelay. More generally, we can rely on an efficient single videodistribution scheme to enhance the random allocation scheme andstill achieve a catalog size of Ω(dn/ log n). Beside the theoreti-cal analysis, we validate the random allocation approach throughsimulations showing experimentally that the system answers ef-ficiently random and even adversarial requests. Our results aresummarized in Table 2.
2 ModelWe consider a set of n boxes. Each box has storage capacity of
d videos and upload capacity equivalent to u video streams (forinstance if u = 1 a box can upload exactly one stream). Wethus assume that all boxes have same constant upload capacityand that all videos are of equal bit-rate. Additionally, we supposethat each box is always available. These boxes are used to servevideo requests incoming incrementally. As new requests arrive andold requests terminate, the number of simultaneous requests at agiven time is supposed to remain bounded by r. For each request,a download allocation algorithm designates the set of boxes thatwill collectively upload the requested video. This algorithm can

be fully incremental when the designated boxes remain the sameuntil the end of the request, or weakly static when the designatedboxes remain the same until arrival of the next request, or dynamicwhen the designated boxes may change due to complex storageallocation schemes. Of course, with regard to connection stability,the former is the best. We propose only fully incremental or weaklystatic schemes. Our fully incremental schemes will be distributedas long as it is possible to learn and probe the boxes storing agiven video. On the other hand, our weakly static schemes mayrequire some centralized computation. Our upper bounds holdfor all download allocation types as long as connections have toremain stable during short periods of time.To enable collective upload of a video, each video may be dividedin s equal size stripes using some balanced encoding scheme. Thevideo can then be viewed by downloading simultaneously the sstripes at rate 1/s (playback rate is normalized to 1). A verysimple way of achieving striping consists in splitting the video filein a sequence of small packets. Stripe i is then made of the packetswith number equal to i modulo s.We suppose that a box may open at most c connections foruploading simultaneously video data. The main reason is thatwe assume that a downloader may only open a limited number ofconnections to ensure a low startup time and manageable protocols.A balanced scheme must then result in a bounded number of uploadconnections per box. Another reason is that the total goodputdecreases if too many connections are involved [3]. We additionallyassume that the connections of a box equally share its bandwidthas it would typically be the case for simultaneous TCP connections.We first give upper and lower bounds for a system with sparcecapacity. We then focus on the problem where the boxes constitutea distributed server used for serving distinct requests, as discussedin the introduction. Finally, Section 5.3 deals with the problemwhere set-top boxes both serve and view videos (in that case wewill assume r = n).
3 Scarce upload capacity (b ≈ 1)
3.1 Full stripingAs stated in [7], there exists a simple optimal scheme for video allo-cation when the number of simultaneous connections is unbounded:full striping. Assume each video can be split in n stripes. A systemwith n boxes can then store m = dn videos by allocating to eachbox one stripe of rate 1/n for each video. Any request for r videoswill then result in a demand of r stripes per box. They can alwaysbe served as long as u ≥ r/n. Notice that dn is a trivial upperbound on the number of videos that can be stored in the system.However, we show that a system with scarce upload capacity andlimited number of simultaneous connections cannot offer as manyvideos as it can store.
3.2 Cyclic allocation
Theorem 1 In the special case where b = 1 (i.e. un = r), it
possible to offer dc nr videos. Moreover, it is possible to offer(d − u)c nr + un videos when requests are distinct.

