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The latency of accessing instructions and data from the memory subsystem is an increas�

ingly crucial performance bottleneck in modern computer systems� While cache hierar�

chies are an important �rst step� they alone cannot solve the problem� Further� though

a variety of latency�hiding techniques have been proposed� their success has been largely

limited to regular� numeric applications� Few promising latency�hiding techniques that

can handle irregular� non�numeric codes have been proposed� in spite of the popularity

of such codes in computer applications�

This dissertation investigates hardware and software techniques for coping with the

instruction�access latency and data�access latency in non�numeric applications� To deal

with instruction�access latency� we propose cooperative instruction prefetching� a novel

technique which signi�cantly outperforms state�of�the�art instruction prefetching schemes

by being able to prefetch more aggressively and much further ahead of time while at the

same time substantially reducing the amount of useless prefetches�

To cope with data�access latency� we investigate three complementary techniques�

First� we study how to use compiler�inserted data prefetching to tolerate the latency of

accessing pointer�based data structures� To schedule prefetches early enough� we design

three prefetching schemes to overcome the pointer�chasing problem associated with these

data structures� and we automate them in an optimizing research compiler� Second� we

study how to safely perform an important class of locality optimizations� namely dynamic
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data layout optimizations� in non�numeric codes� Speci�cally� we propose the use of an

architectural mechanism called memory forwarding which can guarantee the safety of

data relocation� thereby enabling many aggressive data layout optimizations �which also

facilitate prefetching	 that cannot be safely performed using current hardware or compiler

technology� Finally� in an e
ort to minimize the overheads of latency tolerance techniques�

we propose new cache miss prediction techniques based on correlation pro�ling� By

correlating cache miss behaviors with dynamic execution contexts� these techniques can

accurately isolate dynamic miss instances and so pay the latency tolerance overhead only

when there would have been cache misses�

Detailed design considerations and experimental evaluations are provided for our pro�

posed techniques� con�rming them as viable solutions for coping with memory latency

in non�numeric applications�

Key Words and Phrases� Cache performance� non�numeric applications� tolerating

latency� instruction prefetching� data prefetching� locality optimizations� cache miss

prediction�
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Chapter �

Introduction

The speed of microprocessors has been increased in the past decade due to ever�increasing

clock rates and the exploitation of instruction�level parallelism�multiple�instruction�

issue processors running at �GHz clock rate are expected to be available by ���� ���� �� �

However� the overall performance of a processor is not only determined by how fast

computation can be performed but also by how rapidly instructions and data can be

supplied by the memory subsystem� A speedy processor alone is not guaranteed to o
er

high overall performance unless it is matched by a similarly powerful memory subsystem�

Unfortunately� although microprocessor speed has been increasing dramatically� the

speed of memory has not kept pace� As illustrated in Figure ���� the speed of commer�

cial microprocessors has doubled roughly every three years while the speed of commodity

DRAM has improved by only little more than ��� over the past decade� Part of the

reason for this is that there is a direct tradeo
 between capacity and speed in DRAM�

and the highest priority in improving DRAM has been increasing capacity� The conse�

quence is that a DRAM access typically costs a few tens to a hundred CPU cycles in

modern microprocessors� which is potentially as expensive as executing several hundreds

of instructions� Worse yet� this speed gap between the CPU and memory is expected

to grow continually in the foreseeable future� In fact� some researchers have already

suggested that the overall performance of microprocessor�based systems will ultimately

be bounded by the performance of the memory subsystem� or by the so�called memory

wall ����� ��� �

To reduce e
ective memory access time� virtually all of today
s microprocessor�based

systems employ caches� While caches are the �rst critical step towards addressing the

memory latency problem� they are not a complete solution� Recent studies ���� �� have

shown that caches are not as e
ective as expected because a signi�cant fraction of cached

data is not reused before it is displaced from the cache� and other studies ���� ��� ��� �� 

�
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Figure ���� Speed of Intel microprocessors and commodity DRAM over the last �� years�

show that cache miss penalty accounts for most of the stall time in many important

applications� To improve processor utilization� techniques that reduce cache miss penalty

are needed�

This dissertation investigates techniques for coping with the miss penalty of both in�

struction caches and data caches� thereby helping to unlock the full potential of microprocessor�

based systems� In particular� we focus on a very important application domain� the class

of codes known as non�numeric� The remainder of this chapter provides further mo�

tivations for improving the cache performance of non�numeric codes� discusses possible

techniques for coping with memory latency� and presents our research goals� We conclude

this chapter by listing the major contributions of this dissertation and giving an overview

of the following chapters�

��� Cache Performance on Non�Numeric Codes

Applications are generally classi�ed as numeric or non�numeric�� Numeric codes are

characterized by their intensive use of �oating�point data� regular loop nests� and multi�

dimensional arrays� They are typically used in scienti�c and engineering applications�

In contrast� non�numeric codes mostly operate on integer data� have irregular control

�There are some other common names for these two classes of applications� such as �oating point vs�
integer� scienti�c vs� general�purpose� regular vs� irregular� etc�
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structures and complex data access patterns which usually involve pointer dereferences�

Most commercial and personal computer applications� such as database� graphics� and

spreadsheet programs� are non�numeric�

Most of the research e
ort on improving cache performance has concentrated on nu�

meric codes� One reason for this focus is that numeric applications typically experience

larger cache miss penalty than non�numeric applications do� Another reason is that

non�numeric codes are signi�cantly more di�cult to optimize� Despite this di�culty�

improving cache performance of non�numeric codes has become a very important prob�

lem because of the growing importance of non�numeric codes among today
s computer

applications and ever�increasing miss penalties�

The impact of cache miss penalties on the performance of non�numeric codes and

commercial applications in particular has been investigated in a number of detailed per�

formance studies ���� ��� �� � The key �nding that is common to all of these studies

is that both instruction latency and data latency signi�cantly degrade the performance

of large commercial applications� regardless of the presence of reasonably large caches

in the computer systems� For instance� a recent study conducted by Barroso et al� ��� 

has discovered that over ��� of the execution time of an online transaction processing

application running on an AlphaServer ���� �with four ��� MHz ����� processors� each

with �KB on�chip instruction and data caches� a ��KB on�chip uni�ed secondary cache�

and a �MB o
�chip uni�ed tertiary cache	 is spent stalling for memory accesses� and

those stall cycles are roughly evenly divided between instruction and data cache misses�

In brief� these studies suggest that techniques are needed to reclaim the performance loss

due to both instruction and data cache misses in those applications�

��� Techniques for Coping with Memory Latency

Techniques for coping with memory latency can be divided into two classes� those that

reduce latency� and those that tolerate latency� Techniques for reducing latency include

caching data� and improving cache e
ectiveness through locality optimizations� Tech�

niques for tolerating latency include bu
ering and pipelining references� out�of�order

execution� prefetching� and multithreading� In this section� we will brie�y discuss each

of these techniques to see how appropriate they are for non�numeric codes and to point

out the potential challenges associated with each technique�

�Since both data and instructions can be cached� the term �data� here refers to instructions as well�
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����� Caches

Caches reduce latency from a memory access to a cache access whenever data items are

found in the cache� The likelihood of �nding data in the cache depends on the cache

geometry as well as the inherent locality of reference within the application� There are

two kinds of locality� temporal locality is the tendency of a recently�accessed item to

be accessed again soon� and spatial locality is the tendency of items near a recently�

accessed item to be accessed soon� Since a reasonable amount of locality exists in most

applications� caches are generally quite useful� For this reason� all the techniques we

discuss in this section build upon caching as a foundation�

A brute�force approach to reducing cache miss penalty is to lower cache miss rates

by increasing the size and associativity of caches� However� this does not appear to be a

long�term solution for the following reasons� First� increasing cache size and associativity

will lengthen cache access time �e�g�� to provide large on�chip primary caches� the HP

PA����� ��� processor has to increase the cache access time by an additional one to

two cycles	� Second� larger caches means higher hardware cost� Third� larger caches

require more power� which is undesirable in power�constrained environments� Given all

these disadvantages� a preferable approach to reducing latency would be to use caches as

e
ectively as possible by better exploiting locality�

����� Locality Optimizations

Locality optimizations can signi�cantly increase the e
ectiveness of both instruction and

data caches� Let us begin with instruction locality optimizations�

Sequential instruction accesses enjoy spatial locality inherently� To enhance instruc�

tion locality across non�sequential accesses� on the other hand� the best�known approach

is to lay out codes based statically on control��ow pro�ling information ���� ��� ��� ����

��� � Doing so puts codes that are frequently executed together into adjacent memory�

thereby improving spatial locality and reducing con�ict misses� While such pro�le�guided

code placement is a viable approach which requires little hardware support� it has the

following limitations� First� an extra pass is needed to collect pro�ling information� Sec�

ond� performance may not improve if the training data set does not truly re�ect the

actual data set� Third� in applications that do not have strongly�biased control �ows�

static layouts cannot mimic dynamic branching behaviors well�

Now we turn our attention to data locality optimizations� Data locality can poten�

tially be improved by restructuring computation� by reorganizing data layouts� or by a

combination of both� Figure ��� contains an example illustrating these two possible ap�
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Figure ���� Example illustrating the two possible approaches to optimizing locality�

proaches� In this example� items A and B share the same cache line while C and D share

another in the original data layout� Therefore� loading A and C at the beginning of the

execution incurs two cache misses� Assume that both lines are then displaced from the

cache before the loads of B and D� Then� these two loads will su
er another two cache

misses� To improve locality� we can either switch Load B and Load C in the execution

�assuming there are no writes to B and C in between these two loads	 or switch B and

C in the data layout� In both cases� there will be only two misses instead of four in the

original case�

In either approach� the compiler must check a priori whether the optimization is

always legal� If it is not certain that this is the case� the compiler must be conservative and

give up the optimization� To restructure computation� the compiler needs to ensure that

the order of references� to the same data is preserved after restructuring� To reorganize

data layouts� the compiler must guarantee that all data references to the original layouts

are adjusted to the new layouts after reorganization� Therefore� the key to both kinds of

legality checks is to know exactly which data object a reference is pointing to�

�If there are only reads but no writes� the reference order does not need to be preserved to make the
optimization legal�
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Knowing this is relatively easy in numerical codes since most of the interesting ref�

erences are usually direct array references� and hence fairly accurate legality tests such

as dependency analysis ���� �� have been developed for locality optimizations in these

codes� Unfortunately� due to the presence of pointers �especially those that point to

heap�allocated objects	 in non�numeric codes� it is very di�cult �if not impossible	 for

the compiler to �gure out exactly which data object a reference is pointing to� This

has seriously restricted compilers from applying many attractive locality optimizations

to non�numeric applications� In particular� though di
erent researchers have demon�

strated the large performance potential of dynamic data layout optimizations such as

copying ���� ���� ��� and clustering ��� � being unable to check the legality has forced

compilers to give up these optimization opportunities�

To cope with whatever latency that cannot be reduced through caching and locality

optimizations� we need to consider techniques that tolerate memory latency�

����� Bu�ering and Pipelining References

Bu
ering and pipelining references is an approach which typically tolerates data latency

but not instruction latency� The latency of writing data to the memory can be hidden by

making use of write bu�ers� Write bu
ers exploit the fact the processor does not need to

wait for a write to �nish so long as it properly observes the future e
ect of the written

data� Because of this� the processor can proceed immediately after a write by simply

issuing the write to the write bu
er� provided that future reads check the write bu
er

for matching addresses before bringing data from memory� An additional advantage of

write bu
ers is that multiple writes can be overlapped to exploit pipelining�

Non�blocking loads ��� and lockup�free caches ��� are hardware�based techniques

for tolerating latency of reading data through bu
ering and pipelining� In non�blocking

loads� the processor stalls only when the data is used rather than when the data is loaded�

A lockup�free cache� on the other hand� allows multiple outstanding cache misses� By

combining these two techniques� it would be possible to bu
er multiple reads and to

pipeline their accesses� However� since in practice the use of a load value typically occurs

shortly after the load is performed� these techniques could only hide a small fraction of

relatively long cache miss latencies�

Pipelining is also applicable to instruction accesses� Nevertheless� since which in�

struction line needs to be fetched next depends on the instructions in the current line�

subsequent instruction fetching will be stopped shortly after an instruction cache miss�
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Figure ���� Illustration of how out�of�order execution tolerates memory latency�

Consequently� only very few instruction cache misses can be pipelined at a time��

����� Out�Of�Order Execution

Many recent processors ���� ��� ��� ��� provide support for out�of�order execution so as

to tolerate both pipeline and memory latencies� Rather than following the program or�

der� the processor can execute any instructions within a hardware instruction�scheduling

window that have all the input operands ready �assuming no resource con�icts	� Using

this capability� the processor does not have to stall at a data cache miss� provided that

there are enough instructions that do not depend on the results of any uncompleted op�

erations� including the memory access that su
ers the cache miss� Figure ��� illustrates

how read latency can be tolerated through out�of�order execution� In the case without

out�of�order execution �on the left	� the processor stalls while data item A is fetched� In

contrast� with out�of�order execution� the processor can execute those instructions that

are ready upon Load A in parallel with the fetch� Note that the decoupling of instruction

fetching and execution in out�of�order machines also tolerates instruction latency to a

certain extent by allowing the execution to continue upon an instruction cache miss�

Out�of�order execution is most bene�cial to programs that have abundant instruction�

�Note that� however� more misses can be pipelined if some more aggressive instruction fetching
mechanism such as instruction prefetching is used�
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level parallelism �commonly referred to as ILP� the extent to which instructions in the

same program thread can be executed in parallel	� Unfortunately� this approach is un�

likely to reduce much of the stall time caused by load misses� because loads are typically

the �rst instructions of data dependence chains and hence many instructions in the

scheduling window are in fact dependent on the loads missing in the cache� Similarly�

the amount of ILP in many non�numeric programs is insu�cient for tolerating much of

the instruction miss latency� In addition� the hardware of the scheduling window and the

dependence�tracking logic are fairly complex�

We have seen that both out�of�order execution and bu
ering!pipelining references

are inadequate for tolerating read latency� Fortunately� the following two approaches�

namely prefetching and multithreading� are more promising for tolerating read latency�

����	 Prefetching

The key to tolerating read latency is to decouple the request for data from the use of

that data� while �nding enough useful parallelism to keep the processor busy in between�

Prefetching tolerates latency by anticipating what data is needed and moving it to the

cache ahead of time while executing other useful instructions within the same program

thread� Figure ��� illustrates the way that prefetching tolerates read latency� Without

prefetching� the processor stalls at the cache misses due to Load A and Load B� If the



Chapter �� Introduction �

two prefetches are launched early enough before the loads� both A and B will be in the

cache at the times that they are loaded� It is important to realize from this example that

prefetching allows a memory access to be overlapped with computation as well as with

other memory accesses �i�e� the accesses can be pipelined	�

Unlike normal memory operations� prefetches are typically non�binding and non�

excepting� With a binding prefetch� the data value is �bound� at the time the prefetch is

executed by placing it in either a bu
er or a register such that that is the actual value

to be observed by a subsequent load� The problem with a binding prefetch is that if the

data is modi�ed during the interval between when the prefetch is issued and the bound

value is used� the value delivered will be stale� On the contrary� with a non�binding

prefetch� the data value is not bound until it is referenced by a subsequent load� On

the other hand� a non�excepting prefetch will never generate exceptions even if the data

address is invalid� When a prefetch is both non�binding and non�excepting� it can be

issued speculatively without worrying about the validity of the data address and value�

Prefetching is applicable to both instructions and data and can be controlled by

hardware or software� Hardware�controlled prefetching does not have any instruction

overhead but is less �exible when prefetching complicated access patterns� In contrast�

software�controlled prefetching is more �exible in scheduling prefetches at the expense

of the associated instruction overhead� Below� we brie�y discuss the existing work on

instruction prefetching and on data prefetching�

Almost all of the existing instruction prefetching schemes are purely hardware con�

trolled ���� ���� ���� ���� ��� � To exploit the inherent spatial locality of instruction

streams� most of these schemes let the hardware prefetch a few sequential cache lines�

To prefetch non�sequential instruction accesses� some schemes use history information

to predict which non�sequential line should be prefetched next� while some prefetch the

targets of conditional branches and procedure calls� However� as revealed by the detailed

performance analysis of these schemes reported in Chapter �� none of these existing

schemes can schedule prefetches early enough to fully tolerate the miss latency in fast

modern processors� Another potential problem with instruction prefetching is cache pol�

lution� If too many sequential lines or jump targets are prefetched� they may displace

some instructions that will be used soon from the cache�

On the data side� sophisticated hardware�controlled ��� and software�controlled ��� 

data prefetching schemes have been developed for numeric codes� These schemes rely on

the fact that addresses of future data references are highly predictable �since most of them

are direct array references	� In contrast� prefetching non�numeric codes is signi�cantly

more di�cult� and so research in this area has so far been lacking� The major challenge
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Figure ���� Illustration of how multithreading tolerates memory latency�

is� just as in performing locality optimizations on non�numeric codes� to anticipate the

apparently chaotic addresses of future data references� However� with sophisticated com�

piler analyses �especially those that understand pointers	� the compiler may be able to

predict these complicated data addresses to a useful extent� It is not clear that hardware

can achieve such prediction� An additional advantage of software�controlled prefetching

is that since a number of recent processors ���� ���� ��� have already provided support

for data�prefetch instructions� no extra hardware support is needed as in the case of

hardware�controlled prefetching� Therefore� software�controlled data prefetching may be

a feasible technique for coping with data latency in non�numeric codes� despite the need

for minimizing its instruction overhead�

����
 Multithreading

Similar to out�of�order execution and prefetching� multithreading tolerates read latency

by executing some useful instructions between the times that the data is requested and

when it is used� The most important di
erence is that in multithreading those overlapped

useful instructions are obtained by switching the context to another thread� Figure ���

illustrates how multithreading tolerates read latency through context switching� When

Load A misses in the cache� the processor switches to context "� and continues executing

that context until another cache miss occurs �i�e� Load B	� Then� it switches back to

context "�� Hopefully Load A has already �nished by that time and so the processor

will not be stalled�
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Traditionally� multithreading is purely hardware�based ��� ��� ��� �� � It can be

used to hide both pipeline and memory latencies� including instruction latency and data

latency� Compared to prefetching� multithreading has two main advantages� First� unlike

prefetching� it does not require the ability to predict addresses in advance� which is a very

challenging problem in data prefetching for non�numeric codes� Second� since it� unlike

software�controlled prefetching� does not require any software support it can improve the

speed of existing executables without recompilation�

However� multithreading does have the following signi�cant drawbacks� First of all� it

requires multiple concurrent threads� This additional concurrency may or may not exist�

particularly in a uniprocessor environment� Automatic parallelization of non�numeric

applications is still ine�cient in most cases� and it is unlikely that programmers would

go through the pain of hand�parallelizing their applications just for the sake of multi�

threading� A second drawback is the overhead of context�switching� which occurs in two

forms� �i	 pipeline bubbles caused by �ushing the pipeline after the detection of a cache

miss� and �ii	 the additional time needed to save and restore context state �e�g�� the

register �le	� These switching overheads can potentially o
set much of the performance

gain of multithreading� Finally� multithreading requires a signi�cant amount of hardware

support to minimize context�switching overhead �e�g�� replicated register �les	� Clearly�

multithreading is a more expensive solution than prefetching� in terms of the demands

on both concurrency and hardware�

����� Overall Strategy

Table ��� is a summary of the techniques we have just discussed� For each technique� we

list the major challenges in applying the technique to cope with instruction latency and

data latency in non�numeric codes�

After looking at the individual techniques� we can now devise an overall strategy of

coping with memory latency in non�numeric codes� Obviously� caching is very important

on its own and is the primary latency�hiding mechanism in most processors nowadays�

Also� bu
ering� pipelining� and out�of�order execution are already used in many recent

processors as additional means to hide latency� To cope with whatever latency that

is not hidden by these techniques �read latency in most cases	� we can consider multi�

threading� locality optimization� and prefetching� Multithreading is attractive in theory�

but the long�standing challenge in automatically �nding thread�level parallelism in non�

numeric codes suggests that we consider multithreading as the last resort� Instead� we

will concentrate on locality optimizations and prefetching�
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On the instruction side� locality optimizations are desirable if the user can a
ord an

extra pro�ling pass and the training input is representative of the actual one� Otherwise�

instruction prefetching may be preferable� provided that we can �nd some way to launch

prefetches early enough while avoiding cache pollution� On the data side� both locality

optimizations and prefetching face the same di�cult problem of knowing future data

addresses� However� since prefetching accepts inexact knowledge of these addresses �this

will not corrupt the program since prefetches are both non�binding and non�excepting	�

prefetching is likely to be more widely applicable than locality optimizations� And as

we have already discussed� software�controlled prefetching appears to be more promising

than hardware�controlled prefetching for these types of codes because the compiler may

be more capable of predicting the data addresses� Finally� to reduce both latency and

bandwidth consumption� we wish to have locality optimizations as well provided that

they are safe to apply�

��� Research Goals

The goal of this dissertation is to help improve the cache performance of non�numeric

codes� Since this is a largely unexplored area and is so broad by itself� solving the whole

problem in a single dissertation is an overly ambitious goal� Instead� we will focus on a

few of the more important problems�

Since both instruction latency and data latency are important� we will address both�

For instruction latency� despite both locality optimizations and prefetching being im�

portant� we concentrate on instruction prefetching� The reason for this choice is that

techniques for optimizing instruction locality are relatively mature� In fact� many in�

dustrial compilers have already provided such tools� In contrast� existing instruction

prefetching techniques do not appear to be adequate for fast modern processors and

hence a new instruction prefetching technique may be warranted� The key to the success

of this new technique is to launch prefetches early enough while avoiding cache pollution�

Also� to avoid placing the burden on the programmer� instruction�prefetch scheduling

should be done automatically� either by the hardware or the compiler�

For data latency� since access patterns in non�numeric codes can be very unpre�

dictable� we will focus primarily on an important class of non�numeric codes� those that

make intensive use of pointer�based data structures such as linked lists and trees� First�

we wish to devise compiler�based prefetching algorithms for these pointer�based codes�

Our goal here is to have the compiler automatically predict data addresses and insert

prefetches into these codes� Next� if software�controlled prefetching can o
er signi�cant
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performance bene�ts� we would like to see if these bene�ts can be further increased by

reducing prefetching overheads� Our approach is to devise a general technique that can

reduce the overheads of any latency tolerance techniques� including but not limited to

prefetching� This technique should accurately predict when cache misses happen so that

a latency tolerance mechanism will be invoked only upon cache misses �but not hits	 to

minimize the overhead� Finally� we wish to provide a technique that can help exploit

the large performance potential of dynamic data layout optimizations by automatically

guaranteeing their legality in non�numeric programs�

��� Contributions of Dissertation

This dissertation makes the following primary contributions�

� The design and evaluation of an e
ective and fully�automatic instruction prefetch�

ing technique called cooperative prefetching ���� �� � whereby the hardware and com�

piler cooperate to hide the latency� Cooperative prefetching comprises two novel

components� compiler�inserted instruction prefetching and an intelligent hardware

prefetch �lter for eliminating useless prefetches� The result of their cooperation

is that� unlike previous instruction prefetching techniques� we are able to prefetch

instructions far enough in advance without polluting the cache� Detailed experi�

mental results demonstrate that cooperative prefetching hides ��� or more of the

latency remaining with the best previous instruction prefetching techniques� while

at the same time reduces the number of useless prefetches by a factor of six� Con�

sequently� cooperative prefetching signi�cantly improves the overall performance of

all the applications we examined�

� The design and evaluation of three compiler�based data prefetching schemes for

tolerating the latency of accessing pointer�based data structures ���� �� � Our

schemes are to date the only compiler�based techniques designed for overcoming

the pointer�chasing problem in prefetching these data structures� They are imple�

mented in a widely used research compiler and evaluated using detailed simulations

of a dynamically�scheduled processor� Experimental results demonstrate that au�

tomatic compiler�inserted prefetching signi�cantly improves the execution speed

of pointer�based codes�by as much as more than twofold� While one of these

prefetching schemes is more widely applicable� the other two can o
er larger per�

formance bene�ts and handle very large miss latencies by predicting the traversals
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of the data structures� In addition� we show that our schemes are fairly robust with

respect to a number of key architectural parameters�

� The proposal and evaluation of an architectural technique called memory forward�

ing ��� which can guarantee the legality of any locality optimizations based on data

layout reorganization� Our technique is the only one to date that can provide such

a correctness guarantee� and thereby substantially help unlock the full potential

of locality optimizations in non�numeric codes� We suggest a number of potential

applications of memory forwarding� and address some important issues of imple�

menting it in modern processors� Experimental results show that the aggressive

locality optimizations enabled by memory forwarding greatly reduce both memory

latencies and memory bandwidth consumption in a set of non�numeric applica�

tions� and hence o
er signi�cant speedups� in some cases by more than twofold�

In addition� we demonstrate that these optimizations improve the e
ectiveness of

prefetching�

� The proposal and evaluation of a cache�miss prediction technique named corre�

lation pro�ling ���� �� for reducing the run�time overheads of latency tolerance

techniques� Correlation pro�ling o
ers signi�cantly higher cache�miss prediction

accuracy than that achieved by state�of�the�art prediction techniques by exploiting

the correlation between dynamic execution contexts and cache miss behaviors� By

activating latency tolerance mechanisms only in dynamic instances of a static mem�

ory reference that will miss in the cache� much of the unnecessary overheads can be

saved� Experimental results show that roughly half of the �� non�numeric applica�

tions studied can potentially enjoy signi�cant reductions in memory stall time by

exploiting correlation pro�ling� Moreover� we use correlation pro�ling to improve

performance of dynamic instruction scheduling and software�controlled prefetching�

��� Organization of Dissertation

This dissertation comprises the following �ve chapters in addition to this introductory

chapter�

Chapter � describes cooperative instruction prefetching� We start with a quantitative

evaluation of state�of�the�art instruction prefetching techniques� After identifying the

fundamental problem with existing techniques� we propose cooperative prefetching as

a solution and explain how it can prefetch much further ahead without polluting the

cache� Finally� we evaluate in detail the e
ectiveness of cooperative prefetching in a
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modern processor�

Chapter � studies compiler�based data prefetching schemes for pointer�based data

structures� First� we identify the fundamental problem in prefetching these data struc�

tures� Second� we address this problem by devising three new prefetching schemes� and

we also describe an implementation of these schemes� Finally� we present an experimental

evaluation of them as well as a quantitative comparison with another compiler�inserted

pointer prefetching technique�

Chapter � explores the use of memory forwarding as a technique to facilitate data lay�

out optimizations� We �rst describe a similar form of memory forwarding that appeared

in the past� We then propose how memory forwarding can be adapted to improve cache

performance in modern processors� and address some implementation issues� Lastly� we

evaluate the potential performance bene�ts of memory forwarding by using it to enable

a number of aggressive optimizations whose legality cannot be guaranteed by existing

hardware or compiler technology�

Chapter � investigates the use of correlation pro�ling to predict data cache misses�

We begin by introducing some basic concepts and then propose three forms of correlation�

Next we present a qualitative analysis of expected bene�ts� followed by a quantitative

evaluation� To understand when and why correlation pro�ling succeeds� we perform

detailed case studies of individual applications� Finally� we demonstrate the practicality

of correlation pro�ling by applying it to two latency tolerance techniques�

Finally� Chapter � includes a summary of the primary results in this dissertation and

a number of directions for future work in this area� Appendix A discusses the overall

experimental methodology used in this dissertation�
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Cooperative Instruction Prefetching

��� Introduction

The rate of instruction supply is crucial to the performance of computer systems� and is

signi�cantly determined by the latency of instruction accesses� While instruction caches

are helpful for reducing this latency� they are not a complete solution� especially in many

non�numeric �commercial	 applications that have large instruction footprints and poor

instruction localities� For example� a study conducted by Maynard et al� ��� demon�

strates that many commercial applications su
er from relatively large instruction cache

miss rates �e�g�� over ��� in an �KB cache	� To further tolerate instruction cache miss

latency� one attractive approach is to automatically prefetch instructions into the cache

before they are needed�

����� Previous Work on Instruction Prefetching

Several researchers have considered instruction prefetching in the past� We will begin

by discussing and then quantitatively evaluating four of the most promising techniques

that have been proposed to date� all of which are purely hardware�based� next�N�line

prefetching ����� ��� � target�line prefetching ���� � wrong�path prefetching ���� � and

Markov prefetching ��� �

Before we begin our discussion� we brie�y introduce some prefetching terminology�

The coverage factor is the fraction of original cache misses that are prefetched� A prefetch

is unnecessary if the line is already in the cache �or is currently being fetched	� and is

useless if it brings a line into the cache which will not be used before it is displaced� An

ideal prefetching scheme would provide a coverage factor of ���� and would generate

no unnecessary or useless prefetches� In addition� the timeliness of prefetches is also

crucial� The prefetching distance �i�e� the elapsed time between initiating and consuming

��
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the result of a prefetch	 should be large enough to fully hide the miss latency� but not so

large that the line is likely to be displaced by other accesses before it can be used �i�e� a

useless prefetch	�

The idea behind next�N�line prefetching ����� ��� is to prefetch the N sequential

lines following the one currently being fetched by the CPU� A larger value of N tends to

increase the prefetching distance� but also increases the likelihood of polluting the cache

with useless prefetches� The optimal value of N depends on the line size� the cache size�

and the behavior of the application itself� Next�N �line prefetching captures sequential

execution as well as control transfers where the target falls within the next N lines�

It is usually included as part of other more complex instruction prefetching schemes�

and based on our experiments� it accounts for most of the performance bene�t of these

previously existing schemes�

To further expand the scope of prefetching to capture more control transfer targets�

Smith and Hsu ���� proposed target�line prefetching which uses a prediction table to

record the address of the line which most recently followed a given instruction line� thus

enabling hardware to prefetch targets whenever an entry is found in this table� They

observed that combining target�line prefetching with next���line prefetching produced

signi�cantly better results than either technique alone�

Rather than relying on history tables� Pierce and Mudge ���� proposed wrong�path

prefetching which combines next�N �line prefetching with always prefetching the target of

control transfers with static target addresses� Hence for conditional branches� both the

target and fall�through lines will always be prefetched� However� since target addresses

cannot be determined early� this scheme only outperforms next�N �line prefetching when

a conditional branch is initially untaken but later taken �assuming that enough time has

passed to hide the latency but not so much that the line has been displaced	� Their

results indicated that wrong�path prefetching performed slightly better than next���line

prefetching on average�

Joseph and Grunwald ��� proposed Markov prefetching� which correlates consecutive

miss addresses� These correlations are stored in a miss�address prediction table which

is indexed using the current miss address� and which can return multiple predicted ad�

dresses� The Joseph and Grunwald study focused primarily on data cache misses� and

did not compare Markov prefetching with techniques designed speci�cally for prefetching

instructions�

Finally� we note that while Xia and Torrellas ���� considered instruction prefetching

for codes where the layout has already been optimized using pro�ling information� we

focus only on techniques which do not require changes to the instruction layout in this
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Table ���� Parameters used in the evaluation of existing instruction prefetching tech�
niques�

	 of Sequential Target Prefetching Parameters
Technique Lines Prefetched 	 of Targets Table Size Table Indexing Method

Next�N �Line N 
 �� �� 
 � � N�A
Target�Line � � �� entries direct�mapped with tags
Wrong�Path � � � N�A
Markov � � ��� KB direct�mapped with tags

study�

Performance of Existing Instruction Prefetching Techniques

To quantify the performance bene�ts and limitations of the four prefetching techniques

described above� we implemented each of them within a detailed� cycle�by�cycle simu�

lator which models an out�of�order four�issue superscalar processor based on the MIPS

R����� ���� � We model a two�level cache hierarchy with split �� KB� two�way set�

associative primary instruction and data caches and a uni�ed � MB� four�way set�

associative secondary cache� Both levels use �� byte lines� The penalty of a primary

cache miss that hits in the secondary cache is at least �� cycles� and the total penalty

of a miss that goes all the way to memory is at least �� cycles �plus any delays due

to contention� which is modeled in detail	� To provide better support for instruction

prefetching� we further enhanced the primary instruction cache relative to the R����� as

follows� we divide it into four separate banks� and we add an eight�entry victim cache ��� 

and a ���entry prefetch bu
er ��� � Further details on our experiments will be presented

later in Section ����

Table ��� summarizes the prefetching parameters used throughout our experiments�

These parameters were chosen through experimentation in an e
ort to maximize the

performance of each scheme� All schemes e
ectively include next���line prefetching� �Al�

though next���line prefetching was not in the original Markov prefetching design ��� � we

added it since we found that it improves performance�	 When a target is to be prefetched�

we prefetch two consecutive lines starting at the target address�

Figure ��� shows the performance impact of each prefetching scheme on a collection of

seven non�numeric applications �which are discussed more in Section ���	� We show three

di
erent versions of next�N �line prefetching �where N � �� �� and �	 in Figure ���� along

with the original case without prefetching �O	 and the case with a perfect instruction

cache �P	� Each bar represents execution time normalized to the case without prefetching�



Chapter �� Cooperative Instruction Prefetching ��

|0

|20

|40

|60

|80

|100

|120
 N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e 

(%
) I-Miss Stall

Other Stall
Busy

 100  97  95  95  97  97  96

  83

 100
  95  94  95  95  94  93

  79

 100  98  98  99  98  98  98

  89

 100
  95  94  95  95  95  94

  83

 100
  96  95  97  96  96  96

  87

 100  97  96  93  96  96  95

  81

 100

  91  90  90  91  90  90

  81

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

O
N2

N4
N8

T
W

M
P

gcc perl porky postgres skweel tcl vortex

Figure ���� Performance of existing instruction prefetching techniques �O � original� Nx
� next�x�line prefetching� T � target�line prefetching� W � wrong�path prefetching� M
� Markov prefetching� P � perfect instruction cache	�

and is broken down into three categories corresponding to all potential graduation slots��

The bottom section �Busy	 is the number of slots when instructions actually graduate�

the top section �I�Miss Stall	 is any non�graduating slots that would not occur with a

perfect instruction cache� and the middle section �Other Stall	 is all other slots where

instructions do not graduate�

We observe from Figure ��� that despite signi�cant di
erences in complexity and

hardware cost� the various prefetching schemes o
er remarkably similar performance�

with no single scheme clearly dominating� Perhaps surprisingly� the best performance is

achieved by either next���line or next���line prefetching in all cases except perl� even in

perl� next���line prefetching is still within �� of the best case� The reason for this is that

the bulk of the bene�t o
ered by each of these schemes is due to prefetching sequential

accesses�

Finally� we see in Figure ��� that these schemes are hiding no more than half of the

stall time due to instruction cache misses� Through a detailed analysis of why these

schemes are not more successful �further details are presented later in Section �����	�

we observe that although the coverage is generally quite high� the real problem is the

timeliness of the prefetches�i�e� prefetches are not being launched early enough to hide

the latency� Hence there is signi�cant room for improvement over these existing schemes�

�The number of graduation slots is the issue width �� in this case� multiplied by the number of
cycles� We focus on graduation rather than issue slots to avoid counting speculative operations that are
squashed�
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����� Our Solution

To hide instruction cache miss latency more e
ectively in modern microprocessors� we

propose and evaluate a new fully�automatic instruction prefetching scheme whereby the

compiler and the hardware cooperate to launch prefetches earlier �therefore hiding more

latency	 while at the same time maintaining high coverage and actually reducing the im�

pact of useless prefetches relative to today
s schemes� Our approach involves two novel

components� First� to enable more aggressive sequential prefetching without polluting the

cache with useless prefetches� we introduce a new prefetch �ltering hardware mechanism�

Second� to enable more e
ective prefetching of non�sequential accesses� we introduce

a novel compiler algorithm which inserts explicit instruction�prefetch instructions into

the executable to prefetch the targets of control transfers far enough in advance� Our

experimental results demonstrate that our scheme provides signi�cant performance im�

provements over existing schemes� eliminating roughly ��� or more of the latency that

had remained with the best existing scheme�

This chapter is organized as follows� We begin in Section ��� with an overview of our

approach� and then present further details on the architectural and compiler support in

Sections ��� and ���� Sections ��� and ��� present our experimental methodology and our

experimental results� and �nally we conclude in Section ����

��� Cooperative Instruction Prefetching

We begin this section with a high�level overview of our prefetching scheme� To make our

approach concrete� we also present an example illustrating prefetch insertion�

����� Overview of the Prefetching Algorithm

As we mentioned earlier� the key challenge in designing a better instruction prefetching

scheme is to be able to launch prefetches earlier�i�e� to achieve a larger prefetching dis�

tance� Let us consider the sequential and non�sequential portions of instruction streams

separately�

Prefetching Sequential Accesses

Since the addresses within sequential access patterns are trivial to predict� they are well�

suited to a purely hardware�based mechanism such as next�N �line prefetching� To get

far enough ahead to fully hide the latency� we would like to choose a fairly large value for

N �e�g�� N � � in our experiments	� However� the problem with this is that larger values
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of N increase the probability of overshooting the end of the sequence and polluting the

cache with useless prefetches� For example� next���line prefetching performs worse than

next���line prefetching for four cases in Figure ��� �perl� porky� postgres� and skweel	

due to this e
ect�

The ideal solution would be to prefetch ahead aggressively �i�e� with a large N	 but to

stop upon reaching the end of the sequence� Xia and Torrellas ���� proposed a mechanism

for doing this which uses software to explicitly mark the likely end of a sequence with a

special bit� In contrast� we achieve a similar e
ect using a more general prefetch �ltering

mechanism which automatically detects and discards useless prefetches before they can

pollute the instruction cache�� We will explain how the prefetch �lter works in detail

later in Section ������ but the basic idea is to use two�bit saturating counters stored in

the secondary cache tags to dynamically detect cases where lines have been repeatedly

prefetched into the primary instruction cache but were not accessed before they were

displaced �i�e� useless prefetches	� When prefetches for such lines subsequently arrive at

the secondary cache� they are simply dropped� One advantage of our approach is that it

adapts to the dynamic branching behavior of the program� rather than relying on static

predictions of likely control �ow paths� In addition� our �ltering mechanism is equally

applicable to non�sequential as well as sequential prefetches�

Prefetching Non�Sequential Accesses

In contrast with sequential access patterns� purely hardware�based prefetching schemes

are far less successful at prefetching non�sequential instruction accesses early enough�

Wrong�path prefetching does not attempt to predict the target address of a given branch

early� but instead hopes that the same branch will be revisited sometime in the not�too�

distant future with a di
erent branch outcome� Both target�line and Markov prefetching

rely on building up history tables to predict addresses to prefetch along control targets�

However� if a control transfer is encountered for the �rst time or if its entry has been

displaced from the �nite history table� then its target will not be prefetched�� Perhaps

more importantly� even if a valid entry is found in the history table� it is often too late

to fully hide the latency of prefetching the target since the processor is already accessing

the line containing the branch�

�Interestingly� our prefetch �lter works in a similar fashion as the hardware mechanism recently
proposed by Johnson et al� ���� for controlling the fetch size upon data cache misses according to the
detected spatial locality�

�Note that although our prefetch �ltering mechanism can also potentially su�er from the limitations
of learning within a �nite table� we �nd that it is far more important to prefetch target addresses early
enough rather than �ltering out all useless prefetches�



Chapter �� Cooperative Instruction Prefetching ��

To overcome these limitations� we rely on software rather than hardware to launch

non�sequential instruction prefetches early enough� To avoid placing any burden on the

programmer� we use the compiler to insert these new instruction�prefetching instructions

automatically� As we describe in further detail later in Section ���� our compiler algorithm

moves prefetches back by a speci�ed prefetching distance while being careful not to insert

prefetches that would be redundant with either next�N �line prefetching or other software

instruction prefetches� Since many control transfers within procedures have targets within

the N lines covered by our next�N �line prefetcher� the bulk of the instructions inserted

by our compiler algorithm are for prefetching across procedure boundaries �as we show

later in Section ���	� Hence� although it is an oversimpli�cation� one could think of our

scheme as being primarily hardware�based for intraprocedural prefetching� and primarily

software�based for interprocedural prefetching�

While direct control transfers �i�e� ones where the target address is statically known	

are handled in a straightforward way by our algorithm� indirect jumps require some ad�

ditional support in order for software to generate the target addresses early� We consider

two separate cases of indirect jumps� procedure returns� and all other indirect jumps�

Since procedure return addresses can be easily predicted through the use of a return

address stack ��� � we simply use a special prefetch instruction which implicitly uses the

top of the return address stack as its argument�� To predict the target addresses of other

indirect jumps� we use a hardware structure called an indirect�target table which records

past target addresses of individual indirect jump instructions� and which is indexed using

the instruction addresses of indirect jumps themselves� A prefetch instruction designed

to prefetch the target of an indirect jump i conceptually stores the instruction address

of i� which is then used to index the indirect�target table to retrieve the actual target

addresses to prefetch� �Note that an indirect�target table is considerably smaller than

the tables used by either target�line or Markov prefetching since it only contains entries

for active indirect jumps other than procedure returns�	

While the advantage of software�controlled instruction prefetching is that it gives

us greater control over issuing prefetches early� the potential drawbacks are that it in�

creases the code size and e
ectively reduces the instruction fetch bandwidth �since the

prefetch instructions themselves consume part of the instruction stream	� Fortunately�

our experimental results demonstrate that this advantage outweighs any disadvantages�

�Although one could also imagine using the return address register as an explicit argument to the
prefetch instruction� this may complicate the processor by creating a new datapath from the register
�le to the instruction fetcher� In general� we would like to avoid instruction�prefetch instructions which
have register arguments�
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����� Example of Prefetch Insertion

To make our discussion more concrete� Figure ��� contains three examples of how di
erent

types of prefetches are inserted� We assume the following in these examples� a cache line

is �� bytes long� an instruction is four bytes long �hence one cache line contains eight

instructions	� hardware next�� line prefetching is enabled� and the prefetching distance

is �� instructions�

Figure ����a	 shows two procedures� main�� and foo��� where main�� contains �ve

basic blocks �labeled A through E	� Two prefetches have been inserted at the beginning

of basic block A� one targeting block E� and the other targeting procedure foo��� There

is no need to insert software prefetches for blocks B� C or D at A since they will already

be handled by next���line prefetching� The prefetch targeting E is inserted in block

A rather than in block C in order to guarantee a prefetching distance of at least ��

instructions� Although there are two possible paths from A to foo�� �i�e� A�B�D�foo��

and A�C�D�foo��	� the compiler inserts only a single prefetch of foo�� in A �rather

than inserting one in A and one in B	 because �i	 A dominates� both paths� and �ii	 the

compiler determines that these prefetched instructions are not likely to be displaced by

other instructions fetched along the path A�B�D�foo���

Figure ����b	 shows an example of prefetching return addresses� The prefetches in

procedures bar�� and foo�� get their addresses from the top of the return address stack�

i�e� ���	 and 
��	� respectively� Finally� Figure ����c	 shows an example where a prefetch

is inserted to prefetch the target address of the indirect jump at address �
�� before the

actual target address is known �i�e� the value register R has not been determined yet	�

Hence the prefetch has �
�� as its address operand to serve as an index into the indirect�

target table� Three target addresses are predicted for this indirect jump� and all of them

will be prefetched�

��� Architectural Support

Our prefetching scheme requires new architectural support� In this section� we describe

our extensions to the instruction set� how these new instructions a
ect the pipeline� and

the new hardware that we add to the memory system �including the prefetch �lter	�

�Node d of a �ow graph dominates node n if every path from the initial node of the �ow graph to n
goes through d ����
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�a� Adding instruction prefetches to the ISA

pf_d type 0  0address of a 16-byte lineinst pf

13

prefetch

2531bit positions:

opcode prefetch address(es) type

14

offsetpf_i type inst pf

0  1

1  0

1  1

inst pf

offset A offset Binst pfpf_c type

pf_r type don’t care

26 2 1 0

�b� Data vs� instruction prefetch pipelines

Instruction prefetch pipeline

Prefetch address known for pf_d type
(extra time required for other types)

Prefetch address known

Data prefetch pipeline

Fetch
Instruction Prefetcher
Handled by HardwareDecode

Calc.
DecodeFetch Addr. Mem.Issue

Figure ���� Possible extensions to the ISA and the CPU pipeline for instruction
prefetches�

����� Extensions to the Instruction Set Architecture

Without loss of generality� we assume a base instruction set architecture �ISA	 similar

to the MIPS ISA ��� � Within a ���bit MIPS instruction� the high�order six bits contain

the opcode� For the jump�type instructions which implement static procedure calls� the

remaining �� bits contain the low�order bits of the target word address� We will use this

same instruction format as our starting point�

There are many ways to encode our new instruction�prefetch instructions� and Fig�

ure ����a	 shows just one of the possibilities� An opcode is designated to identify

instruction�prefetch instructions� In contrast with the standard jump�type instruction

format� we assume that �� bits �bits � through ��	 contain information for computing
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the prefetch address�es	� bits � and � indicate one of the four prefetch types� The prefetch

type pf d stores a single prefetch address in a format similar to a MIPS jump address�

The only di
erence is that since the lower two bits are ignored� it e
ectively encodes a

���byte�aligned address�� The pf c type is a compact format which encodes two target

addresses within the ���bit �eld in the form of o
sets between the target address lines

and the prefetch instruction line itself �again� a single o
set bit represents �� bytes	� each

o
set is �� bits wide� The remaining two types are for prefetching indirect targets�pf r

is for procedure returns� and pf i is for general indirect�jump targets� A pf r prefetch

does not require an argument since it implicitly uses the top of the return address stack

as its address� A pf i prefetch encodes the word o
set between itself and the indirect�

jump instruction that it is prefetching� To look up the prefetch address�es	� this o
set is

added to the current program counter to create an index into the indirect�target table�

����� Impact on the Processor Pipeline

Many recent processors have implemented instructions for data prefetching ���� ���� ��� �

With respect to pipelining� our instruction prefetches di
er in two important ways from

data prefetches� �i	 the pipeline stage in which the prefetch address is known� and �ii	

the computational resources consumed by the prefetches� Figure ����b	 contrasts the

pipeline for data prefetches in the MIPS R����� ���� with the pipeline for our instruction

prefetches in an equivalent machine� As we see in Figure ����b	� the prefetch address

of a pf d instruction prefetch is known immediately after the Decode stage �the other

three prefetch types would require some additional time	� while the address for a data

prefetch is not known until it is computed in the Address Calculate stage� Hence a pf d

instruction prefetch can be initiated two cycles earlier than a data prefetch� In addition�

since instruction prefetches do not go through the latter three pipeline stages of a data

prefetch �instead they are handled directly by the hardware instruction prefetcher after

they are decoded	� they do not contend for processor resources including functional units�

the reorder bu
er� register �le� etc� In e
ect� the instruction prefetches are removed from

the instruction stream as soon as they are decoded� thereby having minimal impact on

most computational resources�

����� Extensions to the Memory Subsystem

Figure ����a	 shows our memory subsystem �only the instruction fetching components

are displayed	� The I�prefetcher is responsible for generating prefetch addresses and

�Since most machines have at least �� byte instruction lines� this is not a limitation�
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�a� Memory subsystem

Main memory

Unified L2 cache

structures
auxiliary

Processor

I-prefetcher

InstructionsAddresses & Controls

I-cache

Prefetch
filter

are not shown

Data-fetching
components

�b� Example of prefetch �ltering
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:
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Line A is fetched and replaces line B. Line A’s saturation
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Line B is prefetched and replaces line A. Line A’s saturation

counter has reached "11". Line B’s prefetch bit is reset.
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The processor prefetches line A and then uses line B.
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counter is reset upon the fetch. Line B’s one is reset because

:
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Initially, line A was prefetched but has not been used.
Lines A and B map to the same line in the I-cache.

its prefetch bit is zero when it is replaced.

:

:

:

:

:

Figure ���� The memory subsystem and an example of the prefetch �ltering mechanism�
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�a� Prefetch bit �b� Saturation counter

of line L of line L

F,P

PF

P

Invalid

IR0 IR1

F 10

x
= Replace L in the S-cache

= Replace L in the I-cache

Invalid = L does not have a

It is not an encoded state.
valid tag in the cache.

P = Prefetch L
IRx

while its prefetch bit is 
SR

F = Fetch L

IR1

P

SR SR

IR1

F,IR0

IR1

P,IR1

F,P,IR0

Invalid

P

00

F,IR0

F,IR0 F,P
SR SR

11

01

10

Figure ���� The states and transitions of �a	 prefetch bits and �b	 saturation counters
under prefetch �ltering�

launching prefetches to the uni�ed L� cache for both hardware and software initiated

prefetching� Prefetch�address generation involves simple extraction of prefetch addresses

from pf d prefetches� adding constant o
sets to the current program counter �for next�N

line prefetching and pf c prefetches	� or retrieving prefetch targets from some hardware

structures �for pf r and pf i prefetches	� The I�prefetcher will not launch a prefetch

to the L� cache if the line being prefetched is already in the primary instruction cache

�I�cache	 or has an outstanding fetch or prefetch for the same line address� The auxiliary

structures shown in Figure ����a	 include the return address stack and the indirect�target

table used by pf r and pf i prefetches� respectively� These structures are not necessary

if these two types of prefetches are not implemented�

Prefetch Filtering Mechanism

The prefetch �lter sits between the I�prefetcher and the L� cache to reduce the number

of useless prefetches� In addition� a prefetch bit is associated with each line in the I�

cache to remember whether the line was prefetched but not yet used� and a two�bit

saturating counter value is associated with each line in the L� cache to record the number

of consecutive times that the line was prefetched but not used before it was replaced� The

width of these saturating counters was selected through experimentation�

The prefetch �ltering mechanism works as follows� When a line is fetched from the

L� cache to the I�cache� both the prefetch bit and the saturating counter value are reset

to zero� When a line is prefetched from the L� cache to the I�cache� its prefetch bit is set

to one and its saturation counter does not change� When a prefetched line is actually

used by a fetch� its prefetch bit is reset to zero� When a prefetched line l in the I�cache is
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�� This algorithm schedules prefetches for every basic block in the input executable�
algorithm Schedule Prefetches

�E� executable� �� the input executable
return ��� �� nothing to return

foreach B in E do

Schedule Direct Prefetches�B� B� �� fg�� �� schedule direct prefetches for B
end foreach�
foreach B in E do

if �B ends with an indirect jump or a procedure return� then
�� Schedule Indirect Prefetches�� �code shown in Figure ���� inserts prefetches
�� for the target of the indirect control transfer located in B�
Schedule Indirect Prefetches�B� B� Instruction Count�B�instructions�� fg��

end if�
end foreach�

end algorithm�

�� This algorithm inserts direct prefetches targeting a given basic block T �
algorithm Schedule Direct Prefetches

�B� basic block� �� current basic block
T � basic block� �� prefetch�target basic block
D� integer� �� the prefetching distance between B and T
S� set of basic blocks� �� basic blocks considered so far

return ��� �� nothing to return

if �B �� S� then �� continue only if B hasn	t been considered
S �
 S � fBg� �� B is now being considered
�� First
 determine if a prefetch for T 
 either launched by hardware or software
 is already present in B�
prefetched� boolean �
 Hardware Prefetched�B� T � or Software Prefetched�B� T ��
if �not prefetched� then

�� not prefetched yet
 attempt to insert a prefetch at B if it is su�ciently early and necessary
if �D � PF DIST and not Locality Likely�B� T �� then

�� PF DIST is the desirable prefetching distance�
�� Locality Likely�� determines the likelihood that B and T coexist in the cache�
Attach Direct Prefetch�B� T �� �� attach a direct prefetch for T onto B
prefetched �
 True� �� a prefetch for T is just inserted into B

end if�
end if�
if �not prefetched� then

�� still not prefetched yet
 attempt to insert prefetches at the predecessors of B
foreach B	s predecessor block P do

increment� integer�
if �B is the fall�through block of P and P ends with a procedure call �static or dynamic�� then

�� also count the length of the called procedure
increment �
 Shortest Path�P�instructions��

else �� P reaches B via a static control transfer or a fall�through path
�� that does not end with a procedure call

increment �
 Instruction Count�P�instructions��
end if�
D� �
 D � increment� �� update prefetching distance conservatively
Schedule Direct Prefetches�P � T � D�� S�� �� consider P next

end foreach�
end if�

end if�
end algorithm�

Figure ���� Main prefetch scheduling algorithm and the algorithm for scheduling direct
prefetches�
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replaced by another line� then if the prefetch bit of line l is set� its saturation counter is

incremented �unless it has already saturated� of course	� otherwise� the counter is reset to

zero� When the prefetch �lter receives a prefetch request for line l� it will either respond

normally if the counter value is below a threshold T � or else it will drop the prefetch

and send a �prefetch canceled� signal to the processor if the counter has reached T �in

our experiments� T � �	� Figure ����b	 shows an example of how the prefetch �ltering

mechanism works� and Figure ��� summarizes the states and transitions of the prefetch

bit and the saturation counter for a particular cache line�

��� Compiler Support

The compiler is responsible for automatically inserting prefetch instructions into the ex�

ecutable� Since prefetch insertion is most e
ective if it begins after the code is otherwise

in its �nal form� this new pass occurs fairly late in the compilation� perhaps at link time�

or as in our case� implemented as a binary rewrite tool� Further� the compiler should

schedule prefetches so as to achieve high coverage and satisfactory prefetching distances

while minimizing the static and dynamic instruction overhead� Hence our compiler al�

gorithm has two major phases� prefetch scheduling and prefetch optimization� which are

described in the following subsections� In addition� the compiler also determines how

many lines should be brought into the cache by a prefetch� A complete implementation

of this algorithm was used throughout our experiments�

����� Preprocessing

This step prepares the information that will be used by the scheduling and the optimiza�

tion phases� One important task here is to identify the interesting control structures in

the input executable� in particular loops� We used the algorithm given in Section ���� of

the Aho et al book �� to �nd all the natural loops� This algorithm requires us to �rst

compute the dominators�� In addition to this use� dominator information is also needed

in other parts of our compiler algorithm�

����� Prefetch Scheduling

Figure ��� shows our main prefetch scheduling algorithm Schedule Prefetches� which

inserts direct and indirect prefetches into a given executable using two similar algorithms�

Schedule Direct Prefetches and Schedule Indirect Prefetches�

�We say node d of a �ow graph dominates node n if every path from the initial node of the �ow graph
to n goes through d ����
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Schedule Direct Prefetches

Algorithm Schedule Direct Prefetches �also shown in Figure ���	 attempts to move

prefetches for a given target basic block back by a distance of at least PF DIST instruc�

tions� Schedule Direct Prefetches also tries to avoid inserting unnecessary prefetches

by checking whether another prefetch with the same target already exists� This check

is made by algorithm Hardware Prefetched� which determines if the target basic block

is covered by hardware sequential prefetching� and by algorithm Software Prefetched�

which tests whether an identical software prefetch is present in the same block� Algo�

rithm Locality Likely� which we will discuss shortly� checks whether the target basic

block is likely to be already in the I�cache� in which case no prefetch is required� Also�

as implied by the control �ow of Schedule Direct Prefetches� if prefetched is False

but Locality Likely is True� we will keep attempting to insert prefetches further back�

since� even though locality exists within a particular loop� we still need to prefetch before

entering that loop� Note that when we consider inserting prefetches into a predecessor

block� the prefetching distance must be updated� If there is a procedure invocation be�

tween the predecessor block and the current block� the new prefetching distance should

include the length of the called procedure� which is estimated by Shortest Path� other�

wise� the new prefetching distance is simply obtained by adding the instruction count of

the predecessor block to the old one� Finally� Schedule Direct Prefetches terminates

along a particular path in one of the following four situations� �i	 a prefetch is successfully

inserted on that path� �ii	 prefetching is discovered to be unnecessary for that path� �iii	

there are no more predecessors to move further back� or �iv	 a basic block is considered

again to insert a prefetch �i�e� the path constitutes a cycle	�

Schedule Indirect Prefetches

Working in a similar fashion to Schedule Direct Prefetches� Schedule Indirect Prefetches

�shown in Figure ���	 inserts prefetches for indirect jumps and procedure returns� How�

ever� unlike Schedule Direct Prefetches� the second input parameter of Schedule Indirect Prefetc

is the basic block containing the indirect control transfer instead of the target basic block

itself since the target basic block is unknown statically� Therefore� when we pass this

basic block as the �rst basic block to consider �i�e� how Schedule Indirect Prefetches

is invoked in Schedule Prefetches	� the initial prefetching distance is not zero but the

length of this basic block� Another di
erence between Schedule Direct Prefetches and

Schedule Indirect Prefetches is that Hardware Prefetched and Locality Likely

are not called in Schedule Indirect Prefetches since they cannot get much informa�
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�� This algorithm inserts prefetches targeting the indirect control transfer located in
�� a given basic block T �
algorithm Schedule Indirect Prefetches

�B� basic block� �� current basic block
T � basic block� �� the basic block that contains the indirect control transfer
D� integer� �� the prefetching distance between B and

�� the target of the indirect control transfer
S� set of basic blocks� �� basic blocks considered so far

return ��� �� nothing to return

if �B �� S� then �� continue only if B hasn	t been considered
S �
 S � fBg� �� B is now being considered
�� First
 determine if there is another indirect software prefetch for the same target in B�
prefetched� boolean �
 Software Prefetched�B� T ��
if �not prefetched� then

�� not prefetched yet
 attempt to insert a prefetch at B if it is su�ciently early
if �D � PF DIST � then

�� PF DIST is the desirable prefetching distance�
Attach Indirect Prefetch�B� T �� �� attach a prefetch targeting the indirect control transfer
prefetched �
 True� �� a prefetch is just inserted into B

end if�
end if�
if �not prefetched� then

�� still not prefetched yet
 attempt to insert prefetches at the predecessors of B
foreach B	s predecessor basic block P do

increment� integer�
if �B is the fall�through block of P and P ends with a procedure call �static or dynamic�� then

increment �
 Shortest Path�P�instructions��
else �� P reaches B via a static control transfer or a fall�through that does not

�� end with a procedure call�
increment �
 Instruction Count�P�instructions��

end if�
D� �
 D � increment� �� update prefetching distance conservatively
Schedule Indirect Prefetches�P � T � D�� S�� �� consider P then

end foreach�
end if�

end if�
end algorithm�

Figure ���� Algorithm for scheduling indirect prefetches�

tion without knowing the exact prefetch target address� While Schedule Indirect Prefetches

handles both indirect jumps and procedure returns in mostly the same way� it has to make

sure that prefetches for a return located in a procedure�say� P�will not be issued prior

to the invocation of P � This is accomplished by the Attach Indirect Prefetch routine�

Locality Likely

Given two basic blocks� the algorithm shown in Figure ��� estimates how much the

presence of one block in the I�cache implies the other
s� The likelihood of both appearing
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�� This algorithm determines the likelihood that two given basic blocks A and B coexist in the I�cache�
algorithm Locality Likely

�A� basic block�
B� basic block�

return �boolean�� �� true if A and B are likely to exist in the I�cache simultaneously

LA� set of loops �
 My Loops�A�� �� �nd the set of loops containing A
LB � set of loops �
 My Loops�B�� �� �nd the set of loops containing B
Lcommon � set of loops �
 LA � LB � �� �nd the set of loops that are common to A and B
foreach l � Lcommon do

if �Largest Volume�l�body� True� � E
ective CacheSize� then
�� Largest Volume�� computes the largest possible volume of instructions to be fetched�
�� E
ective CacheSize is the e
ective I�cache size
 after taking other factors such as
�� cache con�icts into account�
�� A and B are likely to coexist in the I�cache if their common loop can be entirely held
�� into the cache�
return True�

end if�
end foreach�
return False�

end algorithm�

Figure ���� Algorithm for determining the likelihood of two basic blocks existing in the
cache simultaneously�

would be high if all the following three conditions are true� �i	 both blocks belong to a

common loop� �ii	 both blocks are fetched or prefetched before entering the loop� and

�iii	 the entire loop �of course including the two blocks in question	 will stay in the I�

cache from the �rst to the last loop iteration� Condition �ii	 is ensured automatically by

the caller of Locality Likely �e�g�� Schedule Direct Prefetches	� and therefore we

only need to check conditions �i	 and �iii	 in Locality Likely� Condition �i	 is checked

by �nding the sets of loops that contain the two blocks and then intersecting them� For

condition �iii	� we estimate it to be true if the largest possible volume of instructions to be

fetched by the loop is smaller than the �e
ective� size of the I�cache �the e
ective I�cache

size is only a fraction of the actual I�cache capacity in order to account for e
ects due

to cache con�icts and instruction alignment� etc�	� In our implementation� the e
ective

cache size is one�eighth of the actual size� Similar to this test for locality within loops�

our implementation also includes a test for locality within recursive procedure calls�

Shortest Path

Algorithm Shortest Path in Figure ��� estimates the minimum number of instructions

to be executed for a given control��ow structure� The interesting cases in this algorithm

are� �i	 conditional branches� where we choose the shorter of the �then� and �else� paths�
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�� This algorithm computes the shortest path through an instruction sequence�
algorithm Shortest Path

�I� list of instructions� �� instructions at a given control��ow graph level
return �shortestLength� integer��

shortestLength� integer �
 ��
foreach i � I do

if �i is a conditional branch� then
�� pick the one with shorter path length
shortestLength �
 shortestLength � min�Shortest Path�i�then part�� Shortest Path�i�else part���

else if �i is an unconditional branch� then
shortestLength �
 shortestLength � Shortest Path�i�target part��
�� instructions following i won	t be executed after the branch and hence they shouldn	t be counted then
return �shortestLength��

else if �i is a loop� then
if �isConstant�i�num iterations�� then

shortestLength �
 shortestLength � i�num iterations � Shortest Path�i�loop body��
else �� assume at least one iteration when iteration count is unknown

shortestLength �
 shortestLength � Shortest Path�i�loop body��
end if�

else if �i is a static
 non�recursive procedure call� then
shortestLength �
 shortestLength � Shortest Path�i�procedure body��

else if �i is a dynamic procedure call� then
�� assume small length for dynamic procedure calls
shortestLength �
 shortestLength � Small ProcedureLength�

end if�
shortestLength �
 shortestLength � ��

end foreach�
return �shortestLength��

end algorithm�

Figure ���� Algorithm for computing the shortest path through an instruction sequence�

�ii	 unconditional branches� where we return the length of the target paths� �iii	 loops�

where we use the iteration count if it is known and otherwise assume that at least a single

iteration is executed� �iv	 static procedure calls� where we use the length of the procedure

body� unless there is recursion� and �v	 dynamic procedure calls� where we conservatively

assume unknown procedure length to be small �Small ProcedureLength � �� in our

implementation	�

Largest Volume

This algorithm estimates the largest possible volume of instructions to be fetched in

a given instruction sequence� As shown in Figure ����� Largest Volume has a similar

structure to Shortest Path� The major di
erence of them is that while Shortest Path

computes in a minimal notion� Largest Volume does in a maximal one� As a result�

Largest Volume needs an additional parameter combine to indicate whether we should
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�� This algorithm computes the largest possible volume of instructions fetched in an
�� given instruction sequence�
algorithm Largest Volume

�I� list of instructions �� instructions at a given control��ow graph level
combine� boolean� �� whether need to accumulate the volume of

�� instructions on disjoint paths
return �largestV olume� integer��

largestV olume� integer �
 ��
foreach i � I do

if �i is a conditional branch� then
if �combine� then

�� accumulate the volume of both paths
largestV olume �
 largestV olume � Largest Volume�i�then part� combine�

� Largest Volume�i�else part� combine��
else

�� pick the one with larger volume
largestV olume �
 largestV olume � max�Largest Volume�i�then part� combine��

Largest Volume�i�else part� combine���
end if�

else if �i is an unconditional branch� then
largestV olume �
 largestV olume � Largest Volume�i�target part� combine��
�� instructions following i won	t be executed after the branch and hence they shouldn	t be counted then
return �largestV olume��

else if �i is a loop� then
�� conservatively assume that all instructions in the loop are used �in di
erent iterations�
largestV olume �
 largestV olume � Largest Volume�i�loop body� True��

else if �i is a static
 non�recursive procedure call� then
largestV olume �
 largestV olume � Largest Volume�i�procedure body� combine��

else if �i is a dynamic procedure call� then
�� assume large volume for dynamic procedure calls
largestV olume �
 largestV olume � Large ProcedureV olume�

end if�
largestV olume �
 largestV olume � ��

end foreach�
return �largestV olume��

end algorithm�

Figure ����� Algorithm for computing the largest possible volume of instructions accessed�

sum up instructions accessed in disjoint paths or simply select the path accessing more

instructions� the former case is used to conservatively count all possible instructions

accessed by a loop� Note that when we encounter a dynamic procedure call� we assume

a fairly large procedure body �Large ProcedureV olume � ���� in our implementation	�

����� Prefetch Optimization

After generating an initial prefetch schedule� the compiler then performs a number of

optimizations attempting to minimize both static and dynamic prefetching overheads�
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We devised our optimizations in light of existing compiler optimizations �� � including

code motion� common subexpression elimination� and extraction of loop invariants� How�

ever� our optimizations di
er from them in two aspects� First� we need to take locality

information into account to make sure that these optimizations would not degrade the

e
ectiveness of prefetching� Second� since prefetches are mainly performance hints� we

can simply ignore the information that we do not know statically �e�g�� indirect jump tar�

gets� mapping to cache sets	� the worst case is to a
ect performance but does not break

the program� as it would in classical compiler optimizations� Our optimization algorithm

is composed of the following four passes� To make our discussion more concrete� we use

the example in Figure ���� to help explain these passes�

Pass �� Combining Prefetches at Dominators

This pass boosts prefetches that have been attached to a basic block b in the prefetch

scheduling phase to b
s nearest dominator �other than b itself	 if the boosting is not

harmful �it is harmful when the boosted prefetches may displace other useful instructions

from the cache before b is referenced	� After this boosting process� the compiler could

combine redundant prefetches at dominators� For example� Figure �����b	 shows the

result of combining the two prefetches of line y into one after boosting prefetches from

basic blocks D� E� and F into their dominator C�

Pass �� Eliminating Unnecessary Prefetches

A prefetch instruction u targeting a line l is unnecessary if l resides in the I�cache on all

possible paths reaching u� To eliminate unnecessary prefetch instructions� we devise a

data��ow analysis algorithm to estimate which instruction lines reside in the I�cache at a

particular program point� This algorithm� called Compute Cached Instructions� resem�

bles the one that computes available expressions in classical compiler optimizations �� �

It is shown in Figure �����

Algorithm Compute Cached Instructionsperforms a forward data��ow analysis� For

a given block B other than the initial block B�� in�B obtains its value by intersecting

out�P  
s for all predecessors P of B� We can then compute out�B by uniting use�B �

pf �B � and �in�B � displace�B 	� This union represents the fact that the instruction lines

reside upon exiting a block is equal to the lines reside upon entering the block plus those

that are newly brought into the cache by the block �i�e� use�B �pf �B 	 but exclude those

that are displaced� The set displace�B is initialized using Conflicting Instructions�

which estimates the instruction lines that could possibly con�ict with use�B � pf �B �
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�� This algorithm estimates the instruction lines that reside in the I�cache at each basic block of
�� the input executable�
�� Explanation for the data��ow analysis variables used in this algorithms�
�� in�B� � the set of instruction lines residing in the I�cache upon entering block B
�� out�B� � the set of instruction lines residing in the I�cache upon exiting block B
�� use�B� � the set of instruction lines used in block B
�� pf �B� � the set of instruction lines prefetched in block B
�� displace�B� � the set of instruction lines displaced from the I�cache in block B

algorithm Compute Cached Instructions

�E� executable� �� the input executable
�B�� basic block� �� the initial block

return �in�� �� in�B� for each block B

in� out� use� pf � displace� array of set of instruction lines�
�� some initialization follows
in�B�� �
 fg�
use�B�� �
 the set of instruction lines used in B��
pf �B�� �
 the set of instruction lines prefetched in B��
out�B�� �
 use�B�� � pf �B��� �� in�B�� and out�B�� will never change then
foreach B �
 B� in E do

use�B� �
 the set of instruction lines used in B�
pf �B� �
 the set of instruction lines prefetched in B�
�� Find out which instruction lines in U could be con�icting with those that are used or prefetched
�� in B
 where U includes all instruction lines in E�
displace�B� �
 Conflicting Instructions�U � use�B� � pf �B���
�� assume that all instruction lines other than those that are displaced are cached initially
out�B� �
 U � displace�B��

end foreach�
change� boolean �
 True�
while change do �� iterate until converged

change �
 False�
foreach B �
 B� in E do

�� We are sure that an instruction line resides in the cache upon entering B if it does upon
�� leaving every predecessor of B�

in�B� �

�

P a predecessor of B

out�P ��

oldout� set of instruction lines �
 out�B��
out�B� �
 use�B� � pf �B� � �in�B�� displace�B���
if �out�B� �
 oldout� then

change �
 True�
end if�

end foreach�
end while�
return �in��

end algorithm�

Figure ����� Our data��ow analysis algorithm for estimating which instruction lines reside
in the I�cache�



Chapter �� Cooperative Instruction Prefetching ��

unnecessary
prefetches

2. Eliminate1. Combine
prefetches
at dominators

3. Compress
prefetches

E

F

pf_d z

A

pf_d z

DE

F

pf_d z

A

pf_d z

B

C C

C’

pf_d z

pf_c x,y

C

pf_c x,y

pf_d z

pf_d x
pf_d y

B

D E

F

D

pf_d z

B

pf_d y pf_d y

D E

pf_d x

4. Hoist
prefetches

pf_d z

A

pf_d z

C

F

E

F

pf_d z

A

pf_d z

B

D

pf_d z

A

C

pf_d x
pf_d y

B

�a	 �b	 �c	 �d	 �e	

Figure ����� Example of prefetch optimization� A to F are basic blocks� x� y and z are
cache line addresses� C is a dominator of D� E� F� and C itself� Part �a	 is the initial
schedule� and part �e	 is the �nal optimized schedule�

Like many other iterative data��ow analyses� Compute Cached Instructions repeats

computing in� and out� until out� remains the same in two consecutive iterations�

In the example shown in Figure �����b	� we assume that once line z is prefetched

before entering the loop� it will stay in the cache for the whole execution of the loop�

Then line z will de�nitely be in the I�cache when we enter basic block C regardless of

whether we came from A� B� or F� Therefore� the prefetch of line z in C is unnecessary

and can be eliminated� as shown in Figure �����c	�

Pass �� Compressing Prefetches

The compiler checks whether multiple pf d prefetches in the same basic block can be

compressed into a single compact prefetch� For each basic block b� the compiler needs to

compute the o
sets between the starting address of b and the target addresses of all pf d

prefetches scheduled in b� It then attempts to �t these o
sets into a minimum number

of compact prefetch instructions� Our example assumes that the address o
sets of both
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lines x and y are representable within �� bits� and therefore the two pf d prefetches in C

are compressed into a single pf c prefetch� as shown in Figure �����d	�

Pass 	� Hoisting Prefetches

Finally� the compiler hoists prefetches scheduled inside a loop up to the nearest basic

block that dominates but is not part of the loop� if the prefetches do not need to be

re�executed at every iteration �which may not be the case if each iteration can access

a large volume of instructions	� If such a block is not found �most probably because

these outside�loop dominators are too far away from the loop	� a pre�header block will

be created for the loop to hold the hoisted prefetches� For example� in Figure �����e	� a

pre�header C
 is created to immediately precede the header �i�e� C	 of the loop containing

C� D� E� and F to hold the hoisted pf c prefetch� While this optimization does not reduce

the code size� it can reduce the number of dynamic prefetches�

����� Determining the Software Prefetch Size

Since instruction accesses are fairly sequential� it is usually helpful to bring in more

than one cache line by a software prefetch� Currently� our compiler decides a constant

prefetch size for all software prefetches and passes it to the hardware prior to program

execution� If hardware prefetch �ltering is enabled� the software prefetch size is set to

four� otherwise� it is set to two� Alternatively� the compiler can use variable prefetch sizes�

However� this would require extra operands or more complex encoding in instruction�

prefetch instructions in order to specify the prefetch size�

��� Experimental Framework

We performed our experiments on seven non�numeric applications which were chosen

because their relatively large instruction footprints result in poor instruction cache per�

formance� These applications are described Table ���� and all of them were run to com�

pletion� Table ��� shows the number of software prefetches inserted into the executable�

broken down into the interprocedural and intraprocedural cases� As we see in Table ����

the software component of our scheme mainly targets interprocedural prefetching�

We performed detailed simulations of our applications on a dynamically�scheduled�

superscalar processor similar to the MIPS R����� ���� � Table ��� shows the parameters

used in our model for the bulk of our experiments �we vary the latency and bandwidth

later in Section �����	� As shown in Table ���� we enhanced the memory subsystem in a
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Table ���� Application characteristics� Note� the �combined� miss rate is the fraction of
instruction fetches which su
er misses in both the ��KB I�cache and the �MB L� cache�

Instructions Miss Rate
Name Description Input Data Set Graduated I�Cache Combined

Gcc The GNU C compiler The stmt�i in the �����M ����� �����
drawn from SPEC�� reference input set

Perl The interpreter of the A Perl script called ����M ����� �����
Perl language drawn a�ps�pl which converts
from SPEC�� ascii to postscript

Porky A SUIF compiler pass The compress���c 
��
M ���
� �����
for simplifying and program in SPEC��
rearranging codes �default optimizations�

Postgres The PostgreSQL A subset of queries ����M ����� �����
database management in the Postgres
system ����� Wisconsin benchmark

Skweel A SUIF compiler pass A program that �
��M ����� �����
for loop parallelization computes Simplex

�with all optimizations�
Tcl An interpreter of the Tcltags�tcl which ����M ���
� �����

script language Tcl makes Emacs�style
version ��� TAGS �le for Tcl source

Vortex The Vortex object� A reduced SPEC�� �����M ���
� ���
�
oriented database input set
program in SPEC��

Table ���� Number of software prefetches inserted into the executable� Note� The �static
prefetch count� is normalized to the size of the original executable� Prefetches are classi�
�ed as either interprocedural or intraprocedural� depending on whether the prefetch target
and the prefetch itself are in the same procedure�

Static Prefetch Count �� of Original Executable Size�
Name Interprocedural Intraprocedural

Gcc ���� ����
Perl 
�� � ��� �
Porky ���� ����
Postgres 
��� ����
Skweel ��� � ����
Tcl ���� ����
Vortex ����� ����

few ways relative to the R����� to provide better support for instruction prefetching�

e�g�� we added an eight�entry victim cache ��� and a ���entry prefetch bu
er ��� �

We compiled each application as a �nonshared� executable with �O� optimization

using the standard MIPS C compilers under IRIX ���� We implemented our compiler

algorithm as a standalone pass which reads in the MIPS executable and modi�es the
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Table ���� Simulation parameters for the baseline architecture�

Pipeline Parameters

Fetch � Decode Width 
 aligned sequential
instructions

Issue � Graduate Width �
Functional Units � Integer� � FP�

� Memory� � Branch
Reorder Bu�er Size ��
Integer Multiply �� cycles
Integer Divide �� cycles
All Other Integer � cycle
FP Divide �� cycles
FP Square Root �� cycles
All Other FP � cycles
Branch Prediction Scheme ��bit Counters

Memory Parameters

Line Size ��B
I�Cache ��KB� ��way set�associative� � banks
Inst� Prefetch Bu�er �� entries
D�Cache ��KB� ��way set�associative� � banks
Victim Bu�ers 
 entries each for data and inst�
Miss Handlers �MSHRS� �� each for data and inst�
Uni�ed S�Cache �MB� ��way set�associative
Primary�to�Secondary �� cycles �plus any delays
Miss Latency due to contention�
Primary�to�Memory �� cycles �plus any delays
Miss Latency due to contention�
Primary�to�Secondary Bandwidth �� bytes cycle
Secondary�to�Memory Bandwidth 
 bytes cycle

binary� However� since we did not have access to a complete set of binary rewrite utilities�

we tightly integrated our compiler pass with our simulator so that rather than physically

generating a new executable� we instead pass a logical representation of the new binary

to the simulator which it can then model accurately� For example� the simulator fetches

and executes all of the new instruction prefetches as though they were in a real binary�

and it remaps all instruction layouts and addresses to correspond to what they would be

in the modi�ed binary� Hence we truly emulate the physical insertion of prefetches at

the expense of decreased simulation speed�
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Figure ����� Performance comparison of our basic cooperative prefetching and the best
performing existing schemes of individual applications �Nx � next�x�line prefetching� M
� Markov prefetching� C � cooperative prefetching	�

��	 Experimental Results

We now present results from our simulation studies� We start by evaluating the overall

performance of our basic cooperative prefetching scheme�with only direct prefetches	� and

then evaluate the bene�t of also adding indirect prefetches �i�e� pf r and pf i	� Next�

we examine the relative importance of the two key components of our scheme� prefetch

�ltering and compiler�inserted prefetching� We also quantify the impact of our compiler
s

prefetch optimizations� and of varying the prefetching distance parameter� on the code

size and performance� We then investigate if cooperative prefetching could bene�t from

pro�ling information� After that� we explore the impact of varying cache latencies and

bandwidth on the performance of our scheme� Finally� we evaluate whether cooperative

prefetching is cost e
ective�

��
�� Performance of Basic Cooperative Prefetching

Our basic cooperative prefetching scheme includes compiler�inserted pf d and pf c prefetches�

hardware�based next���line prefetching� and prefetch �ltering� No pf r or pf i prefetches

�and hence the required hardware structures	 are used� A prefetching distance of �� in�

structions is used for all applications� �We will discuss the impact of the prefetching

distance more later in Section ������	

Figure ���� shows the performance impact of cooperative instruction prefetching� For

each application� we show two cases� the bar on the left is the best previously�existing

prefetching scheme �seen earlier in Figure ���	� and the bar on the right is cooperative
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Figure ����� Breakdown of all I�cache misses� �O � original� Nx � next�x�line prefetch�
ing� M � Markov prefetching� C � cooperative prefetching	�

prefetching �C	� Note that the number of instructions that actually graduate �i�e� the

busy section	 is equal in both cases because instruction prefetches are removed from the

instruction stream once they are decoded �see Section �����	� As we see in Figure ����� our

cooperative prefetching scheme o
ers signi�cant speedups over existing schemes ����� on

average	 by hiding a substantially larger fraction of the original instruction cache miss

stall times ���� on average� as opposed to an average reduction of ��� for the best

existing schemes	�

To understand the performance results in greater depth� Figure ���� shows a metric

which allows us to evaluate the coverage� timeliness� and usefulness of prefetches all on a

single axis� This �gure shows the total I�cache misses �including both fetch and prefetch

misses	 normalized to the original case �i�e� without prefetching	 and broken down into

the following four categories� The bottom section is the number of fetch misses that

were not prefetched �this accounts for ���� of the misses in the original case� of course	�

The next section �Late Prefetched Misses	 is where a miss has been prefetched� but

the prefetched line has not returned in time to fully hide the miss �in which case the

instruction fetcher stalls until the prefetched line returns� rather than generating a new

miss request	� The Prefetched Hits section is the most desirable case� where a prefetch

fully hides the latency of what would normally have been a fetch miss� converting it into

a hit� Finally� the top section is useless prefetches which bring lines into the cache that

are not accessed before they are replaced�

Figure ���� shows that both cooperative prefetching and the best existing prefetching

schemes achieve large coverage factors� as indicated by the small number of unprefetched

misses� The main advantage of our scheme is that it is more e
ective at launching
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Figure ����� Impact of adding prefetches for procedure returns and indirect jumps �C �
basic cooperative prefetching� SR � basic plus pf r prefetches� HR � basic plus using
hardware to prefetch the next three return addresses at each return� SI � basic plus pf i

prefetches with a smaller indirect�target table� BI � basic plus pf i prefetches with a
bigger indirect�target table	�

prefetches early enough� This is demonstrated in Figure ���� by the signi�cant reduction

in late prefetched misses� the bulk of which have been converted into prefetched hits�

We also observe in Figure ���� that both cooperative prefetching and existing schemes

experience a certain amount of cache pollution since the sum of the bottom three sections

of the bars adds up to over ����� However� the prefetch �ltering mechanism used by

cooperative prefetching helps to reduce this problem� thereby resulting in a smaller total

for the bottom three sections than the best existing scheme in all of our applications� In

addition� Figure ���� shows another bene�t of prefetch �ltering� it dramatically reduces

the number of useless prefetches� The reduction in total useless prefetches ranges from

