arXiv:2102.02344v2 [cs.LG] 7 Feb 2021

UTILIZATION SQUEEZER FOR TRAINING NOVEL DEEP LEARNING MODELS

HORIZONTALLY FUSED TRAINING ARRAY: AN EFFECTIVE HARDWARE

Shang Wang ' > Peiming Yang “3? Yuxuan Zheng“* Xin Li“? Gennady Pekhimenko >

ABSTRACT

Driven by the tremendous effort in researching novel deep learning (DL) algorithms, the training cost of developing
new models increases staggeringly in recent years. To reduce this training cost and optimize the cluster-wide
hardware resource usage, we analyze GPU cluster usage statistics from a well-known research institute. Our study
reveals that single-accelerator training jobs can dominate the cluster-wide resource consumption when launched
repetitively (e.g., for hyper-parameter tuning) while severely under-utilizing the hardware. This is because DL
researchers and practitioners often lack the required expertise to independently optimize their own workloads.
Fortunately, we observe that such workloads have the following unique characteristics: (i) the models among jobs
often have the same types of operators with the same shapes, and (ii) the inter-model horizontal fusion of such
operators is mathematically equivalent to other already well-optimized operators. Thus, to help DL researchers
and practitioners effectively and easily improve the hardware utilization of their novel DL training workloads,
we propose Horizontally Fused Training Array (HFTA). HFTA is a new DL framework extension library that
horizontally fuses the models from different repetitive jobs deeply down to operators, and then trains those models
simultaneously on a shared accelerator. On three emerging DL training workloads and state-of-the-art accelerators
(GPUs and TPUs), HFTA demonstrates strong effectiveness on squeezing out hardware utilization and achieves
up to 15.1 x higher training throughput vs. the standard practice of running each job on a separate accelerator.

1 INTRODUCTION

Deep Learning (DL) algorithms have facilitated tremen-
dous progress in a range of domains, including natural lan-
guage translation (Wu et al., 2016), recommendation sys-
tems (Naumov et al., 2019), magnetic resonance imaging
segmentation (Akkus et al., 2017), video game bots (Ope-
nAl, 2018), real-time high-resolution rendering (NVIDIA,
2020e), and very-large-scale integrated circuit placement
(Lin et al., 2019). This is driven by the abundant and contin-
uous efforts in researching and developing novel DL models
by both academia and industry in recent years. Develop-
ing these models is computationally intensive, requiring an
army of expensive, specialized accelerators such as GPUs
and TPUs (Jouppi et al., 2017), leading to staggeringly high
training costs (Amodei et al., 2018; Coleman et al., 2017;
Zhu et al., 2018; Mattson et al., 2020; Zhu et al., 2020).

To reduce this training cost and optimize the cluster-wide
hardware resource usage, we analyze GPU usage statistics
over two consecutive months on a large GPU cluster from
the Vector Institute (Vector Institute, 2021). We observe

“Equal contribution 'NVIDIA 2Vector Institute Department of
Computer Science and Engineering, Shanghai Jiao Tong University
“Intel *Department of Computer Science, University of Toronto.
Correspondence to: Shang Wang <wangsh46@cs.toronto.edu>.

Submission draft (as a preview) to the Proceedings of the 4"
MLSys Conference

that, despite significant attention on optimizing DL train-
ing workloads from the computer system and architecture
communities, especially on distributed training optimiza-
tions (Appleyard et al., 2016; Chen et al., 2016; Lin et al.,
2018; Rajbhandari et al., 2019; Mattson et al., 2020), single-
accelerator (e.g., single-GPU) training jobs, often launched
repetitively by DL researchers (to perform hyper-parameter
tuning, model architecture search or convergence stability
tests), can (i) dominate the cluster-wide hardware resource
consumption (e.g., 46.2% in our study) while (ii) having
extremely low hardware utilization (Section 2.1 and 5.3).

The root cause of this phenomenon is manifold. DL re-
searchers and practitioners often lack the expertise to in-
dependently optimize their own training workloads. As a
result, basic techniques, such as increasing the batch size,
often become the only approach at their disposal to im-
prove hardware utilization. However, this technique can be
impractical due to many reasons including generalization
gap (Keskar et al., 2017), batch size scaling limit (Shallue
et al., 2019), and GAN training instability (Odena, 2019).
On the other hand, accelerators (e.g., GPUs and TPUs)
evolve towards more computing power and larger memory
capacities (Table 2 and 3), and this trend amplifies the sever-
ity of the hardware under-utilization caused by the inability
of such training workloads to scale their performance well.

Thus, this phenomenon motivates hardware sharing ap-

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

proaches. To the best of our knowledge, the only widely
used hardware-based sharing solutions applicable to DL
training are the MPS (NVIDIA, 2020h) and MIG (NVIDIA,
2020g) features on NVIDIA GPUs. However, as we later
show in Section 2.2, these generic GPU sharing features that
aim at arbitrary workloads are far from the “silver bullets”
to effectively improve the hardware utilization in the case of
repetitive single-GPU training workloads. The situation is
even worse for emerging DL accelerators (e.g., TPUs) that
currently do not have any hardware-based sharing features.

To address such hardware under-utilization on a variety
of accelerators, we make two key observations based on
the unique characteristics of these workloads. First, the
models across jobs belonging to the same workload (e.g.,
hyper-parameter tuning) often have the same types of op-
erators with the same shapes. Second, if these operators
are horizontally fused across the models, the outcome is
mathematically equivalent to other well-optimized opera-
tors found in existing DL framework stacks and accelerators
(e.g., fusing multiple convolution operators can be realized
using grouped convolutions). Inspired by these key obser-
vations, we propose to horizontally merge multiple training
jobs with the same or similar DL models by deeply fusing
most, if not all, operators in those models. The training
of these models is then performed collectively on the same
shared accelerator (instead of training each model separately
on its own accelerator). Our proposed idea of inter-model
horizontal fusion is drastically different from and also more
effective than major related prior works as it better exercises
the full potential of modern accelerators while (i) not relying
on the generic sharing primitives (e.g., CUDA streams) that
are ineffective for repetitive single-GPU workloads, and (ii)
avoiding limited fusion techniques that, for example, sup-
port only stateless operators or require the weights across
models to be the same (Narayanan et al., 2018a).

We leverage this novel idea to build a new DL framework ex-
tension library for DL researchers and practitioners, called
Horizontally Fused Training Array (HFTA), that greatly
simplifies the adoption of our proposed inter-model hori-
zontal fusion technique. In summary, this work makes the
following major contributions.

e To understand the nature of the jobs running on modern
DL accelerator clusters, we collect and study GPU cluster
usage statistics, including 51K jobs running for 472K GPU
hours in total, from real research workloads. The results
of this study demonstrate that repetitive single-accelerator
training jobs (i) dominate the hardware resource usage (i.e.,
46.2%) and (ii) have extremely low hardware utilization.

e Motivated by this study, we make two key observations
about these jobs that our proposal is built upon: (1) The
models often have the same types of operators with the
same shapes. (2) The inter-model horizontal fusion of such

operators is mathematically equivalent to other existing and
well-optimized operators.

e We develop HFTA, a new library that helps DL researchers
and practitioners (even with limited computer system and
architecture expertise) to easily extract better performance
from their hardware when training novel DL models. While
doing so, we avoid (i) the introduction of any additional
device-specific operator implementations that would limit
the generality of our idea across different accelerators and
(ii) any affect on individual models’ convergence as the
speedup is achieved only through mathematically equivalent
transformations. HFTA is applicable to a wide variety of
models, and can run on any hardware backends supported
by existing DL frameworks.

o We evaluate HFTA on the PointNet (Xia, 2019) classifica-
tion and segmentation tasks (ShapeNet part (Yi et al., 2016)
dataset), and on DCGAN (Radford et al., 2016) (LSUN (Yu
et al., 2015) dataset), which are examples of highly impact-
ful DL models in the machine learning (ML) community,
but not yet fully investigated/optimized by the experienced
system engineers and computer architects.! On the modern
GPUs (V100, RTX6000, and A100), HFTA achieves 3.63 x
to 11.50x higher training throughput than running the train-
ing jobs without sharing which is commonly employed
by hyper-parameter tuning frameworks (Weights&Biases,
2020), 1.33x to 4.72x than MPS and 1.33 x to 4.88 x than
MIG. HFTA can also fit 1.50x to 7.57 X more training jobs
on the same GPU than MPS. On TPUs, which currently do
not have hardware sharing support, HFTA achieves 4.93 x
to 15.13 x higher training throughput, which demonstrates
HFTA’s general ability to significantly improve performance
across different hardware backends.

2 BACKGROUND AND MOTIVATION

2.1 Inefficiency in Repetitive Training Jobs

As DL research continues to evolve in recent years, the ac-
companied training cost has been increasing dramatically.
For example, (Amodei et al., 2018) shows that the amount
of compute for training SOTA DL models doubles every 3.4
month, outpacing even Moore’s Law (Schaller, 1997). Moti-
vated by the practical goal of reducing cluster-wide training
cost, using the methodology detailed in Appendix A, we
collect and study the GPU usage statistics of real research
workloads for two consecutive months on a large GPU clus-
ter from the Vector Institute (Vector Institute, 2021). To
our surprise, we find that single-accelerator training jobs
dominate the cluster-wide hardware resource consumption
when these jobs are launched repetitively in groups, and
the aggregated cost of these jobs can even outweigh that
of distributed training (the primary focus of many research

! As opposed to the models from the MLPerf Training Bench-
mark suite (Mattson et al., 2020) that are intensively optimized.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Table 1. GPU hour usage breakdown for two consecutive months
of a large GPU cluster from the Vector Institute.

Trainin Repetitive Isolated

Tob & Single- Single- Distributed Other

008 GPU GPU

GPU Hours | 218K@6.2%) 19K(3.5%) 113K(24.0%) 124K (26.3%)

efforts from the computer system and architecture commu-
nities (Lin et al., 2018; Jayarajan et al., 2019; Rajbhandari
et al., 2019; Mattson et al., 2020; Li et al., 2020)). Potential
reasons of these repetitive jobs include (but are not lim-
ited to) hyper-parameter tuning (Strubell et al., 2019) and
convergence stability testing.

