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Abstract

As an essential approach to understanding human
interactions, emotion classification is a vital component in
the design of human-computer interaction (HCI) systems.
Speech contains rich information about emotion, but the
impact of noise on the classification performance is still
not well studied, especially for applications used in noisy
mobile environments. For an emotion classification system
using support vector machine with a threshold-based
fusion mechanism, we study the impact of noisy speech
data on the performance of emotion classification for a
standard emotion database.
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Introduction

Speech contains rich information for effectively conveying
emotions in the communications between humans, and
this has motivated researchers to explore the area of
emotion classification based on speech [6] [3] and the
broader HCI domain [5]. Mining useful emotion



information solely from prosodic features is still a
challenging task, and a thorough analysis of the emotion
classification accuracy under real scenarios is necessary,
such as where modalities are captured in noisy
environments.

The emotion classification system used in this paper
extracts speech features, and the widely employed
Support Vector Machine (SVM) learner is used for
One-Against-All (OAA) classification for each emotion.
The confidence levels from individual OAA classifiers are
combined by means of a thresholding fusion mechanism to
improve the classification performance. We compare the
six-emotion classification performance for an original
database with clean speech and speech data with added
babble or white noise.

Mobile applications

Speech-based emotion classification can be an entry point
for elaborate context-aware systems for the future mobile
market. For example, smartphones may be customized to
automatically choose songs or background colors based on
the user’s current emotion. Voice blogging on social voice
platforms, such as Bubbly and Twitterfone, also enables
sociologists to study emotion states of the mass
population from social media. In the healthcare field,
speech-based emotion sensing technologies have been
implemented on mobile devices for behavioral studies [6]
or patient monitoring [8].

However, for these types of applications, the various
ambient noise captured by mobile devices may strongly
influence the accuracy of the speech features detection,
and therefore the emotion classification performance could
be greatly influenced.

Emotion classification system
In this section, a multiclass SVM with thresholding fusion
for speech-based emotion classification is presented.

Speech features evaluated

In order to maintain a low computational complexity of
the system, we only choose the basic and commonly-used
speech features as the attributes for emotion
classification: fundamental frequency (Fp), energy,
frequency and bandwidth of the first four formants,
Mel-scale Frequency Cepstrum Coefficients (MFCCs),
speaking rate, the difference of Fy and the difference of
energy between neighboring frames. We divide each
speech utterance into 60 ms segments with 10 ms time
shifts, and only analyze the speech features for voiced
segments. We use the noise-resilient BaNa Fj detection
algorithm [1] to extract the Fy values.
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Figure 1: The emotion classification system using OAA SVM
with thresholding fusion.



For each speech utterance, we calculate five statistics: the
mean, maximum, minimum, range, and standard deviation
for each feature vector except speaking rate. The z-score
speaker normalization scheme is applied to reduce the
inter-speaker variability and increase the emotion
classification accuracy.

Multiclass emotion classification with thresholding fusion
We implement the one-against-all (OAA) approach for
emotion classification using multiclass SVM and the RBF
kernel to deal with the non-linear relationship between the
class labels and the features. The SMOTE method [2] is
used to upsample the uneven dataset for binary
classification for individual OAA classifiers.

Figure 1 illustrates the OAA SVM classification system
with the thresholding fusion mechanism that we use
from [7]. In the testing phase, the confidence measures
Cx,(j) from all OAA classifiers are sent to the fusion
center, where model X, yields the highest confidence
measure for utterance j. We use the thresholding fusion
mechanism proposed in [7] to compare this largest
confidence value Cx,(j) against a user-controlled
confidence threshold ~ to decide whether to reject the
sample as unclassified.

Evaluation

The widely-used LDC dataset [4] is chosen for
performance evaluation, which includes 727 utterances
recorded by 3 professional actors and 4 actresses reading
semantically neutral-meaning utterances. Six emotions are
selected in our emotion classification study: disgust,
happiness, sadness, anger, fear and neutral.

1001

train on noisy, test on noisy

60

50 -========
400=

20 train on clean, test on noisy

%0 train on clean, test on clean

—— Train and test on clean data
201 Train and test on data with white noise
— Train and test on data with babble noise

Decision-level correct classification rate (%)

10 Train on clean data, test on data with white noise
0 Lo Train on clean data, test on data with babble noise
0 10 20 30 40 50 60 70

Rejection rate (%)

Figure 2: Decision-level correct classification rate vs. rejection
rate for cross-validation tests on clean and noisy LDC data at
5 dB SNR.

The decision-level correct emotion classification rates for
cross-validation tests on clean LDC data is presented in
Fig. 2. The error bars indicate the performance variations
among 5 times SMOTE upsampling on the uneven
training datasets. When no data is rejected, the
classification rate is 80%, which is much better than a
random guess result, i.e., 1/6=16.7%. This number can
be increased to 95% when 80% of the data is rejected.
Therefore, using the thresholding fusion method can
provide a more reliable emotion classification at the
expense of leaving some data unclassified.

Since white noise and babble noise are two common types
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of noise, we add these two types of noise to the LDC
speech signals to generate a noisy dataset. A moderate
noise level, i.e., noisy data at 5 dB SNR, is used for
testing. We can see from Fig. 2 that for emotion
classification on noisy data, the correct classification rate
for training the system using noisy data is around 75%
higher than the correct classification rate for training
using clean data. Though speaker normalization could
help to combat the overall increase in energy for the noisy
data, it does not help with features in the frequency
domain. When trained with noisy data, the system can,
on the other hand, learn the spectral features for noisy
speech. Therefore, the classification rate does not drop
too much for training and testing on noisy data.

Conclusions

For emotion classification in real scenarios, noise is a
factor that inevitably needs to be considered for
performance evaluations. We discuss several noisy
scenarios that may require speech-based emotion
classification. Experimental results show the impact of
noise on the emotion classification performance.

For interaction designers and HCI participants designing
interactive systems using users’ emotion from speech, the
noise effect should be taken into consideration as an
important factor. To more effectively classify emotion on
noisy data, the system should be trained using noisy data
instead of clean data. To reduce the influence of noise on
system reliability, we can adapt the system to different
noise levels. For example, we can choose to increase the
confidence score threshold used in the SVM thresholding
fusion for very noisy scenarios, and only classify emotions
when the confidence score is relatively high. Additionally,
we can sample the user’s speech multiple times within a
short period of time, and derive the user's emotion based

on the majority classified emotion on these samples.
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