��� in perl to ���� in tcl�on average� cooperative prefetching has achieved a sixfold

reduction in useless prefetching�

��
�� Adding Prefetches for Procedure Returns and Indirect

Jumps

Having seen the success of our basic cooperative prefetching scheme� we now evaluate the

performance bene�t of extending it to include the indirect prefetches�i�e� pf r and pf i

prefetches for procedure returns and indirect jumps� respectively� Figure ���� shows the

performance of �ve variations of cooperative prefetching� the basic scheme �C	� the basic

scheme plus pf r prefetches �SR	� the basic scheme plus using hardware to prefetch the

top three addresses on the stack at each procedure return �HR	� and two cases which
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include the basic scheme plus pf i prefetches �SI and BI	� Both schemes SR and HR use

a ���entry return address stack� While scheme HR has no instruction overhead� scheme

SR has a better control over the prefetching distance via compiler scheduling� Scheme

SI uses a � KB� ��way set�associative indirect�target table where each entry holds up

to four target addresses� scheme BI uses a �� KB� ��way set�associative indirect�target

table with �� targets per entry�

As we can see in Figure ����� the marginal bene�t of supporting indirect prefetches

is quite small for these applications� Part of the limitation is that only a relatively

small fraction �roughly ���	 of the remaining misses which are not handled by our basic

scheme are due to either procedure returns or indirect jumps� and therefore the potential

for improvement is small� In addition� since some indirect jumps can have a fairly large

number of possible targets�e�g�� more than eight� as we observe in perl and gcc�

prefetching all of these targets could result in cache pollution� Prefetching indirect jump

targets may become more important in applications where they occur more frequently�

e�g�� object�oriented programs that make heavy use of virtual functions� or applications

that use shared libraries� Although two of our applications are written in C## �porky

and skweel	� they rarely use virtual functions� Since our applications show little bene�t

from pf r and pf i prefetches� we do not use them in the remainder of our experiments�

��
�� Importance of Prefetch Filtering and Software Prefetch�

ing

Two components of the cooperative prefetching design contribute to its performance

advantages� prefetch �ltering and compiler�inserted software prefetching� To isolate the

contributions of each component� Figure ���� shows their performance individually as well

as in combination� The relative importance of prefetch �ltering versus compiler�inserted

prefetching varies across the applications� in tcl� prefetch �ltering is more important�

and in postgres� compiler�inserted prefetching is more important� In all cases� the

best performance is achieved when both techniques are combined� and in all but one

case this results in a signi�cant speedup over either technique alone� Intuitively� the

reason for this is that the bene�ts of prefetch �ltering �i�e� avoiding cache pollution	 and

software prefetching �i�e� issuing non�sequential prefetches early enough	 are orthogonal�

Hence both components of our design are clearly important for performance and are

complementary in nature�
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Figure ����� Performance of four di
erent combinations of prefetch �ltering and compiler�
inserted prefetching �N
 � next���line prefetching alone� N
�f � next���line prefetching
with prefetch �ltering� S � compiler�inserted prefetching alone without prefetch �ltering�
C � cooperative prefetching	�

��
�� Impact of Prefetching Optimizations

To evaluate the e
ectiveness of the compiler optimizations discussed earlier in Section ���

in reducing the number of prefetches� we measured their impact both on code size and

performance� Figure �����a	 shows the number of static prefetches remaining as each

optimization pass is applied incrementally� normalized to the original code size� Without

any optimization �U	� the code size can increase by over ���� Combining prefetches at

dominators �D	 dramatically reduces the prefetch count by more than half in all applica�

tions except postgres� Eliminating unnecessary prefetches and compressing prefetches

further reduces the prefetch count by a moderate amount� �Prefetch hoisting has no e
ect

on the static prefetch count� and therefore is not shown in Figure �����a	�	 Altogether�

the prefetch optimizations limit the prefetch count to only �� of the original code size

on average�

Figure �����b	 shows the impact of these optimizations on performance� As we see

in this �gure� combining prefetches at dominators results in a noticeable performance

improvement in several cases �e�g�� gcc� perl� and tcl	� The other optimizations have

a negligible performance impact� In fact� prefetch compression and hoisting sometimes

degrade performance by a very small amount by changing the order in which prefetches

are launched�
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Figure ����� Impact of prefetch optimization on �a	 the static prefetch count and �b	 the
performance of cooperative prefetching� �U � unoptimized�D � combining prefetches at
dominators� E � case D plus eliminating unnecessary prefetches� Z � case E plus com�
pressing prefetches� H � case Z plus hoisting prefetches	� The y�axis of �a	 is normalized
to the number of instructions in the original executable�

��
�	 Varying the Prefetching Distance

A key parameter in our prefetch scheduling compiler algorithm is the prefetching distance

�i�e� PF DIST in Figure ���	� When choosing a value for this parameter� we must

consider the following tradeo
s� we would like the parameter to be large enough to hide

the expected miss latency� but setting the parameter too high can increase the code size

�since more prefetches must be inserted to cover a larger number of unique incoming

paths	 and increase the likelihood of polluting the cache� In our experiments so far� we

have used a prefetching distance of �� instructions� which is roughly equal to the product
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Figure ����� Impact of the prefetching distance on �a	 the static prefetch count and �b	
the performance of cooperative prefetching� �x � a prefetching distance of x instructions
is used in the compiler scheduling� the case �� is the default for our basic cooperative
prefetching	� The y�axis of �a	 is normalized to the number of instructions in the original
executable�

of the expected IPC �����	 and the primary�to�secondary miss latency �� �� cycles	�

To determine the sensitivity of cooperative prefetching to this parameter� we varied the

prefetching distance across a range of �ve values from �� to �� instructions� and measured

the resulting impact on both code size and performance �shown in Figures �����a	 and

�����b	� respectively	�

As we observe in Figure �����a	� increasing the prefetching distance can result in a

noticeable increase in the code size� Fortunately� even with a prefetching distance as

large as �� instructions� the compiler is still able to limit the code expansion to less that

��� on average� due to the optimizations discussed in the previous section� In contrast�
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Figure ����� Performance impact of code reordering guided by pro�ling information �R
� code reordered� C � cooperative prefetching� R�C � code reordered plus cooperative
prefetching	�

the performance o
ered by cooperative prefetching is less sensitive to the prefetching

distance� as we see in Figure �����b	� While tcl enjoys a �� speedup as we increase

this parameter from �� to �� cycles� the other applications experience no more than

a �� �uctuation in performance across this range of values� Hence we observe that

performance is not overly sensitive to this parameter�

��
�
 Impact of Pro�ling Information

One advantageous feature of cooperative prefetching is that it requires no pro�ling in�

formation� In this section� we study how well our technique performs relative to some

pro�ling�driven techniques� In addition� we investigate whether cooperative prefetching

could be further improved by using pro�ling information� We present below the results

of two experiments in which pro�ling information is used in di
erent ways to improve

instruction cache performance�

In the �rst experiment� control��ow pro�ling information is used to guide code re�

ordering for better instruction locality� We used the IRIX utility cord to rearrange

procedures in an executable according to an order determined by another IRIX utility�

prof� The results are shown in Figure ����� where the three cases in each application

are� code reordered �R	� cooperative prefetching �C	� and code reordered plus coopera�

tive prefetching �R�C	� For cases R and R�C� we experimented with two di
erent code

orders� one based on a pro�le where both the actual and training runs use the same input

and the other based on a pro�le where the two runs use di
erent inputs� The better per�

forming code order is reported in Figure ����� �Postgres is not included in Figure ����
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Figure ����� Impact of pro�ling�guided prefetch selection on �a	 the static prefetch count
and �b	 the performance of cooperative prefetching� �C � original cooperative prefetch�
ing� Prof � cooperative prefetching with prefetches selected using pro�ling information�	
The y�axis of �a	 is normalized to the number of instructions in the original executable�

because prof is unable to handle this application�	 We observe from Figure ���� that

the performance of the code�reordered cases �R	 is somewhat disappointing�it performs

even worse than the original case in porky� The problem is that since the code order

determined by prof mainly reduces the cache misses caused by con�icts in procedure

mapping� there is little improvement in compulsory or capacity misses �they may get

even worse in the new code order	� Fortunately� by applying cooperative prefetching to

the reordered code �R�C	� these compulsory or capacity misses are largely eliminated�

while at the same time the new code order helps reduce the con�ict misses that are

not handled by cooperative prefetching alone� As a result� the R�C cases have better
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performance than the C cases in all applications except gcc�

In the second experiment� we attempted to reduce software prefetching overheads by

using pro�ling information� We �rst recorded the average I�cache miss rates of individual

prefetch instructions in a training run� Then we decided to insert a prefetch instruction

in the actual run whenever the average miss rate of that prefetch was higher than a given

threshold�that is� we wish to eliminate prefetches that are unnecessary most of the time�

The impact of this pro�ling�guided prefetch selection on both the static prefetch count

and the performance is shown in Figure ����� We varied the threshold miss rates from

���� to ����� and the Prof case of each application in Figure ���� used the threshold

that resulted in the best performance� To be optimistic� we used the same inputs for both

training and actual runs� It is obvious from Figure �����a	 that this pro�ling information

is very e
ective at reducing the static prefetch count even after our prefetch optimizations

are applied� However� as shown in Figure �����b	� the performance impact is less clear�

While the Prof cases achieve ����� speedups over the C cases in perl� skweel� and

tcl� they also perform a little worse than the C cases in two applications because some

discarded static prefetches turn out to be useful occasionally�

Overall� while the two kinds of pro�ling information studied in this section could

further improve the performance of cooperative prefetching� they do not appear to be

indispensable since cooperative prefetching alone already o
ers most of the same perfor�

mance advantages�

��
�� Impact of Latency and Bandwidth Variations

We now consider the impact of varying miss latencies and available bandwidth between

the primary and secondary caches on the performance of cooperative prefetching� Recall

that in our experiments so far� the primary�to�secondary miss latency has been �� cycles

�plus any delays due to contention	� Figure ���� shows the performance of the best

performing existing schemes and cooperative prefetching when the primary�to�secondary

latency is decreased to � cycles and increased to �� cycles� �Note that the compiler
s

prefetching distance was set to �� and �� instructions� respectively� for the ��cycle and

���cycle cases�	 As we see in Figure ����� cooperative prefetching still performs well

under both latencies� and results in even larger improvements as the latency grows� In

the ���cycle case� cooperative prefetching results in an average speedup of ������ which

is signi�cantly larger than the ����� speedup o
ered by the best existing scheme�

Turning our attention to bandwidth� recall that our experiments so far have assumed

a bandwidth of �� bytes!cycle between the primary instruction cache and the secondary
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Figure ����� Impact of varying the cache miss latency� �C � cooperative prefetching� best
performing existing schemes� Nx � next�x�line prefetching� T � target�line prefetching�
W � wrong�path prefetching� M � Markov prefetching	�

cache� Figure ���� shows the impact of decreasing this bandwidth to � bytes!cycle� and

of increasing it to unlimited bandwidth� There are two things to note from these results�

First� we see in Figure �����a	 that while reducing the bandwidth does degrade the per�

formance of cooperative prefetching somewhat�from an average speedup of ����� to

������the overall performance gain still remains high� Hence cooperative prefetching

can achieve good performance with the range of bandwidth that is common for recent

processors� �Note that this bandwidth includes servicing data cache misses as well�	 Sec�

ond� we observe in Figure �����b	 that increasing the bandwidth beyond �� bytes!cycle

does not signi�cantly improve the performance of cooperative prefetching �the average

speedup only increases from ����� to �����	� Therefore cooperative prefetching is not



Chapter �� Cooperative Instruction Prefetching ��

�a� Bandwidth � 
 bytes�cycle

|0

|20

|40

|60

|80

|100

|120

|140

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 
(%

) I-Miss Stall
Other Stall
Busy

  96   91   96
  88

  98   93   94
  88

  95   92   97
  90   90   85

N4 C N2 C T C N2 C N2 C M C W C
gcc perl porky postgres skweel tcl vortex

�b� Bandwidth � in�nite
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Figure ����� Impact of varying the bandwidth between the I�cache and L� cache �C �
cooperative prefetching� best performing existing schemes� Nx � next�x�line prefetching�
T � target�line prefetching� W � wrong�path prefetching� M � Markov prefetching	�

bandwidth�limited� and it is more likely that it is limited by other factors �e�g�� cache

pollution� achieving a su�cient prefetching distance� etc�	�

��
�
 Cost E�ectiveness

Having demonstrated the performance advantages of cooperative prefetching� we now

focus on whether the additional hardware support is cost e
ective� One alternative to

cooperative prefetching would be to simply increase the cache sizes by a comparable

amount� �Note that this is overly simplistic since the primary cache sizes are often

limited more by access time than the amount of silicon area available�	 For our baseline
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Figure ����� Performance comparison of cooperative prefetching and larger I�caches �C �
a �� KB I�cache with cooperative prefetching� x � an x KB I�cache without prefetching	�
The y�axis is normalized to the execution time of a �� KB I�cache without prefetching�

architecture� the additional storage necessary to support basic cooperative prefetching

is ��� bytes at the level of the primary I�cache ���� bytes for the prefetch bits used by

prefetch �ltering� and ��� bytes for the prefetch bu
er	� and � KB for the ��bit saturating

counters added to the L� cache�

Figure ���� compares the performance of a �� KB I�cache with cooperative prefetching

with that of three larger I�caches� ranging from �� KB to ��� KB� without prefetching�

It is encouraging that the average speedup achieved by cooperative prefetching ������	

is greater than that obtained by doubling the cache size from �� KB to �� KB ������	

despite of the substantially higher hardware cost of the larger cache� In addition� cooper�

ative prefetching outperforms the ��� KB I�cache in three of the seven applications� and

is within �� of the performance with a ��� KB I�cache in �ve cases� Overall� cooperative

prefetching appears to be a more cost�e
ective method of improving performance than

simply increasing the I�cache size�

��
 Chapter Summary

To overcome the disappointing performance of existing instruction prefetching schemes

on modern microprocessors� we have proposed and evaluated a new prefetching scheme

whereby the hardware and software cooperate as follows� the hardware performs aggres�

sive next�N �line prefetching combined with a novel prefetch �ltering mechanism to get

far ahead on sequential accesses without polluting the cache� and the compiler uses a

novel algorithm to insert explicit instruction�prefetch instructions into the executable to

prefetch non�sequential accesses� Our experimental results demonstrate that our scheme
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signi�cantly outperforms existing schemes� eliminating ��� or more of the latency that

had remained with the best existing scheme� This reduction in latency translates into a

����� average speedup over the original execution time on a state�of�the�art superscalar

processor� which is more than double the ���� speedup achieved by the best existing

scheme� and much closer to the maximum ��� speedup �for these applications and this

architecture	 in the ideal instruction prefetching case� These improvements are the re�

sult of launching prefetches earlier �thereby hiding more latency	� while at the same time

reducing the cache�polluting e
ects of useless prefetches dramatically�



Chapter �

Compiler�Based Prefetching for

Recursive Data Structures

��� Introduction

We begin our study on improving data cache performance by investigating software�

controlled prefetching in this chapter� Speci�cally� we focus on an important class of non�

numeric codes� those containing pointer�based data structures �also known as �recursive�

data structures	�

RecursiveData Structures �RDSs	 include familiar objects such as linked lists� trees�

graphs� etc�� where individual nodes are dynamically allocated from the heap� and nodes

are linked together through pointers to form the overall structure� For our purposes� �re�

cursive data structures� can be broadly interpreted to include most pointer�linked data

structures �e�g�� mutually�recursive data structures� or even a graph of heterogeneous

objects	� From a memory performance perspective� these pointer�based data structures

are expected to be an important concern for the following reasons� For an application to

su
er a large memory penalty due to data replacement misses� it typically must have a

large data set relative to the cache size� Aside from multi�dimensional arrays� recursive

data structures are one of the most common and convenient methods of building large

data structures �e�g�� B�trees in database applications� octrees in graphics applications�

etc�	� As we traverse a large RDS� we may potentially visit enough intervening nodes

to displace a given node from the cache before it is revisited� hence temporal locality

may be poor� Finally� in contrast with arrays� where consecutive elements are at con�

tiguous addresses and therefore stride�one accesses can exploit long cache lines� there is

little inherent spatial locality between consecutively�accessed nodes in an RDS since they

are dynamically allocated from the heap and can have arbitrary addresses� Therefore�

techniques for coping with the latency of accessing these pointer�based data structures

��
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are essential� One possible approach to tackling this latency problem is prefetching�

In the following subsection� we brie�y discuss some previous work on prefetching for

non�numeric codes�

����� Previous Work on Data Prefetching for Non�Numeric Codes

Although prefetching has been studied extensively for array�based numeric codes ����

��� ��� ��� ��� ��� ��� ��� ��� � relatively little work has been done on non�numeric

applications� Chen et al� ��� used global instruction scheduling techniques to move

address generation back as early as possible to hide a small cache miss latency ���

cycles	� and found mixed results� Zhang and Torrellas ���� proposed a hardware�assisted

scheme for prefetching irregular applications in shared�memory multiprocessors� Under

their scheme� programs are annotated to bind together groups of data �e�g�� �elds in a

record or two records linked by a pointer	� which are then prefetched under hardware

control� Their scheme has two shortcomings��i	 annotations are inserted manually� and

�ii	 their hardware extensions are not likely to be applicable in uniprocessors� Joseph and

Grunwald ��� proposed a hardware�based Markov prefetching scheme which prefetches

multiple predicted addresses upon a primary cache miss� While Markov prefetching can

potentially handle chaotic miss patterns� it requires considerable amount of hardware

support and is quite limited in selecting what to prefetch and controlling the prefetching

distance� We are also aware of a number of hardware prefetching techniques ���� ���� ��� 

for pointer�based codes that have been proposed since our prefetching techniques were

published ��� � Roth et al� ���� studied a dependence�based mechanism that dynamically

identi�es the RDS accesses in a program and prefetches by speculatively pre�executing

these accesses� Roth and Sohi ���� then investigated jump�pointer�based prefetching

schemes in hardware� which were derived from one of our prefetching techniques �history�

pointer prefetching	� Most recently� Karlsson et al� ��� suggested storing previously�

seen RDS addresses into a so�called prefetch array and proposed a hardware scheme to

prefetch all addresses in this array in a single instruction� As mentioned in their paper�

their technique is essentially an extended integration of two of our prefetching techniques

�greedy prefetching and history�pointer prefetching	�

To our knowledge� the only compiler�based pointer prefetching scheme in the literature

is the SPAID scheme proposed by Lipasti et al� ��� � Based on an observation that

procedures are likely to dereference any pointers passed to them as arguments� SPAID

inserts prefetches for the objects pointed to by these pointer arguments at the call sites�

Therefore this scheme is only e
ective if �i	 dereferencing these pointer arguments causes
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signi�cant cache miss penalties and �ii	 the interval between the start of a procedure call

and its dereference of a pointer is comparable to the cache miss latency� We will present

a performance comparison of SPAID and our proposed prefetching techniques later in

Section ������

Up till now� the compiler support for exploiting software�controlled prefetching for

RDSs has remained an open question� In this chapter� we address this open research ques�

tion by designing and evaluating compiler�based prefetching schemes which successfully

tolerate the latency of accessing recursive data structures in modern microprocessor�based

systems�

����� An Overview

This chapter is organized as follows� We begin in Section ��� by identifying the fundamen�

tal problem that makes prefetching RDSs di�cult� and proposing a guideline for devising

successful prefetching schemes� Based on this guideline� we design three di
erent prefetch�

ing algorithms� In Section ���� we describe how these algorithms are implemented in an

optimizing research compiler �SUIF	� Section ��� describes our experimental framework�

and Section ��� presents our experimental results where we evaluate all three prefetch�

ing algorithms on the Olden benchmark suite through detailed simulations of a modern

superscalar processor� Finally� we summarize our �ndings of this chapter in Section ����

��� Software�Controlled Prefetching for RDSs

In this section we discuss the major issues and challenges involved in software�controlled

prefetching for RDSs� we present guidelines for overcoming these challenges� and we

describe three prefetching algorithms based on these guidelines�

����� Challenges in Prefetching RDSs

Any software�controlled prefetching scheme can be viewed as having two major phases�

First� an analysis phase predicts which dynamic memory references are likely to su
er

caches misses� and hence should be prefetched� Second� a scheduling phase attempts to

insert prefetches su�ciently far in advance such that latency is e
ectively hidden� while

introducing minimal runtime overhead� For array�based applications� the compiler can

use locality analysis to predict which dynamic references to prefetch� and loop splitting

and software pipelining to schedule prefetches ��� �

A fundamental di
erence between array references and pointer dereferences is the
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�a� Example Code

for �i��� i��n� i��� f
listNode 	p � listHead
i��

while�p� f

work�p�data��

p � p�next�

g
g

�b� No Locality

listHead[1]

listHead[2]

listHead[n]

�c� Temporal Locality

listHead[2]

listHead[1]

listHead[n]
a common tail

Figure ���� Example of list traversals� both with and without temporal data locality�

way addresses are generated� The address of an array reference A�i can always be

computed once a value of i is chosen� In contrast� the address of a pointer dereference �p

is unknown unless the value stored in p is read� This di
erence makes both the analysis

and scheduling phases signi�cantly more challenging for RDSs than for arrays�

Analysis

To illustrate the di�culty of analyzing data locality in RDSs� consider the code in Fig�

ure ����a	� where we are traversing n di
erent linked lists� In one extreme� the nodes

may be entirely disjoint �as illustrated in Figure ����b		� in which case we would want

to prefetch every list node� Another possibility might be that each list shares a long

common �tail� starting with the second list node �as illustrated in Figure ����c		� In

this latter case� there would be signi�cant temporal locality �assuming the cache is large

enough to contain the common tail	� and ideally we would only want to prefetch the

nodes in the common tail during the �rst list traversal �i�e� when i��	� Unfortunately�

despite the signi�cant progress that has been made recently in pointer analysis tech�

niques for heap�allocated objects ���� ��� �� � compilers are still not sophisticated enough

to di
erentiate these two cases automatically� In general� analyzing the addresses of

heap�allocated objects is a very di�cult problem for the compiler�
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�a� Traversing an RDS

ni +1i
n

i +3ni +2
n

Currently visiting Would like to prefetch

�b� Prefetching � Nodes Ahead �c� Prefetching � Node Ahead

while �p� f
prefetch�p�next�next�next��
work�p�data��
p � p�next�

g

while �p� f
prefetch�p�next��
work�p�data��
p � p�next�

g

Figure ���� Illustration of the pointer�chasing problem�

Scheduling

Our ability to schedule prefetches for an RDS is also constrained by the fact that nodes are

linked together through pointers� For example� consider the case shown in Figure ����a	�

where assuming that three nodes worth of computation is needed to hide the latency�

we would like to initiate a prefetch for node ni	� while we are visiting node ni� The

problem is that to compute the address of node ni	�� we must �rst dereference a pointer

in node ni	�� and to do that� we must �rst dereference a pointer in node ni	�� etc� As

a result� one cannot prefetch �or fetch	 a future node until all nodes between it and the

current node have been fetched� However� the very act of touching these intermediate

nodes means that we cannot tolerate the latency of fetching more than one node ahead�

For example� the prefetching code shown in Figure ����b	 will not hide any more latency

than the code in Figure ����c	�� In fact� the code in Figure ����c	 is likely to run faster

since it has less instruction overhead� This example illustrates what we refer to as the

pointer�chasing problem�

Since scheduling RDS prefetches is such a di�cult problem� we make it the primary

focus of this study� Improvements in analysis tend to reduce prefetching overhead by

eliminating unnecessary prefetches� However� without su�cient scheduling techniques�

there will be no upside to prefetching and hence reducing overhead will be irrelevant�

Fortunately� as we discuss in the next subsection� there are techniques for scheduling

�Assuming that nodes are not larger than cache lines� if they are� then prefetching further ahead can
potentially result in a pipelining bene�t�
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prefetches that avoid the pointer�chasing problem�

����� Overcoming the Pointer�Chasing Problem

Let us formalize the pointer�chasing problem as follows� At a given RDS node ni with

address Ai� we wish to prefetch the node ni	d that will be visited d nodes after ni�

We choose d �the prefetching distance	 to be just large enough to hide the cache miss

latency� d � d L
W
e� where L is the expected miss latency and W is the estimated amount

of computation between node accesses in cycles� To prefetch ni	d� we must compute its

address Ai	d based on the information available at ni� The relationship between Ai and

Ai	d can be expressed as�

Ai	d � F�d�Ai	

where F is an address generating function�

A key factor in whether prefetch scheduling is e
ective is the number of pointer�chain

dereferences required within the RDS to evaluate F�d�Ai	� which we denote as kFk� To

overcome the pointer�chasing problem� we would like kFk to be as small as possible� If

F is implemented by following the pointer chain from ni to ni	d� then kFk � d� Instead�

we will consider the cases where kFk � � and kFk � � �other values of kFk are possible�

but do not appear to be interesting	�

The case where kFk � � means that only one pointer dereference is needed within the

RDS to compute Ai	d at node ni� This implies that ni needs a direct pointer to ni	d�we

call this pointer a jump�pointer�� Jump�pointers can occur either naturally or arti�cially

with respect to the RDS� a natural jump�pointer is a pointer that already exists in ni�

whereas an arti�cial jump�pointer is added to ni for the purpose of prefetching� With

natural jump�pointers� we are using one of the pointers at ni to approximate Ai	d� The

advantage is that no extra storage or computation is needed to create a natural jump�

pointer� but unfortunately the e
ectiveness of prefetching may be limited by the accuracy

of this approximation� In contrast� we require additional storage and computation to

add arti�cial jump�pointers to an RDS� but hopefully these pointers will yield Ai	d more

precisely �particularly if the structure of the RDS does not change rapidly between times

when the arti�cial jump�pointers are set	�

The case where kFk � � means that no pointer dereferences are required to compute

Ai	d at ni� This is obviously a good case� but how can one compute the address of

a heap�allocated object �which normally can reside at an arbitrary address	 without

�A similar data structure called skip lists ���
� has been used to accelerate searching and facilitate
parallel processing on linked lists�



Chapter �� Compiler�Based Prefetching for Recursive Data Structures ��

�a� Code with Greedy Prefetching �b� Cache Miss Behavior

preorder�treeNode 	 t� f

if �t �� NULL� f
prefetch�t�left��

prefetch�t�right��

process�t�data��

preorder�t�left��

preorder�t�right��

g
g

2

4 5

3

76

8 1311 15141210

1

partial latency cache miss

9

cache hitcache miss

Figure ���� Illustration of greedy prefetching�

dereferencing any pointers$ The answer is that we must have special knowledge of an

RDS
s layout in memory such that Ai	d can be directly implied from Ai and d�� There

are many ways to accomplish this� For example� one could map a tree into an array

structure such that there was a one�to�one mapping between the tree position and an

array index� We will discuss the details of the approach we take later in Section ������

In the remainder of this section� we propose three prefetching schemes with various

kFk which avoid the pointer�chasing problem� greedy prefetching corresponds to kFk � �

using natural jump�pointers� history�pointer prefetching corresponds to kFk � � using

arti�cial jump�pointers� and data�linearization prefetching is a case where kFk � ��

Greedy Prefetching

In a k�ary RDS� each node contains k pointers to other nodes� Greedy prefetching exploits

the fact that when k � �� only one of these k pointers can be immediately followed by

control �ow as the next node in the traversal� Hence the remaining k � � pointers serve

as natural jump�pointers� and can be prefetched immediately upon �rst visiting a node�

Although none of these jump�pointers may actually point to ni	d� hopefully each of them

points to ni	d� for some d� � �� If d� � d� then the latency may be partially hidden�

if d� � d� then we expect the latency to be fully hidden� provided that the node is not

displaced from the cache before it is referenced �which may occur if d� � d	�

To illustrate how greedy prefetching works� consider the pre�order traversal of a bi�

nary tree �i�e� k � �	� where Figure ����a	 shows the code with greedy prefetching added�

Assuming that the computation in process�� takes half as long as the cache miss la�

�We may also need to take other information into account� such as the traversal order� but nothing
can involve dereferencing a pointer within ni�
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Figure ���� A complete k�ary tree with h levels�

tency� we would want to prefetch two nodes ahead �i�e� d � �	 to fully hide the latency�

Figure ����b	 shows the caching behavior of each node� We obviously su
er a full cache

miss at the root node �node �	� since there was no opportunity to fetch it ahead of time�

However� we would only su
er half of the miss penalty �L� 	 when we visit node �� and no

miss penalty when we eventually visit node � �since the time to visit the subtree rooted at

node � is greater than L	� In this example� the latency is fully hidden for roughly half of

the nodes� and reduced by ��� for the other half �minus the root node	� If we generalize

this example to a k�ary tree� we would expect the fraction of nodes where latency is fully

hidden to be roughly k��
k

�assuming that prefetched nodes are generally not displaced

from the cache before they are referenced	� Hence a larger value of k is likely to improve

the performance of greedy prefetching� since more natural jump�pointers are available�

The validity of the above example relies on three assumptions� �i	 no con�ict misses�

�ii	 the cache is large enough to hold the whole tree� and �iii	 every node of the tree

will be visited� Assumption �i	 can be realized by having an associative cache and!or a

victim bu
er� Assumption �ii	 is in fact not necessary for greedy prefetching performing

well� As long as the cache size is signi�cantly larger than the node size �not the size of

the whole RDS	� capacity misses would not be a problem� To support this argument�

consider the complete k�ary �k � �	 tree T shown in Figure ��� which has t nodes and h

levels �t � kh��
k�� 	� Suppose that the cache is just large enough to hold a complete k�ary

tree with c nodes and j levels �c � kj��
k�� 	� If we traverse T in a depth��rst order� then

every node in the bottom j levels of T that we prefetch along with the traversal can
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be kept in the cache until it is actually used� In contrast� nodes in the top i � h � j

levels of T that we prefetched before visiting the bottom of T will be displaced by the

time that they are actually used� Since there are m � ki��
k��

such nodes� the proportion

of prefetched nodes of T that are not displaced before their use is p where

p � � �
m

t

� � �
ki � �

�k � �	t
�since m � ki��

k�� 	

� � �
kh�j � �

�k � �	t
�since i � h� j	

� � �

t
k���	�
c
k���	�

� �

�k � �	t
�since kh � t�k � �	 # �� kj � c�k � �	 # �	

� � �
� � c

t

� # c�k � �	
�algebraic simpli�cation	

�

�
� # t�k � �	

� # c�k � �	

�
c

t
�algebraic simpli�cation	 ����	

Therefore� for any reasonable c �say c � ���	� p would be close to � meaning that for

most parts of the tree� any greedily prefetched items would be able to stay in the cache

long enough for future use� Assumption �iii	 determines whether the prefetches launched

at a node is useful� The worst case for a node is that none of the k pointers prefetched

is followed� In this situation� the k prefetches are wasteful� Thus� the e
ectiveness of

greedy prefetching depends on the ratio of the number of nodes visited to the number of

nodes prefetched�

So far� we have been assuming depth��rst traversals for RDSs� which appear to

be more common than breath��rst traversals in general� Compared against depth��rst

traversals� breath��rst traversals would have fewer intervening nodes between the current

node and those that are greedily prefetched� This has two implications to the perfor�

mance of greedy prefetching� The upside is that it is highly unlikely that prefetched

nodes will be displaced by others before they are used� However� the downside is that

there would be less computation to overlap with the prefetch latency�

In general� greedy prefetching o
ers the following advantages� �i	 it requires no addi�

tional storage or computation to construct the natural jump�pointers� �ii	 it is applicable

to a wide variety of RDSs� regardless of how they are accessed or whether their struc�

ture is modi�ed frequently� and �iii	 it is relatively straightforward to implement in a

compiler� A potential shortcoming of greedy prefetching is that it does not o
er precise

control over the prefetching distance� which is the motivation for our next algorithm�
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Figure ���� Example showing the update of history�pointers�

History�Pointer Prefetching

Rather than relying on natural jump�pointers to approximate Ai	d� we can potentially

synthesize more accurate jump�pointers based on the actual RDS traversal patterns�

while still achieving kFk � �� The idea behind the history�pointer prefetching scheme

is that we create a new jump�pointer �called a history�pointer	 in ni which contains

the observed value of Ai	d during a recent traversal of the RDS� �Note that we could

potentially store multiple arti�cial jump�pointers in ni to account for multiple traversal

orderings�	 On subsequent traversals of the RDS� we prefetch the nodes pointed to by

these history�pointers� This scheme is most e
ective when the traversal pattern does

not change rapidly over time� in which case the history�pointer in ni is likely to point

to either ni	d or else hopefully a node that will be visited soon� On the other hand� if

the structure of the RDS changes radically between traversals� the history�pointers might

not be e
ective�

To construct the history�pointers� we maintain a FIFO queue of length d which con�

tains pointers to the last d nodes that have just been visited� When we visit a new

node ni� the oldest node in the queue will be ni�d �i�e� the node visited d nodes earlier	�

and hence we update the history�pointer of ni�d to point to ni� After the �rst complete

traversal of the RDS� all of the history�pointers will be set� Figure ��� illustrates a snap�

shot of this bookkeeping process for the tree shown earlier in Figure ���� Assuming that

d � � and that we have just reached node �� we would now update the history�pointer

of the oldest node in the ��entry queue �node ��	 to point to node ��

Comparing the performance of this scheme with greedy prefetching� history�pointer

prefetching o
ers no improvement on the �rst traversal of an RDS� since the history�
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1 2 4 8 9 5 10 11 3 6 12 13 7 14 15

Prefetch

Figure ���� Illustration of data�linearization prefetching�

pointers have yet to be set �greedy prefetching would hide some fraction of the latency	��

However� on subsequent traversals of the RDS� history�pointer prefetching will hide nearly

all of the latency� whereas greedy prefetching will continue to hide only a fraction of the

latency�

While history�pointer prefetching o
ers the potential advantage of improved latency

tolerance� this comes at the expense of two additional forms of overhead� �i	 execution

overhead to construct the history�pointers� and �ii	 space overhead for storing these

new pointers� To minimize execution overhead� we can potentially update the history�

pointers less frequently� depending on how rapidly the structure of the RDS changes� In

one extreme� if the RDS never changes� we only need to set the history�pointers once�

The problem with space overhead is that it potentially worsens the caching behavior�

The desire to eliminate this space overhead altogether is the motivation for our next

prefetching scheme�

Data�Linearization Prefetching

The goal of data�linearization prefetching is to achieve an F such that Ai	d can be pre�

dicted precisely� but without requiring any pointer dereferences �i�e� kFk � �	� Another

advantage of this scheme is that it improves spatial locality� The basic idea is to map

heap�allocated nodes that are likely to be accessed close together in time into contiguous

memory locations� With this mapping� one can easily predict Ai	d and hence prefetch it

early enough�

Recall that the address of an array element x�i# d can be computed relative to x�i 

as follows �using C�like syntax	�

�x�i# d � �x�i # d	 sizeof�x�� 	 ����	

Therefore� if we can map the RDS onto an array x of nodes such that Ai � �x�i � no

pointer dereference is needed to compute Ai	d�we simply need two arithmetic operations

per prefetch address�

�Hence we may want to use greedy prefetching for the �rst traversal of an RDS when the history�
pointers are being initialized�
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The question is how and when can this mapping �which we call data linearization	

be performed$ In theory� one could dynamically remap the data even after the RDS

has been initially constructed� but doing so may violate program semantics�� Unfortu�

nately� current compiler technology is very limited in ensuring program correctness across

dynamic relocation of RDSs� In Chapter �� we will study a hardware technique called

memory forwarding as a means to provide this correctness guarantee� But without such a

technique� the best time to map the nodes would be at creation time� which is appropri�

ate if either the creation order already matches the traversal order� or if it can be safely

reordered to do so� Since dynamic remapping is expensive �even if correctness is not an

issue	� this scheme obviously works best if the structure of the RDS changes only slowly

�or not at all	� If the RDS does change radically� the program will still behave correctly�

but prefetching will not improve �or may even degrade	 performance�

Figure ��� illustrates how data�linearization prefetching works for the tree shown

earlier in Figures ��� and ���� The ordering of nodes in the array corresponds to the

pre�order traversal order� To prefetch d nodes ahead� one simply uses equation ����	 to

compute Ai	d� In addition� if a single cache line can hold m � � nodes� we can exploit

this spatial locality by only issuing a prefetch once every m nodes� If we are traversing the

RDS inside a loop� we can accomplish this by unrolling the loop by a factor of m �similar

to what is done in array�based prefetching ��� 	� For a traversal through recursion� one

could potentially keep track of the number of nodes visited between prefetches� but the

overhead of doing so may be comparable to simply issuing a prefetch for every node� The

arrows in Figure ��� indicate the desired prefetches when d � � and m � ��

����� Summary

The nature of recursive data structures makes both the analysis and scheduling of

prefetches quite challenging� Before attempting to minimize prefetching overhead through

improved analysis� we must �rst maximize the latency�hiding gain through e
ective

prefetch scheduling techniques� The fundamental problem in scheduling prefetches for

RDSs is the pointer�chasing problem� which we formalize as the number of pointer�chain

dereferences required to compute a prefetch address �kFk	� Based on our desire to min�

imize kFk� we have identi�ed three promising prefetching schemes� greedy prefetching

�kFk � � with natural jump�pointers	� history�pointer prefetching �kFk � � with arti�

�cial jump�pointers	� and data�linearization prefetching �kFk � �	� Table ��� compares

them from di
erent perspectives�

�All pointers to these objects would also need to be updated� and understanding pointer aliasing for
heap�allocated objects is quite di!cult for the compiler�
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Table ���� Summary of our three RDS prefetching schemes�

Greedy History�Pointer Data�Linearization

Control over Little More precise
prefetching distance

Applicability Any Those that are revisited Those that have a major traversal
to RDSs and change only slowly order and change only slowly

Overhead in preparing None Space and time for Time for dynamic
prefetch addresses constructing history pointers remapping �if any�

Of these three schemes� greedy prefetching is perhaps the most widely applicable since

it does not rely on traversal history information� and it requires no additional storage

or computation to construct prefetch addresses� However� the other two schemes could

outperform greedy prefetching when their favorable conditions are met� To evaluate them

quantitatively� we have implemented these schemes as an automatic compiler pass and

applied them to a set of RDS�intensive programs� In the next section� we describe the

implementation details of our RDS prefetching compiler pass�

��� Implementation of RDS Prefetching Schemes

Our implementation of the three prefetching schemes within the SUIF compiler ���� 

consists of an analysis phase to recognize RDS accesses� and a scheduling phase to insert

prefetches� The same analysis phase is shared by the three schemes while each of them

has a slightly di
erent scheduling phase corresponding to what should be prefetched in

that scheme�

����� Analysis� Recognizing RDS Accesses

To recognize RDS accesses� the compiler uses both type declaration information to recog�

nize which data objects are RDSs� and control structure information to recognize when

these objects are being traversed� The algorithm for identifying RDS types is shown in

Figure ���� In this algorithm� an RDS type is a record type r containing at least one

pointer or an array of pointers that point either directly or indirectly to a record type

s� �Note that r and s are not restricted to be the same type� since RDSs may be com�

prised of heterogeneous nodes�	 For example� the type declarations in Figure ����a	 and
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�� This algorithm returns whether the given type T is an RDS type�
algorithm RDS Type

�T � type definition�
return �boolean�� �� True if T is an RDS type�

if �T is a structure or union type� then �� T can	t be an RDS type if it isn	t a structure or union�
foreach �eld type F of T do �� consider each �eld of T

if ��F is a pointer� or �F is an array of pointers�� then
�� T is an RDS type only if F is a pointer or an array of pointers�
do �� loop over to �nd the non�pointer base type of F

if ��F is a pointer to a type S� or �F is an array of type S�� then
F �
 S� �� consider the next level of indirection

end if�
while �F is a pointer type��
if �F is a structure or union type� then

�� T is an RDS since it contains at least one pointer that points
�� directly or indirectly to a structure or union�
return True�

end if�
end if�

end foreach�
end if�
�� not recognized as an RDS type if we reach here
return False�

end algorithm�

Figure ���� Algorithm for identifying RDS types�

�a� RDS type �b� RDS type �c� Not RDS type

struct T f

int data�

struct T 	left�

struct T 	right�

g

struct A f

int i�

struct B 		kids

��

g

struct C f

int j�

double f�

g

Figure ���� Examples of whether type declarations are recognized as being RDS types�

Figure ����b	 would be recognized as RDS types� whereas Figure ����c	 would not��

After discovering data structures with the appropriate types� the compiler then looks

for control structures that are used to traverse the RDSs� using the algorithm recognize RDS accesses

shown in Figure ���� In particular� the compiler looks for loops or recursive procedure

calls such that during each new loop iteration or procedure invocation� a pointer p to an

RDS is assigned a value resulting from a dereference of p�we refer to this as a recur�

rent pointer update� This heuristic corresponds to how RDS codes are typically written�

�The compiler may fail to recognize cases with explicit type casting"e�g�� casting j to be of type
�struct C�� in Figure ��
�c�"but such cases do not appear to be common�
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�� This algorithm recognizes all RDS accesses within the given control��ow construct C�
�� When such an access is found
 schedule prefetches�� is invoked to insert prefetches�
algorithm recognize RDS accesses

�C� control flow construct�
return ��� �� nothing to return

switch �C�kind�
case assignment� �� C is an assignment statement

l� loop �
 C�enclosing loop� �� l is the innermost loop that encloses C �if any�
if �l� then �� C is inside a loop�

if �RDS Ptr�C�lhs�� then �� the left hand side of the assignment C is an RDS pointer
if �is recurrent�C�lhs� C�rhs�� then �� C�rhs is recurrent w�r�t C�lhs

�� Insert prefetches for C�lhs inside loop l according to the
�� prefetching scheme PF SCHEME�
schedule prefetches�PF SCHEME� C�lhs� l��

end if�
end if�

end if�
end case�
case functionCall� �� C is a function call

f � function �
 C�called function� �� f is the function called in C
g� function �
 C�enclosing function� �� g is the function that contains C
if �f 

 g� then �� C is within a recursive function

foreach formal argument a of g do �� consider each of the formal arguments of g
if �RDS Ptr�a�� then �� a is an RDS pointer

foreach actual argument b of f do �� consider each of the actual arguments of f
if �is recurrent�a� b�� then �� b is recurrent w�r�t a

�� Insert prefetches for a inside function g according to the
�� prefetching scheme PF SCHEME�
schedule prefetches�PF SCHEME� a� g��

end if�
end foreach�

end if�
end foreach�

end if�
end case�
case if� �� C is an �if� statement

recognize RDS accesses�C�if condition��
recognize RDS accesses�C�if then��
recognize RDS accesses�C�if else��

end case�
case loop� �� C is a �loop� statement

recognize RDS accesses�C�loop condition��
recognize RDS accesses�C�loop body��

end case�
case block� �� C is a list of statement

foreach statement i of C do

recognize RDS accesses�i��
end foreach�

end case�
end switch�

end algorithm�

Figure ���� Algorithm for recognizing RDS accesses�
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�� This algorithm propagates values of pointers to RDSs across the given control��ow construct C�
�� The most recent pointer values are kept in the table T of pointer value table type� which is a
�� table of tuples� Each tuple �p
 fv�
 ���
 vng� denotes the fact that the pointer variable p has
�� a set of possible values v�
 ���
 vn� In practice
 propagate RDS pointers is incorporated
�� into recognize RDS accesses so that we only need to keep track of the most recent pointer values�
�� If propagate RDS pointers and recognize RDS accesses are performed separately
 we would
�� need to bookkeep pointer values at all possible program locations� However
 they are presented here as two
�� separate passes for the sake of clarity�
algorithm propagate RDS pointers

�C� control flow construct�
�T � pointer value table type�

return ��� �� nothing to return

switch �C�kind�
case assignment� �� C is an assignment statement

if �RDS Ptr�C�lhs�� then �� the left hand side of the assignment C is an RDS pointer
assign pointer�C� T�� �� update the value of the assigned variable in T

end if�
end case�
case if� �� C is an �if� statement

propagate RDS pointers�C�if condition� T ��
�� initialize pointer values for both paths
Tthen� pointer value table type �
 T �
Telse� pointer value table type �
 T �
propagate RDS pointers�C�if then� Tthen��
propagate RDS pointers�C�if else� Telse��
T �
 union�Tthen� Telse�� �� combine the pointer values of both paths

end case�
case loop� �� C is a �loop� statement

propagate RDS pointers�C�loop condition��
propagate RDS pointers�C�loop body��
�� Propagate one more time to account for any pointer updates of current iteration
�� that could a
ect the pointer values of next iteration�
propagate RDS pointers�C�loop condition��
propagate RDS pointers�C�loop body��

end case�
case block� �� C is a list of statement

foreach statement i of C do

propagate RDS pointers�i��
end foreach�

end case�
end switch�

end algorithm�

Figure ����� Algorithm for propagating RDS pointer values�

In recognize RDS accesses� the assignment and functionCall cases check for such

pointer updates� If any of them is found� prefetches will be inserted into the loop or

procedure body according to the given prefetching scheme� The remaining three cases in

recognize RDS accesses are simply for covering other control��ow constructs�

To detect recurrent pointer updates� the compiler propagates pointer values using
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�� This algorithm updates in T the pointer on the left hand side �A�lhs� of assignment A by the
�� value of its right hand side �A�rhs�� Symbolic values are created when necessarily and the
�� program locations where these values are �rst available �within the enclosing function� are also
�� recorded in T � This information helps insert prefetches at the earliest place that the pointer
�� value is available�
algorithm assign pointer

�A� assignment statement�
�T � pointer value table type�

return ��� �� nothing to return

if �A�rhs is a variable p� then
V � set of pointer values �
 T �lookup�p�� �� V is the set of possible current values of p
if �V �
 fg� then

�� p already has some possible values recorded in T
T �replace�A�lhs� V �� �� V becomes the set of possible current values of A�lhs�

else �� p	s possible values haven	t been recorded in T
�� Create a symbolic value of p to denote the very �rst value of p within the enclosing function�
�� A�enclosing function�first instruction�location is the location of the �rst instruction
�� of the enclosing function
 the earliest place that the value is available�
u �
 T �create symbolic value�p� A�enclosing function�first instruction�location��
T �replace�A�lhs� fug�� �� fug becomes the set of possible current values of A�lhs

end if�
else if �A�rhs is a pointer dereference p� f� then

V � set of pointer values �
 T �lookup�p�� �� V is the set of possible current values of p
if �V �
 fg� then

�� p already has some possible values recorded in T
W � set of pointer values �
 fg� �� W will be the set of possible current values of p� f �
foreach u � V do

�� construct W from V
W �
W � fu� fg�

end foreach�
else �� p	s possible values haven	t been recorded in T

u �
 T �create symbolic value�p� A�enclosing function�first instruction�location��
T �replace�A�lhs� fu� fg��

end if�
else if �A�rhs is a constant pointer value k� then

�� k is most likely the NULL pointer
T �replace�A�lhs� k��

else

�� cover all other cases including something like p � f�����
u �
 T �create symbolic value�A�lhs� A�location�� �� u is available only after A in the program
T �replace�A�lhs� fug��

end if�
end algorithm�

Figure ����� Algorithm for assigning new values to RDS pointers�

the algorithms propagate RDS pointers and assign pointer shown in Figure ���� and

Figure ����� respectively� The data structure central to these two algorithms is a table of

pointer value table type that keeps track of the most recent possible values of each

RDS pointer variable� Algorithm propagate RDS pointers propagates RDS pointer val�
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�a	 while �l� f

listNode 	m�

���

m � l�next�

l � m�next�

���

g

�b	 for ����� f

listNode 	n�

���

n � g�n��
���

g

�c	 f�treeNode 	t� f
���

f�t�left��

f�t�right��

���

g

�d	 k�treeNode tn� f
���

k�	�tn�left���
k�	�tn�right���
���

g

Figure ����� Examples of recognizable control structures for RDS traversals�

ues intra�procedurally for each function in the program as follows� it propagates pointer

values along both paths of an �if� statement and combines them when the two paths

rejoin� it propagates pointer values over loop iterations by essentially unrolling the loop

once� when it encounters an assignment to an RDS pointer� it invokes assign pointer

to perform the update in the pointer value table type table�

To update RDS pointers� algorithm assign pointer �rst looks for any pointer vari�

able p or pointer dereference p�f appearing on the right hand side of the given assign�

ment statement� Then it checks whether p already has a set of possible values recorded

in the table� If such a set is found� it will be used in place of p on the right hand side

to update the left hand side of the assignment� otherwise a new symbolic value for p

will be created by calling create symbolic value� In any case� the updated value of

the left hand side is recorded in the table so that it will be observed by later assign�

ments� In addition to pointer values� program locations where new pointer values �rst

become available in procedures are also remembered �the program location is passed as

the second argument of create symbolic value	� This piece of information facilitates

the insertion of prefetches at the earliest place that a pointer value is known�

To make our discussion more concrete� Figure ���� shows some example program

fragments that our compiler treats as RDS accesses� In Figure �����a	� l is updated

to l�next�next inside the while�loop� In Figure �����b	� n is assigned the result of

the function call g�n� inside the for�loop� �Since our implementation does not perform

interprocedural analysis� it assumes that g�n� results in a value n�����next�	 In

Figure �����c	� two dereferences of the function argument t are passed as the parameters
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to two recursive calls� Figure �����d	 is similar to Figure �����c	� except that a record

�rather than a pointer	 is passed as the function argument�

Ideally� the next step would be to analyze data locality across RDS nodes�e�g�� to

distinguish the two cases shown in Figure ����to eliminate any unnecessary prefetches�

Although we have not automated this step in our compiler� we will evaluate its potential

bene�t later in Section ������

����� Scheduling Prefetches

At the point where an RDS object is being traversed �i�e� where the recurrent pointer

update occurs	� the compiler invokes schedule prefetches �refer back to Figure ���	 to

insert prefetches as follows� according to the given prefetching scheme�

Greedy Prefetches

The compiler inserts prefetches of all pointers within the RDS object that point to RDS�

type objects �these are the natural jump�pointers�	� In most situations� prefetches are

inserted at the earliest points where these addresses are available within the surrounding

loop or procedure body� However� if the compiler estimates that the overhead of greedy

prefetching is relatively high� it will insert prefetches at later points where the prefetches

launched are more likely to be useful� Our simple heuristic is that if there are more than

�� prefetch instructions at each site� the compiler will insert them after the conditional

test �if any	 that decides whether the recursion or iteration will continue� Three examples

of greedy prefetch scheduling are shown in Figure �����

History�Pointer Prefetches

Prefetches of all history�pointers within the RDS object are inserted at the earliest

possible points� Besides� the compiler attaches codes for updating history�pointers to

the surrounding loop or procedure body� Recall from Section ����� that a FIFO queue

of length d �the prefetching distance	 is required to record the traversal order of the

RDS� Our compiler provides two implementations for this FIFO� In the what we call

array�FIFO implementation� the FIFO is implemented as an array of d pointers with the

oldest element indexed by a variable named oldest �the index to the youngest element

can be deduced from oldest	� Wrap�around increment of oldest can be done either

through the modulus operator or through a conditional branch that tests for the array

�Note that we do not prefetch all pointers within an RDS object"only the ones that point to other
RDS nodes �potentially of di�erent types than the given object��
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�a� Loop �prefetches inserted at the earliest point	

while �l� f
work�l�data��

l � l�next�

g

�


while �l� f
prefetch�l�next��

work�l�data��

l � l�next�

g

�b� Procedure �prefetches inserted at the earliest point	

f�treeNode 	t� f
treeNode 	q�

if �test�t�data��

q � t�left�

else
q � t�right�

if �q �� NULL�

f�q��
g

�


f�treeNode 	t� f
treeNode 	q�

prefetch�t�left��

prefetch�t�right��

if �test�t�data��

q � t�left�

else

q � t�right�

if �q �� NULL�

f�q��
g

�c� Procedure �prefetches inserted at a later point

where the recursion is known to continue	

g�bigTreeNode 	t� f
if �test�t�data�� f

for �i � � �� ��� f
g�t�child
i���

g
g

g

�


g�bigTreeNode 	t� f
�	 prefetches are not inserted here 	�

if �test�t�data�� f
prefetch�t�child
����

���

prefetch�t�child
�����

for �i � � �� ��� f
g�t�child
i���

g
g

g

Figure ����� Examples of greedy prefetch scheduling�
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�a� Original loop

while �p� f

work�p�data��

p � p�next�

g

�b� The loop in �a� with history�pointer prefetching code

added� using the array�FIFO implementation�

while �p� f
prefetch�p�history pointer��

work�p�data��

p � p�next�

�	 Q is the array that implements the FIFO queue 	�

Q
oldest��history pointer � p� �	 set the history pointer of 	�

�	 the oldest node to point to p 	�

Q
oldest� � p� �	 free up the oldest location for p� the 	�

�	 most recently visited node 	�

if �oldest �� d��� f
oldest � �� �	 wrap around 	�

g else f
��oldest�

g
g

�c� The loop in �a� with history�pointer prefetching code

added� using the scalar�FIFO implementation�

while �p� f

prefetch�p�history pointer��

work�p�data��

p � p�next�

�	 Q �� ���� Q dminus� are the d pointers that implement the FIFO queue 	�

Q ��history pointer � p� �	 set the history pointer of 	�

�	 the oldest node to point to p 	�

Q � � Q �� �	 retire the oldest node to accommodate the youngest one 	�

Q � � Q ��

���

Q dminus� � Q dminus��

Q dminus� � p� �	 Q dminus� always hold the youngest node 	�

g

Figure ����� Examples illustrating two possible implementations of history�pointer
prefetching�
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boundary� The latter approach was chosen in our implementation since the branch is

very predictable with our branch predictor�� whereas modulus is an expensive operation

�which lasts for �� cycles	 for the processor model used in our experiments �details will

be provided later in Section ���	� In the what we call scalar�FIFO implementation� the

FIFO is programmed as d individual pointer variables� say Q�� Q�� ��� Qd��� The oldest

element of the FIFO is always stored in Q� while the youngest is always stored in Qd��

and so on� Therefore we need to copy Qi to Qi�� for i from � to d�� upon accepting a new

node� Examples of these two implementations including prefetches of history�pointers are

shown in Figure ����� Comparing these two implementations� the instruction overhead of

maintaining the FIFO is constant in the array�FIFO implementation but increases with

d in the scalar�FIFO implementation� For this reason� the compiler picks either one of

these implementations based on the size of d� when d is smaller than a threshold dt� it

uses the scalar�FIFO implementation for its lower overhead� but it uses the array�FIFO

implementation when d � dt� In our experimental environment� we found that dt � �

is a good choice for most cases� Relevant experimental results will be shown later in

Section ������

Data�Linearization Prefetches

Our current implementation of data�linearization prefetching does not perform data re�

location because the compiler cannot guarantee that it is always safe to do so� Instead�

we will perform data�linearization prefetching along with dynamic data relocation later

in Chapter � after introducing memory forwarding� For now� the compiler simply inserts

data�linearization prefetches with a hope that the creation order of the RDS mimics the

major traversal order�

Prefetch Size

For all the three prefetching schemes� the compiler prefetches two cache lines by default�

Since block prefetch instructions are not assumed in our underlying architecture� the

compiler actually inserts multiple prefetch instructions to bring in multiple lines�

����� A SUIF Implementation

We implemented our prefetching schemes in the SUIF compiler system ���� version ������

which generates optimized MIPS assembly� The resultant assembly �le is then fed into the

	The outcomes of this branch are always d � � not�takens followed by one taken� which are well
predicted by local branch predictors for reasonable values of d� Our tournament branch predictor does
comprise a local branch predictor�
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Table ���� Order in which the compiler passes �including prefetching	 are invoked�

Compiler Pass Description

cpp C preprocessor
snoot convert C into non�standard SUIF
porky �defaults produce standard SUIF
porky �ucf�opt simple optimizations on unstructured control �ow
porky �dead�code dead�code elimination
structure build structured control �ow out of unstructured control �ow
porky �fold constant folding
porky ��nd�fors �nd �for� loops
porky �const�prop constant propagation
porky �fold constant folding
porky �copy�prop copy propagation
porky �dead�code dead�code elimination
porky �unused�syms remove symbols and types that are never referenced
�unused�types
porky �no�empty�table dismantle all blocks that have empty symbol tables
porky �no�empty�fors dismantle �for� loops with empty bodies
porky �control�simp control simpli�cation
porky �forward�prop forward propagation
porky �cse common sub�expression elimination
porky �unused�syms remove symbols and types that are never referenced
�unused�types
porky �const�prop constant propagation
porky �ivar induction variable detection
porky �know�bounds replace comparisons of upper and lower bounds of a loop inside

the loop body with the known result of that comparison
porky �const�prop constant propagation
porky �fold constant folding
porky �no�empty�fors dismantle �for� loops with empty bodies
rds pf perform prefetching analysis and insert prefetches for RDSs

porky �Darrays dismantle SUIF array instructions
�Dblocks dismantle SUIF �block� constructs
�Dfors dismantle SUIF �for� constructs
�Difs dismantle SUIF �if� constructs
�Dloops dismantle SUIF �loop� constructs
�Dfcmmas dismantle SUIF div�oor� divceil� min� max� abs� and mod instructions
�no�call�expr replace calls within expressions by local variables
�reassociate array reassociation
swighn�ew prepare a SUIF �le for mexp and mgen
porky �no�index�spill dismantle SUIF �for� constructs with spilled index variable
oldsuif translate from new SUIF to old SUIF
oynk �Pconst constant propagation
oynk �Psr strength reduction
oynk �Pconst �Fsu constant propagation
oynk �Pdstore dead store elimination
mexp massage SUIF constructs to MIPS�palatable form
oynk �Preg register allocation
mgen generate MIPS assembly code
as generate MIPS object code
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native assembler on IRIX ��� to produce the object code� In addition to many standard

optimization passes� SUIF provides a set of library routines to manipulate entities such as

types� symbols� instructions� expressions� etc� that are used throughout the compilation

process� By leveraging these routines� coding our algorithms becomes relatively easy�

For example� it is straightforward in SUIF to obtain type�related information such as the

type of the objects that a pointer type points to� or the types of �elds within a structure

type� This greatly simpli�ed the task of implementing the algorithm for identifying RDS

types �shown earlier in Figure ���	�

Our prefetching schemes were implemented as a new SUIF pass� which accepts a SUIF

�le from the previous pass and outputs another SUIF �le with prefetches inserted� The

position of our prefetching pass relative to other passes in the entire compilation process

is shown in Table ���� We adopted the same strategy used by Mowry ��� as to where the

prefetching pass should occur in the compilation process� His strategy suggests that the

prefetching pass should occur before the pass that decomposes high�level SUIF constructs

such as �loops� into low�level SUIF constructs such as branch instructions �which is the

pass right after rds pf in Table ���	� The main advantage of this is that all high�level

SUIF constructs are available to the prefetching pass� For example� our algorithm for

recognizing RDS accesses in Figure ��� needs to know the innermost surrounding loop

of a recurrent pointer update� which is much easier to compute with high�level SUIF

than with low�level SUIF� Mowry also suggested that the prefetching pass would better

be placed before scalar optimization passes �those with �oynk� in Table ���	 in order

to leverage these optimizations to minimize instruction overhead of prefetching code

inserted� By doing this� neither do we need to generate highly�optimized prefetching

code by the prefetching pass itself nor re�run time�consuming scalar optimizations after

the prefetching pass�

��� Experimental Framework

To evaluate the performance of our three prefetching schemes� we performed detailed

cycle�by�cycle simulations of the entire Olden benchmark suite ���� on a dynamically�

scheduled� superscalar processor� The Olden benchmark suite contains ten pointer�based

applications written in C� which are brie�y summarized in Table ���� The rightmost

column in Table ��� shows the number and size of each node type that was dynamically

allocated� In addition� some relevant run�time statistics are provided in Table ����

Table ��� shows the parameters of the baseline model used by the experiments in this

chapter� These parameters are mainly derived from the MIPS R����� ���� � with vari�
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Table ���� Run�time statistics� �Insts Grad�� is the total instructions graduated� �Loads
Grad�� is the total loads graduated� The percentages of loads that were found in each
of the four possible places are shown under �Where Loads Were Found�� where �Com�
bined� are loads that were combined with other in��ight references� �Average Load Miss
Penalty� includes penalties of both full misses and partial misses�

Insts Loads Where Loads Were Found Average Load Miss
Benchmark Grad� Grad� D�Cache Combined S�Cache Memory Penalty �cycles�

BH ���� M ��� M ������ ����� ����� ����� ���

Bisort ��
 M ��� M ������ ����� ����� ����� ����
EM�D ��� M �� M ������ ����� ����� ����� ����
Health ��� M �
 M ����
� ��

� ������ ������ ����
MST ��� M �� M ���
�� ����� ����� ����� ����
Perimeter ��� M �� M ������ ��
�� ����� ����� ����
Power ���
 M ��� M ���
�� ����� ����� ����� ����
Treeadd ��� M �� M �
���� ����� ����� ����� �
�

TSP ��
� M ��� M ������ ����� ����� ����� ����
Voronoi ��� M 
� M �
���� ����� ����� ����� ����

ations corresponding to advancements in more recent processors �e�g�� more functional

units and a more accurate branch predictor	� Our simulator is driven by mable ��� � which

performs instruction�by�instruction emulation of MIPS executables� An important ad�

vantage of emulation�driven simulations over trace�driven simulations that is particularly

relevant to this study is the ease of supporting non�excepting memory operations ��� �

Prefetch instructions are typically de�ned as non�excepting in the sense that they do not

raise exceptions� This property enables the compiler to insert prefetches as early as it

wants without causing exceptions that should not happen in the original execution� We

implement non�excepting memory instructions in mable by specially handling all memory

instructions �i�e� loads� stores� and prefetches	 that access virtual page ��

To minimize the impact of store stalls during the initialization of dynamically�allocated

objects� we use our own memory allocator for these experiments which is similar to

mallopt provided in the Irix C library ���� � but also contains built�in prefetching to

avoid such store misses� This optimization alone led to dramatic improvements �greater

than two�fold speedups	 over using malloc for some of the applications�particularly the

ones that frequently allocate small objects�
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Table ���� Baseline simulation parameters�

Pipeline Parameters

Issue Width �
Functional Units � Int� � FP� � Memory� � Branch
Reorder Bu�er Size ��
Integer Multiply �� cycles
Integer Divide �� cycles
All Other Integer � cycle
FP Divide �� cycles
FP Square Root �� cycles
All Other FP � cycles
Branch Prediction Tournament between a local and a global history predictors�
Scheme local predictor� ���� ���bit local history entries and

���� ��bit saturation counters
global predictor� � ���bit global history register and

���� ��bit saturation counters
choice predictor� ���� ��bit saturation counters

total size 
 ��� KB

Memory Parameters

Line Size ��B
Primary Instruction Cache ��KB� ��way set�associative random�replacement
Primary Data Cache ��KB� ��way set�associative random�replacement�

write�back write�allocate�
� banks

Uni�ed Secondary Cache ���KB� ��way set�associative random�replacement�
write�back write�allocate�

� banks
Data Cache Miss Handlers 

Data Cache Fill Time � cycles
�Requires Exclusive Access�
Primary�to�Secondary Miss Latency �� cycles �plus any delays due to contention�
Primary�to�Memory Miss Latency �� cycles �plus any delays due to contention�
Primary�to�Secondary Bandwidth �� bytes cycle
Secondary�to�Memory Bandwidth 
 bytes cycle

��� Experimental Results

We now present results from our simulation studies� We start by evaluating the per�

formance of compiler�inserted greedy prefetching� and then compare this with compiler�

inserted history�pointer prefetching and data�linearization prefetching� Next� we evaluate

the potential performance gains from better analysis to reduce unnecessary prefetches�

We then explore the performance impact of architectural support� Finally� we quanti�

tatively compare the performance of our prefetching schemes with the only previously

published compiler prefetching technique for pointer�based codes�
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��	�� Performance of Compiler�Inserted Greedy Prefetching

The results of our �rst set of experiments are shown in Figure ���� and Table ���� Fig�

ure ���� shows the overall performance improvement o
ered by greedy prefetching� where

the two bars correspond to the cases without prefetching �N	 and with greedy prefetching

�G	� These bars represent execution time normalized to the case without prefetching� and

they are broken down into four categories explaining what happened during all potential

graduation slots�
 The bottom section �busy	 is the number of slots when instructions

actually graduate� the top two sections are any non�graduating slots that are immediately

caused by the oldest instruction su
ering either a load or store miss��� and the inst stall

section is all other slots where instructions do not graduate� Note that the load stall and

store stall sections are only a �rst�order approximation of the performance loss due to

cache stalls� since these delays also exacerbate subsequent data dependence stalls�

As we see in Figure ����� four applications enjoy a speedup ranging from �� to ���

�the other six are within �� of their original performance	� For the applications with

the largest memory stall penalties �i�e� health� perimeter� and treeadd	� much of this

stall time has been eliminated� Table ��� indicates that the load stall time is signi�cantly

reduced in most cases� This is accomplished by reducing the primary load miss rate�

or the average load miss penalty� or both �which is the more common case	� The miss

penalty could be reduced even if the prefetch does not complete at a perfect timing� If

a prefetch �nishes so early that it is replaced from the primary cache before it can be

referenced� it is still likely to be found in the secondary cache� On the other hand� if


The number of graduation slots is the issue width �� in this case� multiplied by the number of
cycles� We focus on graduation rather than issue slots to avoid counting speculative operations that are
squashed�

��Store misses only stall the processor when the ���entry memory issue bu�er is full�
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Table ���� Memory performance improvement for compiler�inserted greedy prefetching�

No Prefetch Greedy Prefetch
Load Average Load Load Average Load Load

D�Cache Miss Penalty D�Cache Miss Penalty Stall
Benchmark Miss Rate �cycles� Miss Rate �cycles� Reduction

BH ����� ���
 ��
�� ���� �
���
Bisort ����� ���� ����� ���� �����
EM�D ����� ���� ����� �
�� ����
Health ������ ���� ������ ���� �����
MST ����� ���� ����� ���� ������
Perimeter ��
�� ���� ����� ���
 �����
Power ����� ���� ����� ���
 �����
Treeadd ����� �
�
 ����� ���� �����
TSP ���
� ���� ����� ���� 
����
Voronoi ����� ���� ����� ���
 �
���

a prefetch is late and the miss occurs while the prefetch access is still in progress� the

miss latency can still be partially hidden� The only exception in Table ��� is mst where

both the miss rate and average miss penalty are increased by greedy prefetching� The

problem is memory contention� which was intensi�ed when both prefetch and load misses

for di
erent data lines occurred in a very short period of time� As a result� substantial

number of load misses were delayed by prefetches for a few cycles� Fortunately� memory

contention is not a problem in all other applications� where �� to ��� of the original

load stall cycles are eliminated�

Turning our attention to the costs of greedy prefetching� Figure ���� shows that the

instruction overhead of prefetching increases the sum of the busy and inst stall sections by

less than ��� in eight of the benchmarks �there are ��� and ��� increases in treeadd

and health� respectively	� Only in the case of bisort does prefetching overhead more

than o
set the reduction in memory stalls� thereby resulting in a slight performance

degradation� Later� in Section ������ we will explore how to reduce this overhead with

the aid of pro�ling information�

To understand these performance results in greater depth� we study the miss cov�

erage� memory tra�c� and instruction overhead of greedy prefetching in the following

subsections�

Miss Coverage

Figure ���� shows the number of load D�cache misses in the without prefetching and

greedy prefetching cases� which are divided into three categories� A partial miss is a
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D�cache miss that combines with an outstanding miss to the same line� and therefore

does not necessarily su
er the full miss latency� A full miss� on the other hand� does

not combine with any access and therefore su
ers the full latency� A late prefetched

miss is a D�cache miss that combines with an outstanding prefetch �i�e� the prefetch was

launched too late	� If prefetching has perfect miss coverage� all of the full and partial

misses would have been converted into hits �which do not appear in the �gure	 or at

least into late prefetched misses� However� for em�d� power� and voronoi� more than

��� of the original misses are not prefetched because most of these misses are caused

by array or scalar references�hence prefetching RDSs yields little improvement� For bh

and health� ������� of the original misses are not covered� we will take a closer look at

the causes of these misses later in the case studies of these benchmarks� In the remaining

�ve benchmarks� there are only less than ��� uncovered misses� Also� the late prefetched

misses category indicates that ������� of misses are prefetched late in six cases� This

category is most prominent in mst� where the compiler is unable to prefetch early enough

during the traversal of very short linked lists within a hash table� Since the natural

jump�pointers in greedy prefetching o
er little control over prefetching distance� it is not

surprising that scheduling is imperfect� Also in mst� greedy prefetching generates ���

more load misses than the original case due to cache pollution� Fortunately� this is not a

problem for the other nine benchmarks�

Memory Tra�c

An important concern for any prefetching technique is how much extra memory traf�

�c it will generate� Figure ���� shows the amount of tra�c between the primary and

secondary caches� Each bar in Figure ���� is divided into three sections� explaining if
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a transfer is triggered by a normal reference �load�store	� or instead by a prefetch���

Prefetch transfers are further classi�ed as useful or useless� depending on whether the

prefetched data gets used by a load or store before it is displaced from the primary cache�

Ideally� prefetching will not increase memory tra�c� since the original memory references

will simply be converted into prefetches� �In fact� previous studies have demonstrated

that prefetching can actually reduce the memory tra�c in a shared�memory multipro�

cessor through exclusive�mode hints ��� �	 However� since the natural jump�pointers

used by greedy prefetching may point to nodes that will not be accessed in the near

future �or perhaps not at all	� greedy prefetching can potentially increase memory tra�c

through useless prefetches� Fortunately� as we see in Figure ����� greedy prefetching has

increased memory tra�c by at most ��� for all applications �in two cases�perimeter

and tsp�the tra�c actually decreased due to fortuitous cache replacement behavior in

the set�associative caches	� Hence greedy prefetching does not appear to be su
ering

from useless prefetches� Therefore� prefetch �ltering mechanisms such as the one we used

for instruction prefetching are not necessary here�

Instruction Overhead

Software prefetching has two kinds of instruction overhead� the instructions that

generate prefetch addresses and the prefetch themselves� The amount of this overhead

depends on the prefetching algorithm itself as well as on how optimized the prefetch

codes that the compiler can generate� Table ��� shows the instruction overhead of greedy

prefetching� which is divided into three categories� Prefetches� Loads	Stores� and Others

��Prefetches also exist in the N cases of perimeter and treeadd to cope with store stall� as we
explained in Section ����
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Table ���� Instruction overhead of greedy prefetching�

Overall Overhead
�percentage of original instruction count� Per�Prefetch Overhead

Loads Loads Total �including
Benchmark Prefetches Stores Others Total Stores Others the prefetch itself�

BH ���� ���� ���� ��� � ��� ��� ���
Bisort ���� ���� ���� ����� ��� ��� ���
EM�D ����� ����� ����� ����� ��� ��� ���
Health ���
� ���� ���� ����� ��� ��� ���
MST ���� ���� ���� ���� ��� ��
 ���
Perimeter ���� ��
� ���� ���
� ��� ��� ���
Power ���� ���� ���� ����� ��� ��� ���
Treeadd ���� ���� ��
� ����� ��� ��
 ���
TSP ���� ���� ���� ���� ��� ��� ���
Voronoi ���� ���� ���� ���� ��� ��� ���

which includes all additional instructions that are neither prefetches nor loads!stores �NOP

instructions are also not counted	� Total is simply their sum� which is less than ��� in six

cases� between ��� to ��� in three cases� and about ��� in health� For the last case�

the ��� increase in the raw instruction count was translated into a combined increase

of only ��� in the busy and inst stall sections in Figure ����� This demonstrates that

the superscalar machine we simulated is quite e
ective at overlapping this instruction

overhead with other computation� and this is generally true for other benchmarks� We

also observe from Table ��� that a prefetch is accompanied by another ��� additional

instructions on average� and over half of them are loads!stores��� Later� in Section ������

we will study the performance impact of the number of memory functional units�

After considering the overall instruction overhead� we now focus on the cost of

prefetches themselves� Figure ���� shows the fraction of dynamic prefetches that are

unnecessary because the data is found in the primary cache� For each application� we

show four di
erent bars indicating the total �dynamic	 unnecessary prefetches caused by

static prefetch instructions with hit rates up to a given threshold� Hence the bar labeled

����� corresponds to all unnecessary prefetches� whereas the bar labeled �

� shows the

total unnecessary prefetches if we exclude prefetch instructions with hit rates over ����

etc� This breakdown indicates the potential for reducing overhead by eliminating static

��Intuitively� we would expect that a greedy prefetch must require at least one extra load to generate
the prefetch address� which is not the case for applications like mst and power in Table ���� There are
two reasons for this discrepancy� The main reason is that each greedy prefetch actually results in two
prefetch instructions for fetching two consecutive lines and these two prefetches need only one load to
obtain the �rst line address� Another reason is that the compiler occasionally optimizes away some of
these extra loads by using loads in the original program that generate the same addresses�
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Figure ����� Unnecessary greedy prefetches�

prefetch instructions that are clearly of little value� For example� eliminating prefetches

with hit rates over ��� would eliminate over ��� of the unnecessary prefetches in tsp�

thus decreasing overhead signi�cantly� In contrast� reducing overhead with a �at distri�

bution �e�g�� bh	 is more di�cult since prefetches that sometimes hit also miss at least

��� of the time �therefore� eliminating them may sacri�ce some latency�hiding bene�t	�

We will quantify the bene�t of eliminating unnecessary prefetches later in Section ������

��	�� Case Studies

Having performed a quantitative evaluation of greedy prefetching� we now look at the

memory access behaviors of individual applications in more detail� Doing this not only

gives us a source�level understanding of the performance results reported in the last

section� but may also provide opportunities to further improve performance�

bh� Nodes of an octree are traversed in bh walk��� and over ��� of load stalls occur

in bh test�� and bh work�� �see Figure ����	� However� as we observe from Fig�

ure ����� a substantial fraction of these misses are not covered by prefetches� This

is because nodes in bh are large relative to the cache line size ��� bytes	� and con�

sequently prefetching only two lines �our default prefetch size	 cannot cover the

entire node� Another interesting point in Figure ���� is that the eight children of

the current node t are prefetched after� but not before bh test�t�� since the actual

number of prefetch instructions to be inserted is �� �� lines for each child	� which

exceeds the threshold value ���	 used by the compiler to decide whether prefetches
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void bh walk����� node�t� ���� f
if �bh test�t�� f

prefetch�t�children��	�


prefetch�t�children��	�


prefetch�t�children��	�


prefetch�t�children�
	�


prefetch�t�children��	�


prefetch�t�children��	�


prefetch�t�children��	�


prefetch�t�children��	�


for �k��
 k��
 k���f
r � t�children�k	


if �r�

bh walk����� r� ����


g
g else

bh work����� t� ����


g

Figure ����� Abstract code fragment with greedy prefetches from bh�
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should be inserted at a later place�

Performance of this benchmark can be improved by pro�ling information in the

following way� In addition to bh walk��� the compiler also inserts greedy prefetches

into a few other procedures in bh� Unfortunately� many of these prefetches turn

out to be useless and lead to the ��� increase in the memory tra�c that we have

seen in Figure ����� Figure �����a	 shows that if the compiler inserts prefetches

into bh walk�� only but not the other procedures� we can get a �� performance

improvement �the G�pro�le bar	�
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int Bimerge�root�spr val�dir� f
rv � root�value


pl � root�left
 pr � root�right


���

while �pl �� NIL� f
prefetch�pl�left�


prefetch�pl�right��


prefetch�pr�left�


prefetch�pr�right�


lv � pl�value


pll � pl�left
 plr � pl�right


rv � pr�value


prl � pr�left
 prr � pr�right


if ����� f
if ����� f

SwapValRight�pl�pr�plr�prr�lv�rv�


pl � pll
 pr � prl


g else f
pl � plr
 pr � prr


g
g else f

if ����� f
SwapValLeft�pl�pr�pll�prl�lv�rv�


pl � plr
 pr � prr


g else f
pl � pll
 pr � prl


g
g

g
if �root�left �� NIL� f

prefetch�root�left�


prefetch�root�right�


���

rl � root�left
 rr � root�right


���

root�value�Bimerge�rl�value�dir�


spr val�Bimerge�rr�spr val�dir�


g
���

g

Figure ����� Abstract code fragment with greedy prefetches from bisort�

bisort� The main RDS is a binary tree� and the important cache misses occur in Bimerge���

which contains both loops and recursion �see Figure ����	� The four �grandchil�

dren� of root are prefetched early in the while loop� Nearly all load misses are

prefetched but about ��� of these prefetches arrive late� The relatively large

fraction of unnecessary prefetches shown in Figure ���� is caused by the pair of

prefetches for root�left and root�right in Figure ����� Locality analysis might

help this case by recognizing that a portion of data accessed in the recursive calls

has already been brought into the cache by the while loop�

health� Over ��� of load stalls are due to linked�list accesses inside waiting�� �see

Figure ����	� Despite a ��� increase in total instruction count� the ��� reduc�

tion in load stalls results in a large speedup� But Figure ���� also indicates that
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void waiting�Village �village� List �list�

while �list �� NULL� f
prefetch�list�forward�


i � village�hosp�free personnel


p � list�patient


if �i � �� f
t � village�hosp�free personnel


village�hosp�free personnel � t��


p�time left � 



p�time � t � 



l � ��village�hosp�waiting�


removeList�l� p�


l � ��village�hosp�assess�


addList�l� p�


g else f
t � p�time


p�time � t � �


g
list � list�forward


g
g

Figure ����� Abstract code fragment with greedy prefetches from health�

void �HashLookup�int key� Hash hash� f
j � �hash�mapfunc��key�


for�ent � hash�array�j	


ent �� ent�key��key


ent�ent�next�

prefetch�ent�next�


if �ent� return ent�entry


return NULL


g

Figure ����� Abstract code fragment with greedy prefetches from mst�

there are still half of load misses left unprefetched� Pro�ling information points

out that the major source of these misses is the dereference of the pointer �eld

patient within List nodes� Our greedy prefetching algorithm does not recognize

list�patient as an RDS access since there is no recurrent pointer update for

the patient object type� As we have discussed earlier in Section ���� the com�

piler does not prefetch pointers unless they point to RDSs� If the compiler also

prefetches list�patient in this case� we will enjoy an additional speedup of ����

as illustrated in Figure �����b	�

mst� About ��� of load stalls occur in HashLookup��� where it searches for an item

in an array of linked lists �see Figure ����	� Load misses happen at two pointer

dereferences� ent�key and hash�mapfunc� Although the compiler prefetches

ent�next� only a small portion of the latency can be hidden since the loop body

is so small� The compiler does not prefetch hash as it is not an RDS pointer� and

even if it did� there would not be su�cient time to hide the latency� Lacking time to
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Table ���� Minor schemes under history�pointer prefetching�

Label Description

H Updating history�pointers during RDS traversals
H�A Updating history�pointers during both RDS traversals and allocation
H� Scheme H with two history�pointers per RDS node
H��A Combining schemes H� and H�A

prefetch ahead appears to be a general problem with hash tables� and prefetching

prior to the hash function invocation is beyond the scope of our algorithm�

perimeter� A quadtree is traversed through recursive procedure calls� Most load misses

are covered by greedy prefetches� but ��� of them are unnecessary� There are two

reasons for these unnecessary prefetches� �i	 the same parts of the quadtree can be

visited through di
erent recursive procedures� thus resulting in unanticipated data

locality� and �ii	 each node contains a pointer to its parent� which the compiler

prefetches along with the four child pointers� but the parent is already in the cache�

treeadd� Numbers distributed on a binary tree are added together through a postorder

recursive traversal� Prefetching both children of each tree node is able to hide

��� of load stall� and this translates into a ��� speedup� The ��� unnecessary

prefetches are a consequence of the abundant data locality enjoyed by adjacent

nodes in the traversal�

tsp� Each RDS node contains four pointers� two for binary tree�like accesses� and two for

doubly�linked list�like accesses� Prefetching these four pointers results in an ���

reduction of load stall� The speedup is less impressive since load stall accounts for

only a few percents of the total execution time� The large number of unnecessary

prefetches occur for the same reasons as perimeter�

��	�� Performance of History�Pointer Prefetching

In this section� we investigate the performance of history�pointer prefetches inserted

by our compiler� We �rst present the results with the prefetching distance �i�e� d in