Background Hyper-parameter tuning finds the optimal
set of hyper-parameters unknown a priori, which are usu-
ally necessary for building accurate models targeting a pre-
viously unexplored problem (Bergstra & Bengio, 2012;
Bergstra et al., 2011). Typical hyper-parameters include
learning rates, the choices of weight initializers, and op-
timizer settings. Model architecture search (Elsken et al.,
2019) is a subset of hyper-parameter tuning where the hyper-
parameters directly impact the model architecture (e.g., the
number of layers). Convergence stability testing trains the
same model many times with different random seeds to
verify the final accuracy results.

In our study, we classify the jobs into four main categories:
(1) multi-node or single-node distributed training, (2) repet-
itive single-GPU training, (3) isolated single-GPU train-
ing, and (4) others (meaning the jobs that do not belong to
the first three categories or can not be identified). Table 1
shows the distribution of the GPU hour usage among these
categories, from which we can observe that the repetitive
single-GPU training jobs consume as much as 46.2% of the
cluster-wide total GPU hours. Furthermore, those repetitive
single-accelerator training jobs often have low hardware
utilization as we show in Appendix A. The cause of such
phenomenon is manifold:

e Improving the hardware utilization for DL training jobs
can be very challenging. DL researchers and practitioners
often lack the system and architecture expertise to optimize
their training workloads on their own. Increasing the batch
size, which is the naive and often the only approach at
their disposal to increase hardware utilization, is not uni-
versally applicable. For instance, large batch sizes can lead
to training instability for generative adversarial network
(GAN) (Odena, 2019; Brock et al., 2019), generalization
gap (Keskar et al., 2017), and diminishing returns due to
batch size scaling limit (Shallue et al., 2019). Even with the
help from computer system and architecture experts, apply-
ing various advanced optimization techniques (e.g., kernel
fusion (Appleyard et al., 2016) or checkpointing (Chen et al.,
2016; Zheng et al., 2020)) on each new model requires an
enormous amount of engineering efforts (Mattson et al.,
2020). Meanwhile, novel DL models are being proposed at
the exponential pace in recent years (Charrez, 2019).

Table 2. Cloud TPU Core Specifications (Google, 2020c)

TPU | v2(2017) v3(2018) v4 (2020%)
MXUs 1 2 >4
Memory (HBM) | 8 GB 16 GB 7 GB

T TPU v4 is expected to double the FLOPs of TPU v3 along
with other enhancements (Kumar, 2020).

Table 3. NVIDIA Data Center GPU Specifications

GPU ‘ SMs HBM (GB) HBM Bandwidth TC Types
P100 (2016) 56 12/16 549/732 GB/s -

V100 (2018) 80 16/32 900 GB/s FP16

A100 (2020) 108 40 1.6 TB/s TF32 & FP16

e As DL research progresses, accelerators (e.g., GPUs and
TPUs (Jouppi et al., 2017)) evolve towards more compute
power (e.g., more streaming multiprocessors (SMs) and the
introduction of specialized compute units for fast matrix
multiplications in GPUs called tensor cores (TCs) (Markidis
et al., 2018)) and larger memory capacity/bandwidth. We
can observe this trend from Tables 2 and 3 that list the
specifications of the most recent NVIDIA data center GPUs
and Cloud TPUs, where the largest accelerators suffer from
under-utilization the most.

The fast development of both new DL models and accel-
erators together exacerbates the hardware under-utilization
from repetitive single-accelerator training jobs, which moti-
vates hardware sharing methods discussed below.

2.2 Hardware-based Sharing

The most well-known and (to the best of our knowledge)
the only widely-used hardware-based sharing solutions ap-
plicable to DL training workloads? are the Multi-Process
Service (MPS) (NVIDIA, 2020h) and Multi-Instance GPU
(MIG) (NVIDIA, 2020g) on NVIDIA GPUs. MPS allows
CUDA kernels from different processes to potentially run
concurrently on the same GPU via a hardware feature called
Hyper-Q (Bradley, 2007). MIG, which is currently only
available on the most recent A100 GPUs (NVIDIA, 2020a),
partitions a single GPU into multiple (up to 7) isolated GPU
instances (GIs) where each job now run on a single GI.

However, as we quantitatively demonstrate in Section 5.1,
both MPS and MIG still leave significant potential of train-
ing performance unharnessed due to the following reasons.
First, both MPS and MIG duplicate the runtime overhead
among kernels from different training jobs, including kernel
launches (Lustig & Martonosi, 2013), GEMM setups and
teardowns (NVIDIA, 2020j), and/or memory format conver-
sions (specifically related to TCs) (NVIDIA, 2020f). Thus,
they can not effectively improve the SM and TC utilization.
Second, both MPS and MIG require running training jobs
as separate processes which duplicates the GPU memory
overhead reserved by the DL framework stack (Gross et al.,
2019) and leads to a higher overall GPU memory footprint.

2 AMD GPUs also have a hardware-based sharing feature called
CU-mask (Otterness & Anderson, 2020); however, we skip its dis-
cussion due to their irrelevance in mainstream training workloads.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Therefore, we can fit fewer training jobs into the same GPU.
Finally, MIG’s partitioning granularity can be too coarse for
many training workloads. Even with the finest granularity
of MIG (7 GIs), each job can still under-utilize a single GI.

2.3 Prior Works

Major prior works on DL job fusion (Liu et al., 2020;
Narayanan et al., 2018b;a) suffer from three key weaknesses:
(i) avoiding directly addressing hardware under-utilization,
(i1) strongly depending on the CUDA stream primitive (Har-
ris, 2015) that is a generic GPU-sharing method but ineffi-
cient for repetitive training jobs, and (iii) employing very
restricted fusion schemes that are ineffective in practice. We
discuss these prior works in detail below.

pack (Liu et al., 2020) merges TensorFlow (Abadi et al.,
2016) graphs from multiple training jobs into a single graph
in order to amortize only the IO and data preprocessing cost,
but does not address the hardware under-utilization from the
model forward and backward passes.

In addition, ModelBatch (Narayanan et al., 2018b) attempts
to parallelize the kernel launches from multiple training jobs
via CUDA streams (the CUDA programming interface of
Hyper-Q), which suffers from similar pitfalls of runtime
overhead duplication as MPS.

Although intra-model vertical and horizontal fusion of DL
operators have been studied extensively by many prior
works (Appleyard et al., 2016; Gray et al., 2017; Vasilache
et al., 2018; Rotem et al., 2018; Chen et al., 2018; Jia et al.,
2019), inter-model horizontal fusion has only been explored
in extremely limited depth: HiveMind (Narayanan et al.,
2018a) proposes fusion schemes for 1) non-stateful opera-
tors with the same shapes, 2) stateful operators that share the
same weights, and 3) stateful operators that share the same
shapes and inputs. Unfortunately, condition 2) is rarely ap-
plicable to training workloads since each individual model
has its own weights, while condition 3) usually only applies
to the first operator in a DL model since the following op-
erators will have different inputs, leaving most of fusion
opportunities completely untapped. In addition, HiveMind
does not demonstrate any performance improvement over
MPS as it also relies on CUDA streams to extract utiliza-
tion when its fusion scheme becomes ineffective. Therefore,
HiveMind approach is hard to generalize to accelerators
with no hardware-specific sharing features (e.g., TPUs).

In contrast, our proposal, HFTA, is able to fuse any oper-
ators of the same types that share the same shapes across
training jobs, which generally leads to full inter-model fu-
sions. Moreover, HFTA demonstrates significant perfor-
mance improvement against the existing widely-adopted
generic hardware-based sharing approaches (e.g., MPS and
MIG) since operator fusion does not possess the same short-
comings of those approaches, as we show in Section 2.2.

Finally, HFTA requires no hardware or DL framework stack
modifications, and is also applicable to any existing hard-
ware backends including GPUs, TPUs, and any other accel-
erators that the major DL frameworks support.

3 OUR PROPOSAL: HFTA

To address the challenge of improving hardware utilization
for novel repetitive training workloads on a variety of accel-
erators, we make the following two key observations on the
unique characteristics of these workloads:

e When launched repetitively (such as during hyper-
parameter tuning or convergence stability testing), the mod-
els used across these jobs often have the same types of
operators with the same shapes.

e Horizontally fusing the same types of operators with the
same shapes often results in other mathematically equivalent
operators that already exist in many SOTA DL models and
thus have been optimized in most DL framework stacks on
different accelerators.

Figure 1 explains the above observations with a concrete
example of hyper-parameter tuning where the goal is to
determine which weight initializer and learning rate work
the best. Regardless of which weight initializer or learning
rate is used, the first operators in both models are Conv2d
of the same shape; the horizontal fusion of many Conv2d
operators is mathematically equivalent to a grouped Conv2d
which is already used in the ResNeXt (Xie et al., 2017) and
MobileNets (Howard et al., 2017) models and supported
by cuDNN (NVIDIA, 2020c) on NVDIA GPUs and XLA
(Google, 2020e) on TPUs.

Inspired by the above observations, instead of the common
practice (Li, 2020) of running each job with a single model
on a separate accelerator, we propose to better utilize ex-
isting hardware by deeply fusing the the same (class of)
models across multiple jobs together. Most, if not all, opera-
tors of these models can be horizontally fused, and we train
these models simultaneously on the same accelerator. Thus,
as depicted in Figure 1, we can fuse many training jobs into
a single one, without the need to implement any new device-
specific operator from scratch which is both time consuming
and error-prone. Moreover, this approach easily generalizes
to any hardware backends that the DL frameworks support
(e.g., with PyTorch, we can already support all NVIDIA
GPUs and Google TPUs). Since horizontal operator fusion
can be performed for both single-accelerator and distributed
training, our approach is applicable to both use cases.