Proof: Choose a coding scheme with s = cn/r stripes (for thesake of simplicity we assume that cn/r and n/s are integers). Foreach 0 ≤ i < s, store Stripe i on the n/s boxes with number jsuch that j = i modulo s. Any demand for r ≤ n videos canthen be satisfied: demanded video number j can be downloadedfrom the boxes with number j, j + 1, . . . , j + s − 1 (modulo n).Each box then have to serve at most rs/n = us = c demands ofupload 1/s. Note that we can achieve a slightly better bound of
d(s+ 1) if the connection from a box to itself is not accounted inthe simultaneous connection constraint. This download allocationscheme is fully incremental.When a request consists in r different videos, a catalog size of(d − u)c nr + un videos in the system can be achieved as follows.Store (d − u)c nr videos according to the previous scheme plus unvideos “uniquely” stored in the following sense: stripe i of video j isstored on box number i+j modulo n. A request for r = un videos issatisfied by allocating first the demands for uniquely stored videos.Each remaining video v can then be served by the s boxes storinga uniquely stored video which is not part of the request. If everthis uniquely stored video is then requested, v has to be viewedfrom another set of boxes with free capacity. (For that purpose, aDHT or a tracker could maintain which uniquely stored videos arenot currently demanded.) The download allocation scheme is thusweakly static. �Note how using striping allows to increase catalog size in theseschemes.
3.3 Upper bound
Theorem 2 In the case where un = r, the number m of videos
offered by the system is at most m = (d − u)c nr + un.

Proof: Consider a set-top box a storing data from i differentvideos. The number of videos that are not stored in a is at most
u(n − 1), otherwise a request for un = r videos not stored in awould fail because of a lack of upload capacity. Therefore m ≤
i+u(n−1). If i ≤ (d−u)c nr +u, then we get m ≤ (d−u)c nr +un.Now consider i = (d − u)c nr + 1 + j for some integer j ≥ u − 1and suppose m ≥ (d−u)c nr +un+1 = i+un− j . Ask for the jvideos with fewest data on a plus un− j videos not on a. If these
j videos represent less than an amount u of data on a, the systemwill not have the capacity to serve these r videos as box a willupload strictly less than u = r/n videos, a contradiction. Theymust thus represent not less than u. Moreover, the (d − u)c nr + 1videos with larger portions of data share a storage space of atmost d − u. The j videos with fewest data on a thus occupy lessthan r/(nc), implying j > un

r c = c. Consider then a request with
c videos among these j videos with fewest data on a plus n − cvideos excluding the (d − u)c nr + 1 videos with largest portionof data on a. As a can upload on c connections at most anduploads less than r/(nc) per connection, a will upload less than
r/n and the system will not have the capacity to serve these rvideos. This brings again a contradiction. We thus conclude with
m ≤ (d − u)c nr + un.

The above argumentation assumes that the connections of ado not change over time. However, the result still holds withdynamic connections. Consider a synchronous request of r videos(all viewers start simultaneously). Focus on any time window [t1; t2]where the connections of a remain stable. Let t = t2 − t1 denoteits duration as a fraction of the average video duration (t < 1). Wecan then apply the static arguments on the portions of video data inthe time window [t1; t2]. If d′ is the storage space of a dedicated tothis time window over all videos, we then similarly deduce that thenumber of videos in the system is at most (d′−ut) ct nr +un. Notethat some time window uses a storage space d′ ≤ td (otherwisewe would get a contradiction by summing over storage spacesdedicated to all time windows). We thus obtain the same bound.
� Note that we get a similar bound in a system where down-loaders are constrained by a maximum number c′ of simultaneousconnections. If all peers open at most c′ download connections,then some box has c′ rn upload connections at most. With the samearguments, we then get m ≤ (d − u)c′ + un.
4 Pairwise distinct requestsHere is discussed the case where each video may be requested byonly one user (or one swarm of users). The extension to requestswith multiplicity shall be discussed in Section 5.
4.1 Random allocationWe now prove some lower bounds based on random allocation ofcopies of video stripes on boxes. We assume that each video issplit in s < c nr stripes and that the upload provisioning is slightlygreater than 1:

u ≥ r
n + 1

s , i.e. b ≥ 1 + 1
c − 1 (for s = (c − 1)nr)

Theorem 3 With u ≥ r/n+1/s and c ≥ us, it is possible to storeΩ(dn/ log n) videos in the system and to satisfy any demand of r
distinct videos with high probability.