Figure ���	 �xed to three nodes ahead� Later on� we will vary this parameter to see its

performance impact�

We experimented with a number of minor schemes under history�pointer prefetching�

as described in Table ���� The ordinary scheme is labelled as H� where history pointers
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Figure ����� Performance of history�pointer prefetching �N � no prefetching� H� H�A�
H�� and H��A are minor history�pointer prefetching schemes as described in Table ���	�

are updated each time an RDS is traversed� Scheme H�A di
ers from H by adding code

to update history�pointers also during the time that the RDS is allocated in memory

�Note that depending on whether there are recurrent pointer updates in the memory

allocation routine� RDS allocation may or may not be recognized as RDS traversals�	

The motivation for scheme H�A is that in some applications� an RDS is traversed only

once in the entire execution and hence any history�pointers set up during that traversal

have no chance of being used later� Therefore� the best that we can do is to set up a

history�pointer to point to an RDS node immediately after it is allocated� whereby it

can be prefetched via the history�pointer during the only traversal of the RDS� Since in

general it is quite di�cult for the compiler to know exactly where an RDS is allocated in

the program �especially if the program has its own memory allocation routines instead of

using those provided by the language	� the compiler relies on hints from the programmer

on where the memory allocation takes place� Scheme H� is only applicable to health�

where two history�pointers are added to each List record�one for prefetching list and

the other for prefetching list�parent �illustrated earlier in Figure ����	� SchemeH��A

is simply a combination of H� and H�A�
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Table ���� Memory performance improvement for history�pointer prefetching�

No Prefetch History�Pointer Prefetch
Load Average Load Load Average Load Load

D�Cache Miss Penalty Minor D�Cache Miss Penalty Stall
Benchmark Miss Rate �cycles� Scheme Miss Rate �cycles� Reduction

BH ����� ���
 H ����� ���� �����
Bisort ����� ���� H�A ����� ���� �����
EM�D ����� ���� H�A ����� ���� ������
Health ������ ���� H� ����� ���� �����
MST ����� ���� H ����� ���� �����
Perimeter ��
�� ���� H�A ���
� ���� �����
Power ����� ���� H ����� ���� �������
Treeadd ����� �
�
 H�A ����� ���� �����
TSP ���
� ���� H ����� ���� �����
Voronoi ����� ���� H�A ����� ���� �����

Figure ���� shows the performance of history�pointer prefetching �schemes H� and

H��A are only applicable to health	� First of all� we observe that H�A performs sub�

stantially better than H in perimeter and treeadd� In perimeter� the two main traver�

sals of the same quadtree are in di
erent visiting orders� one of them mimics the tree

creation order while the other does not� As a result� updating history�pointers while

allocating the tree nodes helps to launch useful prefetches during the �rst traversal� In

treeadd� the tree creation order is identical to the visiting order of the only traversal�

History�pointer prefetching performs particularly well in health because the structure

of the lists accessed in waiting�� �see Figure ����	 are modi�ed only slowly throughout

the over ten thousand times it is called� We have also learned from the case studies in

Section ����� that many misses in health are caused by dereferences of list�parent�

Adding a history�pointer for prefetching list�parent produces an ���� speedup over

the case without prefetching� in spite of the even larger space overhead� Also note that

this speedup is greater than the one represented by the G�pro�le bar in Figure �����b	

since prefetches have more time to �nish with history�pointer prefetching� Comparing the

performance of history�pointer prefetching with that of greedy prefetching shown earlier

in Figure ����� history�pointer prefetching has a noticeable performance advantage over

greedy prefetching in bh� health� and treeadd but is signi�cantly worse in bisort� mst�

and perimeter�

As we did for greedy prefetching� we use the additional performance metrics shown

in Figures ��������� and Tables �������� to obtain a deeper understanding of how well

history�pointer prefetching performs� Only the best performing minor history�pointer
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prefetching schemes for individual benchmarks are shown in these �gures and tables�

Highlights of these results include�

� The over ��� load stall reduction in health and treeadd is a consequence of the

improvement in both the miss coverage and timeliness over greedy prefetching� In

contrast� the coverage of history�pointer prefetching is inferior in the cases of bh�

bisort� mst� perimeter� and tsp�

� History�pointer prefetching generates more memory tra�c than greedy prefetching

in nearly all the benchmarks� The presence of history�pointers increases the data

set size� This is most prominent in health where two history pointers are added

to each List node� posing a ��� space overhead�

� Although history�pointer prefetching has a smaller fraction of unnecessary prefetches�
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Table ����� Instruction overhead of history�pointer prefetching�

Overall Overhead
�percentage of original instruction count� Per�Prefetch Overhead

Minor Loads Loads Total �including
Benchmark Scheme Prefetches Stores Others Total Stores Others the prefetch itself�

BH H ���� ���� ���� ���� ��� ��� 
��
Bisort H�A ���� ����� ���� ����� ��� ��� ���
EM�D H�A ���� ���� ���� ���� ���� ���� ����
Health H� ����� ������ ����� �
���� ��� ��� ���
MST H ���� ���� ���� ����� ��
 ��� ���
Perimeter H�A ���� ���� ���� 
��� 
�� ��� ����
Power H ���� ���� ���� ����� ��� ��� ���
Treeadd H�A ���� ���
� ��
� ����� 
�� ��� ����
TSP H ���� ���� ��
� ����� ��� ��� 
��
Voronoi H�A ���� ���� ���� ���� ��� ��� ����
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Figure ����� Unnecessary history�pointer prefetches�

it has much more instruction overhead than greedy prefetching due to the extra

work required to maintain the history�pointers� This overhead can potentially be

reduced by updating the history�pointers less frequently�

Varying the Prefetching Distance

A key parameter of the history�pointer prefetching algorithm is the prefetching distance�

Ideally� increasing the prefetching distance would convert some late prefetches into on�
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time ones and hence provide further performance gain� In practice� however� there are

other concerns in choosing this parameter� One is whether the prefetch coverage could

be hurt by increasing the prefetching distance� This could happen if the traversal order

recorded by the history�pointers is not exactly the same as the actual one� Another

concern is about the instruction overhead� If the history�pointer prefetching implemen�

tation that has instruction overhead proportional to the prefetching distance is used �i�e�

the default implementation for a prefetching distance smaller than eight� which is the

scalar�FIFO implementation in Figure ����	� the bene�ts provided by a larger prefetching

distance could potentially be o
set by the increased overhead�

Figure ���� shows the performance for the four benchmarks whose performance is

improved by history�pointer prefetching� with prefetching distances ranging from one to

seven� The � bars correspond to the best performing cases in Figure ����� As we see in
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plementation of history�pointer prefetching exempli�ed in Figure ���� is used �N � no
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Figure ����� increasing the prefetching distance from one to three improves performance

in three cases� However� performance starts to drop with larger prefetching distances�

There are two reasons for this performance degradation� First� Figure ���� indicates

that the miss coverage does su
er from larger prefetching distances in bh� health� and

perimeter� Second and more importantly� the additional overheads of larger prefetching

distances more than o
set their latency reduction bene�ts�

To investigate if these overheads will be less of a problem by using the history�pointer

prefetching implementation that has constant instruction overhead �i�e� the array�FIFO

implementation in Figure ����	� we repeated our experiments using this implementation�

The results in Figure ���� demonstrate that although the overheads did remain constant�

they are still signi�cantly larger than those of the default implementation �in Figure ����	

in most cases for this range of prefetching distances�

In summary� for these applications running on the machine we modeled� the scalar�

FIFO implementation of history�pointer prefetching with a prefetching distance of three

nodes ahead appears to be a good compromise when the miss coverage� timeliness� and

instruction overheads are all taken into account�

��	�� Performance of Data�Linearization Prefetching

We now evaluate the performance of data�linearization prefetching� The results presented

in this section assume that the data layout of programs is not modi�ed� In Chapter �� we

will apply data�linearization prefetching� together with the dynamic layout optimizations

enabled by memory forwarding� on a number of applications including bh� mst� and

health�
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Figure ����� Performance of data�linearization prefetching �N � no prefetching� D �
data�linearization prefetching	�

Figure ���� shows the performance of data�linearization prefetching with a prefetching

distance of three nodes ahead� Data�linearization prefetching is particularly applicable

to both perimeter and treeadd� because the creation order is identical to the major

subsequent traversal order in both cases� As a result� data linearization does not re�

quire changing the data layout and yet achieves signi�cant speedups over greedy and

history�pointer prefetching� For both benchmarks� detailed results from Figure ���� and

Table ���� reveal that data�linearization prefetching has converted a large fraction of late

prefetched misses into hits� while at the same time incurred the least instruction overhead

among our three prefetching schemes� For the other eight benchmarks� Figure ���� shows

that data�linearization prefetching generally covers fewer misses than greedy prefetching

and hence performs worse in a few cases� We also observe from Figure ���� that a

relatively large number of prefetches are useless in four benchmarks� This is not surpris�

ing since the data layout has not been linearized in these cases and hence sequentially

prefetched items may be of little use� Finally� Table ���� clearly indicates that data�

linearization prefetching has substantially smaller instruction overhead compared with

the other two schemes� This is because only one prefetch is issued per node and no

pointer dereference is needed to generate the prefetch address �this explains why more

than half of the benchmarks have zero �Loads	Stores� overhead in Table ����	�

Varying the Prefetching Distance

In the same way we evaluated history�pointer prefetching� we measured the performance

of data�linearization prefetching for a range of prefetching distances� The results are

shown in Figure ����� Interestingly� Figure ���� shows a trend similar to that of history�

pointer prefetching� a prefetching distance of three nodes appears to be a good choice
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Table ����� Memory performance improvement for data�linearization prefetching�

No Prefetch Greedy Prefetch
Load Average Load Load Average Load Load

D�Cache Miss Penalty D�Cache Miss Penalty Stall
Benchmark Miss Rate �cycles� Miss Rate �cycles� Reduction
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MST ����� ���� 
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Figure ����� Breakdown of all load D�cache misses �N � no prefetching� D � data�
linearization prefetching�	

for these applications and machine con�gurations� Larger prefetching distances degrade

performance in health� mst� and perimeter because the miss coverage begins to drop

when we prefetch further than three nodes ahead� The performance degradation� how�

ever� is not as severe as with history�pointer prefetching since the instruction overhead

remains small across di
erent prefetching distances� For treeadd� performance is actu�

ally improved by increasing the prefetching distance since most late prefetched misses

have been successfully converted into hits when prefetching seven nodes ahead� while the

miss coverage remains high�
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Table ����� Instruction overhead of data�linearization prefetching�

Overall Overhead
�percentage of original instruction count� Per�Prefetch Overhead

Loads Loads Total �including
Benchmark Prefetches Stores Others Total Stores Others the prefetch itself�

BH ���� ���� ���� ���� ��� ��� ���
Bisort ���� ���� ���� 
��� ��
 ��� ���
EM�D ���� ���� ���� ����� ��� ��� ���
Health ����� ���� ���� ����� ��� ��� ���
MST ���� ���� ���� ���� ��� ��
 ���
Perimeter ���� ���� ���� ���� ��� ��� ���
Power ���� ���� ���� ����� ��� ��� ���
Treeadd ���� ���� ���� ���� ��� ��� ���
TSP ���� ���� ���� ���� ��� ��� ���
Voronoi ���� ���� ���� ���� ��� ��� ���

��	�	 Reducing Overhead Through Locality Analysis

Our compiler currently does not attempt to analyze data locality across RDS node ac�

cesses� As a result� we may prefetch nodes unnecessarily that already reside in the cache

�as discussed earlier in Section �����	� For numeric applications� sophisticated locality

analysis techniques have been combined with loop splitting techniques to isolate the dy�

namic iterations that should be prefetched ��� � Unfortunately� the control structures

in RDS codes are less amenable to isolating dynamic node visitations� so our only op�

tion may be to eliminate static prefetch instructions altogether� This makes sense for

prefetches that are almost always unnecessary �i�e� have very high hit rates	�

To estimate the performance potential of exploiting locality information� we used
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memory feedback information from our simulator to eliminate prefetch instructions with

hit rates above a certain threshold from the greedy prefetching code� Figure ���� shows

our results for the four applications that were a
ected by setting this threshold to ����

���� and ��� hit rates� As we see in Figure ����� eliminating prefetches with hit rates

above ��� improves performance by ���� for three applications by eliminating unneces�

sary prefetches without sacri�cing much coverage� However� eliminating prefetches with

hit rates over ��� does hurt performance in bisort� perimeter� and treeadd since the

miss coverage drops substantially� Therefore� improved locality analysis may help perfor�

mance by eliminating prefetches that are almost always unnecessary �e�g�� the �parent�

pointer in perimeter	� but without more powerful techniques for isolating dynamic node
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visitations� the gains do not appear to be as large as with numeric codes�

��	�
 Architectural Issues

In this section� we study how our prefetching schemes perform under variations of several

machine parameters�in particular those that are related to the memory subsystem� We

focus on the six benchmarks whose performance is improved by one or more of our

schemes� For each scheme� we chose the version that achieved the best performance in

the previous sections for the experiments in this section� We begin by looking at the

impact of varying the miss latencies�

Miss Latencies

The miss latency is the most important single parameter since it directly determines

the amount of memory stalls� While having larger miss latencies will increase the per�
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data�linearization prefetching	�

formance potential of prefetching� this potential is unlikely to be e
ectively exploited if

prefetches are not launched far enough in advance� This is particularly a concern for

greedy prefetching which has little control over the prefetching distance� To understand

how scalable the performance of our schemes is with respect to the miss latency� we did

the following two experiments�

In the �rst experiment� we applied our schemes to the six benchmarks with two new

con�gurations of miss latencies� The results are shown in Figure ����� where each latency

con�guration is identi�ed as xx�yy meaning that the primary�to�secondary latency and

the primary�to�memory latency are xx cycles and yy cycles� respectively� plus any de�

lay due to contention� Hence� our baseline con�guration is ������ and the two new

con�gurations represent the cases that memory latency is less or more problematic� Con�

centrating �rst on the cases without prefetching in Figure ����� we see that performance

is very sensitive to miss latencies� In fact� doubling the miss latencies from one con�g�

uration to the other actually doubles the amount of load stalls� This implies that the

increased miss latencies are not automatically tolerated by the out�of�order execution
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of our processor� The good news is that performance of our prefetching schemes does

increase along with the latency� Even for greedy prefetching� it achieves larger speedups

with longer latencies� And for history�pointer and data�linearization prefetching� we do

not need to adjust the prefetching distance �which is three for all three con�gurations	

to maintain good speedups across these latencies�

Having shown that our schemes still perform well across the range of miss latencies

experienced by current or next�generation machines� we test our schemes further in the

second experiment by using an even more extreme latency con�guration� �� cycles and

��� cycles for primary�to�secondary and primary�to�memory latencies� respectively� We

are speci�cally interested in knowing if increasing the prefetching distance of history�

pointer prefetching and data�linearization prefetching can cope with such large latencies�

Figure ���� shows the results for the three benchmarks that su
er the most from cache

misses� We are encouraged by the �nding that greedy prefetching still delivers high

performance despite its lack of control over the prefetching distance� By tuning the

prefetching distance� history�pointer and data�linearization prefetching can o
er even

larger performance improvements� While history�pointer prefetching achieves the best

performance in health at a relatively small prefetching distance��ve	� data�linearization

prefetching performs the best in both perimeter and treeadd when prefetching as far

as �� nodes ahead�

In summary� all the three prefetching schemes are fairly robust with respect to the

miss latency� Very large miss latencies can be e
ectively handled by increasing the

prefetching distance in history�pointer and data�linearization prefetching�
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Figure ����� Performance of our prefetching schemes with varying memory bandwidth �N
� no prefetching� G � greedy prefetching� H � history�pointer prefetching� and D �
data�linearization prefetching	�

Memory Bandwidth

Prefetching can improve performance only if su�cient bandwidth is available in the mem�

ory subsystem� We have already demonstrated that our prefetching schemes work well

with the realistic bandwidth assumed in the baseline model� Nevertheless� for the fol�

lowing reasons� we are also interested in knowing how these schemes would perform if

more or less bandwidth is available� If having more bandwidth signi�cantly increases the

performance improvement of prefetching� it means our prefetching schemes are somewhat

bandwidth�limited� Although the results in previous sections indicate that our prefetch�

ing schemes only moderately increase the total memory tra�c� bursty tra�c may create

contention that increases the overall execution time substantially� On the other hand� if

decreasing the bandwidth does not a
ect the performance of our schemes signi�cantly�

it means they will also be applicable in machines where memory bandwidth is a more

limited resource �e�g�� some lower�end machines or machines with a single memory bus

shared by multiple processors	�
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Recall that the baseline model has �� bytes!cycle primary�to�secondary bandwidth

and � bytes!cycle secondary�to�memory bandwidth� Figure ���� shows the impact of de�

creasing this bandwidth by a half �
B�	B	 and of increasing it to unlimited bandwidth

�unlimited	� We make the following observations from Figure ����� First� while reduc�

ing the bandwidth does degrade the performance of our schemes somewhat� the overall

performance gain still remains high� Hence our prefetching schemes can achieve good

performance in a spectrum of bandwidth that is common for recent machines� Second�

increasing the bandwidth beyond the baseline one does not lead to signi�cant performance

improvement� Therefore� we conclude that our schemes are not bandwidth�limited�

Cache Size Variations

In this section� we study the impact of cache size with a threefold motivation� First� we

would like to estimate the performance gains achievable by our schemes in the presence

of much larger input data sets� However� very large data sets are usually infeasible for

our experiments due to the simulation time constraints� An alternative to increasing

the data set size is to scale down the cache size correspondingly� Second� we are also

interested in knowing how much performance bene�t prefetching can o
er on machines

with much larger caches� One approach to coping with memory latency� employed by

some processors such as the HP PA����� ��� � is to include unusually large on�chip caches�

Though we do not consider this brute�force approach a complete solution because of its

potentially negative impact on the cache hit access time as well as its signi�cant increase

in the die size� it is useful to know if prefetching is needed for such large caches� Finally�

it is important to know how big a cache is required to hold prefetched data long enough

for them to be used and to prevent useful data from being displaced by prefetches� This

is particularly relevant for greedy prefetching� where both the prefetching distance and

accuracy are not precisely controlled� To address these three issues� we performed the

following two experiments�

In the �rst experiment� we applied our schemes with �ve new sets of cache sizes�

The results are shown in Figure ����� where xx�yy denotes a combination of a xx�byte

primary data cache and a yy�byte secondary uni�ed cache� The baseline case is the set of

bars above ��K����K� We begin by concentrating on how the code without prefetching

performs across the di
erent cache sizes� and then later compare this to the behavior of

the code with prefetching�

First� let us consider the case without prefetching� we note a variety of di
erent be�

haviors in Figure ����� At one extreme are perimeter and treeadd� where performance

is nearly insensitive to the cache size until �M!��M caches are used� This is because uses
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Figure ����� Performance of our prefetching schemes with varying cache sizes �N � no
prefetching� G � greedy prefetching� H � history�pointer prefetching� and D � data�
linearization prefetching	�

of the same RDS node are very far apart in time and the large number of intervening

references will �ush the node from the cache unless the cache is as big as �M!��M �Ta�

ble ��� shows that perimeter and treeadd have � MB and �� MB of memory allocated�

respectively	� At the other extreme is tsp� where data reuses occur so closely in time that

even a �K!��K cache is large enough to retain the data� In between these two extremes

are bh� mst� and health� where we can �nd multiple knees in performance and each knee

occurs when a key data structure �ts in the cache� This phenomenon is most noticeable

in health which accesses a large number of linked lists over time� Consequently� bigger

caches are able to retain more lists for future reuse�
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Figure ����� Performance of greedy prefetching over a wide range of cache sizes �N �
no prefetching� G � greedy prefetching	� Execution time is renormalized for each cache
size�

Tuning our attention to the code with prefetching� Figure ���� shows that in general

the relative performance improvement o
ered by prefetching is larger with smaller cache

sizes� The obvious reason for this is that smaller caches have more latency to hide due

to capacity misses� and thus there is more room for improvement� For instance� history�

pointer prefetching o
ers only a �� speedup for bh on a ��K!���K cache but provides

an ��� speedup on a �K!��K cache� Comparative performance of the three prefetching

schemes is also a
ected by the cache size� For example� history�pointer prefetching is

��� faster than data�linearization prefetching for health on a �K!��K cache but is ���

slower on an �M!��M cache� As the cache gets bigger� prefetches become less bene�cial

while instruction overhead is increasingly important� Therefore prefetching schemes with

smaller overhead are favored in the very large caches� Overall� we are encouraged to see

that prefetching performs reasonably well over this range of cache sizes� In fact� in

three of the six cases �health� perimeter� and treeadd	� the best performance of code

with prefetching on �K!��K caches was better than code without prefetching on ��K!�M

caches� And even with �M!��M caches� prefetching can still manage to o
er performance
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gains in these three cases�

The purpose of the second experiment is to determine the cache capacity needed

to hold greedily prefetched data� In this experiment� we applied greedy prefetching to

health� perimeter� and treeadd over a wide range of cache sizes� To simplify the anal�

ysis� the primary and secondary caches were set to the same capacity in each case� In ad�

dition� both caches were ��way set�associative to avoid any clouding e
ects on the results

due to con�ict misses� The results are shown in Figure ����� First� we note that the rela�

tive performance improvement of greedy prefetching with very small cache sizes is much

smaller than what we have seen in the baseline case� In fact� greedy prefetching degrades

performance of perimeter for cache sizes smaller than �K bytes� Fortunately� relative

performance of prefetching improves along with the cache size� For both perimeter and

treeadd� a �K!�K cache is big enough to hold most greedily prefetched data� Note that

this result is quite consistent with our argument in Section ����� �summarized by Equa�

tion ���	� which states that as long as the cache is su�ciently larger than an RDS node�

capacity misses would not prevent greedily prefetched items from staying in the cache

until they are used� For health� however� a cache as big as ���K bytes is needed to fully

exploit the potential of greedy prefetching� Why is such a large cache size required$ The

answer can be found by considering again the procedure waiting�� shown in Figure �����

where most load misses in health occur� In each iteration of the while�loop� procedures

removeList�� and addList�� are called to search list�patient through the lists at

village�hosp�waiting and village�hosp�assess� respectively� Therefore the resul�

tant working set in each iteration of waiting�� is so large that we need more than ��K

bytes to keep the prefetched data from being displaced�

To summarize� we have seen that the performance advantages of our prefetching

schemes often remain signi�cant even as the cache size is varied� We also �nd that cache

sizes that are common for recent processors are su�ciently capacious to hold both the

working set and prefetched data�

Number of Memory Functional Units

The results from Tables ���� ����� and ���� suggest that most part of prefetching overhead

is due to additional memory instructions� On average� each prefetch costs ���� ����� and

��� new memory instructions �including the prefetch itself	 for greedy� history�pointer�

and data�linearization prefetching� respectively� These extra instructions place more

demand on the memory functional units and could potentially slow down other parts of

the execution� Therefore� we study in this section the performance impact of the number

of memory units�
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Figure ����� Performance of our prefetching schemes with varying number of memory
units �N � no prefetching� G � greedy prefetching� H � history�pointer prefetching�
and D � data�linearization prefetching	�

Similar to a few more recent superscalar processors such as the Alpha ����� ��� 

and the HP PA����� ��� � our baseline model contains two memory units� However�

earlier processors like the MIPS R����� ���� and the PowerPC ��� ���� have only one

memory unit� Therefore it is useful to know how our schemes perform on machines with

a single memory unit� On the other hand� we would like to know if it is justi�ed to

add more memory units to support our schemes better� To answer these questions� we

experimented our schemes with one� two� and four memory units �having more than four

memory units would not help since at most four instructions can be issued per cycle and

all functional units are already fully�pipelined	� The results are shown in Figure �����

where the number of memory units is displayed underneath the prefetching schemes�

As we observe from the �gure� our prefetching schemes perform well in general across

these three con�gurations� Nevertheless� having two memory units is important for the

absolute performance of perimeter and treeadd for both with and without prefetching

cases� since this improves performance by up to ��� over a single unit� Due to the

memory instruction overhead� the relative performance gains of prefetching are larger
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Figure ����� Performance of our prefetching schemes with varying number of miss han�
dlers �N � no prefetching� G � greedy prefetching� H � history�pointer prefetching� and
D � data�linearization prefetching	�

with two memory units than with only one� Among the three prefetching schemes�

history�pointer prefetching tends to be most sensitive to the memory unit count as a

result of its relatively large memory instruction overhead� Figure ���� also suggests that

we may not need more than two units to support these prefetching schemes because the

marginal gain of having four units is considerably smaller�

Number of Miss Handlers

In this section� we investigate the e
ects of the number of miss handlers� Miss handlers

were originally proposed by Kroft ��� to implement a lockup�free cache�a cache that can

handle other requests while a miss is still outstanding� A miss handler� also known as a

�miss information!status handling register� �MSHR	 in Kroft
s paper� keeps track of an

in��ight cache�line fetch �i�e� a primary cache miss	� When the line returns� appropriate

actions will be done to complete the reference based on the information stored in the

miss handler�

There is a functionality of miss handlers that is particularly relevant to prefetching�

the capability of combining a new reference with an outstanding prefetch accessing the

same line� Such combining o
ers two advantages� First� the later reference will not be
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sent all the way up to the next memory hierarchy level though the data is not present

in the primary cache� Thus� memory bandwidth is saved� Second and more importantly�

when the later reference is a load� it stalls for only the amount of time that the prefetch

still needs to �nish but not for the entire miss latency� This is especially important in

cases where we observed substantial number of these late prefetched misses in the miss

coverage graphs�

Obviously� the number of miss handlers is a concern since it decides how many refer�

ences can be processed at a time� This number may not be very large in practice because

the amount of state involved in each handler is non�trivial due to the generality of the

MSHR mechanism �e�g�� the data address� pointers to the cache entry and destination

register� written data� and some other control information are recorded in the handler	�

While more recent processors such as the Alpha ����� ��� provides as many as �� load

miss handlers� some others provide only a few �e�g�� four in the MIPS R����� ���� 	�

If all handlers are busy when there is a new memory reference that neither hits in the

primary cache nor can be combined with one of the outstanding misses� there are two

options to handle this reference� depending on its type� for a load or store� it must wait

in a bu
er until a handler is free� for a prefetch� it can wait or be simply dropped� Either

option may have negative impact on performance� Since prefetches create additional

competition for these handlers� it is important to �nd out how many miss handlers are

required to accommodate our prefetching schemes�

Figure ���� shows the results of an experiment where we varied the number of miss

handlers between � and ��� Our baseline model has eight handlers� This graph shows

that prefetching performance su
ers from having only two handlers� This is especially

a problem for history�pointer prefetching which incurs much store stall time for updat�

ing history pointers� Fortunately� this problem nearly disappears once we have eight

handlers� Further adding more handlers does not increase performance much except for

perimeter� Another statistic from our simulations indicates that there are fewer than

eight outstanding data references over ��� of the time� and therefore eight handlers are

su�cient in most cases� For perimeter� however� there is still about ��� of the time

where up to �� misses are outstanding� Overall� the number of miss handlers provided

by recent processors �usually eight or more	 appears to be adequate for exploiting our

schemes�

Support for Non�Excepting Memory Operations

Because of the speculative nature of prefetching� prefetches may occasionally access in�

valid addresses and hence generate exceptions that should not happen in normal ex�
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Figure ����� Performance of our prefetching schemes with excepting vs� non�excepting
prefetches �N � no prefetching�G � greedy prefetching�H � history�pointer prefetching�
and D � data�linearization prefetching	�

ecution� In array�based codes� invalid prefetch addresses typically only occur if one

prefetches o
 the end of an array� The compiler can avoid this hazard by peeling o
 the

last few loop iterations and disables prefetching in these iterations� In contrast� invalid

prefetch addresses may occur unexpectedly in RDS codes due to NULL pointers� There

are two approaches to tackling this problem� The �rst one is to guard each prefetch by

a NULL test� The second one is to make prefetches non�excepting�instructions that

will never raise exceptions ��� � While the �rst approach allows machines not having na�

tive prefetch instructions to emulate prefetches by regular loads� the NULL tests create

additional instruction overhead�

To quantify the performance bene�t of having non�excepting prefetches� we forced

the compiler to enclose any prefetches that may have invalid addresses with a NULL

test� In order to minimize overhead� the compiler �rst looks for any existing NULL

tests that can be used for this purpose� If no such tests are found� a new one will be

inserted� As we see in Figure ����� the performance gaps between the non�exception

and excepting versions are usually �� or less� Only in the case of greedy prefetching in

bh and tsp are there a �� and a �� di
erence� respectively� This result demonstrates

that our dynamically�scheduled processor was quite able to hide the overhead of these
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ing� G � greedy prefetching� H � history�pointer prefetching� D � data�linearization
prefetching� and S � SPAID	�

NULL tests� In a previous study ��� � however� we found that the overhead of these

tests was more signi�cant �up to �� increase in execution time	� The reason is that

our processor model has been evolving over time following the technology trend� and

the one used in this chapter has a more advanced branch predictor and a larger reorder

bu
er than the one that we used previously had� As a result� instruction overhead has

become less of a problem� Nevertheless� non�excepting prefetches still have the advantage

of handling addresses that are invalid but not null at all� In addition to non�excepting

prefetches� non�excepting load instructions also appear to be quite useful for prefetching

pointer�based codes� although we currently are not exploiting them aggressively in our

compiler�

��	�� Performance Comparison with SPAID

The �nal set of experiments compares the performance of our schemes against SPAID� the

only other compiler�based pointer prefetching technique found in the literature� To have a

quantitative comparison� we implemented several versions of SPAID in our experimental

framework with di
erent numbers of prefetches inserted per call site� Our results are

consistent with the conclusion in the SPAID paper ��� that the best performance is

achieved by inserting only one prefetch per call site�the S bars in Figure ���� correspond

to this optimal case� When a procedure has multiple pointer arguments� we select the

�rst one pointing to any RDS to prefetch� We also improved the performance of the

proposed SPAID scheme for treeadd from a slowdown of ��� to a speedup of ��� by

prefetching two cache lines at a time rather than one� As we see in Figure ����� the

best performer of our schemes outperforms the optimal SPAID in all cases except power�

Performance advantages of our schemes are most prominent in the three cases that su
er

the most from load stalls� The problem with SPAID is that it pays signi�cant prefetching
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overhead without covering many cache misses� In contrast� our schemes do a better job

of choosing what to prefetch� and can schedule prefetches earlier to hide more latency�

��	 Chapter Summary

While automatic compiler�inserted prefetching has shown considerable success in hid�

ing the memory latency of array�based codes� the compiler technology for successfully

prefetching pointer�based data structures has thus far been lacking� In this chapter� we

propose three prefetching schemes which overcome the pointer�chasing problem� and we

implement them in a research compiler� Our experiments with these three schemes on a

modern dynamically�scheduled processor produced the following results�

�� Automatic compiler�inserted prefetching can accelerate pointer�based applications

by as much as more than twofold� While greedy prefetching performs quite well in

spite of its simplicity� the more sophisticated schemes can o
er further performance

gains by predicting the order in which RDSs are traversed�

�� This performance bene�t of prefetching is a combined result of signi�cant reduc�

tion in memory stall� while incurring only a relatively small overhead in memory

tra�c and instructions� While our schemes attempt to launch prefetches on time�

a substantial fraction of the miss latency is hidden by late prefetches� On the other

hand� our results demonstrate that instruction overhead of prefetching is not over�

whelming as the dynamically�scheduled machine is quite successful in tolerating

these extra instructions�

�� From an architectural perspective� our results suggest that�

� Our schemes are robust with respect to the miss latency� memory bandwidth�

and cache capacity�

� For the range of miss latencies found in recent machines� history�pointer and

data�linearization prefetching work well with relatively small prefetching dis�

tances �around three	� Much larger latencies can be handled by increasing the

prefetching distance of these two schemes�

� At least two memory units and eight handlers are needed to support these

prefetching schemes�

�� Our schemes perform signi�cantly better than the only other compiler�inserted

prefetching scheme for pointer�based codes�
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Overall� these results are quite encouraging� and they suggest that the latency problem

for pointer�based codes may be addressed largely through the prefetch instructions that

already exist in many recent microprocessors�



Chapter �

Facilitating Data Locality
Optimizations by Memory
Forwarding

��� Introduction

Having demonstrated in the last chapter that tolerating data latency in pointer�based

applications is viable through software�controlled prefetching� we address in this chapter

an even more challenging but important problem� how to reduce latency in non�numeric

applications via locality optimizations�

Cache performance depends on two factors� when data items are accessed� and where

they exist in the address space� Therefore� locality optimizations typically do one of two

things� they either restructure the computation� or else they restructure the data layout�

The idea behind restructuring the computation is that given a �xed data layout� we would

like to manipulate the ordering of accesses such that multiple accesses to the same data

item �or cache line	 occur close together in time� thereby enhancing locality ���� ��� � In

contrast� the idea behind optimizing the data layout is that given that a set of data items

are accessed close together in time in the original computation� we would like to actively

arrange them in the address space such that� �i	 we create spatial locality by allocating

them at contiguous addresses �thereby enhancing the e
ectiveness of long cache lines and

simplifying prefetch address generation	� �ii	 we avoid cache con�icts by ensuring that

they do not reside in separate lines which map into the same cache sets� and �iii	 we

avoid false sharing ���� ��� by ensuring that items accessed by di
erent processors fall

within separate cache lines� While both approaches have received considerable attention

in the past� our focus in this study is on facilitating data layout optimizations�

There are two possibilities for when we manipulate data layout� The �rst approach�

which we call static placement�is to assign an object to its optimized address when it is

created ��� � The second approach is to move an object �perhaps more than once	 after

���
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it has been allocated� we refer to this latter approach as data relocation �or simply relo�

cation	� The advantage of static placement is its simplicity� The advantage of relocation�

however� is that it can adapt to dynamic program behavior� Previous studies have shown

that relocation�based optimizations such as copying ���� ��� and clustering ��� can o
er

impressive performance gains�

In general� relocation�based data layout optimizations involve the following three

steps�

�� Guaranteeing Correctness� Either the programmer or the compiler must prove

that relocating the data will never break the program� otherwise� the optimization

is unsafe�

�� Estimating the Cost�Bene�t Tradeo�� The potential optimization should only

be performed if the performance bene�t is expected to outweigh the overheads in�

volved in relocating the data� This estimation could be based on some combination

of programmer knowledge� static compiler analysis� pro�ling feedback� or run�time

information�

�� Generating Relocation Code� Additional code must be inserted to perform the

actual data relocation at run�time�

Despite the high performance potential of many relocation�based optimizations� the

key stumbling block which often prevents them from being used in practice is the �rst

step�i�e� guaranteeing correctness� To safely move data� we must guarantee that any

future references to the object will �nd it at its new location� The fundamental problem

is that updating the precise set of pointers� to a given object requires perfect aliasing

information related to that object� In general� computing such precise information is

beyond the capabilities of the compiler�� and is even quite di�cult for the programmer

for large programs� In the face of uncertainty� we must conservatively assume that

relocating an object will break the program�no matter how unlikely this may seem in

reality�and therefore the optimization cannot be performed�

There is one mechanism in modern systems which provides a very limited form of safe

data relocation� the virtual memory system� The operating system can relocate an entire

page of memory in the physical address space without breaking the program by simply

copying the page and updating its virtual�to�physical mapping� One cache optimization

�We use the term �pointers� loosely to refer to any mechanism for generating an address pointing to
the object in question�

�This is especially true for heap�allocated objects in languages like C� In fact� the pointer aliasing
problem is theoretically undecidable�
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which exploits this �exibility is page coloring ���� �� � whereby the operating system

attempts to avoid mapping con�icts in large o
�chip caches� Therefore� by adding a

layer of indirection within the memory system� we can move data safely and transparently

without any special language or compiler support� Unfortunately� the virtual memory

system only provides this �exibility at the granularity of an entire page� To actively create

spatial locality within a cache line� we must have this �exibility at a word granularity�

However� applying standard virtual memory techniques at such a �ne granularity�i�e�

setting the page size to be one word�is not a viable solution� due to the enormous

overheads that this would involve� �Not only would the number of page table entries and

the TLB size grow enormously� but also the cache tags would have to be maintained at

a word granularity�	 Instead� we propose a completely di
erent solution�

����� Our Solution� Memory Forwarding

To give software the �exibility to apply relocation�based data layout optimizations at any

time without concern over violating program correctness� we propose a mechanism called

memory forwarding which guarantees the safety of relocation at a word granularity �In

our discussion� we de�ne the �word� size to be equal to the size of a pointer�	� The basic

idea behind memory forwarding is that when we relocate an object� we store its new

address in its old location and mark the old location so that hardware recognizes it as a

forwarding address� Therefore if the program accidentally accesses the old address� the

hardware will automatically forward the reference to the object
s new location� thereby

guaranteeing the correct result� Moreover� our scheme only pays the run�time overhead

of an extra indirection when it is actually necessary��i�e� when the alternative is to

violate program semantics� In the far more common cases of references to non�relocated

objects� or references that have been properly updated to point to the new addresses of

relocated objects� our scheme imposes no performance overhead� The space overhead of

our scheme is also low �a ���� �xed memory cost on a ���bit architecture	�

With memory forwarding support� the decision of whether to apply a relocation�

based optimization reduces solely to evaluating its cost!bene�t performance tradeo
s�

In e
ect� memory forwarding enables software to optimistically speculate that when it

relocates an object� it has successfully updated all pointers to that object to point to its

new location� If the speculation fails� then there is a recovery cost �i�e� dereferencing the

forwarding address	� but the execution still proceeds correctly� Therefore� as in all forms

�This contrasts to an approach taken by some machines in the old days� where indirection is required
for every single data access� For example� in the Burroughs B���� ������ a data item is always accessed
through indexing a descriptor that speci�es the base address and size of the corresponding data region�
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of speculation� one is gambling that the speculation is correct often enough that the

bene�t outweighs the cost� Another feature of our mechanism which helps improve these

odds is that software can optionally specify that dereferencing a forwarding address will

invoke a user�level trap that enables software to update the o
ending pointer to point to

the object
s new address� Hence software can learn from its mistakes to avoid repeating

them�

����� Related Work

It is interesting to note that the work which is most closely related to our study occurred

well over a decade ago in the context of architectures that directly supported the Lisp

programming environment ���� ���� ���� ��� � Performance concerns were quite di
erent

back then� main memory was relatively small and expensive� and cache miss latencies

were less problematic because the gap between microprocessor and memory speeds was

dramatically smaller� �In fact� a number of microprocessor�based systems did not even

have caches�	 Therefore the primary concern in optimizing memory performance back

then was minimizing the overall space requirements of a program� so that it would �t into

main memory and avoid paging to disk� Two aspects of the Lisp environment made this

challenging� the need to perform automatic garbage collection� and the relative space

ine�ciency of the ubiquitous list structures in the language� In addition� another aspect

of the Lisp language which resulted in specialized hardware support was the need to

determine object data types at run�time�

Although the performance goals which inspired specialized hardware and software

support in these Lisp machines are quite di
erent from our goal of improving cache

performance� there are nonetheless a number of interesting overlaps between our support

and some features of these earlier machines� We now discuss the connections between this

previous work and our study from three di
erent perspectives� tagged memory� garbage

collection� and data layout optimizations�

Tagged Memory

To make objects self�descriptive with respect to their types� a number of Lisp architec�

tures ���� ���� ���� ��� associated a tag with each memory location� As we will see later

in Section ������ our memory forwarding scheme also requires a form of tagged memory to

distinguish forwarding addresses from normal data� A key di
erence� however� is that the

tags in Lisp machines provided much more functionality than in our case� and therefore

they required more overhead� For example� the SPUR architecture ���� added eight bits
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of tag to each �� bits of memory �a ��� overhead	� whereas our scheme only requires

one tag bit per �� bits of memory �a ���� overhead	 in a modern ���bit architecture�

A fact that is even more relevant to our study is that a form of memory forwarding