However, manually implementing or porting existing train-
ing workloads to the fused ones from scratch can be chal-
lenging for DL researchers and practitioners. To greatly sim-
plify the associated engineering efforts, we develop a new
DL framework library called Horizontally Fused Training
Array (HFTA). Even though we choose PyTorch (Paszke

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

O PyTorch

Training Job #1

Grouped
Conv2d

Figure 1. An example showing the key idea of HFTA where two
training jobs for hyper-parameter tuning are fused into one via
inter-model horizontal operator fusion.

et al., 2019) as our prototyping DL framework due to its user
friendliness and increased popularity within the ML commu-
nity (He, 2019), the same idea can be implemented on top of
other DL frameworks (e.g., TensorFlow (Abadi et al., 2016)
and MXNet (Chen et al., 2015)). Also, HFTA is carefully
designed to accommodate computer system and architecture
“novices”. It can be used seamlessly with PyTorch-native
training scripts, and only requires changing very few lines
of code. As an illustrative example, Figure 2 shows how to
enable HFTA for AlexNet (Krizhevsky et al., 2012). We can
observe that the model definition is kept exactly the same
with only a few extra lines of code (highlighted in the red
box) to update the PyTorch’s operator classes.

We now discuss the HFTA’s individual components (Sec-
tion 3.1), and then demonstrate both theoretically (Sec-
tion 3.2) and empirically (Section 3.3) that HFTA has no
impact on individual models’ convergence.

3.1 HFTA Operators and Optimizers

To relieve the DL researchers and practitioners from the
need to implement any horizontally fused operators them-
selves, HFTA covers most common operators used in DL re-
search and development (with detailed fusion rules provided
in Appendix B). For example, the fusion of operators from
the (de)convolution family (e.g., Convld or ConvTrans-

B = len(args.lrs) +# Number of fused training jobs.
nn.Conv2d = get hfta op for(nn.Conv2d, B=B)
nn.RelLU = get hfta op for(nn.ReLU, B=B)
nn.MaxPool2d = get:hf{aiopifor(nn.MaxPool2d, B=B)
nn.Dropout = get hfta op for(nn.Dropout, B=B)
nn.Linear = get hfta op for(nn.Linear, B=B)
Model definition.
class AlexNet (nn.Module) :
def init (self, ...):
super (AlexNet, self). init ()
self.features = nn.Sequential (
nn.Conv2d(...), nn.ReLU(...), nn.MaxPool2d(...),
cel)
self.classifier = nn.Sequential (
nn.Dropout(...), nn.Linear(...), nn.ReLU(...),

c)
Figure 2. How to enable HFTA for AlexNet.

pose2d) can be replaced by their grouped (de)convolution
counterparts, and the fusion of linear layers can be replaced
by the baddbmm operator.

In addition, HFTA supports inter-model horizontally
fused optimizers (e.g., Adam (Kingma & Ba, 2015) and
Adadelta (Zeiler, 2012)) and learning rate schedulers (e.g.,
StepLR (Senior et al., 2013)). This is because (1) hyper-
parameter tuning is a common use case in repetitive train-
ing workloads, and (2) learning rates, learning rate sched-
ules, and optimizer settings (e.g., momentum (Qian, 1999;
Sutskever et al., 2013)) are common hyper-parameters that
require tuning for many DL models. The scalar-vector oper-
ations (e.g., multiplying a learning rate under tuning with the
gradients) in the original implementations are now replaced
by broadcasted vector-vector operations (e.g., multiplying
a vector of learning rates with the concatenated gradients
of all models) in HFTA’s implementations (as depicted in
Figure 1). We also plan to continue improving the HFTA
coverage to support more operators, optimizers, and learn-
ing rate schedulers beyond the publication of this work.

3.2 Scaling of Fused Loss

We now show how loss fusion is handled in order to recon-
struct mathematically equivalent gradients. The inter-model
horizontally fused loss with mean reduction is shown as:

1 B
L=3) 0 (1)
b=0

where ¢}, is the loss of the b-th model, and there are B
models in total contributing to the fused loss £. Taking
the gradients on both side of Equation 1 with respect to the

parameters (35 of a specific model f results in:

v.oi-iv.ya-lyv.a-lv. o
G- "B oG &=t T B G T B G

because Vgﬁﬂb = 0if b # B. We can rearrange Equation 2
into:

Vgﬁtfﬁ = BV%L’ = Vé‘ﬁBﬁ 3)
We can recognize that the expression on the left hand side
of Equation 3 is exactly the gradients for model § if each

model were trained independently. Therefore, in order to
reconstruct exactly the same gradients when training via

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

3.00 4

Serial:LR=0.002
=== HFTA:LR=0.002
2.50 + Serial:LR=0.001
\ === HFTA:LR=0.001
Serial:LR=0.0005
- HFTA:LR=0.0005

Training Loss

0 Z(;OO 4(;00 6(;00 8(;00 10600
Training Iterations

Figure 3. Training loss per iteration when training ResNet-18 on

CIFAR-10. LR represents the learning rate. Serial represents

training each model separately, and HFTA represents our method.

HFTA, the final fused loss £ needs to be scaled by B. Simi-
larly for fused loss with sum reduction, we can derive that
such scaling is no longer needed. In these derivations, no as-
sumption is made on the exact formula of ¢ B which means
such scaling rules are universal to any types of loss functions
including regularization.

3.3 Effect on Convergence

Even though HFTA reconstructs the mathematically equiva-
lent gradients for each independently trained model, minor
numerical differences can still exist since the order of com-
putations in fused operators can be different from the orig-
inal ones. To demonstrate that such numerical differences
do not affect the models’ original convergence empirically,
we train a well-known ResNet-18 (He et al., 2016) model
on the CIFAR-10 (Krizhevsky, 2009) dataset with three
different learning rates.®> Figure 3 shows the training-loss-
per-iteration curves for both training each model indepen-
dently (solid lines) and HFTA (dotted lines). Since the
dotted curves overlap completely with the solid ones, we
conclude that HFTA-based training maintains exactly the
same convergence as independent model training.

4 METHODOLOGY

Workloads Our benchmarks are carefully selected based
on the following three criteria. First, our workloads should
represent important models in their corresponding DL sub-
fields, making sure that HFTA is effective in improving
the hardware utilization for important DL models. Second,
we select models that have not yet received much attention
from the computer system and architecture communities
and hence are not over-optimized. This is a much more
realistic scenario for DL researchers and practitioners who
typically lack the expertise to apply advanced optimization
techniques. Third, we would like to cover both compute-
bound and memory-bound DL models. Based on the afore-
mentioned criteria, two classes of models (three different
workloads) are selected as our major benchmarks.

3We provide the detailed methodology behind this and other
experiments in Section 4.

PointNet (Qi et al., 2017) is a memory-bound neural network
that performs (i) object classification and (ii) segmentation
tasks on 3D point clouds. The models for both tasks are
trained on the ShapeNet part dataset (Yi et al., 2016). We
leverage a third-party PyTorch implementation of Point-
Net (Xia, 2019) that is endorsed by Qi et al. (Qi, 2017).

DCGAN (Radford et al., 2016) is a compute-bound gener-
ative adversarial network (GAN) that synthesizes natural-
apparent images. The model is trained on the LSUN dataset
(Yu et al.,, 2015). We leverage an implementation of DC-
GAN from PyTorch official examples (PyTorch, 2020).

To emulate the hardware usage habits of DL researchers
and practitioners without the influence from the computer
system and architecture experts, the batch sizes used in
both benchmarks are kept the same as reported in their
corresponding publications. To empirically prove that
HFTA does not affect convergence and to demonstrate that
HFTA can improve the hardware utilization for conven-
tional models, we train ResNet-18 (He et al., 2016) on
V100 with the CIFAR-10 (Krizhevsky, 2009) dataset using
Adadelta (Zeiler, 2012) with a batch size of 1000.

Experimental Setup Our experiments are performed on
two types of ML accelerators (NVIDIA GPUs and Google
TPUs) including the most recent three generations of
GPUs and the latest available generation of TPUs: (i)
Volta-based V100 (NVIDIA, 2020k), (ii) Turing-based
RTX6000 (NVIDIA, 2020i), and (iii) very recent Ampere-
based A100 (NVIDIA, 2020a),* (iv) TPU v3 (Google,
2020a). We provide the detailed specifications in Table 4.

Baselines We use hyper-parameter tuning (including learn-
ing rate, learning rate schedule, and optimizer settings) as
the use case for our repetitive single-accelerator training jobs
under experimentation. We compare HFTA with the follow-
ing four SOTA baselines. (1) Serial: each training job is ex-
ecuted on a single accelerator. This scheme is employed by
most hyper-parameter tuning frameworks (Weights&Biases,
2020; Li, 2020). (2) Concurrent: multiple training jobs are
executed as independent processes on the same GPU. In this
case, the kernels from the processes are time-multiplexed,
but can not execute concurrently on the same GPU (without
the help of MPS or other hardware features). This scheme is
used when MPS is not preferable due to infrastructure and/or
security related reasons (e.g., custom-built infrastructure or
CUPTI tools that are not compatible with MPS). (3) MPS:
similar to concurrent, except the independent processes
are executed via MPS. (4) MIG: similar to concurrent, ex-
cept the independent processes are executed via MIG. This
scheme is currently only available on the A100 GPUs. We
use concurrent, MPS, and MIG only on GPUs since TPUs
do not support running concurrent processes as of now. We

4Using GCP A2 Alpha version instances.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Table 4. Specifications of our experiment platforms. Dev. Mem. and VM/Host Mem. stands for device memory and VM/host memory

respectively in GB. CSP stands for cloud service provider.

Accelerator \ Dev. Mem. CSP VM Instance CUDA cuDNN GPU Driver PyTorch PyTorch/XLA (v)CPUs VM/Host Mem.
V100 16 AWS p3.2xlarge 10.2 7.6.5 450.51.05 1.6.0 - 8 61
RTX6000 24 - - 10.2 7.6.5 450.66 1.6.0 - 8 16
A100 40 GCP a2-highgpu-1g 11.0.3 8.0.2 450.51.06 1.7.0a0+8deb4fe - 12 85
TPU v3 16 GCP nl-highmem-8 - - 1.7.0a0+626e410 1.6+8af57fb 8 52

do not evaluate HiveMind (Narayanan et al., 2018a) since it
is both close-sourced and implemented on a different ML
framework (TensorFlow). We provide the detailed qualita-
tive comparison against HiveMind in Section 2.3.

