
PLEASE
HAND

IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

DECEMBER 2016 EXAMINATIONS

CSC108H1F
Instructor(s): Smith, Gries, de Lara

Duration—3 hours PLE
ASE

HAND
IN

No Aids Allowed

You must earn at least 30 out of 75 marks (40%) on this final examination in order
to pass the course. Otherwise, your final course grade will be no higher than 47%.

Student Number:

Last (Family) Name(s):

First (Given) Name(s):

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This Final Examination paper consists of 10 questions on 20 pages
(including this one), printed on both sides of the paper. When you
receive the signal to start, please make sure that your copy of the
paper is complete and fill in your name and student number above.

• Comments and docstrings are not required except where indi-
cated, although they may help us mark your answers.

• You do not need to put import statements in your answers.

• No error checking is required: assume all user input and all
argument values are valid.

• If you use any space for rough work, indicate clearly what you
want marked.

• Do not remove pages or take the exam apart.

Marking Guide

1: / 5

2: / 9

3: /10

4: / 6

5: /10

6: / 8

7: / 6

8: / 8

9: / 5

10: / 8

TOTAL: /75

Page 1 of 20 Good Luck! over. . .

CSC108H1F Final Examination December 2016

Question 1. [5 marks]

Part (a) [4 marks]

Complete the function body below according to its docstring description.

def zigzagzip(s1, s2):
""" (str, str) -> str

Precondition: len(s1) == len(s2).

Return a string made up of alternating letters from s1 and s2,
starting with s1[0], then s2[1], s1[2], and so on.

>>> zigzagzip('abc', '123')
'a2c'
>>> zigzagzip('abcd', '1234')
'a2c4'
"""

Part (b) [1 mark]

The docstring for zigzagzip includes a precondition that s1 and s2 will have the same length. Briefly
explain the error that could occur and cause the code to crash if zigzagzip was called with arguments
that do NOT meet the precondition.

Page 2 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Question 2. [9 marks]

Part (a) [5 marks] Fill in the boxes to complete the type contract and docstring examples for the
function below. You do not need to write a description.
def func(words):

""" (list of str, int) ->

>>> v1 = ['panda', 'cat', 'ox', 'beluga', 'dogs']
>>> func(v1)
>>> v1

>>> v2 =

>>> func(v2)
>>> v2
['pie', 'cake', 'coconut', 'waffle', 'pizza']
"""
i = 0
while i < (len(words) - 1) and len(words[i]) > len(words[i + 1]):

temp = words[i]
words[i] = words[i + 1]
words[i + 1] = temp
i = i + 1

Part (b) [1 mark] Briefly explain what error could happen if we changed the loop condition in func
from i < (len(words) - 1) to i < len(words)?

Part (c) [1 mark]

Write a formula in terms of k, where k is len(words), that describes the maximum
number of comparisons made on a call to func.

Part (d) [1 mark]

Write a formula in terms of k, where k is len(words), that describes the minimum
number of comparisons made on a call to func.

Part (e) [1 mark] Which of the following best describes the worst case running time of func? Circle
your answer.

constant linear quadratic something else

Page 3 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Question 3. [10 marks]

Part (a) [8 marks] Complete the body of this function according to its docstring description.

def get_positions(text):
""" (str) -> dict of {str: list of int}

Return a dictionary where the keys are the individual words in text, and
the values are the positions in the text where the words occur (starting
at 1). Include punctuation and numbers in words, and convert alphabetic
characters to lowercase.

>>> result = get_positions('cats Cats CATS CATS!!!')
>>> result == {'cats': [1, 2, 3], 'cats!!!': [4]}
True
>>> result = get_positions('I think I like CSC108.')
>>> result == {'i': [1, 3], 'think': [2], 'like': [4], 'csc108.': [5]}
True
"""

For the next two parts, consider the follow-
ing function that operates on the return
value of get_positions. (Full docstring
omitted for space.)

def has_single_word(d):
""" (dict of {str: list of int}) -> bool """
for key in d:

if len(d[key]) == 1:
return True

return FalsePart (b) [1 mark]

Write a formula in terms of k, where k is len(d), to express the minimum number of
comparisons made when the has_single_word function is called.

Part (c) [1 mark]

Write a formula in terms of k, where k is len(d), to express the maximum number of
comparisons made when the has_single_word function is called.