Proof: For each stripe of a video, select β log nrs boxes uniformlyat random and copy the stripe to each of them (β is a constantmade explicit later on). With high probability, Ω(dn/ log n) videoscan be stored in the system without exceeding the storage capacityof any box (r ≤ un implies rs = O(n)).Consider a request for r distinct videos. Each box can upload
us ≥ sr/n+1 stripes simultaneously. The allocation of video dis-tribution is made greedily. Consider the problem of finding a boxfor downloading a given stripe after S < rs stripes have alreadybeen allocated. The number of boxes with exceeded capacity isat most S/us < r/u. The new stripe cannot be allocated if its
β log(ns) copies fall into these boxes. This happens with proba-bility (r/un)β log nrs ≤ (nrs)−β log b ≤ 1

nrs for β = 1/ log b. (Notethat β ≤ 1/ log(1 + n/(rs))). All videos can be served if no stripeallocation fails. Any subset of r pairwise distinct videos can thusbe downloaded simultaneously with probability at least 1− 1
n . �

Notice that the above download allocation scheme is fully in-cremental: former requests are never reallocated and it has verylow probability of blocking a demand as long as the number ofdemands is less than r.
4.2 Expander graph allocationWe now give a procedure to allocate Ω(dn/ log d) videos in thesystem so that any request for r distinct videos can always besatisfied.
Theorem 4 For ds = Ω(log n) and u ≥ r

n + 1/s, it is possible to
store Ω(dn/ log d) videos in the system so that any request for r
distinct videos can always be satisfied.

Proof: Use an expander graph like construction (as sketchedbelow) to find a bipartite graph between video stripes and boxesverifying the following cardinality property: for all subset S ofat most rs stripes, the set B(S) of boxes containing these stripesverifies |B(S)| ≥ |S|/(us). By Hall’s theorem, there always existsa matching between the stripes of any subset of r videos and theboxes such that each box has degree at most us (upload capacitiesare thus respected). Such a matching can indeed be computedrunning a maximal flow algorithm. (Hall’s theorem can be seen asa min-cut max-flow theorem.)We just give a sketch of a randomized construction of an ex-pander graph with the desired cardinality property. See [5] fordeterministic expander graph construction. We consider a numberof copies k > 1 and some constant β > 0. Store βdns stripesin the system by copying each stripe on k boxes chosen uniformlyat random. This defines the allocation bipartite graph Gβ,k . As
ds = Ω(log n), we can find β < 1

k such that no box has degreemore than ds with non zero probability (using Chernoff’s bounds forexample). Consider any subset S of |S| = i ≤ rs stripes. We have
Pr[|B(S)| < p] < (np) (pn)ki. Using (np) ≤ (ne/p)p, plugging p =
i/(us), setting un = br, and considering all subsets S of at most rsstripes, we get the following bound on the probability that Gβ,k hasnot the desired cardinality property: ∑rs

i=1 (βdnsi)(n
i/(us)) (i

uns
)ki ≤∑rs

i=1 (βd(br/u)s ei

)i (brse
i
)i/(us) (i

brs
)ik ≤ ∑rs

i=1 (βbde1+1/(us)/u
b(k−1/(us)−1)

)i
for k ≥ 1 + 1/(us) since i ≤ rs. It is less than 1 for
k > 1 + 1

us + log 2βde2/ulog b . There thus exists a bipartite allocationgraph having the desired cardinality property without exceedingany box storage capacity. (With a logarithmic number of trials,such a bipartite graph can be found with high probability.) �Note that once a bipartite graph with the cardinality propertyhas been decided for the video allocation, any request for at most
r distinct videos can always be satisfied. The download allocationscheme is weakly static: when the set of requests changes, anew matching for connections has to be found (typically running amaximal flow algorithm starting from the previous matching). Thismay require to reconfigure many connections. We test in Section 6how requests can be inserted fully incrementally in similar bipartitegraphs (without any reconfiguration).