Metrics We use the per-device training throughput as our
key performance metric to compare HFTA against our base-
lines since HFTA has no impact on the model convergence.’
We calculate this throughput by measuring the end-to-end
training latency of: (i) 10 epochs for both classification and
segmentation tasks on PointNet; and (2) 5 epochs, 1000 iter-
ations per epoch on DCGAN (enough for these workloads to
enter the execution steady state). We skip the first epoch on
GPUs and the first two epochs on TPUs to properly warm up
the hardware before making any measurements. We repeat
each experiment at least three times and report the average,
minimum, and maximum per experiment.

In order to measure the effect of each technique on
the hardware utilization, we use the sm_active and
sm_occupancy performance counters that represent the
SM temporal and spatial utilization respectively, and the
tensor_active performance counter to measure the TC
temporal utilization (NVIDIA, 2020d). Details on these
performance counters can be found in Appendix C.

5 EVALUATION

Our evaluation results are thoroughly analyzed here, includ-
ing end-to-end training performance on GPUs (Section 5.1)
and TPUs (Section 5.2), as well as GPU hardware perfor-
mance counters to explain why HFTA achieves significantly
better training performance (Section 5.3).

5.1 End-to-end Training Performance on GPUs

V100 Results To compare the HFTA’s end-to-end training
performance with other alternatives (i.e., serial, concur-
rent, MPS), Figure 4a, 4b and 4c plot the per-GPU normal-
ized training throughput on the V100 GPUs (Volta archi-
tecture (NVIDIA, 2017)) with the PointNet classification
task, PointNet segmentation task, and DCGAN respectively.
We normalize the throughput for each experiment by the
respective FP32 serial baseline. For each experiment, we
show both FP32 and AMP (Huang et al., 2020) training
results. Each curve grows as we increase the number of
models that either co-run together (for the concurrent and
MPS baselines) or run in the fused form with HFTA. Each
curve “stops” when it reaches the maximum number of mod-

5 As we theoretically justified in Section 3.2 and empirically
demonstrated in Section 3.3.

els before the GPU runs out of memory. Based on these
figures, we make several major observations:

First, HFTA achieves significantly higher peak throughput
than all baselines; specifically, 4.29 x to 5.02x over serial,
2.01x to 4.87 x over concurrent and 2.03 < to 4.50 x over
MPS. The significant throughput improvement is due to
a much higher achieved utilization in both compute cores
(details in Section 5.3) and GPU memory (discussed in the
next observation).

Second, HFTA enables more models to share the same GPU
than MPS and concurrent; specifically, up to 1.80 X on the
PointNet classification task, up to 1.60x on the segmen-
tation task and up to 7.57x on DCGAN. This is because
HFTA does not duplicate the GPU memory overhead as we
explain in Section 5.3.

Third, as we increase the number of models sharing the
same GPU, the throughput of HFTA scales up and, in some
cases, plateaus eventually. This is because using HFTA,
the SM and TC utilization increases with the number of
co-executing models (as we explain in Section 5.3). In
contrast, MPS and concurrent either (i) plateau at a smaller
number of models with a lower throughput as we observe
in Figure 4a and 4b, or (ii) even experience performance
degradation as we observe in Figure 4c due to host resource
(e.g., CPUs, disk I/O bandwidth, and/or memory) contention
among many training processes.

Fourth, even with the same number of models sharing the
same GPU, HFTA often achieves higher throughput than
all baselines. The maximum speedups range from 1.62 X to
3.41 x over concurrent and 1.17 X to 3.05x over MPS.

Fifth, HFTA can better exploit computation power from ad-
vanced hardware features such as TCs used during AMP
training compared to the baselines. Specifically, the max-
imum speedup of AMP training over FP32 is 2.65 % with
HFTA, but only 1.00 x for serial, 1.07 x for concurrent, and
1.06x for MPS.

Therefore, we conclude that HFTA can significantly out-
perform major hardware-based sharing alternatives in im-
proving hardware utilization and, as a result, improve the
throughput of emerging ML models during repetitive single-
accelerator training.

RTX6000 and A100 Results To check whether HFTA’s
significant performance gains are general across different
GPU architectures (e.g., Turing (NVIDIA, 2018) and Am-
pere (NVIDIA, 2020b)), we conduct the same set of experi-

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

—a— hfta:fp32 —e—hftazamp - - serial:fp32 ——serial:amp mps:fp32 mps:amp —a— mig:fp32 —e—mig:amp concurrent:fp32 concurrent:amp
6 5 5
45 4.5
5 A 4 lﬂﬂHHHHHHHIHHHHHI
35 35
= 4 o =
3 3 3
o a 3 a 3
£ = £
] oo]
3 3 3 25 g2s f
= E 2 £ o ih
T 2 3 K
o N 15 & 15
® © 3 |
£ E 1 £
s 1 S S
z Z os Zos
0 0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 5 9 13 17 21 25 29 33 37 41 45 49 53
Number of Training Models Number of Training Models Number of Training Models
(a) PointNet Classification on V100 (b) PointNet Segmentation on V100 (c) DCGAN on V100
5 5 8
4.5

4

35
2 2 3 2 °
® ® ®
3 3 25 R
< < £
= 2 =
° ° - 3
] 25 8
g E g2
S S s [
z 2z R R e
05 05
0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 1 11 21 31 41 51 61 71 81
Number of Training Models Number of Training Models Number of Training Models
(d) PointNet Classification on RTX6000 (e) PointNet Segmentation on RTX6000 (f) DCGAN on RTX6000
14 12 5
4.5
12 10
4
- * . 8 L35
5 5 5
a 8 Q. =3
£ = =
o0 2 o0
3 3 6 3
S 8 °
£ = =
= = =3
o s 4 k-1
g 4 g g1
E 2 E 2 E
o = o
2 FREPF P FT o roe = o e e e e e e e 4 z
0 0 T
1 3 5 7 9 11 13 15 17 19 21 23 25 1234567 8 910111213141516171819 1 11 21 31 41 51 61 71 81 91 101111121131
Number of Training Models Number of Training Models Number of Training Models
(g) PointNet Classification on A100 (h) PointNet Segmentation on A100 (i) DCGAN on A100
Figure 4. The normalized training throughput as we increase the number of models sharing the same GPU.
—i hfta:fp32 —e—hftazamp = serial:fp32 ——hfta —=—serial —e—hfta ——serial
——serial:amp concurrent:fp32 ——concurrent:amp 6 18
mps:fp32 mps:amp
9 s 16
8 14
5 5 5
-‘g‘; 7 _g.n 4 % 12
§ 6 B e et g E 10
£ s £° =B
-]
i 2 £
s 2 S 2
1 2
0 0 : 0 ,
1 3 5 7 9 11131517 19 21 23 25 27 29 31 1 2 3 4 5 6 7 8 9 10 11 12 13 12 3 45 6 7 8 9 1011 12 13 14 15
Number of Training Models Number of Training Models Number of Training Models
(a) PointNet Classification (b) DCGAN

Figure 5. The normalized training through-

put of ResNet18 on V100 as we increase the Figure 6. The normalized training throughput as we increase the number of models
number of models sharing the same GPU. sharing (via HFTA) the same TPU v3 core.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

ments on the RTX6000 (Figure 4d, 4e and 4f respectively)
and the A100 (Figure 4g, 4h and 4i respectively) while
adding the extra MIG baseline for the A100. The general
trends in these figures are similar to those we observe for
V100. To simplify the comparison, for each workload on
each GPU, Table 5 presents the peak throughput speedups
of HFTA over the baselines, while Appendix D presents
(1) the maximum throughput speedups of HFTA over the
baselines given a fixed number of models, and (ii) the maxi-
mum AMP training throughput speedups over FP32 for both
HFTA and the baselines. In addition, we make the following
new observations:

First, both RTX6000 and A100 have higher GPU memory
(HBM) capacities than V100 (24 GB and 40 GB vs. 16 GB);
therefore, both HFTA and the baselines can co-run more
models on the same RTX6000/A100 compared with VI100.
For example, AMP training of PointNet classification task
via HFTA can run up to 15/25 models with RTX6000/A 100
vs. 9 on V100).

Second, since A100 has more compute capability and a
larger GPU memory capacity than V100, the comparison of
Figure 4g vs. 4a and 4h vs. 4b reveals that HFTA not only
fits more models on the same hardware, but also achieves a
higher peak throughput speedup over the baselines on A100
than on V100 (e.g., for PointNet segmentation task, the peak
throughput speedup over serial is as high as 9.48 x on A100
vs. 4.29x on V100).

Third, we observe one anomaly in DCGAN training on
A100 (Figure 4i) where HFTA’s FP32 throughput is higher
than that of AMP. After profiling the AMP run of this ex-
periment via the PyProf (Agrawal & Kolodziej, 2020) tool,
we pinpoint a few suspicious cuDNN-related FP32 kernels
(which are supposed to be replaced by the equivalent TC ker-
nels) in the backward pass. Since the Ampere architecture
and the corresponding versions of cuDNN/PyTorch are very
recently released, and we do not observe similar problems
on older cuDNN/PyTorch versions for V100 and RTX6000,
we believe that this issue is temporary due to the insufficient
optimization in some of the new cuDNN kernels for A100.
We hope it will be addressed in future cuDNN releases/fixes
and we will be able to update the results accordingly.

Fourth, we notice that on A100, the MIG partitioning (only
up to 7 Gls) can be too coarse-grained, as we observe in
Figure 4g, 4h and 4i that both MPS and concurrent could
often share the A100 with more than seven models.

Therefore, we conclude that HFTA’s performance generally
scales well with the compute and memory capabilities of
modern GPUs. We observe higher performance benefits
in the newer GPU architectures that would otherwise suf-
fer more significantly from the hardware under-utilization
when training without HFTA (as we qualitatively discuss in

Table 5. The peak training throughput speedups of HFTA over the
baselines. For each experiment, the higher throughput between
FP32 and AMP is used in the calculation. The detailed breakdown
between FP32 and AMP is included in Appendix D.