Page 4 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Question 4. [6 marks]

Complete the function body below according to its docstring description.
Hint: the int function and % (mod) operator will be helpful here.

>>> int(2.9)
2
>>> 2.5 % 1
0.5

def truncate_and_accumulate(values):
""" (list of number) -> float

Modify values so that each number is rounded down to the nearest integer
value, and return the accumulated lost amount.

>>> values = [1, 2.5, 3.3, 4.01]
>>> truncate_and_accumulate(values)
0.81
>>> values
[1, 2, 3, 4]
>>> values = [0.25, 0.5, 0, 1, 33]
>>> truncate_and_accumulate(values)
0.75
>>> values
[0, 0, 0, 1, 33]
>>> values = [10, 15, 20]
>>> truncate_and_accumulate(values)
0.0
>>> values
[10, 15, 20]
"""

Page 5 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Question 5. [10 marks]

Part (a) [5 marks]

Recall the algorithms insertion sort, selection sort, and bubble sort.
Consider the following lists. For each list, and each algorithm, consider whether it is possible that two passes
of the algorithm could have been completed on the list. Check the box corresponding to the algorithm if
the list is a possible result of two passes of the algorithm.

Insertion? Selection? Bubble?
[1, 2, 3, 3, 7, 8]

[2, 1, 3, 4, 5, 6]

[3, 4, 7, 1, 2, 8]

[1, 2, 4, 5, 3, 6]

[1, 3, 5, 4, 5, 6]

Part (b) [5 marks]

Fill in the blanks to complete the function below according to its docstring description.

def bubble_sort(words):
""" (dict of {str: list of int}) -> list of str

Precondition: key.isalpha() == True for every key in words

Return a list containing the keys in words sorted in ascending order by the
length of their associated lists. In a tie, sort the keys in alphabetical order.

>>> d = {'apple': [4, 9, 10], 'banana': [7], 'melon': [1, 3, 5, 6], \
'kiwi': [2, 8]}
>>> bubble_sort(d)
['banana', 'kiwi', 'apple', 'melon']
>>> d = {'cat': [2, 5], 'dog': [1], 'ant': [3, 4]}
>>> bubble_sort(d)
['dog', 'ant', 'cat']
"""

L = list(words.keys())
end =

while end != 0:
for i in range(end):

if len(words[L[i]]) len(words[L[i + 1]]):
L[i], L[i + 1] = L[i + 1], L[i]

elif and :

L[i], L[i + 1] = L[i + 1], L[i]
end =

return L

Page 6 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Question 6. [8 marks]

Complete the body of the function below according to its docstring.

def find_population(continent_info):
""" (dict of {str: dict of {str: dict of {str: int}}}) -> dict of {str: int}

Precondition: continent_info has keys representing continents, and the
values are dictionaries where the keys represent countries on that
continent and the values are dictionaries where the keys represent cities
in that country and the values represent city populations.

Return a dictionary where the keys are continents from continent_info
and the values are the total population of all cities on that continent.

>>> data = {'Europe': {'France': {'Paris': 100, 'Nice': 50, 'Lyon': 4}, \
'Bulgaria': {'Sofia': 3000}}}
>>> result = find_population(data)
>>> result == {'Europe': 3154}
True
>>> data = { \
'North America': {'Canada': {'Toronto': 5000, 'Ottawa': 200}, \

'USA': {'Portland': 400, 'New York': 5000, 'Chicago': 1000}, \
'Mexico': {'Mexico City': 10000}}, \

'Asia': {'Thailand': {'Bangkok': 456}, \
'Japan': {'Tokyo': 10000, 'Osaka': 5000}}, \

'Antarctica': {}}
>>> result = find_population(data)
>>> result == {'North America': 21600, 'Asia': 15456, 'Antarctica': 0}
True
"""

Page 7 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Question 7. [6 marks]

The code below implementing the find_occurrences function has some bugs in it. For this question, you
will write two corrected versions of the find_occurrences function.
In each version, make whatever changes are necessary to the original body of the function find_occurrences
so that it correctly matches its docstring. Write any lines that need to be modified in the Modified
Function Body table. If a specific line requires no modification, you can leave its corresponding row blank
in the Modified Function Body table. Do not add extra lines to the function body.