5 Managing videos multiply requestedLet us now suppose that the same video can be watched simulta-neously by many users. As this context is specially interesting forthe set-top box setting (box on the customer’s side), we consider
r = n requests (each box views at most one video) for a totalof q ≤ r distinct videos watched. However, our results could beextended to the case where a box may view up to i ≥ 1 videossimultaneously (implying r = in). Note that the full striping andthe cyclic allocation scheme (with dc videos) still apply when theremay be multiple requests for the same video.
5.1 Power law video popularityThe lower bounds of Section 4 still hold up to a 1/ log r factor ifthe multiplicity of requests follows a power law distribution. Moreprecisely, assume that for every video we know a bound i on themaximum number of simultaneous viewing it may reach. We thensay it is a type i video. For 1 ≤ i ≤ r, let pi be the proportionof videos of type i. We postulate that popularity follows a powerlaw with parameter γ, given by pi = i−γ/

∑r
i=1 i−γ .Consider a catalog of size m′/ log r where m′ is the catalogsize that can be achieved by some allocation scheme (e.g. oneof the schemes proposed in Theorems 3 and 4). We then con-stitute a redundant catalog where each video of type i is du-plicated i times. The catalog size is then m′log r ∑r

i=1 ipi. As
r∑
i=1 ipi = ∑r

i=1 i1−γ∑r
i=1 i−γ ≤ log r when γ > 2, this redundant cat-

alog may be allocated using a distinct request scheme. Requestsfor the same video are then allocated to different instances of thevideo in the catalog.
5.2 MulticastIn the case where the boxes, on the customer’s side, belong tothe same DSLAM (or some specific subnetwork), multicast may beused: a stripe uploaded from a box can be downloaded simulta-neously by many other ones. However, this requires the viewersto be synchronized. This can be obtained by splitting the videosin small duration windows. The price to pay is that all the userswatching the same video progress in parallel in their window, andso a user may wait a window duration before starting playback.(A simple solution to reduce startup time is that all users storethe first window of all videos [7]). Then if we use both stripingand windowing, the problem of multiple requests trivially reducesto the problem of pairwise distinct requests.
5.3 Using single video distribution schemesThe problem of single video distribution has already been ad-dressed (e.g. [6, 4, 2]). If a set p peers watching the same videoreceive data from other peers at a global rate k , the minimumbandwidth they must allocate to the video is p − k , leaving aremaining upload capacity of at most (u − 1)p + k . If this boundis reached, the distribution scheme is called perfect. An instanceof perfect distribution scheme is multiple chaining: in a chain ofusers, the most advanced user, i.e. the one watching the furthest,downloads the video as if it were a single watcher. The second

most advanced user downloads directly from the the first one, andso on. . . We obtain a “perfect” scheme by using k chains.However, perfect schemes need tight schedulers, and for largenumber of users, more robust schemes must be used. Such schemesusually have average download and upload requirements of 1 + εper peer (we neglect ε in the sequel), leaving a remaining overallupload capacity of (u − 1)p.We model this distinction between perfect and robust schemesby introducing a critical size ` ≥ 1: if p ≤ ` , we assume thescheme is perfect (remaining capacity: (u− 1)p+ k); otherwise, arobust scheme is used (remaining capacity: (u − 1)p). Of coursewe may set ` = 1 if we suppose that perfection does not exist.In that case, using the scheme of Section 4.2, we can achieve thesame catalog size with multiplicity in requests when u ≥ 2 + 1/s.Theorem 5 generalizes this result for any ` .
Theorem 5 With u ≥ 1 + 1/s + 1/` and c ≥ us, it is possible
to offer Ω(dn/ log n) videos and to satisfy any demand of r = n
videos with high probability.