PointNet PointNet

Benchmark Classification ~ Segmentation DCGAN
serial 5.02 4.29 4.59
V100 concurrent 4.87 4.24 2.01
MPS 4.50 3.03 2.03
serial 4.36 3.63 6.29
RTX6000 concurrent 4.26 3.54 1.72
MPS 3.79 2.54 1.82
serial 11.50 9.48 4.41
concurrent 12.98 10.26 1.29
AL rpg a7 2.93 1.33
MIG 4.88 3.02 1.33
A mps:fp32 ® mps:amp A hfta:fp32 ® hfta:amp
= = Linear (mps:fp32) Linear (mps:amp) = = Linear (hfta:fp32) Linear (hfta:amp)
25 7 y=313x+003,~,. 7
-— 4 2 y=278x+1.52
o
© 20
o
)
& 15
e
z
o
g 10
g
= 5
a
o

0 1 2 3 4 5 6 7 8 9 10
Number of Training Models

Figure 7. GPU Memory Footprints of MPS and HFTA for PointNet
classification task as we increase the number of models sharing
the same V100.

Section 2.1 and empirically show in Appendix D).

End-to-end Performance for Conventional Models As a
quick check of HFTA's effectiveness on improving hardware
utilization for conventional training workloads, we measure
the throughput for ResNet-18 training with the CIFAR-10
dataset on V100 and plot the results in Figure 5. Similar
to the trends in Figure 4, we observe that HFTA achieves
8.16 x higher peak throughput than serial, 4.21 X than con-
current, and 4.18 x than MPS. We conclude that HFTA is
also efficient in improving throughput of the repetitive train-
ing for models outside of its original scope.

5.2 End-to-end Training Performance on TPUs

As we aim to build a general solution that works for different
ML accelerators, we also evaluate HFTA on a completely
different type of accelerator: Google TPU v3. Figure 6
plots the per-core training throughput for the serial base-
line vs. HFTA on the PointNet classification and DCGAN
experiments on TPU v3, normalized by the throughput of
the respective serial baseline. Similarly to previous results
on GPUs, each HFTA curve shows how the normalized
throughput increases with the number of models sharing the
same TPU (until the fused models can not fit into the TPU
HBM memory). We make three major observations from
these figures.

First, HFTA achieves 4.93x /15.13 X higher peak through-

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

== hfta:fp32 —e—hftazamp = = serial:fp32 ——serial:amp

mps:fp32

0.8 0.35

o o
= o N o
@ [N] w

SM Occupancy

SM Active Time
o
B

005 A

0 0
13 5 7 9 11 13 15 17 19 21 23 25 1 3 5 7
Number of Training Models

(a) sm_active

mps:amp =—4= mig:fp32 —e—mig:amp

et eeees ___________ y

(b) sm_occupancy

concurrent:fp32 concurrent:amp

0.025

0.02

ive

0.015

0.01

Tensor Core Acti

o
Q
o
@

0

9 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

Number of Training Models

(c) tensor_active

Figure 8. The hardware performance counters for PointNet classification task as we increase the number of models sharing the same A100.

put than serial on the PointNet classification / DCGAN.

Second, we observe that for DCGAN, HFTA can sometimes
achieve “super-linear” speedups. Our current investigation
concludes that the most likely cause of such a behaviour
is the tensor padding added in the serial baseline by the
XLA (Google, 2020b) compiler (Google, 2020d), making
this baseline weaker than it should be otherwise.

Additionally, we also investigate the HFTA’s potential on
the PointNet segmentation task. Unfortunately, HFTA cur-
rently achieves a less impressive 1.20x speedup over the
serial baseline, which we attribute to the PointNet segmen-
tation variant having many non-GEMM-based operators
that intrinsically do not map well to systolic arrays by the
XLA compiler. Deeper analysis, however, is limited due to
the xprof (Google, 2020f) tool, just recently released, do
not directly support PyTorch/XLA. We will perform deeper
analysis of this problem and research potential solutions as
soon as a proper version of the profiler is released.

5.3 In-depth Performance Analysis

Using PointNet classification task as a case study, we per-
form deeper analysis through profiling GPU hardware per-
formance counters to explain why HFTA is able to share
the same GPU with more training workloads and achieves
higher training throughput than the baselines.

Figure 7 plots the GPU memory footprint of MPS and HFTA
as we increase the number of models sharing the same V100
GPU ©, as well as the linear regression lines fitted on those
measurements. Training models in independent processes
duplicates the associated GPU memory overheads (reserved
by the DL framework stack (Gross et al., 2019)), which is
a challenge that HFTA addresses. Thus, we can observe
that: (1) MPS’s linear regression lines pass through the (0,
0) coordinate and have higher slopes than HFTA’s; and (2)
the intercepts of HFTA’s linear regression lines essentially
represent the exact amounts of memory overhead which are
1.52GB for FP32 training and 2.12GB for AMP.

5The trends on RTX6000 and A100 are consistent with V100.

Figure 8 plots the sm_active, sm_.occupancy, and
tensor_active of HFTA and the baselines as we in-
crease the number of models sharing the same A100 GPU.’
We can observe: (1) HFTA’s SM and TC utilization keeps
scaling up as we fuse more models horizontally. (2) MIG’s
and MPS’s SM and TC utilization plateaus at a smaller
number of models and lower utilization, which supports
our qualitative reasoning in Section 2.2 that both leave sig-
nificant potential of training performance unharnessed; (3)
concurrent’s SM and TC utilization stays the same as serial,
because the kernels from parallel processes can not execute
concurrently without MPS or MIG.

6 CONCLUSION

In this work, we learn from “real-world” GPU cluster usage
analysis that repetitive single-accelerator training jobs (e.g.,
for hyper-parameters tuning) often dominate cluster-wide
hardware resource usage. These training jobs also tend to
have low hardware utilization, since DL researchers and
practitioners often lack the relevant expertise to indepen-
dently optimize their own workloads. To address this chal-
lenge, we make the following observations on the unique
characteristics of these jobs: (1) the models among such
jobs often have the same types of operators with the same
shapes; and (2) the inter-model horizontal fusion of such
operators is mathematically equivalent to other already well-
optimized operators. Built upon these observations, we
propose the HFTA (DL framework extension) library that
horizontally fuses the models deeply down to operators
with minimal extra effort from DL researchers and practi-
tioners, significantly improving the hardware utilization of
these workloads by simultaneously training many models
on the same accelerator. On the PointNet classification and
segmentation tasks, and DCGAN, HFTA achieves up to
15.13 x higher training throughput than running each job on
a separate accelerator, and on GPUs, 4.72 x than hardware-
based sharing via MPS and 4.88 x than MIG. We continue
to expand the coverage of HFTA including more opera-
tors, optimizers, and learning rate schedulers, as well as

7V100 results are similar and shown in Appendix D.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

integrating HFTA into existing hyper-parameter tuning and
model architecture search frameworks. We hope our work
can inspire future research on assisting ML researchers and
developers with limited optimization experience to better
utilize the hardware for their novel DL models.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for large-
scale machine learning. In /2th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pp- 265-283, 2016.

Agrawal, A. and Kolodziej, M. Pyprof: Automating end-to-
end pytorch profiling. https://developer.down
load.nvidia.com/video/gputechconf/gt
c/2020/presentations/s21143-automati
ng-end-to-end-pytorch-profiling.pdf,
2020. Accessed: 2020-09-17.

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D., and
Erickson, B. Deep learning for brain mri segmentation:
State of the art and future directions. Journal of digital
imaging, 30, 06 2017.

Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman,
G., and Sutskever, I. Ai and compute. https://
openai.com/blog/ai-and-compute/, 2018.
Accessed: 2020-09-13.

Appleyard, J., Kocisky, T., and Blunsom, P. Optimizing
performance of recurrent neural networks on gpus. CoRR,
abs/1604.01946, 2016.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13:
281-305, February 2012.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In Advances
in Neural Information Processing Systems 24 (NIPS), pp.
2546-2554, 2011.

Bradley, T. Hyper-q example. Technical report, 2007. Ac-
cessed: 2020-09-17.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. In 7th
International Conference on Learning Representations,

(ICLR), 2019.

Charrez, D. Neurips 2019 stats. https://medium.c
om/@dcharrezt/neurips-2019-stats-c913
46d31c8f, 2019. Accessed: 2020-09-17.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost. CoRR, abs/1604.06174,
2016.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. TVM: An automated end-
to-end optimizing compiler for deep learning. In /3th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 578-594, October 2018.

Coleman, C. A., Narayanan, D., Kang, D., Zhao, T., Zhang,
J., Nardi, L., Bailis, P., Olukotun, K., Ré, C., and Zaharia,
M. Dawnbench : An end-to-end deep learning benchmark
and competition. 2017.

Elangovan, A. Optimizing i/o for gpu performance tuning
of deep learning training in amazon sagemaker. https:
//aws.amazon.com/blogs/machine-learn
ing/optimizing-i-o-for-gpu-performan
ce-tuning-of-deep-learning-training-
in-amazon-sagemaker/, 2020. Accessed: 2020-
10-09.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. J. Mach. Learn. Res., 20:55:1-55:21,
2019.

fastai. Working with gpu. https://docs.fast.ai
/dev/gpu, 2020. Accessed: 2020-10-09.

Google. Cloud tpu. https://cloud.google.com/t
pu, 2020a. Accessed: 2020-09-17.

Google. Pytorch/xla. https://github.com/pytor
ch/x1a, 2020b. Accessed: 2020-09-17.

Google. System architecture. https://cloud.goog
le.com/tpu/docs/system—architecture,

2020c. Accessed: 2020-09-17.

Google. Troubleshooting. https://cloud.goog
le.com/tpu/docs/troubleshooting, 2020d.
Accessed: 2020-09-17.

Google. Xla: Optimizing compiler for machine learning.
https://www.tensorflow.org/x1la, 2020e.
Accessed: 2020-09-17.

Google. Using cloud tpu tools. https://cloud.goog
le.com/tpu/docs/cloud-tpu—-tools, 2020f.
Accessed: 2020-09-17.