Part (a) [3 marks] In this part, correct the bugs in the body of the find_occurrences so that it
considers overlapping occurrences of the substring.

def find_occurrences(msg, sub):
""" (str, str) -> list of int

Return a list containing all of the indicies in msg where sub
appears.

>>> find_occurrences('Paul eats lollipops', 'lol')
[10]
>>> find_occurrences('lololol', 'lol')
[0, 2, 4]
"""

Line Original Function Body
1. result = ''
2. occurrence = msg.find(sub)
3. while occurrence != -1:
4. result = result.append(occurrence)
5. occurrence = msg.find(sub)
6. return result

Line Modified Function Body - Overlapping
1.

2.

3.

4.

5.

6.

Page 8 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Part (b) [3 marks]

In this part, correct the bugs in the body of the find_occurrences so that it does NOT consider overlapping
occurrences of the substring.

def find_occurrences(msg, sub):
""" (str, str) -> list of int

Return a list containing all of the indicies at in msg
where sub appears.

>>> find_occurrences('Paul eats lollipops', 'lol')
[10]
>>> find_occurrences('lololol', 'lol')
[0, 4]
"""

Line Original Function Body
1. result = ''
2. occurrence = msg.find(sub)
3. while occurrence != -1:
4. result = result.append(occurrence)
5. occurrence = msg.find(sub)
6. return result

Line Modified Function Body - Non-overlapping
1.

2.

3.

4.

5.

6.

Page 9 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Question 8. [8 marks]

In a play, the lines each character speaks have the following format:

[CHARACTER_NAME] first line of dialog
additional lines of dialog (0 or more)

A file representing a play will contain character dialog formatted as above.
Here is an example from Shakespeare’s Antony and Cleopatra:

[CLEOPATRA] I am sick and sullen.
[MARK ANTONY] I am sorry

to give breathing
to my purpose,--

[CLEOPATRA] Help me away,
dear Charmian; I shall fall:
It cannot be thus long,
the sides of nature
Will not sustain it.

[MARK ANTONY] Now,
my dearest queen,--

[CLEOPATRA] Pray you,
stand further from me.

[MARK ANTONY] What's the matter?

In this question, you will write a function that reads a file containing lines from a play in this format. Some
things you can assume:

• Square brackets are never used except to mark a CHARACTER_NAME.

• CHARACTER_NAMEs may be any case, but will have consistent case throughout the file.

• There are no blank lines.

• There will always be a non-empty first line of dialog.

On the following page, complete the body of the function according to its docstring. Your solution should
be general, and work for any play file that has the format described above. You must use the existing
starter code in your solution.
Assume the play.txt file referred to in the docstring example is the example file above.

Page 10 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Question 8 continued...
def read_lines(play, character):

""" (file open for reading, str) -> list of str

Return the list of dialogs (with all newlines removed) made by character in play.

>>> file = open('play.txt')
>>> actual = read_lines(file, 'MARK ANTONY')
>>> expected = \
['I am sorry to give breathing to my purpose,--', \
'Now, my dearest queen,--', \
"What's the matter?"]
>>> actual == expected
True
>>> file.close()
"""

result = []

read the first line, which includes a character's name and first line of dialog
line = play.readline().strip()

while line:
Your answer goes here

Page 11 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Question 9. [5 marks]

Part (a) [4 marks]

The following function does not behave the way the docstring claims (although the type contract is correct).

def are_teenagers(ages):
""" (list of int) -> list of bool

Precondition: len(ages) > 0 and all the ints in ages are positive.

Returns a list of boolean values where the element at index i of the list
is True iff ages[i] is a teenager between 13 and 19 inclusive.
"""

res = []
for i in range(len(ages)):

if ages[i] > 12:
if ages[i] < 19:

res.append(True)
else:

res.append(False)

return res

In the table below, write the simplest two possible test cases that reveal two different bugs in the code.

Test Case Description ages Expected
Return Value
According to
Docstring

Actual Value
Based on Code

Part (b) [1 mark]

Give a formula in terms of k, where k is len(ages), that describes how many times the loop iterates when
the are_teenagers function (as defined above) is called.