�using tagged memory	 has appeared in previous Lisp machines� albeit for a very di
erent

purpose� The concept of an invisible pointer �which is similar to our forwarding address	

was proposed twenty�four years ago by Greenblatt ��� � and the Symbolics ���� ��� 

used one of its tags to implement a forwarding pointer� The motivation behind these

mechanisms was threefold� to enable the insertion of an item into a cdr�coded list ��� �

to facilitate incremental garbage collection� and to implement overlapping arrays� In

contrast� our focus is on improving the cache performance of programs written in C� and

therefore none of these issues apply� In essence� what we are doing is taking a very old

mechanism and adapting it to a completely new purpose within the context of modern

out�of�order superscalar processors�

Garbage Collection

A common feature among these Lisp machines is that they support some form of au�

tomatic garbage collection� Garbage collection algorithms involve phases where they

identify two classes of data items� those that can be reclaimed� and those that can be

relocated� A data item can be reclaimed when it can no longer be accessed through any

pointers that are still active� and a data item can be relocated if all pointers to the old

location can be updated to point to the new location� In both cases� the key challenge is

identifying all pointers which point to the given location� In languages such as Lisp� ML�

and Java� where the use of pointers is either restricted or disallowed altogether� one can

solve this problem in practice� In contrast� in languages such as C and C## which do

not restrict pointer usage� one generally cannot exactly determine which pointers point

to a given object� and therefore automatic garbage collection �and data relocation	 is

extremely di�cult� Finally� it is interesting to note that a form of memory forwarding is

used in copying garbage collectors ���� �� � whereby the forwarding addresses are used to

preserve data consistency during the distinct phases when collection takes place� In con�

trast� our approach must preserve the forwarding addresses across the entire execution

of the program� and not just during garbage collection phases�

Data Layout Optimizations

An important topic in Lisp research is how to represent list structures compactly� List

compaction can be performed either separately or during garbage collection� Most of

the list compaction techniques designed for Lisp ���� ��� ��� �� involve either moving or
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copying the original list to a new� denser set of locations� As we discussed above� data

relocation in Lisp does not pose the safety problems that we encounter in C� However�

our memory forwarding support gives us the �exibility to exploit some of these same

list compaction techniques�e�g�� a technique called list linearization ��� �for the sake

of improving spatial locality in C programs�

����� Objectives and Overview

We make the following contributions in this chapter� First� we propose a solution to the

problem of safely relocating data at a �ne granularity to improve the cache performance

of programs written in languages such as C which do not support garbage collection�

Although the concept of memory forwarding was proposed over two decades ago in the

context of Lisp machines� to the best of our knowledge� we are the �rst to propose that

it be adapted to facilitate a broad class of data layout optimizations to improve cache

performance� Second� we discuss how memory forwarding can be implemented within

modern out�of�order superscalar processors �which are quite di
erent from the proces�

sors in which other forms of forwarding have been implemented in the past	� Third� we

suggest a number of optimizations which can bene�t from memory forwarding� Finally�

we quantitatively evaluate the bene�ts and overheads of our scheme by using it to ap�

ply a number of di
erent run�time locality optimizations to a collection of non�numeric

applications running on a modern superscalar processor�

The remainder of this chapter is organized as follows� We begin in Section ��� with

an overview of memory forwarding and how it can be used� Section ��� discusses is�

sues related to implementing memory forwarding in a modern processor� Sections ���

and ��� present our experimental methodology and experimental results� respectively� to

demonstrate the usefulness of the mechanism� Finally� we conclude in Section ����

��� Memory Forwarding

We now discuss the basic concepts behind memory forwarding� how to handle a compli�

cation arising from operations depending on pointer values� a number of applications of

forwarding� and some issues related to its performance�

����� Basic Concepts

Memory forwarding enables aggressive yet safe data relocation� As we mentioned earlier

in Section ������ the basic idea is to store the new address of an object into its old

memory location� and to mark this old location as a forwarding address� Whenever a
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Figure ���� Example of data relocation with memory forwarding �a memory word is �
bytes� and addresses are in decimal	�

forwarding address is accessed� the hardware �probably in cooperation with software	

will automatically dereference that location to �nd the object at its new location�

There are three implications of this mechanism in terms of memory storage� First� the

minimum unit of data that can be relocated is the width of a pointer�which we refer to

as a �word� throughout this chapter�since otherwise there would not be enough space

to store the forwarding address�� Note that it is possible to relocate byte�sized objects�

this simply means that enough neighboring bytes must be moved at the same time to

comprise an entire word� Second� a chunk of data that is relocated must be word�aligned�

so that the alignment of the forwarding address is predetermined� Note that this still

allows us to perform byte�sized loads and stores to forwarded objects�the byte o
set

into the new location is simply assumed to be the same as it was at its original address�

We consider these �rst two restrictions to be quite minor� especially given that our only

option for safe relocation today is page�sized� page�aligned chunks of data� Finally� to

enable the hardware to distinguish forwarding addresses from regular data� we attach a

one�bit tag �called a forwarding bit	 to each word in memory� For a ���bit architecture�

this results in a space overhead of only ����� and therefore is reasonably e�cient�

Figure ��� shows a simple example of how the memory contents and forwarding bits

are modi�ed upon data relocation� Assume that we have a ���bit architecture� and that

we would like to relocate �ve ���bit elements from addresses �������
� to addresses �����

��
� �these addresses are in decimal notation	� Figure ����a	 shows the memory contents

�One could imagine creating a more elaborate scheme for compressing the size of forwarding address
pointers �e�g�� by restricting the distance between the old and new address to something that �t within
its former size�� but this would involve additional complexity and fancier tag storage� so we do not
consider such an approach further�
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and forwarding bits before relocation �note that none of the forwarding bits have been

set	� To relocate a word� we �rst copy it to its new location� and then we simultaneously

write its new address into its old location and set the corresponding forwarding bit at

the same time� Figure ����b	 shows the state of memory after the relocation� Notice

that to relocate the ���bit subword at address ��
�� we must also relocate the ���bit

subword at address ���	 �which contains the value �	 along with it� After the relocation�

a ���bit load of the subword at address ���	 will be forwarded to address ���	�which

is computed by adding the forwarding address �����	 to the byte o
set within the word

�		�thereby returning the correct value of �	��

To simplify our discussion throughout the remainder of the chapter� we now de�ne

two terms which we will use frequently�

Initial address� The address of the �rst location accessed by a memory reference� For

example� in Figure ����b	� the initial address of a write to word ��
� is ��
� itself�

Final address� The address of the last location accessed by a memory reference� For

example� in Figure ����b	� the �nal address of a write to word ��
� is ��
�� When

data is not forwarded� the �nal address equals the initial address�

����� Handling Operations That Depend on Pointer Values

In addition to preserving the correctness of pointer dereferences� another concern in data

relocation is preserving the correctness of operations that depend on the pointer values

themselves� Such operations include pointer comparisons and saving pointer values to

a �le� Applying data relocation to programs with these operations is unsafe� even with

memory forwarding� since the very act of relocating data changes the data address� In

fact� the only general solution is to disallow relocation of objects whose addresses could

a
ect the outcomes of such operations� Fortunately� after considering how pointer values

are typically used in normal C programs� we can identify an important special case�

equality tests of pointers that potentially point to the same type of relocatable objects��

And the good news is that we can preserve the correctness of these tests even in the

presence of data relocation by comparing the pointers with respect to their �nal addresses�

Although our memory forwarding hardware does not perform this check automatically�

the compiler can easily insert additional instructions �described in Section ���	 to look

up the �nal addresses for these comparisons� We have implemented such a compiler pass�

�Other kinds of pointer comparisons such as p � q or p � q may be used to test array�element
addresses but should be rarely used for data structures� like linked lists or trees� that are most relevant
to relocation�
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and the resulting software overhead is included in our performance results� As we will

see later in Section ���� this overhead does not present a problem�

So far� we have assumed that the compiler knows whether a pointer involved in an

operation points to a relocatable object so that it can safely ignore all cases involving

no such pointers� However� this assumption cannot be realized by simply inspecting

the declared types of the pointers in question� because the type coercion feature of C

can confuse the compiler� Instead� the compiler can make use of some type�inferencing

tools ��� ���� ���� ��� that perform relatively simple pointer analyses to infer operand

types� Recent advances in program analysis have demonstrated that these tools can

handle large programs e�ciently without sacri�cing much accuracy� Nevertheless� it is

essential to realize that though these tools can tell the types of objects� they do not solve

the pointer aliasing problem itself �e�g�� most of them are not intended to distinguish

di
erent elements within the same linked data structures	� Therefore� even with the

help of these tools� we still need a mechanism like memory forwarding to provide the

correctness guarantee for aggressive data relocation�

����� Applications of Memory Forwarding

While the act of dereferencing a forwarding address clearly does not improve perfor�

mance on its own� the advantage of memory forwarding support is that it enables a wide

range of data layout optimizations which can enhance cache performance� Not only are

these optimizations useful for mitigating the impact of memory latency� they can also

be used to conserve memory bandwidth� We now brie�y describe some of these potential

optimizations�

Improving Spatial Locality

A straightforward method of actively improving spatial locality is to take data items

which are accessed close together in time� but which are scattered sparsely throughout

the address space� and pack them into adjacent memory locations� This form of data

packing makes cache lines much more e
ective� and it can potentially reduce the number

of capacity� compulsory� and con�ict misses� Not only does this improve performance� it

can also reduce memory bandwidth consumption� which in turn can help reduce power

consumption �which is becoming an increasingly important concern	�

Aside from traditional processor cache hierarchies� there are other situations where

enhancing spatial locality is particularly important� For example� there have been recent

proposals to integrate a processor and memory on the same chip ����� ��� � To utilize the

full memory bandwidth of such an architecture� it is important to exploit large amounts of
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Figure ���� Example of list linearization with memory forwarding� assuming that cache
lines and list elements are �� and �� bytes long� respectively �addresses are in decimal	�

spatial locality�e�g�� the Saulsbury et al� study ���� used ����byte cache lines� Another

portion of the memory hierarchy where spatial locality is extremely important is on disks�

where seek times are enormous relative to the time it takes to transfer an additional byte

at a contiguous address� Although both of these scenarios are beyond the scope of our

performance study� we believe that they also provide rich opportunities for exploiting

memory forwarding to enhance performance�

A good example of a technique which uses packing to enhance spatial locality is

list linearization� As we will see later in Section ���� this technique can o
er dramatic

performance improvements� The idea behind list linearization is to relocate the nodes of

a linked list so that they reside in contiguous memory locations� Depending on whether

the list structure continues to change over time� the linearization process can be invoked

either just once� or else periodically to adapt to the changing structure� Although list

linearization can potentially o
er large performance gains� it is very di�cult to safely use

this optimization in practice for general C programs due to the possibility of pointers

outside of the linked list itself pointing to list elements� Fortunately� with memory

forwarding support� we can apply list linearization at any time without worrying about

whether all potential pointers to list elements have been properly updated�

Figure ��� shows an example of list linearization with memory forwarding� Before

linearization� the four nodes of the list �i�e� nodes A� B� C� and D	 are scattered throughout

memory such that they reside in four separate cache lines� as shown in Figure ����a	� List
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linearization packs the four nodes into a contiguous memory region starting at location

����� as shown in Figure ����b	� As a result� the four relocated nodes occupy only two

cache lines� rather than four� thereby potentially eliminating half of the cache misses due

to this list as we continue to revisit it� Note that the forwarding addresses and forwarding

bits have been set properly such that we will still maintain correct execution even if a

stray pointer accesses a list element at its old address� However� we expect that most

accesses to the list will �nd it directly at its new address� thereby enjoying the enhanced

spatial locality�

Increasing Prefetching E�ectiveness

As we discussed in Chapter �� the e
ectiveness of prefetching pointer�based data struc�

tures is largely limited by the pointer�chasing problem� One of the techniques we proposed

in Chapter � to generate prefetch addresses early enough is data�linearization prefetching

�see Section �����	� which maps heap�allocated nodes that are accessed close together in

time into adjacent memory locations� Memory forwarding nicely supports this technique

by allowing such data mapping to be done dynamically during the execution without

worrying about the safety problem� In fact� this was our original motivation for studying

memory forwarding�

Reducing Cache Con�icts

Cache con�ict misses can be reduced through either hardware or software techniques�

Hardware�based techniques such as increasing the set associativity or adding victim

caches ��� can handle small degrees of con�ict� but their e
ectiveness declines as more

con�icting addresses map to the same cache entries� In contrast� software�based tech�

niques such as data copying ���� ��� and coloring ��� tackle the problem from its root

by rearranging the data layout� hence they can potentially resolve even severe degrees

of con�ict� Data copying ��� was originally proposed to reduce con�ict misses within

tiled �or �blocked�	 numeric applications� Since a given tile is reused many times after

it is brought into the cache� it is particularly problematic if di
erent elements within the

tile con�ict with each other� To avoid this problem� the data copying optimization �rst

copies a tile to a contiguous set of addresses in a temporary array before using it� since

these locations do not con�ict with one another� the problem is eliminated� Another

technique called data coloring ��� was proposed as a method of reducing con�ict misses

in pointer�based data structures� The idea is to partition the cache into logically sepa�

rate regions �or colors	� By relocating data structure elements which are accessed close

together in time to separate regions of the cache� con�ict misses can be avoided� Memory
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forwarding can help facilitate both copying and coloring techniques by guaranteeing that

they are safe�

Reducing False Sharing

In cache�coherent shared�memory multiprocessing systems� false sharing ���� ��� occurs

when two or more processors access distinct data items which happen to fall within the

same cache line �which is the unit of coherence	� and at least one access is a write� False

sharing can hurt performance dramatically as the line ping�pongs between processors

despite the fact that no real communication is taking place� By relocating those unrelated

data items to distinct cache lines� false sharing can be avoided� Memory forwarding would

be especially helpful in avoiding false sharing in irregular shared�memory applications�

where proving that data items can be safely relocated is di�cult�

In summary� memory forwarding enables a broad range of relocation�based optimiza�

tions� we have presented just a partial list of such optimizations� We would also like to

emphasize that these optimizations are applicable not only to caches but also to the other

levels of the memory hierarchy� For example� we can apply data relocation to improve

the spatial locality within pages �and hence on disk	 for out�of�core applications�

����� Performance Issues

A relocation�based optimization will improve overall performance if two conditions hold�

�i	 the new data layout actually provides better memory performance than the original

layout� and �ii	 the gain in the memory performance outweighs the optimization overhead�

This overhead includes the extra execution time due to actually relocating the data� and

may also include forwarding overhead if any references actually need to be forwarded

after the relocation� While the overhead of relocating the data may seem to be a concern

at �rst glance� our experimental results indicate that it is usually not a problem because

relocation is invoked infrequently and modern processors are fast enough to a
ord this

extra computation� In addition� we �nd that the performance overhead of forwarding is

negligible in many cases because most data references are updated properly and do not

need to be forwarded� We observe that the real performance concern is ensuring that the

reorganized data layout actually delivers higher memory performance than the original

layout�
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�B� R� � Unforwarded Read�word� A��a Read the forwarding bit associated with the
word at address A into register B and read the word�s value into register R atomically�
with forwarding disabled� If the forwarding bit is set� this is a forwarding address�
otherwise this is a regular data value�

�A � Unforwarded Write�bit B� register word R��b Set the forwarding bit associated
with the word at address A to B�s value and write R�s value into the word atomically�
with forwarding disabled�

aIf an instruction of the underlying ISA cannot have three operands� we can hardwire B to a
special register that is set by every Unforwarded Read automatically�

bAgain� if three�operand instructions are not allowed� we can hardwire B to a special register that
can be set prior to the Unforwarded Write� Alternatively� we can have two separate instructions
for Unforwarded Write�R��� and Unforwarded Write�R����

Figure ���� Proposed instruction set extensions to support memory forwarding �C syntax
is used to improve readability	�

��� Implementation Issues

We now discuss the support that we need from the instruction set� the hardware� and

the software to implement memory forwarding in modern superscalar processors�

����� Extensions to the Instruction Set Architecture

To exploit memory forwarding� the machine must have some way to manipulate the

forwarding information�i�e� the forwarding addresses and the forwarding bits� Rather

than taking a purely hardware�based approach� we propose to extend the underlying

instruction set architecture �ISA	 by adding a few instructions which will allow software

to manipulate the forwarding information directly� The advantages of this approach are

its programmability and �exibility� In addition� we expect the software overhead to be

low since forwarding information changes relatively infrequently�

Figure ��� shows our proposed ISA extensions� which consist of two new instructions�

Unforwarded Read and Unforwarded Write allow software to manipulate memory with

the forwarding mechanism disabled� For example� in Figure ����b	� a normal Read �i�e�

with the forwarding mechanism enabled	 of the word at address ���� will get the for�

warded value of �� but an Unforwarded Read of the same word will get ����� which is

the forwarding address� Both new instructions access the forwarding bit and the word

atomically in order to preserve data consistency� especially in multiprocessor applications�

To demonstrate how software can make use of these new instructions� Figure ����a	

shows two procedures for relocating a data object of size n words from src to tgt� and
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�a� Data Relocation

�� src � address of the object before relocation
�� tgt � address of the object after relocation

�� n words � number of words to relocate
void Relocate�word	 src� word	 tgt� int n words� f

boolean relocated�

word content�

�relocated� content� � Unforwarded Read�src��
while �relocated� f �� loop until the �nal address is reached

src � �word	�content� �� content is in fact a forwarding address
�relocated� content� � Unforwarded Read�src��

g
actualRelocate�src� tgt� n words��

g

void actualRelocate�word	 src� word	 tgt� int n words� f
for�� n words � �� ��n words� f �� relocate each word in the object

word temp�

boolean dontCare�

�� save the content of src
�dontCare� temp� � Unforwarded Read�src��

�� copy the original content of src to tgt

	tgt � Unforwarded Write�temp� ���

�� setup the forwarding address and forwarding bit
	src � Unforwarded Write�tgt� ���

�� prepare for the next word

src �� �� tgt �� ��

g

g

�b� List Linearization

extern char	 memory pool� �� a pool of space for data relocation
�� head handle � address of the list head pointer
void ListLinearize�node 		 head handle� f

node 		 handle� 	tgt�

handle � head handle� �� start from the list head

while �	handle� f
�� grab space from the pool

tgt � �node	�memory pool�

�� increment the pool pointer

memory pool �� sizeof�node��
�� relocate the node pointed�to by handle to the address stored in tgt

Relocate�	handle� tgt� sizeof�node��sizeof�word���
�� append the relocated node to the linearized list
	handle � tgt�

�� prepare for next node
handle � ��tgt�next��

g
g

Figure ���� Procedures using the proposed ISA extensions to implement �a	 data reloca�
tion and �b	 list linearization�
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then storing tgt as the forwarding address into src�� Procedure Relocate�� loops until

a clear forwarding bit is read so that tgt will be appended at the end of the forwarding

chain �if any	� Figure ����b	 shows a procedure called ListLinearize�� �which we

will use frequently later in our experiments	 which calls Relocate�� to perform list

linearization� The parameter head handle is the address of the list head� Note that the

address of the list head �rather than its value	 is passed into ListLinearize�� because

we want to modify the list head to point to the new locations after the relocation is

performed� �This e
ect was illustrated earlier in Figure ����b	� where the value of head

is changed to ���� after the linearization�	 By doing so� the next time that the list is

accessed via the list head� the new locations will be accessed directly without touching

the old locations� Finally� note that in Figure ����b	� the new locations for the relocated

nodes are allocated from a pool of contiguous memory� thereby creating spatial locality�

����� Hardware Support

We now discuss the hardware modi�cations necessary to support memory forwarding�

The key insight which helps us keep the hardware simple is that references which actually

require forwarding are expected to occur rarely �if ever	� The forwarding mechanism is

simply a safety net which allows us to continue to preserve program correctness in case

the unexpected happens� In other words� we can treat forwarding as an exception� We

will design the hardware to be fast in the common case�i�e� a normal� non�forwarded

reference�and we are less concerned about the performance penalty when forwarding

is actually invoked� since that is rare� Hence a legitimate option is to use a processor
s

normal exception handling mechanism to implement forwarding�

One hardware requirement that was mentioned earlier in Section ����� is that we need

tagged memory� A number of systems which supported tagged memory have been built

in the past ���� ��� � One di
erence with our scheme �as discussed earlier	 is that we

require less tag storage overhead than previous schemes� otherwise� it is quite similar�

We now discuss the more novel features of our hardware support in greater detail�

Dereferencing Forwarding Addresses

In the presence of memory forwarding� the data referencing mechanism must be able to

follow forwarding chains of arbitrary lengths� More speci�cally� when a memory word

is accessed by a data reference� its forwarding bit is tested� If this bit is set� then the

�We assume a uniprocessor environment in this example� In a multiprocessor environment� we must
make sure that no one modi�es the word between the two Unforwarded Write#s in actualRelocate�
This can be accomplished by a number of mutual exclusion mechanisms�
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original data address will be replaced by the contents of the word just accessed �which

contains a forwarding address	� and a new memory access using the forwarding address

will be launched� This process repeats until a clear forwarding bit is read �we will discuss

how cycles might be handled later in this section	� at which point the data reference

can proceed as usual� One option is to implement this dereferencing mechanism purely

within hardware� another is to implement it using a software�based exception handler

�where the exception is triggered by accessing a word with its forwarding bit set	� With

the ISA extensions that we propose� it would be straightforward for a software handler

to chase the forwarding pointer chain� Although the forwarding bit cannot be tested

until the memory location is brought into the primary cache� this is no di
erent from the

delays associated with checking ECC or parity bits�

Data Dependence Speculation

One consequence of memory forwarding is that we do not know the �nal data address

of a given reference until the reference is nearly completed� This delayed generation of

the �nal address poses a potential problem in out�of�order superscalar machines� These

machines normally allow a load access to proceed before an earlier store� provided that the

load and store are to di
erent addresses� If either address is unknown� the conservative

approach is to delay the load until both addresses are resolved� With memory forwarding�

since the �nal address of a store is not known until the store actually completes� this

delay would cause the conservative approach to never execute a load ahead of an earlier

store�

Fortunately� there is a solution to this problem� A technique called data dependence

speculation ���� ��� ��� ��� allows a load to speculatively execute before an earlier store�

even if the store address is unknown� If it turns out that the load was not dependent

on the store� then the speculation succeeds� otherwise� a true dependence has been vio�

lated� and the e
ects of the incorrect speculation must be undone� Recent out�of�order

superscalar processors ���� ��� �� have already implemented the unselective form of data

dependence speculation� �The unselective approach means that a load is speculated

whenever possible� in contrast� the selective approach only performs the load speculative

if it is predicted to not be dependent on preceding stores ��� �	 With support for data

dependence speculation �either unselective or selective	� we can speculate that the �nal

address of a reference will be the same as its initial address �i�e� we do not expect the

reference to be forwarded	� and therefore the delayed �nal�address generation will not

degrade performance in the common case where the reference is not forwarded after all�

If forwarding does occur� then our speculation would only be incorrect in the case where
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the load and store had di
erent initial addresses but the same �nal address� In our exper�

iments� we observed that incorrect data dependence speculation almost never occurred�

hence it appears to be a very e
ective solution to supporting memory forwarding�

Handling Forwarding Cycles

A forwarding cycle is created when software erroneously inserts an address more than

once into a forwarding chain� The hardware must have some mechanism for detecting

and breaking forwarding cycles� otherwise� the machine could be stalled forever chasing

the forwarding chain� Detecting forwarding cycles accurately is an expensive operation�

for each hop� the hardware would have to match the current forwarding address against

all previous forwarding addresses dereferenced by the same data reference� Because of

this high cost�and also because we expect forwarding cycles to be extremely rare�we

would prefer that the hardware instead perform a fast but possibly inaccurate check for

a cycle during normal execution� and only perform accurate cycle detection when it is

necessary� One possibility is to predetermine a limit on the number of forwarding hops

that are allowed for a given data reference� We simply maintain a counter �which could be

implemented either in hardware or in software	 to keep track of the number of forwarding

hops performed so far� and when this count exceeds the limit� we raise an exception� The

corresponding software exception handler will then perform an accurate cycle check� If

it is a false alarm� then we will reset the counter and resume execution� otherwise� the

execution will be aborted�

Providing User�Level Traps Upon Forwarding

In addition to the system�level exception handlers which might be provided to support the

dereferencing of forwarding addresses and the detection of forwarding cycles� it may also

be useful to provide a lightweight user�level trapping mechanism that would be invoked

upon accessing a forwarded location� Such a mechanism would be useful for allowing

the application to tune its own performance in the following two ways� First� one could

write a pro�ling tool to gather forwarding�related statistics for the purpose of improving

the performance of a future execution of the program� For example� one might record

which instructions experienced forwarding for the sake of eliminating that forwarding in

future runs of the program� Second� a user�level trap handler could be used to optimize

away forwarding �and thereby improve performance	 on�the��y� For example� one could

write a tool that updates stray pointers on�the��y to point directly to their correct �nal

addresses� thereby avoiding the need to invoke the forwarding mechanism again� �Note

that one must have application�speci�c knowledge in order to do this�	�
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Our user�level trapping mechanism might be implemented in a similar fashion to the

trapping version of informing memory operations proposed by Horowitz et al� ��� � The

primary di
erence would be that informing memory operation traps are invoked upon

cache misses� and forwarding traps would be invoked upon detecting a forwarding address�

Horowitz et al� ��� proposed a number of ways to specify user�level trap handlers to the

hardware� ranging from a single handler for the entire program to a unique handler for

each memory instruction� In our case� for example� there may be a single pro�ling handler

for the entire program� but a fairly large number of pointer updating handlers for di
erent

memory instructions�

����� Software Support

Having discussed the hardware support for memory forwarding� we now focus on its

impact on software�

Initialization of Forwarding Bits

The forwarding bit of a memory word must already be clear when it is used by a

program for the �rst time� To guarantee this� the operating system must perform an

Unforwarded Write����� operation on all words in a region of memory to initialize it

before making that memory available to an application�

Deallocating Forwarded Data

When an object is deallocated� all memory reachable via the chain of forwarding addresses

for that object should be deallocated as well� A simple way to accomplish this is to create

a wrappermemory�deallocation routine which �rst deallocates all of the memory allocated

on the forwarding chain� and then calls the original memory�deallocation routine� which

can be either a system�provided procedure �e�g�� free�� in C and delete�� in C��	 or

a user�de�ned procedure if the program performs its own memory management�

Memory Alignment

Since the minimal granularity of memory forwarding is a word� software must ensure

that two di
erent objects which are being relocated to two di
erent destinations do

not share the same word� since we cannot store two di
erent forwarding addresses in

that same word� In other words� relocatable objects must be word�aligned� Enforcing

this alignment can be accomplished either by specifying the alignment to the memory

allocator for dynamically�allocated objects� or else by tuning the alignment option in the
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�a� Original Codes

�� start � address to begin with

�� end � address to finish with

inc array�int	 start� int	 end�

f

int	 a�

for �a � start� a �� end� a���

��	a�

g

�� first � address to begin with

�� last � address to finish with

inc list�node	 first� node	 last�

f

node	 p�

for �p � first�

p �� last�

p�p��next�

��p��data�

g

�b� With Codes Added to Preserve
Outcomes of Pointer Comparisons

�� start � address to begin with

�� end � address to finish with

inc array�int	 start� int	 end�

f
int	 a�

for �a � start� a �� end� a���

��	a�

g
�� first � address to begin with

�� last � address to finish with

inc list�node	 first� node	 last�

f

node	 p�

for �p � first�

�� preserve the outcome of this test

�nal address�	p� �� �nal address�	last��

p�p��next�

��p��data�

g

Figure ���� Example of adding codes to preserve the outcomes of pointer comparisons�

compiler if some relocatable objects are statically allocated� In most compilers�e�g��

the MIPS C compiler that we used in our experiments�aggregate objects are already

aligned to word boundaries by default�

Preserving Outcomes of Pointer Equality Tests

The compiler is responsible for replacing all pointer equality tests that could be a
ected

by relocation with explicit code to look up and compare �nal addresses� As we have

discussed in Section ������ type�inferencing tools ��� ���� ���� ��� can help the compiler

avoid inserting these more costly comparisons by ignoring cases where pointers cannot

point to relocated objects� Figure ��� shows an example of adding codes to preserve the

outcomes of pointer equality tests� In the original code shown in Figure ����a	� there is

a pair of underlined pointer comparisons� Assuming that list nodes can be relocated but

array elements cannot� the compiler will replace the pointer comparison p �� last by

a new one final address��p� �� final address��last�� where final address�m�

computes the �nal address of the memory reference m� The comparison a �� end needs

not be replaced since the compiler knows from type inference that a and end cannot point
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Table ���� Application characteristics�

Optimizations
Name Description Source Input Data Set Applied

BH Barnes�Hut#s N�body force Olden ���� �K bodies Subtree
calculation algorithm clustering

Compress Compresses and decompresses SPEC�� A �le of ���K Array
�le in memory characters merging

Eqntott Translation of boolean SPEC�� int pri ��eqn Packing of hash
equations into truth tables table elements

Health Simulation of the Columbian Olden max� level 
 � List
health care system max� time 
 ��� linearization

MST Finds the minimum spanning Olden �K nodes List
tree of a graph linearization

Radiosity Virtual image rendering IRISA ���� A scene consisting List
using hierarchical radiosity of �� lightly linearization

furnished rooms
SMV A symbolic model checker CMU �
�� The �dme��smv� List

�le provided linearization
in the package

VIS A veri�cation and synthesis The VIS A reduction of the List
system for �nite�state group ���� 
 queens problem to linearization
hardware systems combinational

equivalence checking

Table ���� General run�time statistics� �Insts Grad�� is the total instructions graduated�
�Loads Grad�� is the total loads graduated� The percentages of loads that were found
in each of the four possible places are shown under �Where Loads Were Found�� where
�Combined� are loads that were combined with other in��ight references� �Average Load
Miss Penalty� includes penalties of both full misses and partial misses�

Insts Loads Where Loads Were Found Average Load Miss
Benchmark Grad� Grad� D�Cache Combined S�Cache Memory Penalty �cycles�

BH ���� M ��� M ������ ����� ����� ����� ���

Compress ��� M �� M 
����� ����� ��

� ����� ����
Eqntott �
�� M ��� M 
����� ����� ����� ����� ����
Health ��� M �
 M ����
� ��

� ������ ������ ����
MST ��� M �� M ���
�� ����� ����� ����� ����
Radiosity ���� M ���� M ������ ����� ��
�� ����� ����
SMV ��� M �� M 
����� ���
� ����� ����� ����
VIS ��� M �� M 
����� ����� ����
� ����� ����

to relocated objects� The code for implementing final address�m� is already included

in the procedure Relocate�� shown in Figure ����
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��� Experimental Framework

To evaluate the potential performance bene�ts of memory forwarding� we modeled it in a

modern processor and used it to enable a number of relocation�based optimizations which

we applied to a collection of non�numeric applications� These applications were chosen

because they could potentially be speeded up by these optimizations according to some

pro�ling information but compilers are unable to guarantee the safety� The goals of these

optimizations were improving spatial locality and prefetching e
ectiveness� Since current

compiler technology does not support these optimizations �mainly because their safety

cannot be proven	� we added these optimizations to the applications manually� Table ���

describes the eight applications used in our experiments along with the optimizations that

we applied� Some general run�time statistics are also shown in Table ���� All applications

were run to completion in our simulations�

We added our proposed ISA extensions to the underlying MIPS ISA by making use

of a few machine instruction sequences that never appear in ordinary programs �e�g��

loading a value into a register which is hardwired to the value zero	� We modeled the full

performance e
ects of maintaining and dereferencing the forwarding addresses� Since our

simulator is essentially trace�driven� the data reference addresses that it receives from

the trace have not taken memory forwarding into account� To emulate the forwarding

e
ect accurately� our simulator records two pieces of information� First� it records every

memory word in the application that has been speci�ed as �forwarded� along with its

forwarding address� Second� it records whether a pointer that had been pointing to a

given object gets updated to the object
s new address if that object is relocated� For

example� in Figure ����b	� the simulator must record the fact that head points to location

���� rather than location ���� after the linearization� The simulator needs this second

piece of information to decide whether forwarding address dereferencing is really needed

when a word is accessed �according to the unmodi�ed address in the trace	 which has its

forwarding bit set� If the word is accessed through a pointer which is already pointing

to the new address� then it is not necessary to dereference the forwarding address�

We implemented unselective data dependence speculation in our simulator� An am�

biguous data dependence is stored in a table until the two �nal data addresses involved

in the dependence are determined� If the dependence is incorrectly speculated� then

the simulator will then re�execute all instructions after �and including	 the instruction

which had violated the dependence� We replaced the memory deallocation calls in the

applications by calls to our own memory deallocator which �rst checks whether there is

any memory residing in forwarding chains which must be freed� We wrote a compiler
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Table ���� The �ve line sizes and the corresponding miss latencies used in the experiments�

Primary�to�Secondary Primary�to�Memory
Line Size Miss Latency Miss Latency
�bytes� �cycles� �cycles�

�� �� ��
�� �
 ��
��
 �� ���
��� �� ���
��� ��� ���

Table ���� Forwarding�related statistics�

Average Number of Instruction Overhead Space
Benchmark Forwarding Hops of Optimizations Overhead

BH ���� ���� ���MB ������
Compress ���� ���� ���MB ����
Eqntott ���� ���� ���MB �����
Health ���� ���� ���MB ��
���
MST ���� ����� ����MB ��
��
Radiosity ���� ����� ���MB ����
SMV ���� ����� ���MB �����
VIS ���� 
��� ����MB ������

pass in SUIF ���� that automatically determined which pointer comparisons needed

to be replaced by �nal address comparisons� The overhead of executing these replaced

comparisons is included in our simulations�

The processor model used for the experiments in this chapter is identical to the one

used in Chapter � �the simulation parameters are already shown in Table ��� on page ��	�

To study how successfully spatial locality is exploited� �ve line sizes�ranging from ��B to

���B�were used in our experiments� along with �ve corresponding sets of miss latencies

�longer lines have longer transfer times	� They are shown in Table ����

We compiled our applications with �O� optimization using the standard MIPS C

compilers and the SUIF compiler ���� under IRIX ���� For the experiments which

required the insertion of software prefetches into the source code� we used the SUIF

compiler� otherwise� the MIPS compiler was used�

��� Experimental Results

We now present results from our simulation studies� We start by evaluating the per�

formance of a number of aggressive locality optimizations enabled by memory forwarding
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Figure ���� Performance of locality optimizations for various cache line sizes �N � not
optimized� L � locality optimized	�

�which we simply refer to as locality optimizations	� Next� we study the impact of these

optimizations on prefetching e
ectiveness� We then examine the details of individual

applications� explaining the optimizations that we applied to each application� Finally�

we study the performance impact of forwarding overhead for one of the applications�

��	�� Performance of Locality Optimizations

Before studying the performance of locality optimizations� we �rst look at the forwarding�

related statistics reported in Table ���� First� we �nd that memory references in seven of

the eight applications do not need to be forwarded and therefore the execution overhead

of forwarding does not matter for them� The only exception is SMV� where on average a

���� forwarding hop is required for a reference� As a result� SMV is the only application

that is a
ected by forwarding overhead� Second� the instruction overhead of our locality

optimizations is usually only a small fraction of the total instruction count in the un�

optimized cases �the ��� increase in the instruction count of SMV is due largely to the

computation of �nal addresses at pointer equality tests	� So� overall� the actual impact

of this overhead on the execution time is quite small� as we will see shortly� Finally� the

�Space Overhead� column in Table ��� shows the amount of virtual memory space needed

to accommodate relocated data �the number in the parentheses alongside is the percent�

age increase with respect to the amount of memory� required by the original program	�

Despite the relatively large percentage increases in virtual memory size in some of these

programs� the absolute amount �ranging from ���MB to ����MB	 presents little problem

in modern machines� and the simulation results include the impact of this overhead on

performance�

Figure ��� shows the performance of our locality optimizations for various cache line

�This was measured as the maximum amount of virtual memory ever reserved by the program�
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sizes� Seven of our eight applications are included in Figure ���� We will show the

performance of SMV separately� later in Section ������ For each application in Figure ����

we show three line sizes� each of which has two cases� the bar on the left �N	 is the

original case where no locality optimization is applied� and the bar on the right �L	 is

the case with locality optimizations� For all applications except BH� the three line sizes

used are ��B� �	B� and ��
B� For BH� we instead use line sizes of ��B� ���B� and

���B� because the optimization applied to BH �subtree clustering	 requires a cache line

containing at least two tree nodes� and this requires cache lines longer than ���B �this

optimization will not be turned on for lines shorter than ���B� and that is why the N

and the L bars are identical for the ��B line size in BH	�

Each bar in Figure ��� represents execution time normalized to the N case of the

��B line size� and is broken down into four categories explaining what happened during

all potential graduation slots �explaination for these four categories can be found in

Section ����� on page ��	� In addition� there is a percentage in parentheses below each

pair of bars representing the speedup of the optimized over the unoptimized case for the

given line size�

Our �rst observation from Figure ��� is that performance generally degrades when

line size increases� especially for the unoptimized cases� This trend is due to a lack of

spatial locality in these applications� which means that longer lines o
er little perfor�

mance advantage� Fortunately� our locality optimizations �which are enabled by memory

forwarding	 improve the spatial locality of these application signi�cantly� As we see

in Figure ���� the optimized cases outperform the unoptimized cases for the same line

sizes in all applications except Compress� and the speedups increase along with line size�

The performance improvement can be dramatic�with ���B lines� Health and VIS enjoy

more than twofold speedups� Among our optimizations� list linearization is particularly

powerful since it improves the performance of Health� MST� Radiosity� and VIS substan�

tially� It is interesting to note that in Health� the absolute performance of the optimized

cases increases along with line size� This is due to the prefetching bene�ts of long cache

lines after spatial locality is greatly improved� Compress is an exceptional case where

the locality gets worse in the optimized cases� We also observe from Figure ��� that the

instruction overhead of these locality optimizations is usually low �as they only slightly

increase the total of the �busy� and �inst� stall� categories	� which suggests that these

optimizations could be invoked even more frequently during the execution to further

improve the data layout�

While execution time is the most important performance metric� further insight can

also be gained by examining the impact on total cache misses� Figure ����a	 shows the
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�a� Number of load D�cache misses
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Figure ���� Additional performance metrics for the impact of locality optimizations �N
� not optimized� L � locality optimized	� The y�axes are normalized to the N cases of
the ��B line size�

number of load D�cache misses in the unoptimized and optimized cases for di
erent line

sizes� Each bar is normalized to the N case of the ��B line size� and is divided into

two categories indicating how a D�cache miss is serviced� A partial miss is a D�cache

miss that combines with an outstanding miss to the same line� and therefore does not

necessarily su
er the full miss latency� A full miss� on the other hand� does not combine

with any access and therefore su
ers the full latency� Figure ����a	 clearly demonstrates

that the improved spatial locality o
ered by locality optimizations reduces the miss count

substantially� with more than a ��� reduction in misses in �� out of the �� cases �seven

applications with three line sizes each	� In many cases� both partial misses and full misses

are reduced� and hence the total miss penalty decreases accordingly�

Figure ����b	 shows another useful performance metric� the total amount of band�

width consumed by our applications� Each bar in Figure ����b	 denotes the total number
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Figure ���� Performance impact of locality optimizations on prefetching� �N � not
optimized� L � locality optimized� NP � prefetching without locality optimizations� LP
� prefetching with locality optimizations	�

of bytes transferred between the primary and secondary caches �the bottom section	�

and the amount transferred between the secondary cache and main memory �the top sec�

tion	� Again� each bar is normalized to the N case of the ��B line size� It is clear from

Figure ����b	 that locality optimizations reduce the bandwidth consumption in nearly

all cases� and achieve a bandwidth reduction of twofold or more in a few cases� Thus

we see that these optimizations deliver not only higher performance� but also reduced

bandwidth consumption�

��	�� Impact on the E�ectiveness of Prefetching

We now turn our attention to the interaction between our locality optimizations and the

e
ectiveness of prefetching� For the three applications �BH� Health� MST	 that appeared in

our data prefetching study in Chapter �� we used the compiler to insert data�linearization

prefetches into the programs automatically� For the remaining four applications� we

manually added software prefetches for a few static loads that su
er signi�cantly from

cache misses� Prefetches are inserted at the earliest points in the program where the

prefetch addresses are known �this is done in an identical fashion for both the original

and locality�optimized cases	� To fully exploit the potentially improved spatial locality

we employed block prefetch instructions� which can prefetch one or more consecutive cache

lines� For both the unoptimized and optimized cases� we experimented with a range of

prefetch block sizes� and we report the results with the block size that performed the

best in each case�

Figure ��� shows how prefetching performs both with �LP	 and without �NP	 locality
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optimizations�� For the sake of comparison� the N and L cases from Figure ��� are also

included in Figure ���� The cache line size is �xed at ��B� We observe from Figure ��� that

the performance of prefetching is improved by locality optimizations in �ve applications�

and two of them �VIS and Health	 enjoy speedups of over ���� We note that four of

these �ve applications operate heavily on linked lists� and we have already learned from