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21143-automating-end-to-end-pytorch-profiling.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21143-automating-end-to-end-pytorch-profiling.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21143-automating-end-to-end-pytorch-profiling.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21143-automating-end-to-end-pytorch-profiling.pdf
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://medium.com/@dcharrezt/neurips-2019-stats-c91346d31c8f
https://medium.com/@dcharrezt/neurips-2019-stats-c91346d31c8f
https://medium.com/@dcharrezt/neurips-2019-stats-c91346d31c8f
https://aws.amazon.com/blogs/machine-learning/optimizing-i-o-for-gpu-performance-tuning-of-deep-learning-training-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/optimizing-i-o-for-gpu-performance-tuning-of-deep-learning-training-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/optimizing-i-o-for-gpu-performance-tuning-of-deep-learning-training-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/optimizing-i-o-for-gpu-performance-tuning-of-deep-learning-training-in-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/optimizing-i-o-for-gpu-performance-tuning-of-deep-learning-training-in-amazon-sagemaker/
https://docs.fast.ai/dev/gpu
https://docs.fast.ai/dev/gpu
https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://github.com/pytorch/xla
https://github.com/pytorch/xla
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/troubleshooting
https://cloud.google.com/tpu/docs/troubleshooting
https://www.tensorflow.org/xla
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://cloud.google.com/tpu/docs/cloud-tpu-tools

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Gray, A., Gottbrath, C., Olson, R., and Prasanna, S. Deploy-
ing deep neural networks with nvidia tensorrt. https:
//developer.nvidia.com/blog/deployin

g-deep-learning-nvidia-tensorrt/, 2017.
Accessed: 2020-09-17.

Gross, S., Chintala, S., and Jones, A. Couple hundred mb
are taken just by initializing cuda #20532. https://gi
thub.com/pytorch/pytorch/issues/20532,
2019. Accessed: 2020-09-17.

Harris, M. Gpu pro tip: Cuda 7 streams simplify concur-
rency. https://developer.nvidia.com/blo
g/gpu-pro-tip-cuda-7-streams—-simplif
y—concurrency/, 2015. Accessed: 2020-09-13.

He, H. The state of machine learning frameworks in 2019.
The Gradient, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016.

Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely con-
nected convolutional networks. CoRR, abs/1608.06993,
2016.

Huang, M., Tekur, C., and Carilli, M. Introducing native
pytorch automatic mixed precision for faster training on
nvidia gpus. https://pytorch.org/blog/acc
elerating-training-on-nvidia-gpus-wi
th-pytorch-automatic-mixed-precision
/,2020. Accessed: 2020-09-17.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based parameter propagation for dis-
tributed DNN training. In Talwalkar, A., Smith, V., and
Zaharia, M. (eds.), Proceedings of Machine Learning and
Systems 2019 (MLSys), 2019.

Jia, Z., Thomas, J. J., Warszawski, T., Gao, M., Zaharia,
M., and Aiken, A. Optimizing DNN computation with
relaxed graph substitutions. In Proceedings of Machine
Learning and Systems 2019 (MLSys), 2019.

Jouppi, N. P, Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,

A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,
A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D.,
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le,
D, Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick,
M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek,
A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson,
G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter,
R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter
performance analysis of a tensor processing unit. In
2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), pp. 1-12, 2017.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. In 5th

International Conference on Learning Representations,
(ICLR), 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, (ICLR), 2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009. URL https:
//www.cs.toronto.edu/~kriz/learning-f
eatures—-2009-TR.pdf.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems
24 (NIPS), pp. 1097-1105. 2012.

Kukanur, M. Nvidia data center gpu manager simplifies
cluster administration. https://developer.nv
idia.com/blog/nvidia-data-center—-gpu
-manager—-cluster—administration/, 2016.
Accessed: 2020-09-17.

Kumar, N. Google breaks ai performance records in mlperf
with world’s fastest training supercomputer. https://
cloud.google.com/blog/products/ai-ma
chine-learning/google-breaks—-ai-perf
ormance—-records—in-mlperf-with-world
s—fastest-training-supercomputer, 2020.
Accessed: 2020-09-17.

Levenshtein, V. I. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet physics. Doklady,
10:707-710, 1966.

https://developer.nvidia.com/blog/deploying-deep-learning-nvidia-tensorrt/
https://developer.nvidia.com/blog/deploying-deep-learning-nvidia-tensorrt/
https://developer.nvidia.com/blog/deploying-deep-learning-nvidia-tensorrt/
https://github.com/pytorch/pytorch/issues/20532
https://github.com/pytorch/pytorch/issues/20532
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://developer.nvidia.com/blog/nvidia-data-center-gpu-manager-cluster-administration/
https://developer.nvidia.com/blog/nvidia-data-center-gpu-manager-cluster-administration/
https://developer.nvidia.com/blog/nvidia-data-center-gpu-manager-cluster-administration/
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Li, L. Why does no one use advanced hyperparameter
tuning? https://determined.ai/blog/why
—-does—no-one-use—advanced-hp-tuning/,

2020. Accessed: 2020-10-09.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P,
Li, T., Paszke, A., Smith, J., Vaughan, B., Damania, P.,
and Chintala, S. Pytorch distributed: Experiences on
accelerating data parallel training. Proc. VLDB Endow.,
13:3005-3018, 2020.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep gra-
dient compression: Reducing the communication band-
width for distributed training. In 6th International Con-
ference on Learning Representations, (ICLR), 2018.

Lin, Y., Dhar, S., Li, W., Ren, H., Khailany, B., and Pan,
D. Z. Dreampiace: Deep learning toolkit-enabled gpu ac-
celeration for modern vlsi placement. In 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1-6, June
2019.

Liu, R., Krishnan, S., Elmore, A. J., and Franklin, M. Un-
derstanding and optimizing packed neural network train-
ing for hyper-parameter tuning. CoRR, abs/2002.02885,
2020.

Lustig, D. and Martonosi, M. Reducing gpu offload latency
via fine-grained cpu-gpu synchronization. In Proceedings
of the IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 354-365,
2013.

Markidis, S., Chien, S. W. D., Laure, E., Peng, 1. B., and
Vetter, J. S. Nvidia tensor core programmability, perfor-
mance precision. In IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW),
pp. 522-531, 2018.

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micike-
vicius, P, Patterson, D., Tang, H., Wei, G.-Y., Bailis, P,,
Bittorf, V., Brooks, D., Chen, D., Dutta, D., Gupta, U.,
Hazelwood, K., Hock, A., Huang, X., Kang, D., Kanter,
D., Kumar, N., Liao, J., Narayanan, D., Oguntebi, T.,
Pekhimenko, G., Pentecost, L., Janapa Reddi, V., Robie,
T., St John, T., Wu, C.-J., Xu, L., Young, C., and Zaharia,
M. Mlperf training benchmark. In Proceedings of Ma-
chine Learning and Systems 2020 (MLSys), volume 2, pp.
336-349. 2020.

Narayanan, D., Santhanam, K., Phanishayee, A., and Za-
haria, M. Accelerating deep learning workloads through
efficient multi-model execution. In NeurlPS Workshop
on Systems for Machine Learning, December 2018a.

Narayanan, D., Santhanam, K., and Zaharia, M. Accelerat-
ing model search with model batching (extended abstract).
In SysML Conference 2018, 2018b.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundara-
man, N., Park, J., Wang, X., Gupta, U., Wu, C., Azzolini,
A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, 1.,
Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V.,
Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong,
L., and Smelyanskiy, M. Deep learning recommendation

model for personalization and recommendation systems.
CoRR, abs/1906.00091, 2019.

NVIDIA. nvidia-smi documentation. http://develo
per.download.nvidia.com/compute/DCGM
/docs/nvidia-smi-367.38.pdf, 2016. Ac-
cessed: 2020-10-09.

NVIDIA. Nvidia tesla v100 gpu architecture. Technical
Report WP-08608-001_v1.1, 2017. Accessed: 2020-09-
17.

NVIDIA. Nvidia turing architecture whitepaper. Technical
Report WP-09183-001_v01, 2018. Accessed: 2020-09-
17.

NVIDIA. Nvidia al00 tensor core gpu. https://ww
w.nvidia.com/en-us/data-center/al00/,
2020a. Accessed: 2020-09-17.

NVIDIA. Nvidia al00 tensor core gpu architecture. Techni-
cal report, 2020b. Accessed: 2020-09-17.

NVIDIA. cudnn developer guide. https://docs.nvi
dia.com/deeplearning/cudnn/developer
—guide/index.html#grouped-convolution

s, 2020c. Accessed: 2020-09-17.

NVIDIA. Dcgm library api reference manual. https:
//docs.nvidia.com/datacenter/dcgm/la
test/dcgm-api/group__dcgmFieldIdentifi
ers.html#group-_dcgmFieldIdentifiers,
2020d. Accessed: 2020-09-17.

NVIDIA. Nvidia dlss 2.0: A big leap in ai rendering. www .
nvidia.com/en-us/geforce/news/nvidia
-dlss-2-0-a-big-leap-in—-ai-rendering/,

2020e. Accessed: 2020-09-13.

NVIDIA. Convolutional layers user guide. https://do
cs.nvidia.com/deeplearning/performan

ce/dl-performance-convolutional/index.
html, 2020f. Accessed: 2020-09-17.

NVIDIA. Nvidia multi-instance gpu. https://www.nv
idia.com/en-us/technologies/multi-in
stance—-gpu/, 2020g. Accessed: 2020-09-13.

NVIDIA. Multi-process service. https://docs.nvi
dia.com/deploy/mps/, 2020h. Accessed: 2020-
09-13.

https://determined.ai/blog/why-does-no-one-use-advanced-hp-tuning/
https://determined.ai/blog/why-does-no-one-use-advanced-hp-tuning/
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#grouped-convolutions
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#grouped-convolutions
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#grouped-convolutions
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#grouped-convolutions
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-api/group__dcgmFieldIdentifiers.html#group__dcgmFieldIdentifiers
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-api/group__dcgmFieldIdentifiers.html#group__dcgmFieldIdentifiers
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-api/group__dcgmFieldIdentifiers.html#group__dcgmFieldIdentifiers
https://docs.nvidia.com/datacenter/dcgm/latest/dcgm-api/group__dcgmFieldIdentifiers.html#group__dcgmFieldIdentifiers
www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/
https://docs.nvidia.com/deploy/mps/

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

NVIDIA. Nvidia quadro rtx 6000. https://www.nvid
ia.com/en-us/design-visualization/qu

adro/rtx—-6000/, 2020i. Accessed: 2020-09-17.