The proof is similar to that of Theorem 3, except that the singledistribution scheme capacity requirements have to be taken intoaccount.
6 SimulationsIn this section, we use a simulator to study the performances ofa regular allocation scheme. Each video is divided in s stripesreplicated k times. To equally fill up boxes and equally copystripes, we build a regular random bipartite graph rather than thepurely random allocation used for theoretical lower bounds. Thereason is that it allows to fully utilize the storage capacity of boxescompared to a random allocation that is inherently unbalanced.The mks stripes are thus placed according to a random permutationin the nds available storage slots (we assume mk = nd).Once the allocation is made, the simulator tries to fulfill videorequests until a request fails. We do not consider dynamic re-allocations as requests arrive, although it could probably increasethe number of requests the system can handle. We indeed usethe following fully incremental scheme. Once a given video isrequested, the system takes the corresponding stripes from thenodes with the more available upload bandwidth. The requestscheduler can be random or adversarial. In the former, videos arerandomly selected among the ones not selected yet. In the latter,the scheduler chooses the video for which the system will select anode with minimal remaining upload capacity.We simulate a n = 1000 nodes system, with a storage capacityper node of d = 25, and a number of stripes per video of s = 15.
Pairwise distinct requests Following Section 4, we first analyzea scenario where all requests are distinct. We consider threedifferent node upload capacity scenarios: u = 1 (scarce capacity),
u = 1 + 1

s (extra-stripe capacity) and u = 1.5. The targetednumber of requests is n, but being able to perform more than nrequests also makes sense if we assume that some nodes may want

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

Number of Copies of Each Video Stripe

N
um

be
r

of
 R

eq
ue

st
s

S
at

is
fie

d

Adversarial−Random Scheduling

u = 1 adv
u = 1 + 1

s adv
u = 1.5 adv
u = 1 rand
u = 1 + 1

s rand
u = 1.5 rand
Catalog Size

(a) Distinct requests scenario

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

 p (number of nodes with available upload bandwidth u−1)

N
u

m
b

e
r

o
f

R
e

q
u

e
s
ts

 S
a

ti
s
fi
e

d

Adversarial Scheduling

u = 1
u = 1 + 1

ℓ , ℓ = 10
u = 1 + 1

ℓ , ℓ = 2
Catalog Size
p
ℓ + n − p, ℓ = 2
p
ℓ + n − p, ℓ = 10

(b) Multiple requests scenario (k = 15)
Figure 1: Requests scenarios (n=1000, d=25, s=15, c≥us).

to watch more than one video. We vary the number of copies pervideo from k = 1 to k = 20 (the catalog size is then m = nd
k).Figure 1(a) shows the minimum number of request satisfied foreach scenario among several runs.First, we can notice that random and adversarial requests givesimilar results except when the number of copies is very small.This means that if the catalog is redundant enough, the systemwill be unaffected by the request patterns. Figure 1(a) shows thatthe system performs quite well with distinct requests: with u = 1,it serves 95% of n requests if k = 7, and 98% if k = 20. However,it never satisfies 100% of n requests. If we increase the uploadcapacity up to u = 1 + 1

s , then n requests can be satisfied aslong as k ≥ 5. This means that a bandwidth overhead of 1
s and aredundancy of 5 provide a catalog robust to distinct requests. Byincreasing again the upload capacity to u = 1.5, less copies areneeded to satisfy all the n requests and the system answers up toalmost 1500 demands.

Capacity Constraints Achievable lower bound Theoretical upper bound
b = 1 m = (d − u)c nr + un (distinct requests), m = dc nr (any requests) m ≤ (d − u)c nr + un
b ≥ 1 + 1

c−1 m = Ω(dn/ log n) for distinct requests with low failure probability, or
m = Ω(dn/ log d) for distinct requests with an expander graph (Theo-rems 3 and 4 with s = (c − 1)nr) m ≤ dn

u ≥ 1 + 1
s + 1̀ , r = n m = Ω(dn/ log n) for any multiset of requests with low failure probability(Theorem 5).

u ≥ 2 + 1
s , r = n m = Ω(dn/ log d) for any multiset of requests (Theorems 4 using efficientsingle video distribution).