Page 12 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Question 10. [8 marks]

In this question, you will develop two classes to represent enzymes and DNA strands.
Here is the header and docstring for class Enzyme.
class Enzyme:

""" Information about a particular enzyme. """

Part (a) [2 marks] Here is the header and docstring for method __init__ in class Enzyme.
Complete the body of this method.

def __init__(self, enzyme_name, recognition_sequence):
""" (Enzyme, str, str) -> NoneType

Initialize a new enzyme with name enzyme_name and sequence
recognition_sequence.

>>> enzyme1 = Enzyme('Sau3A', 'GATC')
>>> user1.name
'Sau3A'
>>> user1.sequence
'GATC'
"""

Part (b) [2 marks] Here is the header and docstring for method __str__ in class Enzyme.
Complete the body of this method.

def __str__(self):
""" (Enzyme) -> str

Return a string representation of this enzyme.

>>> enzyme1 = Enzyme('Sau3A', 'GATC')
>>> print(enzyme1)
The enzyme Sau3A has a recognition sequence of length 4
>>> enzyme2 = Enzyme('HgaI', 'GACGC')
>>> print(enzyme2)
The enzyme HgaI has a recognition sequence of length 5
"""

Page 13 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Here is the header and docstring for class DNAStrand.
class DNAStrand:

""" Information about a DNA strand. """

Part (c) [1 mark] Here is the header and docstring for method __init__ in class DNAStrand.
Complete the body of this method.

def __init__(self, new_strand):
""" (DNAStrand, str) -> NoneType

Initialize a new DNA strand that has strand new_strand and an empty list
of enzymes.

>>> strand1 = DNAStrand('AGGCCT')
>>> strand1.strand
'AGGCCT'
>>> strand1.enzymes
[]
"""

Part (d) [1 mark] Here is the header and partial docstring for method is_cutter in class DNAStrand.
Complete the type contract for the method.

def is_cutter(self, enzyme):

"""

Return True iff enzyme's sequences appears one or more times
in this DNA strand's strand.

>>> enzyme1 = Enzyme('HaeIII', 'GGCC')
>>> strand1 = DNAStrand('AGGCCT')
>>> strand1.is_cutter(enzyme1)
True
>>> enzyme2 = Enzyme('Sau3A', 'GATC')
>>> strand1.is_cutter(enzyme2)
False
"""

return enzyme.sequence in self.strand

Page 14 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Part (e) [2 marks] Here is the header and docstring for method add_enzyme in class DNAStrand. You
must call existing methods in your solution, and not write any duplicate code.
Complete the body of this method.

def add_enzyme(self, potential_enzyme_name, potential_enzyme_sequence):
""" (DNAStrand, str, str) -> NoneType

Modify this DNA strand's enzyme list to add the potential enzyme with
name potential_enzyme_name and sequence potential_enzyme_sequence if
and only if the potential enzyme is a cutter of the strand (as defined
by the is_cutter method), and potential_enzyme_sequence is not a
sequence of any enzyme this DNA strand already has. If this DNA strand
already has an enzyme with that sequence, do not modify the enzyme
list.

>>> strand1 = DNAStrand('AGGCCT')
>>> enzyme1 = Enzyme('HaeIII', 'GGCC')
>>> strand1.enzymes.append(enzyme1)
>>> len(strand1.enzymes)
1
>>> strand1.add_enzyme('XYZ', 'GGCC')
>>> len(strand1.enzymes)
1
>>> strand1.add_enzyme('StuI', 'AGGCCT')
>>> len(strand1.enzymes)
2
>>> strand1.add_enzyme('Sau3A', 'GATC')
>>> len(strand1.enzymes)
2
"""

Page 15 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Use the space on this “blank” page for scratch work, or for any answer that did not fit elsewhere.
Clearly label each such answer with the appropriate question and part number, and refer to

this answer on the original question page.

Page 16 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

Use the space on this “blank” page for scratch work, or for any answer that did not fit elsewhere.
Clearly label each such answer with the appropriate question and part number, and refer to

this answer on the original question page.