NVIDIA. Matrix multiplication background user guide.
https://docs.nvidia.com/deeplearning
/performance/dl-performance-matrix-m
ultiplication/index.html, 2020j. Accessed:
2020-09-17.

NVIDIA. Nvidia v100 tensor core gpu. https://ww
w.nvidia.com/en-us/data-center/v100/,
2020k. Accessed: 2020-09-17.

Odena, A. Open questions about generative adversarial
networks. Distill, 2019.

OpenAl. Openai five. https://blog.openai.com/
openai-five/, 2018. Accessed: 2020-09-13.

Otterness, N. and Anderson, J. H. AMD gpus as an alterna-
tive to NVIDIA for supporting real-time workloads. In
Volp, M. (ed.), 32nd Euromicro Conference on Real-Time
Systems (ECRTS), volume 165 of LIPIcs, pp. 10:1-10:23,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32 (NIPS), pp.
8024-8035. 2019.

PyTorch. Pytorch examples. https://github.com/p
ytorch/examples, 2020. Accessed: 2020-09-17.

Qi, C. R. Pointnet: Deep learning on point sets for 3d
classification and segmentation. https://github
.com/charlesqg34/pointnet, 2017. Accessed:
2020-09-17.

Qi, C. R., Su, H., Mo, K., and Guibas, L. Pointnet: Deep
learning on point sets for 3d classification and segmen-
tation. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 77-85, 2017.

Qian, N. On the momentum term in gradient descent learn-
ing algorithms. Neural Netw., 12(1):145-151, January
1999.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In Bengio, Y. and LeCun, Y. (eds.),

4th International Conference on Learning Representa-
tions, (ICLR), 2016.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. CoRR, abs/1910.02054, October 2019.

Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov,
R., Hegeman, J., Levenstein, R., Maher, B., Satish, N.,
Olesen, J., Park, J., Rakhov, A., and Smelyanskiy, M.
Glow: Graph lowering compiler techniques for neural
networks. CoRR, abs/1805.00907, 2018.

Schaller, R. R. Moore’s law: Past, present, and future. IEEE
Spectr., 34(6):52-59, June 1997. doi: 10.1109/6.591665.

Senior, A., Heigold, G., Ranzato, M., and Yang, K. An
empirical study of learning rates in deep neural networks
for speech recognition. In 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp.
6724-6728, 2013.

Shallue, C. J., Lee, J., Antognini, J. M., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of data
parallelism on neural network training. J. Mach. Learn.
Res., 20:112:1-112:49, 2019.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k.,
and Woo, W.-c. Convolutional Istm network: A machine
learning approach for precipitation nowcasting. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, pp.
802-810, Cambridge, MA, USA, 2015.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. In Pro-
ceedings of the 57th Conference of the Association for
Computational Linguistics (ACL), pp. 3645-3650, 2019.

Sutskever, 1., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In Dasgupta, S. and McAllester, D. (eds.), Proceed-
ings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pp. 1139-1147, Atlanta, Georgia, USA,
17-19 Jun 2013. PMLR.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2818-2826, 2016.

Vector Institute. Vector institute for artificial intelligence.
https://vectorinstitute.ai/, 2021. Ac-
cessed: 2021-02-03.

https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://github.com/pytorch/examples
https://github.com/pytorch/examples
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet
https://vectorinstitute.ai/

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

Weights&Biases. Sweeps. https://docs.wandb.c
om/sweeps, 2020. Accessed: 2020-09-17.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G, Patil, N., Wang, W., Young, C., Smith, J.,
Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. Google’s neural machine translation
system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016.

Xia, F. Pointnet.pytorch. https://github.com/fxi
a22/pointnet.pytorch, 2019. Accessed: 2020-
09-17.

Xie, S., Girshick, R. B., Dollar, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5987-5995, 2017.

Yi, L., Kim, V. G., Ceylan, D., Shen, I.-C., Yan, M., Su,
H., Lu, C., Huang, Q., Sheffer, A., and Guibas, L. A
scalable active framework for region annotation in 3d
shape collections. SIGGRAPH Asia, 2016.

Yu, F,, Zhang, Y., Song, S., Seff, A., and Xiao, J. Lsun:
Construction of a large-scale image dataset using deep
learning with humans in the loop. CoRR, abs/1506.03365,
2015.

Zeiler, M. D. ADADELTA: an adaptive learning rate method.
CoRR, abs/1212.5701, 2012.

Zheng, B., Vijaykumar, N., and Pekhimenko, G. Echo:
Compiler-based GPU memory footprint reduction for
LSTM RNN training. In 47th ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture(ISCA), pp.
1089-1102. IEEE, 2020. doi: 10.1109/ISCA45697.2020
.00092.

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Jayarajan,
A., Phanishayee, A., Schroeder, B., and Pekhimenko, G.
Benchmarking and analyzing deep neural network train-
ing. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pp. 88—100, 2018.

Zhu, H., Phanishayee, A., and Pekhimenko, G. Daydream:
Accurately estimating the efficacy of optimizations for
dnn training. In USENIX Annual Technical Conference,
2020.

https://docs.wandb.com/sweeps
https://docs.wandb.com/sweeps
https://github.com/fxia22/pointnet.pytorch
https://github.com/fxia22/pointnet.pytorch

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

SUMMARY OF APPENDICES

These appendices cover the following content.

Appendix A describes the methodology that we use to col-
lect “real-world” GPU cluster usage statistics from the Vec-
tor Institute. It also provides the empirical evidence to
support our observation that the dominating single-GPU
training jobs often have low hardware utilization.

Appendix B lists the operators that HFTA currently supports
as well as their corresponding horizontally-fused counter-
parts.

Appendix C shows how we collect the GPU hardware per-
formance counters and provides the related references.

Appendix D provides additional statistics and insights that
can help to clarify our observations and conclusions in Sec-
tion 5, which does not fit into the main text of the paper due
to space constraints.

A “REAL-WORLD” GPU CLUSTER USAGE
STATISTICS

We analyzed the job submissions and execution logs for
a two-month period (July 1% to Sept. 1%, 2020) from a
large GPU cluster belonging to the Vector Institute, an inde-
pendent, not-for-profit corporation dedicated to research
in the field of artificial intelligence and machine learn-
ing (Vector Institute, 2021). The cluster services a variety of
deep learning training workloads from the Vector Institute’s
community. The community consists of 501 faculty, postdoc
and student researchers who published 263 conference and
journal papers from April 2019 to March 2020, including
61 papers in NeurIPS, ICLR, CVPR and ICML.

The cluster includes 4 GPU partitions, Vla (200 P100
GPUs), V1b (40 T4 GPUs), V2 (480 T4 GPUs) and V3
(240 RTX6000 GPUs), where V3 came online in the last
few days of the collection period. V2 was recorded for the
entire period and the other three partitions were recorded for
the last 11 days. V2 is distinguished as the largest partition
with the least powerful GPUs. The data contains informa-
tion on 51338 jobs. The total number of GPU hours spent in
these two months amounts to 471768 (equivalent to ~317
GPU days per day).

We classify the submitted jobs as “repetitive single-GPU
training jobs” if they contain the following submission and
execution patterns:

1. Each job only requests a single GPU despite the avail-
ability of multiple GPUs on the same node (i.e., not
single-node distributed training). The job also does not
require specifically which node the GPU resides (i.e.,
not multi-node distributed training). Therefore, it can

Multi-node
Dist. Training
4.41%

Other 26.25% -
Isolated
Single-GPU ()
Repetitive

Training .
3.53% Single-GPU
Training
46.24%

Figure 9. GPU hour usage breakdown for two consecutive months
of a large GPU cluster from the Vector Institute.

only be a single-GPU training job.

2. Within a short time period (60 seconds), a batch of
such single-GPU jobs are submitted from the same
user, which means that the submission of these jobs is
automated, and possibly contains the same code/pro-
gram with varying parameters.®

3. The job names are very similar within the batch for
such a short time period. We determined the simi-
larity by calculating the normalized Levenshtein dis-
tance (Levenshtein, 1966) among job names with a
threshold of 0.9. As a reference, the distance score
between two job names ranges from O to 1, where 1
represents being completely identical and O represents
being totally different. This filter further verifies that
these jobs are repetitive single-GPU jobs since the job
names are very similar. Afterwards, a manual inspec-
tion of the job names within the batches indicates that
those names usually contain small variations such as
learning rate value or optimizer choices and settings.

We further reached out to individual users to confirm our
conclusion. We interviewed 11 active (i.e., most frequent)
users of the GPU cluster: (1) 7 users responded that more
than 50% of their jobs are repetitive single-GPU training
for purposes including hyper-parameter tuning; and (2) 4 of
those 7 users submitted over 95% of their jobs for repetitive
single-GPU training. The GPU hour usage distribution is
plotted in Figure 9.

Since the cluster does not actively monitor GPU hardware
performance counters, we randomly sampled several jobs

8The exact code for each job was not available for us due to
security/IP concerns.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

SM Active (%)

lob0 jobl lob2 lob3 lob4 Job> [ob& lob7 job8 [ob9 lobl0O jobll lobl2

(a) sm_active
4%

SM Occupancy (%)

JobO Jobl Job2 Job3 Jobd JobS Jobf Job7 Jab8 Job JoblO jobll Jabl2

(b) sm_occupancy

Figure 10. GPU hardware performance counters measured via
DCGM (Kukanur, 2016) for 13 jobs sampled from the clump
of repetitive single-GPU training jobs.

that are tagged as repetitive single-GPU training jobs and
gathered the performance counters manually. Based on the
sm_active and sm_occupancy (explained in Section 4
and elaborated in Appendix C) metrics from our samples,
we observe that many of the repetitive single-GPU training
jobs can severely under-utilize the GPUs both temporally
and spatially (as we show in Figure 10a and Figure 10b
respectively). The maximum sm_active among the sam-
pled jobs is 24%, and maximum sm_occupancy among
them is 14%.