Table 2: Results reminder
These results also show that the system almost fully exploitsthe available bandwidth except when there are too few copies pervideo or when the catalog size is lower than un.

Multiple requests We take multiple requests into account by al-tering node upload capacities: we assume that p nodes (p ≤ n)have an available bandwidth for distinct requests u′ = u − 1,since 1 is devoted to a single video distribution scheme (similarlyto Section 5.3). The number of distinct requests with ` or moreviewers is then p/` at most. The number of distinct requests singlyviewed or treated through chaining (of less than ` boxes) is at most
n − p. We thus deduce that the system can manage n requestswith multiplicity, if it can handle p

` + n− p distinct requests with
p nodes having altered upload bandwidth.Figure 1(b) shows the number of distinct requests the system canhandle with a redundancy set to k = 15 and adversarial requestscheduling. We consider three node upload capacity scenarios:
u = 1, u = 1.1 and u = 1.5. The p

` + n − p curves are alsoplotted for ` = 2 and ` = 10 (` = 2 correspond to no chaining,only practical single video schemes and ` = 10 corresponds tooptimal single video schemes for less than 10 simultaneous view-ers). Scenarios above those curves can manage n requests, withmultiplicity, or more.The scenario with scarce upload capacity (u = 1) cannot satisfy
n requests. It can only be close to the limit for p ≤ 300, ` = 10,and gives poor performances for p > 300. However, if we increasethe upload capacity of 1̀ , the result is a concave function of pthat is always above the limit requested to satisfy n requests withmultiplicity. As u = 1 + 1̀ is the capacity needed to handle nrequests if p = n, and u = 1+ 1

s is the capacity needed if p = 0,a capacity of 1 + max(1̀ , 1
s) seems sufficient in practice comparedto the 1 + 1

s + 1̀ bound suggested by Theorem 5.
7 ConclusionIn this paper, we gave several trade-offs between bandwidth andstorage capacity. Main results are summarized in Table 2. Oneshould retain that when the available bandwidth is close to theminimal bandwidth needed to fetch requests, the catalog is sparsewith respect to available capacity, and multiple requests of a samevideo are difficult to handle. Things get better if the bandwidthis over-provisioned. In the set-top box setting, if the available

bandwidth is more than twice the playback rate, the size of thecatalog can be almost proportional to the available storage ca-pacity. Moreover, a high catalog size can also be achieved withavailable bandwidth 50 % percent greater than playback rate andhigh probability of satisfying requests. Note that using stripingreduces the required upload provisioning. Interesting future workresides in reducing the gap between upper and lower bounds. Forexample, can we get tighter upper bounds with multiplicity in re-quests?
References
[1] M. S. Allen, B. Y. Zhao, and R. Wolski. Deploying video-on-demand services on cable networks. In ICDCS ’07.
[2] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, andP. Rodriguez. Exploring VoD in P2P swarming systems. In

INFOCOM ’07.
[3] F. Baccelli, D. Hong, and Z. Liu. Fixed point methods for thesimulation of the sharing of a local loop by a large number ofinteracting TCP connections. In Proc. ITC Specialist Conference

on Local Loop, Barcelona, Spain, 2001.
[4] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A measurement studyof Peer-to-Peer Video-on-Demand system. In IPTPS ’07.
[5] S. Hoory, N. Linial, and A. Wigderson. Expander graphs andtheir applications. Bull. AMS, 43:439–561, 2006.
[6] C. Huang, J. Li, and K. W. Ross. Can internet video-on-demandbe profitable? In SIGCOMM ’07, pages 133–144.
[7] K. Suh, C. Diot, J. F. Kurose, L. Massoulié, C. Neumann,D. Towsley, and M. Varvello. Push-to-Peer Video-on-Demandsystem: design and evaluation. Technical Report CR-PRL-2006-11-0001, Thomson, 2006.