Page 17 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

Short Python function/method descriptions:

__builtins__:
input([prompt]) -> str

Read a string from standard input. The trailing newline is stripped. The prompt string,
if given, is printed without a trailing newline before reading.

abs(x) -> number
Return the absolute value of x.

chr(i) -> Unicode character
Return a Unicode string of one character with ordinal i; 0 <= i <= 0x10ffff.

int(x) -> int
Convert x to an integer, if possible. A floating point argument will be truncated
towards zero.

len(x) -> int
Return the length of the list, tuple, dict, or string x.

list(iterable) -> list
Return a new list initialized from iterable's items

max(iterable) -> object
max(a, b, c, ...) -> object

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

min(iterable) -> object
min(a, b, c, ...) -> object

With a single iterable argument, return its smallest item.
With two or more arguments, return the smallest argument.

open(name[, mode]) -> file open for reading, writing, or appending
Open a file. Legal modes are "r" (read), "w" (write), and "a" (append).

ord(c) -> integer
Return the integer ordinal of a one-character string.

print(value, ..., sep=' ', end='\n') -> NoneType
Prints the values. Optional keyword arguments:
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.

range([start], stop, [step]) -> list-like-object of int
Return the integers starting with start and ending with stop - 1 with step specifying
the amount to increment (or decrement).
If start is not specified, the list starts at 0. If step is not specified,
the values are incremented by 1.

dict:
D[k] --> object

Produce the value associated with the key k in D.
del D[k]

Remove D[k] from D.
k in d --> bool

Produce True if k is a key in D and False otherwise.
D.get(k) -> object

Return D[k] if k in D, otherwise return None.
D.keys() -> list-like-object of object

Return the keys of D.
D.values() -> list-like-object of object

Return the values associated with the keys of D.
D.items() -> list-like-object of tuple of (object, object)

Return the (key, value) pairs of D, as 2-tuples.

Page 18 of 20 cont’d. . .

CSC108H1F Final Examination December 2016

file open for reading:
F.close() -> NoneType

Close the file.
F.read() -> str

Read until EOF (End Of File) is reached, and return as a string.
F.readline() -> str

Read and return the next line from the file, as a string. Retain any newline.
Return an empty string at EOF (End Of File).

F.readlines() -> list of str
Return a list of the lines from the file. Each string retains any newline.

file open for writing:
F.close() -> NoneType

Close the file.
F.write(x) -> int

Write the string x to file F and return the number of characters written.

list:
x in L --> bool

Produce True if x is in L and False otherwise.
L.append(x) -> NoneType

Append x to the end of the list L.
L.extend(iterable) -> NoneType

Extend list L by appending elements from the iterable. Strings and lists are
iterables whose elements are characters and list items respectively.

L.index(value) -> int
Return the lowest index of value in L.

L.insert(index, x) -> NoneType
Insert x at position index.

L.pop([index]) -> object
Remove and return item at index (default last).

L.remove(value) -> NoneType
Remove the first occurrence of value from L.

L.reverse() -> NoneType
Reverse *IN PLACE*.

L.sort() -> NoneType
Sort the list in ascending order *IN PLACE*.

str:
x in s --> bool

Produce True if and only if x is in s.
str(x) -> str

Convert an object into its string representation, if possible.
S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are interpreted
as in slice notation.

S.endswith(S2) -> bool
Return True if and only if S ends with S2.

S.find(sub[, i]) -> int
Return the lowest index in S (starting at S[i], if i is given) where the
string sub is found or -1 if sub does not occur in S.

S.index(sub) -> int
Like find but raises an exception if sub does not occur in S.

Page 19 of 20 Student #: over. . .

CSC108H1F Final Examination December 2016

S.isalpha() -> bool
Return True if and only if all characters in S are alphabetic
and there is at least one character in S.

S.isdigit() -> bool
Return True if all characters in S are digits
and there is at least one character in S, and False otherwise.

S.islower() -> bool
Return True if and only if all cased characters in S are lowercase
and there is at least one cased character in S.

S.isupper() -> bool
Return True if and only if all cased characters in S are uppercase
and there is at least one cased character in S.

S.lower() -> str
Return a copy of the string S converted to lowercase.

S.lstrip([chars]) -> str
Return a copy of the string S with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.

S.replace(old, new) -> str
Return a copy of string S with all occurrences of the string old replaced
with the string new.

S.rstrip([chars]) -> str
Return a copy of the string S with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.

S.split([sep]) -> list of str
Return a list of the words in S, using string sep as the separator and
any whitespace string if sep is not specified.

S.startswith(S2) -> bool
Return True if and only if S starts with S2.

S.strip([chars]) -> str
Return a copy of S with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.

S.upper() -> str
Return a copy of the string S converted to uppercase.

Page 20 of 20 Total Marks = 75 end