B HFTA OPERATOR FUSION RULES

HFTA currently supports 12 PyTorch operators that are
commonly used in DL research and development and
sufficient to implement the representative set of state-of-
the-art DL models (based on the support of these oper-
ators, we expect HFTA can already support many more
including SqueezeNet (Iandola et al., 2016), VGG (Si-
monyan & Zisserman, 2015), ConvLSTM (Shi et al., 2015),
DenseNet (Huang et al., 2016) and Inception (Szegedy et al.,
2016) as well). We list the horizontal operator fusion rules
in Table 6. The left column contains the original operators,
and the right column indicates using which operator we
could get the mathematically equivalent horizontally-fused
version of B original operators.

C DCGM METRICS

The sm_active, sm_occupancy and
tensor_active performance counters are mea-
sured through DCGM (Kukanur, 2016). Their field
identifier macros and IDs are listed in Table 7. Please refer
to the DCGM Library API Reference Manual (NVIDIA,
2020d) for their precise definitions.

D ADDITIONAL EVALUATION STATISTICS

In order to facilitate the reading of the results from our GPU
experiments in Figure 4, we summarize the comparison
from different angles between HFTA and the baselines into
three tables.

Table 8 shows the peak training throughput comparison
between HFTA and the baselines. It is important to highlight
that, for both MPS and concurrent, the training throughput
could decrease as we increase the number of models sharing
the same GPU (due to host resource contention). Therefore,
the “peak” is determined by the highest possible throughput
instead of the largest number of models that the GPU can fit
(which might or might not lead to the highest throughput).
Unlike Table 5, the results here are split between FP32 and
AMP to demonstrate how well HFTA performs for each
type of training.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

Table 6. The horizontal fusion rules for the operators that HFTA currently supports. “ConvT” stands for “ConvTranspose” (a.k.a.,
deconvolution). ¥, i/, @ and b represents the input, output, weight and bias tensors respectively. N, C, H, W and L represents the batch
sizes, channel sizes, heights, widths and signal lengths of the tensors respectively used in convolutions, deconvolution, batch-norms,
MaxPool2d and Dropout2d. G represents the numbers of groups used in the convolutions and deconvolution. F represents the feature map
sizes of the tensors used in linear layers. * represents zero or more arguments whose values are kept the same. B represents the number of
operators horizontally fused together via HFTA.

PyTorch Operator(Tensors: Shapes, Other Parameters = Arguments)

HFTA Horizontally Fused Operator(Tensors: Shapes, Other Parameters = Arguments)

BxCyg

Conv2d(¥ : [N, Cg, Hy, Wx], @ [C Tl\ {vIw,Ww] b: [Cil.G=g,%) Conv2d(¥ : [N, B x Cg, Hg, Wg], @ : [C & =5+ ,Hy, Wg), b: [BxCy],G=Bxg,*)
Convld(¥ : [N,Cg, Lg], @ : [Cy, &, Lg), b: [Cyl. G =g, %) Conv1d(¥: [N, B x Cg, Lg], @ : [Cy, L Z,,] b:[Bx C,,] G=Bxg %
ConvT2d(X : [N, CX,HX,W~] W : [s % Hg, Wg), b: [Cjl.G=g,% | ConvT2d(X: [N,B x Cg, Hg, Wg], @ : [C~ X, Hg, Wz, b: [BxCyl,G=Bxg,*)
Linear(¥ : [N, Fe, @ : [Fg, Fy]. b [Fy)) baddbmm(b : [B, 1, Fy], ¥ : [B, N, Fe], @ : [B, F;,F)
BatchNorm1d(X : [N, Cz] or [N Cy, Lz], @ [C;],E [Cz], %) BatchNorm1d(¥ : [B X N, Cyz] or [N, B x Cg, Lz|, @ : [B x Cz], b b :[B x Cy], %)
BatchNorm2d(X : [N, Cz, Hz, Wz], @ : [Cz], b : [Cz], *) BatchNorm2d(¥ : [N, B x Cg, Hg, W], @ : [B x C¢]. b : [B x Cg], %)
MaxPool2d(X : [N, Cz, Hz, Wx], *) MaxPool2d(X : [N, B x Cg, Hg, Wy], %)
Dropout2d(¥ : [N, Cy, Hy, Wy, %) Dropout2d(¥ : [N, B x Cg, Hg, Wx], %)
Dropout(¥ : [*]) Dropout(¥ : [, B, *], *)
LeakyReLU(x : [*],) LeakyReLU(x : [*, B, %], *)
ReLU(x : [*], %) ReLU(x : [%, B, %], *)
Tanh(x : [*]) Tanh(x : [*, B, x])
Table 9. The maximum training throughput speedups of HFTA
Table 7. over the baselines given the same number of models sharing one
Name ‘ Field Identifier Macro ID GPU.
sm_active DCGM_FI_PROF_SM_ACTIVE 1002 Benchmark g‘l’;mNet gz;mNet DCGAN
sm-occupancy DCGM_FI_.PROF_SM_OCCUPANCY 1003 : .
tensor_active DCGM_FI_PROF_PIPE_.TENSOR_ACTIVE 1004 FP32 concurrent 1.77 1.62 1.91
GPU Utilization DCGM_FI_DEV_GPU_UTIL 203 - MPS 1.65 1.17 1.95
concurrent 341 3.12 2.27
V100 AMP -y pg 3.05 223 223
concurrent 2.32 1.95 1.96
FP32 \ps 1.92 1.22 1.78
RTX AMP concurrent 4.14 3.21 1.73
6000 MPS 3.75 2.35 1.90
concurrent 491 3.97 8.94
FP32 MPS 1.64 1.04 9.41
MIG 1.51 1.07 1.51
A100 concurrent 9.16 7.86 9.07
AMP MPS 3.18 2.13 7.48
Table 8. The peak training throughput speedups of HFTA over the MIG 2.07 1.58 1.20
baselines.
Benchmark PointNet PointNet DCGAN
Cls. Seg.
serial 2.62 1.62 4.18
FP32 concurrent 2.54 1.62 1.95
MPS 2.36 1.17 1.95
i serial 202 4.29 459 Table 10. The maxi dups of AMP traini FP32
AMP concurrent 502 424 201 aole . € maximum speeaups o tralnlng over .
MPS 4.50 3.03 2.03 PointNet PointNet
serial 2.46 1.97 6.69 Benchmark Classification ~ Segmentation DCGAN
FP32 concurrent 2.46 1.95 1.64 .
RTX MPS 2.07 1.22 1.69 sl | 409 o o
6000 serial 736 363 629 V100 concurren : i :
MPS 1.01 1.03 1.06
AMP concurrent 4.26 3.54 1.72 HFTA 192 265 110
MPS 3.79 2.54 1.82 . . .
serial 5.47 4.56 4.46 serial 1.06 1.19 1.16
concurrent | 5.47 4.56 1.39 concurrent 1.09 1.22 1.05
FP32 - Mmps 2.05 131 137 RTX6000 /pg 1.03 1.05 1.02
AL00 MIG 2.10 1.35 1.59 HFTA 1.88 2.20 1.09
serial 11.50 9.48 3.61 -
concurrent | 12.98 10.26 1.06 serial L13 L13 Lot
AMP MPS 4.72 2.93 1.09 concurrent 1.00 1.05 1.08
MIG 1.02 1.05 1.20
HFTA 2.37 2.36 0.82

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

= A= hfta:fp32

serial:amp

- A= mig:fp32
concurrent:amp

101

—o— hfta:amp
concurrent_mps:fp32
—o— mig:amp

= = serial:fp32
concurrent_mps:amp
concurrent:fp32

100

99

98

97

GPU Utilization

96
95

94 T T T T —T T
1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Training Models

Figure 11. nvidia-smi-defined “GPU utilization” for PointNet
classification task on A100.

Table 9 shows the maximum training throughput speedups
of HFTA over the baselines, given the same number of
models sharing the same GPU. The maximum is picked
by varying the number of models sharing the same GPU
and finding the largest performance gap between HFTA and
the baselines. This helps to isolate the benefits of better
SMs and TCs utilization from the benefits of better memory
utilization when training via HFTA.

Table 10 shows the maximum training throughput speedups
of AMP over FP32 for both HFTA and the baselines. The
maximum here is also picked by varying the number of
models (except for serial which always only run one model
per GPU) and finding the largest performance gap between
FP32 and AMP. This helps to demonstrate that HFTA is
more efficient in utilizing advanced hardware compute units
such as TCs.

Similar to Figure 8a, 8b and 8c, Figure 11 plots the
nvidia-smi-defined “GPU utilization” (NVIDIA, 2016)
for PointNet classification task training on the A100 GPU.
Contrary to a popular belief (Elangovan, 2020; fastai, 2020),
we observe that the nvidia-smi-defined “GPU utiliza-
tion” can be sometimes a weak utilization indicator, since
the curves in Figure 11 appear rather noisy and do not follow
the trends of throughput improvements in Figures 4g or any
hardware counters’ trend in Figure 8a, 8b or 8c.

Similar to Figure 8, Figure 12 plots the sm_active,
sm_occupancy, and tensor_active of HFTA and the
baselines as we increase the number of models sharing the
same V100 GPU. In addition to the observations we already
present in Section 5.3, we also observe that the hardware
utilization of the serial baselines is lower on A100 than on
V100. Therefore, Figure 12 provides empirical evidence to
support our argument in Section 2.1 and Section 5.1 that
newer GPU generations suffer more significantly from the

hardware under-utilization of repetitive single-accelerator
training workloads.

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

—a= hfta:fp32 —e—hfta:amp = = serial:fp32 ——serial:amp concurrent_mps:fp32 concurrent_mps:amp concurrent:fp32 concurrent:amp
0.7 0.25 0.08
0.07
0.06
0.05
0.04

0.03

SM Active Time
SM Occupancy
Tensor Core Active

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Number of Training Models Number of Training Models Number of Training Models

(a) sm_active (b) sm_occupancy (c) tensor_active
Figure 12. The hardware performance counters for PointNet classification task as we increase the number of models sharing the same
V100.