Chapter � that prefetching linked lists�especially those that are short and traversed

within small loop bodies�is particularly di�cult because of the pointer�chasing problem�

As we can see in Figure ���� the list linearization optimization is quite successful in

alleviating this problem� Moreover� in two of the �ve applications in which locality is

substantially improved� combining locality optimizations and prefetching �LP	 produces

better results than either technique alone �most noticeably in Health	� However� this is

not the case for MST and VIS because of their considerable prefetching overhead�

Figure ��� shows the two additional performance metrics for better understanding our

results� Figure ����a	 shows a new category of misses �late prefetched misses	 not seen

in Figure ����a	� This category accounts for those load references that were prefetched

but still missed because their prefetches were launched too late �so these references were

combined with their prefetches which were still outstanding	� The large reduction in

the miss count of the LP cases over NP cases in �ve applications clearly demonstrates

that our locality optimizations remarkably improve the e
ectiveness of prefetching� For

BH� despite the LP case having similar load D�cache misses to the NP case� LP actually

performs worse than NP due to the overhead of data relocation in the LP case
� We also

observe from Figure ����a	 that VIS su
ers from the cache pollution caused by prefetching

in the NP case� as its miss count is increased by ��� over the original� Fortunately� our

locality optimization is able to eliminate this cache pollution e
ect and actually helps

prefetching reduce the miss count by half that of the original case� Figure ����b	 shows

the amount of bandwidth consumed by prefetching� Unlike the cases without prefetching�

LP does not necessarily consume less bandwidth than NP� since the prefetch block size

may be larger in the LP cases�

��	�� Case Studies

Having studied the overall performance� we now look at the individual applications in

more detail�

	For BH� Health� and MST� the NP cases in Figure ��
 and the D cases in Figure ���� on page ���
essentially have the same prefetch codes� The slight performance di�erences are mainly due to the use
of block prefetches in the NP cases�


Though our optimization for BH is not active in the L case for ��B lines� it is turned on in the LP
case since prefetching can exploit the potential spatial locality created by our optimization�
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Figure ���� Additional performance metrics for the impact of locality optimizations on
prefetching �N � not optimized� L � locality optimized� NP � prefetching without
locality optimizations� LP � prefetching with locality optimizations	� The line size is
�xed at ��B� The y�axes are normalized to the N cases�

Health� MST� Radiosity� and VIS

We apply the same locality optimization to all four of these applications� list lineariza�

tion� The structure of the linked lists used in these applications is modi�ed throughout

the program execution� and therefore list linearization is invoked periodically� To make

our discussion more concrete� we use VIS as a representative example� VIS is a large

application� consisting of more than ������� lines of C code� This program makes exten�

sive use of a generic list library which implements many common list operations� Our

optimizations are localized within this library� We optimize the locality of list processing

as follows� We add a counter �eld to the head record of each list to count how many

insertion or deletion operations have been performed on the list since the last time that

the list was linearized� The list linearization procedure ListLinearize���shown earlier

in Figure ����b	�is invoked whenever the list
s counter exceeds a threshold� which was

arbitrarily set to �� in our experiments� The counter is reset after each linearization� De�
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�a� Original �b� Optimized

PTERM
short integers

hash table

i+1

i
i+1

i

Figure ����� Locality optimization for Eqntott �objects in the same shaded region are
allocated to contiguous memory	�

spite the simplicity and usefulness of this optimization� performing it without the support

of memory forwarding is dangerous due to the fact that most functions in this library

return pointers to list elements� which can be scattered across any of the over hundred

source �les of VIS� The program behave incorrectly if after a list is linearized� it is later

accessed using a pointer to the middle of the list that existed before the linearization�

Fortunately� memory forwarding allows us to simply ignore this hazard� thereby safely

resulting in an over twofold performance gain with ���B lines�

Eqntott

The most interesting data structure in Eqntott is a hash table which stores pointers

to a record of type PTERM� A PTERM record in turn contains a pointer to an array of

short integers� The original layout of this data structure is shown in Figure �����a	� We

optimize the locality by �i	 relocating a PTERM record and its short integer array into a

single chunk of memory� and �ii	 putting these chunks into contiguous memory locations

in increasing order of the hash index� The optimized layout is shown in Figure �����b	�

This relocation optimization is invoked only once in the program� immediately after the

hash table is constructed� Therefore� this optimization costs only ���� more instructions

than the original program�

BH

In BH� an octree is constructed and then traversed at each time step of the N�body force

calculation� The octree is constructed in a depth��rst order� but the traversal order is

fairly random� We improve the locality of the traversal by clustering non�leaf nodes
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�a� Original �b� Subtrees clustered

Figure ����� Example of the subtree clustering applied to BH �nodes in the same shaded
region are in the same cache line	�

of the tree� We do not cluster leaf nodes since they are actually linked together by a

list and accessed via list traversals� Subtree clustering ��� attempts to pack nodes of

a subtree into a cache line� in the most balanced form� Locality will be improved if

the next node to be visited�which can be any of the children of the current node�is

already in the current cache line� Figure ���� illustrates this optimization using a binary

tree� Figure �����a	 shows the original memory layout of the tree� which was created

using a pre�order traversal� and Figure �����b	 shows the memory layout after subtree

clustering� Since a non�leaf node in BH is ��B long� we need cache lines of ���B or longer

to do meaningful clustering�

Compress

The most relevant data structures in Compress are two hash tables� namely htab and

codetab� which are implemented using arrays� Indices to htab are computed through

hashing� but codetab always shares the same index values as htab� Therefore� spatial

locality might be improved if codetab�i� could be next to htab�i� in the memory� We

achieve this by copying the two tables into a single larger table T such that htab�i� and

codetab�i� occupy adjacent elements in T� We also replace all explicit array references

to htab and codetab by the appropriate array references to T� Forwarding addresses and

bits are also set appropriately in htab and codetab to catch any unexpected references

to them� However� as we have already seen in Figure ���� performance is in fact degraded

by this optimization because more misses occur in the optimized code� This suggests

that the original memory layout where htab�i� and htab�i�
� are adjacent �so are

codetab�i� and codetab�i�
�	 enjoys more locality than the optimized one�
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��	�� Impact of Forwarding Overhead

In each of the applications that we have studied so far� we were successful enough at

updating the appropriate pointers to point to a relocated object
s new location that the

forwarding mechanism was almost never invoked� �At the same time� we would like to

point out that without memory forwarding support� we would not have been able to apply

these optimizations because they were not provably safe�	 As a result� the performance of

dereferencing a forwarding address did not matter in these cases� To quantify the impact

of forwarding overhead in a case where it does matter� we now focus on SMV� which is the

only application we studied that experiences signi�cant forwarding after data relocation�

SMV is a model checking program which makes extensive use of Binary Decision Di�

agrams �BDDs	 ��� � The BDD nodes are connected both through a hash table and

through binary trees� The hash table is organized as an array of buckets pointing to

linked lists� Since more cache misses occur during hash table accesses than binary tree

accesses� we attempted to improve locality by linearizing the lists stored in the hash

table� Unfortunately� since our optimized code is not able to update the tree pointers

to point to a relocated object
s new address� forwarding does occur whenever relocated

BDD nodes are accessed via the tree pointers�

Figure ���� shows our performance results for SMV� In addition to the cases without

�N	 and with �L	 locality optimization� as shown in earlier graphs� we also show a

case with locality optimization and perfect forwarding �Perf	� We say that memory

forwarding is perfect if all references to relocated objects access them directly at their

new addresses� and hence no forwarding is actually required� While this latter case is

not achievable� it represents a useful bound on performance� As we see in Figure �����a	�

the performance of scheme L is degraded by forwarding in two ways� First� the act of

dereferencing forwarding addresses incurs extra time� Second� when forwarding occurs�

both the old and new locations of relocated data are accessed� thereby degrading cache

behavior� With perfect forwarding� there is no forwarding overhead and the performance

does improve� However� the improvement is only marginal due to the fact that we cannot

optimize the layout to accelerate both the hash table and tree access patterns�

To provide further insight into the source of the forwarding overhead� Figure ����

presents three additional performance metrics� Figure �����b	 shows the impact of the

schemes on the number of load and store data cache misses� As we see in this �gure�

scheme L su
ers a noticeable increase in misses� Figure �����c	 shows that ���� of loads

and ���� of stores require one forwarding hop under scheme L� Finally� Figure �����d	

shows the average number of CPU cycles needed to complete a load or store under
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Figure ����� Performance results for SMV� �N � not optimized� L � locality optimized
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each scheme� Each bar in Figure �����d	 is divided into two sections explaining the

reason for the stall� The forwarding section represents the time spent dereferencing

forwarding addresses� and the ordinary section includes cache hit and miss latencies�

The ordinary sections of scheme L increase due to the cache pollution e
ects of touching

the forwarding pointers� as mentioned earlier� As we see in Figure �����d	� both the

latency of dereferencing a forwarding address and its resulting cache pollution e
ects

play signi�cant roles in the overall performance degradation� A pro�ling tool based on

user�level traps �as discussed earlier in Section �����	 could potentially identify cases such

as this where forwarding occurs too frequently�
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��	 Chapter Summary

As changes in technology continue to alter the landscape of what constitutes a major

performance bottleneck� it is sometimes worth re�examining old architectural ideas that

have fallen out of fashion to see whether they can be adapted to serve completely new

purposes� In this chapter� we have examined such a technique� memory forwarding�

Although the original concept was proposed to facilitate garbage collection in early Lisp

machines� we have demonstrated that memory forwarding can be adapted to address

the entirely modern problem of enhancing cache performance� In addition� we have

shown that it is quite feasible to implement this mechanism within modern out�of�order

superscalar processors� largely because forwarding can be treated as an exception�

To fully understand the potential of memory forwarding� we have modeled it in detail

in a simulator of a modern processor� and used it to enable a number of aggressive locality

optimizations on a set of non�numeric applications� Our experimental results provide us

the following lessons�

� The locality optimizations that we applied require only small changes to the original

program� but their safety is di�cult to guarantee� Several of these optimization�

in particular list linearization�can easily be implemented as library functions�

provided that their safety can be guaranteed� Memory forwarding allows users

of these optimizations to ignore correctness issues and focus performance instead�

� Our optimizations are useful not only for hiding memory latency� but also for re�

ducing memory bandwidth consumption� The result is the signi�cant performance

gains across our applications� as much as over twofold speedups in two applications�

� Forwarding does not occur in seven of our eight applications� However� in the

only one application where forwarding actually happens� the forwarding overhead

is signi�cant� Therefore� software should not apply memory forwarding blindly in

situations where a large number of forwarding address dereferences are expected�

In summary� by liberating aggressive relocation�based data layout optimizations from

concerns over violating program correctness� memory forwarding can enable impressive

performance gains� Although one must still exercise caution not to use forwarding care�

lessly� a user�level trap mechanism can help identify and avoid cases where pointers have

not been updated successfully� We demonstrate that memory forwarding is a powerful

tool which makes a large class of optimizations that were promising in theory useful in

practice�
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Correlation�Based Cache Miss

Prediction

��� Introduction

In this chapter� we address the problem of predicting data cache misses in non�numeric

applications� Knowing accurately in advance when cache misses will happen can improve

the overall performance of latency tolerance techniques by reducing unnecessary overhead�

While the bene�t of a technique typically outweighs its overhead whenever a miss is

tolerated� the overhead hurts performance in cases where the reference would have enjoyed

a cache hit anyway� Therefore to maximize overall performance� we would like to apply

a latency tolerance technique only to the precise set of dynamic references that would

su
er misses�

	���� Importance of Cache Miss Prediction

To get a clearer picture of the importance of cache miss prediction� we discuss in this

section how it can be applied to improve the e
ectiveness of three major latency tolerance

techniques� instruction scheduling� software�controlled prefetching� and multithreading�

Instruction Scheduling

The latency of a load L is tolerated in this technique by scheduling the �right� number

of instructions that are not dependent on L in between L and its �rst use� Instruction

scheduling can be done statically �by the compiler	 or dynamically �by hardware	� To

maximize scheduling e
ectiveness� it is essential for the compiler or hardware to know

the load latency prior to the actual scheduling� In static scheduling� scheduling a load

using the hit latency will cause memory stall if the load is in fact a cache miss� In

contrast� scheduling a load using the miss latency increases register lifetimes� which can

���
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lead to spilling� Moreover� in some scheduling algorithms such as trace scheduling ��� 

and hyperblock scheduling ��� where control speculation is allowed� loads scheduled

using long latencies are likely to become speculative� If any of these loads are mis�

speculated� the total instruction count will be increased� In dynamic scheduling� cache

miss prediction is particularly helpful for high�clock�rate� out�of�order machines such as

the Alpha ����� ��� where instruction scheduling itself is a multiple�cycle operation� In

such machines� in order to minimize the load�and�use latency� the decision of when to

schedule an instruction that consumes the result of a load L has to be made before actually

knowing whether L is a cache hit� In other words� hardware has to make the scheduling

decision based on cache miss prediction� If L is a miss but was optimistically predicted

as a hit� all the instructions depending on L that were scheduled too early need to be

squashed and then re�executed� On the other hand� if L is a hit but was pessimistically

predicted as a miss� all the dependent instructions of L will be unnecessarily delayed�

In summary� accurate prediction of data cache misses is important to both static and

dynamic instruction scheduling�

Software�Controlled Prefetching

Software�controlled prefetching tolerates latency by bringing data lines into the cache

before they are needed ���� ��� �� � Compared with hardware�controlled prefetching ����

�� � software�controlled prefetching is better able to exploit application�speci�c knowl�

edge about future data access patterns� but requires additional instructions to compute

prefetch addresses and launch the prefetches themselves� If the data access patterns

are irregular �and hence more computational e
ort may be needed to predict prefetch

addresses	� this instruction overhead can be signi�cant even with modern superscalar

processors� One such example is the history�pointer prefetching scheme we proposed in

Chapter �� Recall that this scheme adds extra pointers called history pointers to record

data addresses seen in the past and uses them as prediction of future prefetch addresses�

As we have already seen in Section ������ the instruction overhead of manipulating history

pointers is substantial even on a four�issue superscalar machine�it can be as much as

the number of instructions executed in the case without prefetching� Therefore� it is very

helpful to have accurate miss prediction so that these relatively expensive prefetching

schemes would not be applied to cases that already result in cache hits�

Multithreading

Multithreading ��� ���� ��� tolerates latency by overlapping a long�latency access from

one thread with the computation from other parallel threads� Traditionally� the two main
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mechanisms involved in multithreading�deciding when to switch between threads and

the actual thread switching itself�are entirely controlled by hardware ��� �� ��� ���� ��� �

Recently a scheme that controls these two mechanisms using software� with the help of

informing memory operations ��� � has been proposed ��� � A key concern of multithread�

ing techniques is to minimize run�time thread switching penalty� which is classi�ed into

instruction overheads and memory overheads� Instruction overheads can be either explicit

or implicit� Instruction overhead exists explicitly in software�controlled multithreading

where thread switching is completely performed by software� In hardware�controlled mul�

tithreading� instruction overhead is implicit� all partially�executed instructions belonging

to the current thread have to be squashed from the CPU pipeline upon a thread switch�

The memory overheads arise from the fact that data and instruction caches!TLBs are

stressed more by a multiple�threaded workload than a single�threaded workload� due to

a decrease in locality ��� ��� ��� � To minimize the impact of instruction and memory

overheads� thread switching should take place only at long�latency misses� which are

nowadays typically secondary or tertiary cache misses� This kind of �selective� thread

switching requires some means to accurately predict whether a primary cache miss is also

going to be a miss in the next hierarchy level�

Remarks

We would like to emphasize that the overheads of latency tolerance techniques will con�

tinue to be a concern in spite of the ever�increasing speed discrepancy between processors

and memory� There are two reasons for this� First� memory latency can be hidden only

partially most of time due to the lack of parallelism in reality� Consequently� the e
ective

ratio of overhead to latency is usually higher than the theoretical ratio� Second� we ex�

pect that future innovations in latency tolerance will involve larger overheads than what

we experience nowadays due to the larger potential bene�ts when cache misses occur�

Therefore� techniques to predict data cache misses will remain important�

	���� Predicting Data Cache Misses in Non�Numeric Codes

While previous work has addressed the problem of predicting data cache misses for nu�

meric codes ��� � this study focuses on the more di�cult but important case of isolating

dynamic miss instances in non�numeric applications� To overcome the compiler
s inabil�

ity to analyze data locality in non�numeric codes� we can instead make use of pro�ling

information� One simple type of pro�ling information is the precise miss ratios of all

static memory references� Throughout the remainder of this chapter� we will refer to
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load M
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Figure ���� Example of how correlating cache misses with the dynamic context may
improve predictability �X�Y means X misses out of Y dynamic references	�

this approach as summary pro�ling� since the miss ratio of each memory reference is

summarized as a single value�

If summary pro�ling indicates that all signi�cant memory reference instructions �i�e�

those which are executed frequently enough to make a non�trivial contribution to ex�

ecution time	 have miss ratios close to �� or ����� then isolating dynamic misses is

trivial�we simply apply the latency tolerance technique only to the static references

which always su
er misses� In contrast� if the important references have intermediate

miss ratios �e�g�� ���	� then we do not have su�cient information to distinguish which

dynamic instances hit or miss� since this information is lost in the course of summarizing

the miss ratio� The current state�of�the�art approach for dealing with intermediate miss

ratios is to treat all static memory references with miss ratios above or below a certain

threshold as though they always miss or always hit� respectively �� � However� this all�or�

nothing strategy will fail to hide latency when references are predicted to hit but actually

miss� and will induce unnecessary overhead when references are predicted to miss but

actually hit� Rather than settling for this sub�optimal performance� we would prefer to

predict dynamic hits and misses more accurately�

Correlation Pro�ling

As pro�ling is becoming increasingly helpful for improving system performance� pro�l�

ing techniques that are more informative than simple performance counters have been

proposed recently� Such techniques include informing memory operations ��� and Pro�

�leMe ��� � which enable new classes of lightweight pro�ling tools that can collect more

sophisticated information than simply the per�reference miss ratios� For example� cache

misses can be correlated with information such as recent control��ow paths� whether re�
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cent memory references hit or missed in the cache� etc�� to help predict dynamic cache

miss behavior� We will refer to this approach as correlation pro�ling�

Figure ��� illustrates how correlation pro�ling information might be exploited� The

load instruction shown in Figure ��� has an overall miss ratio of ���� However� depending

on the dynamic context of the load� we may see more predictable behavior� In this

example� contexts A and B result in a high likelihood of the load missing� whereas

contexts C and D do not� Hence we would like to apply a latency tolerance technique

within contexts A and B but not C or D�

The dynamic contexts shown in Figure ��� should be viewed simply as non�overlapping

sets of dynamic instances of the load which can be grouped together because they share

a common distinguishable pattern� In this study� we consider three di
erent types of

information which can be used to distinguish these contexts� The �rst is control��ow

information�i�e� the sequence of N basic block numbers preceding the load� The other

two are based on sequences of cache access outcomes �i�e� hit or miss	 for previous memory

references� self correlation considers the cache outcomes of the previous N dynamic

instances of the given static reference� and global correlation refers to the previous N

dynamic references across the entire program�

	���� Related Work

Abraham et al� �� investigated using summary pro�ling to associate a single latency tol�

erance strategy �i�e� either attempt to tolerate the latency or not	 with each pro�led load�

They used this approach to reduce the cache miss ratios of nine SPEC�� benchmarks�

including both integer and �oating�point programs� In a follow�up study �� � they also

report the improvement in e�ective cache miss ratio� In contrast with this earlier work�

our study focused on correlation pro�ling� which is a novel technique that provides supe�

rior prediction accuracy relative to summary pro�ling� as evidenced by our experimental

results that will be shown in Section ����

The three forms of correlation explored in this study were inspired by earlier work

on using branch histories to enhance branch prediction accuracies ���� ��� ���� ���� ��� �

History�based branch prediction schemes associate multiple predictors with each condi�

tional branch �or set of conditional branches	 in a program� At a branch prediction� one

of the predictors associated with the branch encountered is selected via a branch history�

which can be local or global� A local branch history ���� is a sequence of previous out�

comes of a particular conditional branch� A global branch history ����� ��� is a sequence

of previous outcomes of all conditional branches encountered� There are static and dy�

namic history�based branch prediction schemes� Static schemes ���� use code duplication
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and pro�le�based branch prediction information to transform a program to improve its

branch prediction accuracy� On the other hand� dynamic schemes ���� ���� ��� imple�

ment the branch histories� predictors and indexing mechanisms all in hardware� While

our self and global correlation are analogous to local and global history�based branch

prediction� our exploitation of control��ow information in cache miss prediction does not

have a counterpart in branch prediction�

Ammons et al��� studied the impact of �ow and context sensitivity on a number of

performance metrics that can be collected via hardware performance counters� One of

their �ndings that is particularly related to our work is that a large fraction of primary

data cache misses �for a ��KB direct mapped D�cache	 in the SPEC�� benchmarks occur

along a relatively small number of frequently executed intraprocedural paths� They also

observed that D�cache misses are heavily concentrated in a small number of procedures�

One of our correlation pro�ling techniques�control��ow correlation�also relates D�cache

misses to paths but is more general because the paths we pro�led can be interprocedural�

In addition� our study also measured the sensitivity of correlation pro�ling to di
erent

input sets �see Section ���	� Another unique feature of our study is the providence of

detailed case studies �see Section ���	 that map observed correlation behaviors back to

the source codes�

	���� Objectives and Overview

The primary goals of this study are twofold� First� we would like to quantify the im�

provement in data cache miss prediction accuracy o
ered by correlation pro�ling relative

to summary pro�ling� Note that unlike branch prediction� where prediction accuracy can

be summarized as a single value� we separate false positives from false negatives since

the overheads of misprediction are asymmetrical �i�e� failing to hide the latency of a miss

is generally more expensive than paying latency tolerance overhead for a reference that

hits	� Second� and more importantly� we would like to understand why correlation pro�

�ling works by relating its success to underlying program behaviors� Hence our analysis

includes detailed case studies for many of the applications�

Although the focus of this study is on understanding correlation pro�ling rather than

building tools to exploit it� we do discuss how correlation pro�ling can be used in practice�

and we demonstrate that it can actually improve the performance of dynamic instruc�

tion scheduling and software�controlled prefetching� We focus speci�cally on predicting

load misses in this study because load latency is fundamentally more di�cult to tolerate

than store latency �the latter can generally be hidden through bu
ering and pipelining	�

Although we rely on simulation to capture our pro�ling information in this study� corre�
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lation pro�ling is a practical technique because it could be performed with relatively little

overhead using mechanisms such as informing memory operations ��� or Pro�leMe ��� �

The remainder of this chapter is organized as follows� We begin in Section ��� by

discussing the three di
erent types of history information that we use for correlation pro�

�ling� and in Section ��� we present a qualitative analysis of the expected performance

bene�ts� In Section ���� we present our experimental results which quantify the perfor�

mance advantages of correlation pro�ling in a collection of �� non�numeric applications�

In addition� in Section ���� we report the memory�access behaviors of individual applica�

tions which explain when and how correlation pro�ling is e
ective� We then demonstrate

the practicality of correlation pro�ling in Sections ����� and ������ In Section ������ we

apply correlation�based prediction to dynamic instruction scheduling� We discuss in Sec�

tion ����� how one could use code duplication techniques to exploit correlation pro�ling

statically� using software�controlled prefetching as an example application� Finally� we

present conclusions in Section ����

��� Correlation Pro�ling Techniques

In this section� we propose and motivate three new correlation pro�ling techniques for

predicting cache outcomes� control��ow correlation� self correlation� and global correla�

tion�

	���� Control�Flow Correlation

Our �rst pro�ling technique correlates cache outcomes with the recent control��ow paths�

To collect this information� the pro�ling tool maintains the N most recent basic block

numbers in a FIFO bu
er� and matches this pattern against the hit!miss outcomes for a

given memory reference� Intuitively� control��ow correlation is useful for detecting cases

where either data reuse or cache displacement is likely�

If we are on a path which leads to data reuse�either temporal or spatial�then the

next reference is likely to be a cache hit� Consider the example shown in Figure ����a	�

�b	� where a graph is traversed by the recursive procedure walk��� Any cyclic paths �e�g��

A�B�C�D�A or P�Q�R�S�P	 will result in temporal reuse of p�data� In this

example� control��ow correlation can potentially detect that if the last four traversal

decisions lead to a cycle �e�g�� right� down� left� and up	� then there is a high probability

that the next p�data reference will enjoy a cache hit�

Some control��ow paths may increase the likelihood of a cache miss by displacing a

data line before it is reused� For example� if the �x � �� condition is true in Figure ����c	�
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�a� Code with data reuse �b� Example graph �c� Code with
cache displacement

struct node f
int data�

struct node 	left�

	right� 	up� 	down�

g�

void walk�node	 p� f
work�p�data��

if �go left�p�data��

p � p�left�

elsif �go right�p�data��

p � p�right�

elsif �go up�p�data��

p � p�up�

elsif �go down�p�data��

p � p�down�

g

A

up

down

rightleft

B

S R

QP

D C

x � 	p�

if �x � �� f

for �i � ��

i � ������� i���

a
i� � foo�i��

g
y � 	p�

Figure ���� Examples of how control��ow correlation can detect data reuse and cache
displacement �control��ow pro�led loads are underlined	�

then the subsequent for loop is likely to displace �p from the primary cache before it

can be loaded again� Note that whereas paths which access large amounts of data are

obvious problems� the displacement might also be due to a mapping con�ict�

	���� Self Correlation

Under self correlation� we pro�le a load L by correlating its cache outcome with the N

previous cache outcomes of L itself� This approach is particularly useful for detecting

forms of spatial locality which are not apparent at compile time� For example� consider

the case in Figure ��� where a tree is constructed in preorder� assuming that consecutive

calls to the memory allocator return contiguous memory locations� and that a cache

line is large enough to hold exactly two treeNodes� Depending on the traversal order

�and the extent to which the tree is modi�ed after it is created	� we may experience

spatial locality when the tree is subsequently traversed� For example� if the tree is also

traversed in preorder� we will expect p�data to su
er misses on every�other reference

as cache line boundaries are crossed� Therefore despite the fact that the overall miss

ratio of p�data is ��� and the compiler would have di�culty recognizing this as a form

of spatial locality� self correlation pro�ling would accurately predict the dynamic cache

outcomes for p�data�
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�a� Example Code �b� Tree constructed and traversed
both in preorder

void preorder�treeNode	 p� f
if �p �� NULL� f

work�p�data��

preorder�p�left��

preorder�p�right��

g
g 11 12

13

14 15

10

1

2

3

4 5

6

7 8

9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

M
M
H
M
H
M
H
M
H
M
H
M
H
M
H

M = miss

H = hit

preorder
traversal

self cache
outcomes
of p->data

Figure ���� Example of using self�correlation pro�ling to detect spatial locality for
p�data �consecutively numbered nodes are adjacent in memory	�

	���� Global Correlation

In contrast with self correlation� the idea behind global correlation is to correlate the cache

outcome of a load L with the previous N cache outcomes regardless of their positions

within the program� The pro�ling tool maintains this pattern using a single N �deep

FIFO which is updated whenever dynamic cache accesses occur� Note that because

earlier instances of L itself may appear in this global history pattern� global correlation

may capture some of the same behavior as self correlation �particularly in extremely tight

loops	�

Intuitively� global correlation is particularly helpful for detecting bursty patterns of

misses across multiple references� One example of this situation is when we move to a

new portion of a data structure that has not been accessed in a long time �and hence has

been displaced from the cache	� in which case the fact that the �rst access to an object

su
ers a miss is a good indication that associated references to neighboring objects will

also miss� Figure ��� illustrates such a case where a large hash table �too large to �t

in the cache	 is organized as an array of linked lists� In this case� we might expect a

strong correlation between whether htab�i� �the list head pointer	 misses and whether

subsequent accesses to curr�data �the list elements	 also miss� Similarly� if the same

entry is accessed twice within a short interval �e�g�� htab�
��	� the fact that the head

pointer hits is a strong indicator that the list elements �e�g�� A�data and B�data	 will

also hit�

In summary� by correlating cache outcomes with the context in which the reference
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�a� Example code �b� Hash table accesses

while ��� f

register int i � hash�get����
register listNode	 curr � htab
i��

while �curr �� NULL� f

work�curr�data��

curr � curr�next�

g
g

A

G

R

B

M = miss
H = hit

htab[10]
A->data
A->next
B->data
B->next

...

htab[311]
G->data
G->next

htab[795]
R->data
R->next
...
htab[10]
A->data
A->next
B->data
B->next
...

M
M

...

H
M
H...
M
M
H
...
M
M
H

H
H
H
H
H...

...

...

...

memory
accesses

global
cache
outcomes

global
htab

795

10

311

Figure ���� Example of using global�correlation pro�ling to detect bursty cache misses
for curr�data�

occurs�e�g�� the surrounding control �ow or the cache outcomes of prior references�

we can potentially predict the dynamic caching behavior more accurately than what is

possible with summarized miss ratios�

��� Qualitative Analysis of Expected Bene�ts

Before presenting our quantitative results in later sections� we begin in this section by

providing some intuition on how correlation pro�ling can improve performance� A key

factor which dictates the potential performance gain is the ratio of the latency tolerance

overhead �V 	 to the cache miss latency �L	� In the extreme cases where V
L

� � or V
L

� ��

there is no point in applying the latency tolerance technique �T 	 selectively� since it either

has no cost or no bene�t� When � � V

L
� �� however� applying T selectively may be

important�

Figure ����a	 illustrates how the average number of e
ective stall cycles per load

�CPL	 varies as a function of V
L

for various strategies for applying T � �Note that our

CPL metric includes any overhead associated with applying T � but does not include the

cycles for executing the load instruction itself�	 If T is never applied� then the CPL is

simply mL� where m is the average miss ratio� At the other extreme� if we always apply

T � then the latency will always be hidden� but all references �even those that normally

hit	 will su
er the overhead V � hence the CPL � V � Note that when V

L
� m� it is better
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�a� CPL vs� V

L
�b� CPL vs� m

CPL

ideal
CPL       = mV

summary

correlation
CPL

CPLnever

V/L

CPL

0 1

= mL

mL

L

m

always
CPL      = V

summary

correlation
CPL

CPL

CPL       = mV

mV/L

V

CPL

ideal

L

10

CPL      = V

CPL = mL
never

always

Figure ���� Illustration of the CPL for di
erent approaches of applying a latency toler�
ance scheme �m � overall average load miss ratio� V � latency tolerance overhead� and
L � load miss latency	� The CPLsummary and CPLcorrelation curves are chosen arbitrary
for the sake of illustration�

to never apply T rather than always applying it� Figure ����b	 shows an alternative view

of CPL� where it is plotted as a function of m for a �xed V

L
� Again� we observe that the

choice of whether to always or never apply T depends on the value of m relative to V

L
�

To achieve better performance than this all�or�nothing approach� we apply the same

decision�making process �i�e� comparing the miss ratio with V
L

	 to more re�ned sets

of loads� In the ideal case� we would consider and optimize each dynamic reference

individually �the resulting CPL of mV is shown in Figure ���	� However� since this

is impractical for software�based techniques� we must consider aggregate collections of

references� Since summary pro�ling provides only a single miss ratio per static reference�

the �nest granularity at which we can decide whether or not to apply T is once for all

dynamic instances of a given static reference� Figure ��� illustrates the potential shape

of the summary pro�ling curve� which is bounded by the cases where T is never� always�

and ideally applied� Since correlation pro�ling distinguishes di
erent sets of dynamic

instances of a static load based on context information� it allows us to make decisions

at a �ner granularity than with summary pro�ling� Therefore we can potentially achieve

even better performance� as illustrated in Figure ����

Below we formulate the �ve CPL
s shown in Figure ���� Denote the CPL under a
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particular approach S by CPLS� Let CPLi
S be the CPLS of load i in the program and

fi be the fraction of references made by load i out of the total references of all loads� Let

mi be the miss ratio of load i and m be the overall miss ratio of all loads� Then�

CPLS �
X
i

CPLi
S 	 fi ����	

CPLnever� A load reference is stalled only when it is a cache miss� so�

CPLnever � mL ����	

CPLalways� T fully tolerates the latencies of all load references but always incurs the

overhead� so�

CPLalways � V ����	

CPLsummary� The miss ratio mi decides whether T should be applied to load i�

CPLi
summary �

��
� miL if mi �

V

L
�i�e� not apply T 	

V otherwise �i�e� apply T 	
����	

CPLsummary �
X
i�A

CPLi
summary 	 fi #

X
i�NA

CPLi
summary 	 fi

� V
X
i�A

fi # L
X
i�NA

mifi by ����	 ����	

where A is the set of loads with miss ratios � V

L
and NA is the set of loads with

miss ratios � V

L
�

CPLcorrelation� T is only applied to references of load i that belong to contexts with miss

ratios � V
L

� The formula for CPLi
correlation can be simply obtained by adding an

extra level to Equation ����	 to capture the notion of contexts within load i� That

is�

CPLi
correlation � V

X
j�Ai

fi�j # L
X

j�NAi

mi�jfi�j ����	

where Ai is the set of contexts of load i with miss ratios � V

L
� NAi is the set of

contexts of load i of miss ratios � V

L
� mi�j is the miss ratio of context j of load i�

and fi�j is the fraction of references of load i that are on context j� CPLcorrelation

can be obtained by substituting CPLi
correlation into Equation ����	�

CPLideal� Under this ideal scheme� load miss latencies are fully tolerated and the over�

head is only incurred to miss references�

CPLideal � mV ����	
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��� Quantitative Evaluation of Performance Gains

In this section� we present experimental results to quantify the performance bene�ts

o
ered by correlation pro�ling� We begin by measuring and understanding the potential

performance advantages for a generic latency tolerance scheme� Later� we will focus

on dynamic instruction scheduling and software�controlled prefetching as speci�c case

studies in Sections ����� and ������ respectively�

	���� Experimental Methodology

We measured the impact of correlation pro�ling on the following �� non�numeric ap�

plications� the entire SPEC�� integer benchmark suite� the additional integer bench�

marks contained in the SPEC�� suite� the uniprocessor version of a graphics application

from SPLASH�� ���� � eight applications from Olden ���� �the suite of pointer�intensive

benchmarks we used in Chapter �	� and the standard UNIX utility awk� Table ��� brie�y

summarizes these applications� including in each case the testing input set and an alter�

nate training input set that di
ers from the testing one� All input data sets were run to

completion�

We compiled each application with �O� optimization using the standard MIPS C

compilers under IRIX ���� We used the MIPS pixie utility ���� to instrument these

binaries� and piped the resulting trace into our detailed performance simulator� To

increase simulation speed and to simplify our analysis� we model a perfectly�pipelined

single�issue processor �similar to the MIPS R����	 in this section� �Later� in Sections �����

and ������ we model modern superscalar processors�	

To reduce the simulation time� our simulator performs correlation pro�ling only on

a selected subset of load instructions� Our criteria for pro�ling a load is that it must

rank among the top �� loads in terms of total cache miss count� and its miss ratio must

be between ��� and ���� Using this criteria� we focus only on the most signi�cant

loads which have intermediate miss ratios� We will refer to these loads as the correlation�

pro�led loads �the fraction of total dynamic load references in each application that are

correlation pro�led is shown under �CP Loads� in Table ���	�

We attempt to maintain as much history information as possible for the sake of

correlation� For control��ow correlation� we typically maintained a path length of ���

basic blocks�in some cases this resulted in such a large number of distinct paths that

we were forced to measure only �� basic blocks� For the self and global correlation

experiments� we maintained patterns of �� previous cache outcomes �either self or global	�

We focus on the predictability of a single level of data cache �two levels makes the



Chapter �� Correlation�Based Cache Miss Prediction ���

T
ab
le
��
��
B
en
ch
m
ar
k
ch
ar
ac
te
ri
st
ic
s�
F
or
th
e
in
p
u
t
d
at
a
se
ts
of
S
P
E
C
��
p
ro
gr
am
s�
�T
R
A
IN
�
an
d
�T
E
S
T
�
ar
e
th
e
tr
ai
n
in
g

an
d
te
st
in
g
d
at
a
se
ts
p
ro
v
id
ed
b
y
S
P
E
C
�
re
sp
ec
ti
v
el
y�

S
u
it
e

N
am
e

D
es
cr
ip
ti
on

In
p
u
t
D
at
a
S
et
s

C
a
ch
e
S
iz
e

T
es
ti
n
g

A
lt
er
n
at
e
T
ra
in
in
g

S
P
E
C
��

co
m
p
re
ss

C
om
p
re
ss
es
a
n
d
d
ec
om
p
re
ss
es
�
le
in
m
em
or
y

T
R
A
IN

��
��
��
l
��
��
�

��
K
B

In
te
ge
r

gc
c

G
N
U
C
co
m
p
il
er

am
p
tj
p
�i

st
m
t�
i

��
K
B

go

C
om
p
u
te
r
g
am
e
�G
o�

�s
to
n
e�
�i
n

n
u
ll
�i
n



K
B

ij
p
eg

G
ra
p
h
ic
co
m
p
re
ss
io
n
an
d
d
ec
om
p
re
ss
io
n

v
ig
o�
p
p
m

sp
ec
m
u
n
�p
p
m



K
B

li

L
IS
P
in
te
rp
re
te
r

T
R
A
IN

T
E
S
T



K
B

m



k
si
m

M
ot
o
ro
la



�
��
C
P
U
si
m
u
la
to
r

T
R
A
IN

T
E
S
T



K
B

p
er
l

U
n
ix
sc
ri
p
t
la
n
g
u
ag
e
P
er
l

sc
ra
b
b
l�
p
l

ju
m
b
le
�p
l

��


K
B

vo
rt
ex

D
at
ab
a
se
p
ro
g
ra
m

T
R
A
IN

sh
or
te
n
ed
T
E
S
T



K
B

S
P
E
C
��

eq
n
to
tt

T
ra
n
sl
at
io
n
o
f
b
o
o
le
an
eq
u
at
io
n
s
in
to
tr
u
th
ta
b
le
s

in
t
p
ri
��
eq
n

fx
�f
p
�e
q
n
�

�b
it
�
x
to


K
B

In
te
ge
r

�
oa
ti
n
g
p
oi
n
t
en
co
d
er
�

es
p
re
ss
o

M
in
im
iz
at
io
n
of
b
o
ol
ea
n
fu
n
ct
io
n
s

cp
s

b
ca

��
K
B

sc

S
p
re
ad
sh
ee
t
p
ro
gr
am

lo
ad
a�

lo
ad
a�

��


K
B

S
P
L
A
S
H
��

ra
y
tr
ac
e

R
ay
�t
ra
ci
n
g
p
ro
gr
am

ca
r

te
ap
ot

�K
B

O
ld
en

b
h

B
ar
n
es
�H
u
t#
s
N
�b
o
d
y
fo
rc
e�
ca
lc
u
la
ti
on

�K
b
o
d
ie
s

�
K
b
o
d
ie
s

��
K
B

b
is
or
t

S
o
rt
s
an
d
m
er
ge
s
b
it
on
ic
se
q
u
en
ce
s

��
��
��
�
in
te
ge
rs

��
��
��
�
in
te
ge
rs


K
B

em
�
d

S
im
u
la
te
s
th
e
p
ro
p
ag
at
io
n
o
f
E
�M
�
w
av
es
in
a
�D
ob
je
ct

��
��
H
�n
o
d
es
�

��
��
H
�n
o
d
es
�

��
K
B

��
�
E
�n
o
d
es

��
E
�n
o
d
es

h
ea
lt
h

S
im
u
la
ti
on
of
th
e
C
ol
u
m
b
ia
n
h
ea
lt
h
ca
re
sy
st
em

m
ax
�
le
ve
l


��
�

m
ax
�
le
ve
l


��

��
K
B

m
ax
�
ti
m
e


��
�

m
a
x
�
ti
m
e


�
�

m
st

F
in
d
s
th
e
m
in
im
u
m
sp
an
n
in
g
tr
ee
of
a
g
ra
p
h

��
�
n
o
d
es

��
�
n
o
d
es


K
B

p
er
im
et
er

C
om
p
u
te
s
p
er
im
et
er
s
of
re
gi
on
s
in
im
ag
es

�K
x
�K
im
ag
e

�K
x
�K
im
ag
e

��
K
B

ts
p

T
ra
ve
li
n
g
sa
le
sm
an
p
ro
b
le
m

��
��
��
�
ci
ti
es

��
��
��
�
ci
ti
es


K
B

vo
ro
n
oi

C
om
p
u
te
s
th
e
vo
ro
n
oi
d
ia
gr
am
of
a
se
t
of
p
oi
n
ts

��
��
��
p
oi
n
ts

��
��
��
p
o
in
ts


K
B

U
N
IX

aw
k

U
n
ix
sc
ri
p
t
la
n
g
u
ag
e
A
W
K

E
x
te
n
si
v
e
te
st
o
f

S
im
p
le
sc
an
n
in
g

��
K
B

U
ti
li
ti
es

A
W
K
#s
ca
p
ab
il
it
ie
s

an
d
p
ri
n
ti
n
g
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Table ���� General run�time statistics� Column �Insts� is the total dynamic instruction
count� �Loads� is the total dynamic load count �its percentage out of �Insts� is also
given	� �Load Miss Rate� is the average miss rate of loads� �CP Loads� is the fraction
of total dynamic loads that are correlation pro�led� �CP Load Misses� is the fraction of
total load misses that are correlation pro�led�

Suite Name Dynamic Statistics
Insts Loads Load Miss Rate CP Loads CP Load Misses

SPEC�� compress ��M �M ��
�� ���� �� 
��
Integer gcc ���M ��M ����� ���� �� ���

go ���M ���M ����� ���� ��� ���
ijpeg ��
�M ���M ��
�� ���� �� ���
li ���M ��M ����� ���� �� ���
m

ksim ���M ��M ����� ���� �� ���
perl ��M ��M ����� ���� �� ���
vortex ���
M ���M ����� ���� 
� �
�

SPEC�� sc ���M ��
M ����� ���� ��� 
��
Integer espresso ���M ���M ����� ���� �� ���

eqntott ���M ���M ����� ���� ��� ���

SPLASH�� raytrace ����M ���M ����� ���� �� �
�

Olden bh ����M ���M ����� ���� �� 
��
bisort ����M ���M ����� ���� �� ���
em�d ���M ��M ����� ���� �� 
��
health ���M ���M ����� ���� �� ���
mst ��M ��M ����� ���� ��� ���
perimeter ���M ��M ����� ���� �� ���
tsp ���
M ���M ����� ���� 
� �
�
voronoi ���M ��M ����� ���� �� ���

UNIX awk ��M �M ����� ���� �� ���
Utilities

analysis too complicated	� The choice of data cache size is important because if it is either

too large or too small relative to the problem size� predicting dynamic misses becomes

too easy �they either always hit or always miss	� Therefore we would like to operate near

the �knee� of the miss ratio curve� where predicting dynamic hits and misses presents

the greatest challenge� Although we could potentially reach this knee by altering the

problem size� we had greater �exibility in adjusting the cache size within a reasonable

range� We chose the data cache size as follows� We �rst used summary pro�ling to collect

the miss ratios of all loads within the application on di
erent cache sizes ranging from

�KB to ���KB� We then chose the cache size which resulted in the largest number of

signi�cant loads having intermediate miss ratios�these sizes are shown in Table ���� In

all cases� we model a two�way set�associative with �� byte lines and cache miss latency

of �� cycles�
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Table ��� shows some general run�time statistics of these applications� One important

observation from it is that� in many cases� a substantial portion of misses are covered

by a relatively small amount of correlation�pro�led loads� This happens because it is

common that only a few static loads account for most misses in the program �a similar

observation was made by Abraham et al� �� 	� and this characteristic is essential for

collecting correlation pro�ling information in practice�

	���� Improvements in Prediction Accuracy and Stall Time

Figures ��� and ��� show how the three correlation pro�ling schemes�control��ow �C	�

self �S	� and global �G	�improve the prediction accuracy of correlation�pro�led loads�

As discussed earlier in Section ���� our threshold for deciding whether to apply latency

tolerance to a reference is that its miss ratio must exceed V

L
� where V is the latency

tolerance overhead and L is the miss latency� For summary pro�ling� this threshold is

applied to the overall miss ratio of an instruction� for correlation pro�ling� it is applied

to groups of dynamic references sharing individual contexts� Figures ��� and ��� show

the results with two values of V

L
� ��� and ����� respectively�

Two training input sets were used in each application� same means the training

and the testing inputs were identical whereas di� means the alternate training input was

used� Each bar in Figures ��� and ��� corresponds to the misprediction rate of the scheme

it represents� and is broken down into two categories� The top section ��Predict HIT 	

Actual MISS�	 represents a lost opportunity where we predict that a reference hits �and

thus do not attempt to tolerate its latency	� but it actually misses� The �Predict MISS

	 Actual HIT� section accounts for wasted overhead where we apply latency tolerance to

a reference that actually hits�

At �rst glance� the misprediction rates are surprisingly higher than usual branch mis�

prediction rates� especially for V

L
� ����� This phenomenon can be explained by two

reasons� First� by our de�nition correlation�pro�led loads are those that have intermedi�

ate miss ratios and hence will not have strong hit or miss biases� Second� unlike the case

in branch prediction� since failing to hide a miss is more expensive than wasting overhead�

it is reasonable to predict misses more often in order to achieve higher performance even

if this will result in a larger number of �Predict MISS 	 Actual HIT� mispredictions�

It is clear from Figures ��� and ��� that correlation pro�ling improves prediction

accuracy� over summary pro�ling in nearly all cases� Among the three correlation pro�

�Again� because the penalties of mispredicting a hit and a miss is asymmetric� it is possible to
improve performance by replacing more expensive with less expensive mispredictions� even if the total
misprediction count increases �e�g�� go with correlation pro�ling when V

L

 ������
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�ling schemes� self correlation achieves the highest prediction accuracy in the largest

number of cases� followed by control��ow correlation and then by global correlation�

With V
L

� ���� summary pro�ling tends to apply latency tolerance aggressively� thus

resulting in a large amount of wasted overhead� In contrast with V

L
� ����� summary

pro�ling tends to be more conservative� thereby resulting in more untolerated misses�

Fortunately� for both ratios� correlation pro�ling successfully bridges the gap between

summary pro�ling and an ideal prediction�

As we expect� the e
ectiveness of these pro�ling schemes relies on how closely the

miss behaviors in the training run resemble those in the testing run� Fortunately� though

the prediction accuracy of correlation pro�ling is generally lower when the alternative

training input set is used� the improvement over summary pro�ling is still signi�cant�

Overall� correlation pro�ling does not appear to be overly sensitive to the training input�

To quantify the performance bene�ts of this increased prediction accuracy� Figures ���

and ��� show the potential resultant e
ective load stall time �recall that e
ective stall

time is the ordinary stall time plus any overhead associated with latency tolerance	 of

applying the four pro�ling schemes to a generic latency tolerance technique� In this

experiment� we assume an ideal exploitation of correlation pro�ling� where isolating dif�

ferent dynamic contexts incurs no run�time overhead� Later in Sections ����� and ������

when we apply correlation pro�ling to dynamic instruction scheduling and prefetching�

we will also include the overheads �if any	 of isolating dynamic contexts�

Each bar in Figures ��� and ��� is normalized to the load stall time without latency

tolerance� and is broken down into three categories� The bottom section ��Predict MISS

	 Actual MISS�	 is the useful overhead paid for tolerating references that normally miss�

The top two sections represent the misprediction penalty� including wasted overhead

��Predict MISS 	 Actual HIT�	 and untolerated miss latency ��Predict HIT 	 Actual

MISS�	�

As we see in these two �gures� the increased prediction accuracy o
ered by correla�

tion pro�ling translates into noticeable to signi�cant reductions in load stall time over

summary pro�ling� Such reductions are generally greater when V

L
� ����� a more inter�

mediate threshold� with which summary pro�ling tends to mispredict more often� The

extent to which improved prediction accuracy translates into reduced overall load stall

time also depends on the fraction of load misses that are correlation pro�led� When

this factor and the improvement in prediction accuracy are both favorable �e�g�� eqntott

and tsp	� we see large reductions in load stall time�when either factor is small �e�g��

compress and gcc	� the reductions are only modest�
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��� Case Studies

To develop a deeper understanding of when and why correlation pro�ling succeeds� we

now examine a number of the applications in greater detail� We discuss the relevant

memory access patterns in each of these applications� For the sake of demonstration� we

present in the study of li the miss ratio distributions under di
erent pro�ling schemes�

which give us insight into how e
ectively correlation pro�ling has isolated the dynamic

hit and miss instances of static load instructions�

	�	�� li

Over half of the total load misses are caused by two pointer dereferences� this�n flags

in mark��� and p�n flags in sweep��� as illustrated by the pseudo�code in Figure �����

The access patterns behave as follows� The procedure mark�� traverses a binary tree

through the three while loops shown in Figure �����a	� Starting at a particular node�

the �rst inner while loop continues descending the tree�choosing either the left or right

child as it goes�until it reaches either a marked node or a leaf node� At this point� we

then backup to a node where we can continue descending through a search performed by

the second inner while loop� The tree is allocated in preorder� similar to the one shown

in Figure ���� but much bigger� Therefore we enjoy spatial locality as long as we continue

following left branches in the tree� but spatial locality is disrupted whenever we backup

in the second inner while loop� as illustrated by Figure �����c	�

All three types of correlation pro�ling provide better cache outcome predictions than

summary pro�ling for the this�n flags reference in mark�� for li� Self correlation

detects this form of spatial locality e
ectively� Global correlation is more accurate than

summary pro�ling but less accurate than self correlation in this case because the cache

outcomes of other references �which do not help to predict this reference	 consume wasted

space in the global history pattern� Control��ow correlation also performs well because

it observes that this�n flags is more likely to su
er a miss if we begin iterating in

the �rst inner while loop immediately following a backup performed in the second inner

while loop �in the preceding outer while loop iteration	�

Finally� the reference p�n flags in sweep�� �shown in Figure �����b		 is in fact an

array reference written in pointer form� Both self correlation and global correlation detect

the spatial locality caused by accessing consecutive elements within the array� �Although

the compiler could potentially recognize this spatial locality through static analysis if it

can recognize that p�n flags is e
ectively an array reference� this is not always possible

for all such cases�	
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�a� Procedure mark��

void mark�NODE 	ptr� f

NODE 	this�	prev�	tmp�

if �ptr �� NIL� return�

prev � NIL� this � ptr�

���

while �TRUE� f �	 outer while loop 	�

while �TRUE� f�	 �st inner while loop 	�

if �this�n flags � MARK�

break� �	 a marked node 	�

else f
����

if �livecar�this�� f
����

prev � this�

this � car�prev�� �	 go left 	�

����

gelse if �livecdr�this�� f
����

prev � this�

this � cdr�prev�� �	 go right 	�

����

gelse break� �	 a leaf node	 �

g �	 ends if�else 	�

g �	 ends �st inner�while 	�

while �TRUE� f�	 �nd inner while loop 	�

�	 backup to a point where we

can continue descending 	�

g �	 ends �nd inner while 	�

g �	 end �st outer while 	�

�b� Procedure sweep��

LOCAL sweep��f

struct segment 	seg�

NODE 	p� int n�

���

for �seg � segs� seg �� NULL�

seg � seg�sg next� f
p � �seg�sg nodes
���

for �n � seg�sg size� n��� p���

if ���p�n flags � MARK�� f

���

g

g
g

�c� Tree traversal order in mark��

tree pointer

traversal

53

1

54

55

56

57

58

2

3

4

5

6

Figure ����� Procedures mark�� and sweep�� in li� and the memory access patterns
of mark��� �Note� consecutively numbered nodes in part �c	 correspond to adjacent
addresses in memory�	

Figures ���� �a	��d	 show the miss ratio distribution of li under the four pro�ling

schemes� Each graph is divided into �� ranges of miss ratios� each of which contains

a bar corresponding to the fraction of total dynamic correlation�pro�led load references

that fall within this range� The bars for summary pro�ling �Figure �����a		 represent the
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�a� Summary �b� Control�Flow
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�c� Self �d� Global
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Figure ����� Miss ratio distribution of li under the four pro�ling schemes�

inherent miss ratios of these load instructions� and the other three cases represent the

degree to which correlation pro�ling can e
ectively group together dynamic instances of

the loads into separate contexts with similar cache outcome behavior� For a correlation

scheme to be e
ective� we would like to see a �U�shaped� distribution where references

have been isolated such that they always have very high or very low miss ratios�we refer

to such a case as being strongly biased� In contrast� if most of the references are clustered

around the middle of the distribution� we say that this is weakly biased� Correlation

pro�ling can outperform summary pro�ling by increasing the degree of bias� which we

do observe in Figures �����b	��d	� With summary pro�ling� ��� of the loads that we

pro�le� have miss ratios in the range of ������ �these include the this�n flags and

p�n flags references shown earlier in Figure ����	� In contrast� with self correlation

pro�ling only ��� of the isolated loads have miss ratios in the ������ range� and over

��� are either below ��� or above ���� All three correlation schemes increase the degree

�Recall that we only pro�le loads with miss ratios between ��� and ��� among the top �� ranked
loads in terms of their contributions to total misses� Therefore the summary pro�ling case will never
have loads outside of this miss ratio range�
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�a� Procedure cmppt�� which causes �b� Call�site dependent
most load misses cache outcome patterns

extern int ninputs� noutputs�

int cmppt�a� b�

PTERM 	a
�� 	b
�� f

register int i� aa� bb�

register int	 a ptand� 	b ptand�

a ptand � a
���ptand�

b ptand � b
���ptand�

for �i � �� i � ninputs� i��� f
aa � a ptand
i��

bb � b ptand
i��

�	 the famous correlated branches 	�

g

return ����

g

H
H
H
H
H

M
M
M
M
M

M
M
M
M
M

M
M
M
M
M

H
H
H
H
H

H
H
H
H
H

S1 calls

2S calls

S1 calls

M = miss
H = hit

a[0]->ptand b[0]->ptand

Figure ����� The memory access behavior in eqntott� To make all loads explicit�
we rewrite the two expressions a����ptand�i� and b����ptand�i� in the origi�
nal cmppt�� into the four loads �i�e� a����ptand� a ptand�i�� b����ptand� and
b ptand�i�	 shown in �a	�

of bias in this case�

	�	�� eqntott

Most of the load misses in eqntott are caused by the four loads in cmppt�� shown in

Figure �����a	� two of which are array references �a ptand�i� and b ptand�i�	� Clearly

the spatial locality enjoyed by these two array references can be detected through self

correlation �and hence global correlation	� However� the access patterns of the other two

loads �a����ptand and b����ptand	 are more complicated� The procedure cmppt��

has multiple call sites� and two of them� say S� and S�� invoke it very frequently� When�

ever cmppt�� is called at S�� a��� will very likely be unchanged but b��� will have a new

value� In contrast� whenever cmppt�� is called at S�� b��� will very likely be unchanged

but a��� will have a new value� Moreover� both S� and S� repeatedly call cmppt���

This call�site dependent behavior results in the streams of cache outcomes illustrated

in Figure �����b	� Self correlation captures these streaming behavior� and control��ow

correlation also predicts the cache outcomes accurately by distinguishing the two call

sites of cmppt���
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ELEMENT 		prims in box	�pepa� ����f

ELEMENT 		pepa�

���

k � ��

npepa � alloc������
for �j � �� j � n in� j���f

tmp � pepa
j��

bb � tmp�bv�

���

�	 computes ovlap 	�

�	 no change in pepa
j� 	�

if �ovlap �� �� f
npepa
k��� � pepa
j��

���

g
g

return �npepa��

g

void subdiv bintree�BTNODE	 btn� ����f
���

�	 btn� and btn� are btn�s children 	�

btn��pe � prims in box	�btn�pe� �����

���

btn��pe � prims in box	�btn�pe� �����

���

g

void create bintree�BTNODE	 root� ����f
���

if ����� f

subdiv bintree�root� �����

create bintree�root�btn
��� �����

create bintree�root�btn
��� �����

���

g
���

g

Figure ����� Pseudo codes drawn from raytrace�

The cache outcomes of a����ptandalso help predict those of a ptand�i��ifa����ptand

is a hit� it implies that the array a ptand�� has been loaded recently� and therefore the

a ptand�i� references are likely to also hit� �Similar correlation also exists between

b����ptand and b ptand�i�	� Hence global correlation is quite e
ective in this case�

Control��ow correlation also predicts the cache outcomes of a ptand�i� and b ptand�i�

in an indirect fashion� by virtue of predicting those of a����ptand and b����ptand�

	�	�� raytrace and tsp

In raytrace� over ��� of load misses are caused by the pointer dereference of tmp�bv in

prims in box��� �see Figure ����	� In subdiv bintree��� the two calls to prims in box���

copy part of the array pe of the current node btn to the arrays btn
�pe and btn��pe�

where btn
 and btn� are the children of btn� This process of copying pe is performed

recursively on the whole tree by create bintree��� As a result� when prims in box���

is called upon a node n� we may have used all values in the array pe �referred to as

pepa in prims in box���	 of n before at some antecedent of n and hence hopefully

most data loaded by tmp�bv is already in the cache� In this case� most references of

tmp�bv will hit in the cache� In contrast� if the values in pepa are new� all tmp�bv

references will miss� Hence self correlation captures these streams of hits and streams of
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Tree tsp�Tree t�int sz� ���� f

���

if �t�size �� sz� return conquer�t��

���

leftval � tsp�t�left� sz� �����

rightval � tsp�t�right�sz� �����

return merge�leftval� rightval� t� �����

g

static Tree conquer�Tree t� f

���

l � makelist�t��

for �� l� l�donext� f
work�l�data��

donext � l�next�

g
���

g

Figure ����� Pseudo codes drawn from tsp� Procedure makelist�Tree t� slings t into
a list consisting of all nodes of t�

misses� In theory� control��ow correlation could also achieve good predictions by observ�

ing whether any copying occurred in the parent node�unfortunately� the pro�ling tool

cannot record enough state across the many control��ow changes in subdiv bintree��

and prims in box��� to know what decisions were made in the parent node�

Similar to raytrace� tsp also traverses a binary tree recursively� and some data

which is read by the current node will be read again by its descendents� As illustrated in

Figure ����� the procedure tsp�� recursively traverses the tree t and calls conquer�t�

if the size of t is not greater than sz� The procedure conquer�t� uses makelist�t�

to sling every node of t into a list which is then traversed by the for loop� Therefore

since all descendents of t are brought into the cache whenever conquer�t� is called�

subsequent recursion down t�left and t�right within tsp�� results in many cache

hits� Hence the l�data references either mainly hit or mainly miss for a given node

t� Self correlation captures this pattern e
ectively� Control��ow correlation is also quite

e
ective because it can observe the number of times conquer�� has been called in a given

recursive descent�most misses occur the �rst time it is invoked�

	�	�� perimeter and bisort

The main data structures used in both perimeter and bisort are trees� quadtrees

in perimeter� and binary trees in bisort� These trees are allocated in preorder� but

the orders in which they are traversed are rather arbitrary� As a result� we do not see

very regular cache outcome patterns �such as the one illustrated in Figure ���	 for these

applications� Nevertheless� there is still a considerable amount of spatial locality among

consecutively accessed nodes while we are traversing around the bottom of a tree that has

been allocated in preorder� For example� if we traverse a quadtree using the procedure

middle first�� shown in Figure ����� we will only miss twice upon accessing nodes ���
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�a� A quadtree allocated in preorder �b� Code for traversing
the quadtree in �a�

401

161

157 158 159 160

1

2 41 341

42 65 98

middle_rightleft rightmiddle_left

156

More spatial locality
found at the bottom

void middle �rst�quadTree	 p� f

if �p �� NULL�

return�

work�p�data��

middle �rst�p�middle left��

middle �rst�p�middle right��

middle �rst�p�left��

middle �rst�p�right��

g

Figure ����� Example of a case where more spatial locality is found at the bottom of a
tree� This example assumes that one cache line can hold three tree nodes and the tree is
allocated in preorder� Nodes having consecutive numbers are adjacent in the memory�

through ��� at the tree
s bottom� assuming that nodes ��� through ��� are in one cache

line and nodes ��� through ��� are in another� In contrast� there is relatively little spatial

locality while we are traversing the middle of the tree� Self correlation �and hence global

correlation	 can discover whether we are currently in a region of the tree that enjoys

spatial locality� Control��ow correlation can also potentially detect whether we are close

to the bottom of the tree by noticing the number of levels of recursive descent�

	�	�	 mst

Most of the misses in mst are caused by loads in HashLookup�� and the tmp�edgehash

load in BlueRule��� as illustrated in Figure ����� The mst application consists of two

phases� a creation phase and a computation phase� Both phases invoke HashLookup���

but the creation phase causes most of the misses when it calls HashLookup�� to check

whether a key already exists in the hash table before allocating a new entry for it�

During the computation phase� much of the data has already been brought into the cache�

and hence there are relatively few misses� Both self correlation and global correlation
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void 	HashLookup�int key� Hash hash� f

int j�

HashEntry ent�

j � �hash�mapfunc��key��

for �ent � hash�array
j��

ent �� ent�key ��key�

ent � ent�next��

if �ent� return ent�entry�

return NULL�

g

static BlueReturn BlueRule����� f
���

for �tmp�vlist�next� tmp�

prev�tmp�tmp�tmp�next� f
���

hash � tmp�edgehash�

���

g

g

Figure ����� Pseudo codes drawn from mst�

accurately predict the cache outcomes of these two distinct phases� since they appear as

repeated streams of either hits or misses� Control��ow correlation is also e
ective since

it can distinguish the call chains which invoke HashLookup���

The load of tmp�edgehash in BlueRule�� accesses a linked lists whose nodes are

in fact allocated at contiguous memory locations� Consequently� self correlation detects

this spatial locality accurately� but control��ow correlation is not helpful�

	�	�
 voronoi and compress

Control��ow correlation o
ers the best prediction accuracy in both of these applications�

Most of the misses in voronoi are caused by loading b�next in splice��� which is

called from three di
erent places in do merge��� as illustrated in Figure �����a	� When

splice�� is called from call site 
� b�next will hit since ldi�next loaded this same

data into the cache just prior to the call� When splice�� is called from the other two

call sites� b�next is more likely to miss� Hence control��ow correlation distinguishes

the behavior of these di
erent call sites accurately� Self correlation is less e
ective since

b�next does not have regular cache outcome patterns�

In compress roughly half of the misses are caused by the hash table access htabof�i�

in the procedure compress�� �see Figure �����b		� The index i to the hash table htab

is a function of the combination of the pre�x code ent and the new character c� If this

combination has been seen before� the hash probe test ��htab�i� �� fcode�	 will be

true�if it has been seen recently� the load of htab�i� is likely to hit in the cache� Since

the input �le we use �provided by SPEC	 is generated from a frequency distribution of

common English texts� some strings will appear more often than others� Because of this�

we expect that the condition �htab�i� �� fcode� should be true quite frequently once

many common strings have been entered into htab� If the last few tests of �htab�i�
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�a� Code fragment in voronoi �b� Code fragment in compress

EDGE PAIR do merge����� f
���

v � ldi�next�

b � ldi�

splice�a� b� �	 call site � 	�

���

�	 no dereferences of ldj before 	�

b � ldj�

splice�a� b� �	 call site � 	�

���

�	 no dereferences of ldk before 	�

b � ldk�

splice�a� b� �	 call site � 	�

���

g
splice�QUAD EDGE a� QUAD EDGE b� f

���

beta � rot�b�next��

���

g

compress�� f
���

while ��c � getbyte��� �� EOF� f
���

fcode � ���long� c �� maxbits� � ent��

i � �xor��c �� hshift�� ent���

if �htab
i� �� fcode� f
ent � codetab
i��

continue�

g else f
��� �	 store fcode into htab 	� ���

g
g

���

g

Figure ����� Pseudo codes drawn from �a	 voronoi and �b	 compress�

�� fcode� are false� the probability that the next one is true will be high� which also

implies that the next reference of htab�i� is more likely a hit� Therefore� control��ow

correlation can make accurate predictions by examining the last several outcomes of this

branch�

	�	�� espresso� vortex� m

ksim� and go

For these four applications� correlation pro�ling mainly improves the cache outcome pre�

dictions for array references� In espresso� many load misses are due to array references�

written in pointer form� with variable strides� Figure �����a	 shows one such example�

Inside the for loop� p is incremented by BB�wsize� whose value depends on the call

chain of setup BB CC�� and ranges from � to �� bytes� Di
erent values result in di
erent

degrees of spatial locality� but all can be captured by self correlation �and hence global

correlation	� Control��ow correlation can also make enhanced predictions by exploiting

the call�chain information�

In vortex� m��ksim� and go� many load misses are caused by array references located
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�a� Code fragment in espresso �b� Code fragment in vortex

void setup BB CC�pcover BB�

pcover CC�f
���

for�p�BB�data�

last�p�BB�count	BB�wsize�

p�last�p��BB�wsize�

p
�� � p
�� � ACTIVE�

���

g

boolean ChkGetChunk�numtype ChunkNum� ����f

���

if ���Theory�Flags
ChunkNum� � �����

�� ���

���

g

Figure ����� Pseudo codes drawn from �a	 espresso and �b	 vortex�

inside procedures� where array indices are passed as procedure parameters� See Fig�

ure �����b	 for an example drawn from vortex� Each of these procedures have multiple

call sites� and the cache outcomes of those array references are mainly call�site dependent�

This explains why control��ow correlation o
ers the highest cache outcome prediction ac�

curacy for these three benchmarks� In vortex� the array index parameter values at a

given call are very close or even identical most of the time� but values passed at di
erent

call sites are quite di
erent� Consequently� references made through the same call sites

will enjoy temporal and!or spatial locality� but those made through di
erent call sites

will not� Since a procedure is usually invoked multiple times by the same call site before

being invoked by another call site� this results in a streaming pattern of a miss followed

by several hits�hence self correlation also performs well in vortex by capturing these

cache outcome patterns�

	�	�
 Lessons Learned from All Case Studies

Although global correlation makes excellent predictions in some cases by correlating

behavior across di
erent load instructions �e�g�� eqntott	� in most cases it essentially as�

similates self correlation� but does not perform quite as well since it records less history

for a given load� Self correlation is often successful since it recognizes forms of spatial

locality which are not recognizable at compile time �e�g� li� perimeter� bisort� and

mst	� and also long runs of either all hits or all misses �e�g�� eqntott� mst� tsp� and

raytrace	� We often �nd that as few as four previous cache outcomes per reference are

su�cient to achieve good predictability with self correlation� By capturing call chain

information� control��ow correlation can distinguish behavior based on call sites �e�g��

eqntott� espresso� vortex� m��ksim� go� mst and voronoi	 and the depth of the re�

cursion while traversing a tree �e�g�� perimeter� bisort� and tsp	� Another interesting
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�nding is that array�like references with regular strides still play an important role in

a considerable number of these non�numeric applications �e�g�� eqntott� li� espresso�

vortex� m��ksim and go	� However� these array references are often written in more com�

plex forms than in numeric applications� including using pointer arithmetic to compute

addresses and passing array indices as procedure parameters�

Over half of the applications enjoy signi�cant improvements from both control��ow and

self correlation� and in many of these cases we observe that the same load references can

be successfully predicted by both forms of correlation� This is good news� since control�

�ow correlation pro�ling is the easiest case to exploit in software by using procedure

cloning ��� to distinguish call�chain dependent behavior �we will discuss this further in

Section �����	�

��	 Exploiting Correlation Pro�ling in Practice

Now that we have demonstrated correlation pro�ling
s potential for predicting cache

outcomes more accurately than summary pro�ling� the next question is how do we exploit

these potential performance gains in practice� Any practical exploitation of correlation

pro�ling must consist of the two key components� context�based cache miss pro�ling and

isolation of contexts at run time� In this section� we propose how correlation pro�ling

could be exploited in hardware and in software� in light of those proven hardware and

software history�based branch prediction techniques� In addition� we apply correlation

pro�ling to two latency tolerance techniques to further demonstrate its practicality�

	�
�� Exploiting Correlation Pro�ling in Hardware

Let us consider some possibilities for hardware�based miss predictors that utilize the

three types of correlation� For control��ow correlation� a straightforward hardware�based

predictor would be to use branch histories to predict cache outcomes� An advantage

of this approach is that branch histories are free if they are already used for branch

prediction� However� the main drawback is that only branch directions are used in most

history�based branch predictors� not the actual control��ow paths� Without control�

�ow path information �especially procedure call contexts	� prediction accuracy would

not be improved much� For this reason� we do not exploit control��ow correlation in

hardware� Instead� we will consider exploiting control��ow correlation in software later

in Section ������ Nevertheless� control��ow correlation would be more readily exploitable

in hardware if the branch predictor already makes use of path information� such as the

one proposed by Nair ���� �
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For self and global correlation� we can borrow the designs of existing history�based

branch predictors to construct our own cache miss predictors� we simply need to replace

the notion of taken!not�taken in branch prediction by that of hit!miss� In such predictors�

both context�based cache miss pro�ling and run�time context isolation are implemented

entirely in hardware� Cache miss pro�ling is essentially achieved through an array of

hardware counters �typically saturating	� which keep track of recent cache hit!miss out�

comes and are also used to make prediction in the future� These counters are indexed

by history patterns stored in hardware registers� which essentially isolate run�time con�

texts� As proof of this concept� we implement both self and global correlation�based miss

predictors in hardware and apply them to instruction scheduling� as detailed in the next

section� But� as we discussed before� they would also be useful for other latency tolerance

techniques� such as multithreading�

Applying Cache Miss Prediction to Dynamic Instruction Scheduling

Consider the pipelines of a generic out�of�order machine shown in Figure �����a	� In this

machine� an instruction takes s cycles to get scheduled to the corresponding function

unit� Suppose that the scheduling of a load L begins at time t� Whether L is a cache

hit is unknown until the D�cache access of L nearly completes at time t # s # e # h�

where e and h are the execution latency and cache hit latency� respectively� To minimize

load�and�use latency� an instruction C that consumes the result of L must be considered

for scheduling before knowing the hit!miss outcome of L� There are two scenarios where

performance may be degraded due to misprediction� �i	 If L is predicted as a hit� the

scheduling of C can start as soon as t # e # h� However� if L turns out to be a miss

but C was already scheduled� C and all its dependent instructions that were scheduled

in the window of s cycles must be squashed and re�executed �note that this can mean

more than s instructions in superscalar machines	� as illustrated in Figure �����b	� �ii	

If L is predicted as a miss when C is considered for scheduling� the scheduling of C

will not start until the misprediction is discovered� Consequently� C and its dependent

instructions are unnecessarily delayed by s cycles �see Figure �����c		� To avoid both

kinds of misprediction� we study six hardware�based cache miss predictors� Three of

them�namely self� global� and tournament�are correlation�based�

The self predictor is shown in Figure �����a	� which contains a history table and a

prediction table� The history table holds the last �� cache hit!miss outcomes for up to

���� loads� indexed by the instruction address� The ���bit self history is used to select

one of the ���� two�bit prediction counters� A �HIT� prediction is made if the most

signi�cant bit of the prediction counter is one� All prediction counters are initialized to
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Execution
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Figure ����� Illustration of the two kinds of misprediction penalties in dynamic instruc�
tion scheduling� Irrelevant pipeline stages such as fetch and decode are not shown in
these �gures�

two �i�e� just �HIT�	� After a load graduates� the true cache outcome is inserted in the

history table and the prediction counter is updated �using saturating arithmetic	�

Figure �����b	 shows the global predictor� which is a ��K�entry table of two�bit pre�

diction counters that is indexed by the global history of last �� load hit!miss outcomes�

The global history is updated when a load is issued speculatively but is backed up and
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�a� Self predictor �b� Global predictor
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Program
Counter
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Figure ����� Three hardware correlation�based cache miss predictors�

corrected if the load is squashed eventually� The prediction counter is updated when the

load graduates� Again� a �HIT� prediction is the most signi�cant bit of the prediction

counter� which is initialized to two�

The tournament predictor is in fact a combination of the self predictor and a smaller

global predictor� as shown in Figure �����c	� It dynamically chooses between self and

global history to predict the hit!miss outcome of a given load� The chooser table consists

of ���� two�bit saturation counters and is indexed by the global history� When the load

graduates and if the self and global predictions di
er� the selected choice entry is updated

to support the correct predictor� The tournament predictor is included here because

tournament branch predictors ��� have higher prediction accuracy than larger branch
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Table ���� The seven cache miss predictors studied� The structures of the bimodal� self�
global� and tournament are picked in a way that their resultant sizes are comparable�

Name Structure Size

Always�Hit None �
EV� A ��bit saturation counter Four bits
Bimodal ��K ��bit saturation counters indexed by the PC 
K bytes
Self �K ���bit self�history entries indexed by the PC� �K bytes

�K ��bit saturation counters indexed by self history
Global A ���bit global history register� 
K bytes

��K ��bit saturation counters indexed by the global history
Tournament �K ���bit self�history entries indexed by the PC� �K bytes

�K ��bit self�prediction counters indexed by self history�
a ���bit global history register�
�K ��bit global�prediction counters indexed by the global history�
�K ��bit choice�prediction counters indexed by the global history

Ideal None �

Table ���� Simulation parameters of the two pipelines�

Current Machines Future Machines

Scheduling Latency � cycles � cycles
Cache Hit Latency � cycles � cycles
Issue Width � insts� 
 insts�
Functional Units � Int� � FP� � Memory� � Branch � Int� � FP� � Memory� � Branch
Reorder Bu�er Size �� entries ��
 entries
Integer Multiply �� cycles
Integer Divide �� cycles
All Other Integer � cycle
FP Divide �� cycles
FP Square Root �� cycles
All Other FP � cycles
Branch Prediction Scheme The tournament branch predictor in the Alpha ����� ����

predictors that use either local or global history alone�

In addition to these three correlation�based predictors� we have four other predictors�

bimodal� EV�� always�hit� and ideal� The bimodal predictor is an array of ��K two�bit

saturation counters� indexed by the program counter� A �HIT� prediction is the most

signi�cant bit of the prediction counter� which is initialized to two �i�e� just �HIT�	� It is

updated when the load graduates� The EV� predictor is the one used by the Alpha �����

�EV�	 ��� � which is the most signi�cant bit of a ��bit counter that tracks the hit!miss

behavior of recent loads� The saturation counter is decremented by two upon a load miss
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and is incremented by one upon a hit� The always�hit predictor is the default predictor

used in most processors�it simply assumes that all loads are cache hits� Finally� the ideal

predictor always knows the hit!miss outcome in advance and is included for evaluating the

absolute performance of realistic predictors� Table ��� summarizes these seven predictors

with the amount of storage consumed by each�

We experimented these predictors with two di
erent pipelines� one is based on those

of some recent processors such as the Alpha ����� ��� � whereas the other is a projected

pipeline for some future processor� The key parameters are the scheduling latency and the

cache hit latency �i�e� s and h in Figure ����� respectively	� Table ��� lists the parameters

of the two pipelines� The memory subsystem is identical to the one shown earlier in

Table ��� of Chapter �� Half of the applications studied in Section ��� were selected

for this experiment� They are the eight SPEC�� integer benchmarks plus eqntott�

raytrace� and mst�

Our �rst set of results is included in Figure ���� which shows the misprediction rate

of the various cache miss predictors �the ideal predictor always has no misprediction and

so is not shown	� Like before� we divide mispredictions into two categories� We make the

following observations from this �gure� First� the overall misprediction rate in Figure ����

is much lower than the ones we observe in Figures ��� and ���� The di
erence is due

to the fact that Figure ���� shows the misprediction rate for all loads executed� instead

of focusing on loads that have intermediate miss ratios �i�e� correlation�pro�led loads	�

as Figures ��� and ��� do� Second� among the predictors� the EV� predictor is only

slightly more accurate than the always�hit predictor �except in the case of mst	� This

is not a surprise given the very low hardware cost of the EV� predictor� The bimodal

and self predictors have similar prediction accuracy in many cases� but the self predictor

achieves a signi�cantly lower misprediction rate in eqntott� li� and raytrace� The

global predictor does not predict as accurately as the self predictor� As a result� the

tournament predictor mostly follows the self predictor� Third� the misprediction rate

is generally higher in the future pipeline case� With a higher degree of speculation in

the future pipeline� the data cache needs to accommodate a larger data set �including

data accessed on wrong paths	� Therefore the number of Predict HIT	Actual MISS

mispredictions is increased along with the overall miss rate�

The improvement in prediction accuracy translates into the performance gain shown

in Figure ����� where the instruction stall �inst stall	 component has been reduced by

cache miss prediction� As we expect� the performance potential is larger in the future

pipeline case� For example� the ideal speedup of eqntott is ��� with the future pipeline

but is only ��� with the current pipeline� The three correlation�based predictors achieve
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noticeable to signi�cant speedups in seven of these �� benchmarks� They range from ��

to ��� and from �� to ��� for the current and future pipelines� respectively�

We would like to point out that our correlation�based predictors have not been op�

timized for performance�they are mainly for demonstration purpose and their design

is largely based on existing branch predictors� Since there is still substantial room for

improvement between correlation�based predictors and the ideal predictor in a few cases

�especially for the future pipeline	� it may be worthwhile to study more sophisticated

correlation�based predictors �e�g�� using more complex indexing mechanisms� adding tags

to tables� or enlarging history or prediction tables� etc�	 in order to achieve further

performance gains�

	�
�� Exploiting Correlation Pro�ling in Software

The �rst step of exploiting correlation pro�ling in software is to collect the correlation

pro�les themselves� which can be done either through simulation �as we have done in

this study	 or through some informative pro�ling techniques such as Pro�leMe ��� and

informing memory operations ��� � To minimize the overhead of correlation pro�ling�

we found it useful to �rst use summary pro�ling information to focus only on the most

signi�cant loads with intermediate miss rates� With so few loads to pro�le �as evidenced

by Table ���	� it was reasonable to maintain relatively long sequences of basic block

numbers or previous cache outcomes in the history patterns�

Assuming that we discover that interesting correlations do exist� the next step is

to transform the code to statically isolate the contexts �either control��ow paths or

di
erent patterns in previous cache outcomes	 which lead to the di
erent cache outcome

predictions� One viable approach for doing this is to exploit code duplication� which

has been used to implement static correlated branch prediction ���� � We could also

potentially duplicate sections of code to isolate contexts with similar cache outcome

behavior� and apply individual latency tolerance actions to each context� Applying code

duplication to separate control��ow paths is very similar to what has been done for

static correlated branch prediction� Using code duplication to distinguish contexts which

di
er based on previous cache outcomes requires an architectural mechanism that enables

software to observe cache outcomes directly� such as informing memory operations�

Exploiting Control�Flow Correlations

While we can reuse the code duplication algorithms developed for correlated static branch

prediction ���� � we may also potentially su
er from the same kinds of performance

overhead due to code expansion� Fortunately� our results suggest that only a relatively
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�a� Original procedure foo�� �b� n clones of foo��

foo�tree	 root�f
work�root�data��

foo�root�left��

foo�root�right��

g

clones
�


foo 
�tree	 root�f

work�root�data��

foo ��root�left��

foo ��root�right��

g

foo ��tree	 root�f
work�root�data��

foo 	�root�left��

foo 	�root�right��

g

foo 	�tree	 root�f

work�root�data��

foo ��root�left��

foo ��root�right��

g
���

foo n�tree	 root�f

work�root�data��

foo n�root�left��

foo n�root�right��

g

Figure ����� Example of using procedure cloning to determine the current tree level�

small amount of code expansion would be required in many applications� since the key

distinctions are call sites involved in the calling chain� By cloning a small number of

procedures� we can e
ectively isolate these paths�

We can also potentially use procedure cloning ��� to determine the current tree level

for predicting tree�level dependent cache outcomes� Figure ���� illustrates how a recursive

procedure foo�� could be cloned n times� where each copy corresponds to a particular

depth in the tree� If most misses occur near the root of the tree �as we have observed in

several of our cases studies	� we could apply a latency tolerance scheme at higher levels

in the tree �foo ���� foo 
��� etc�	� but disable it near the bottom �foo n��	� The

number of clones that we should make can potentially be determined from the control�

�ow correlation pro�ling information�

Exploiting Self Correlations or Global Correlations

A viable technique for exploiting self correlations or global correlations is to use in�

forming memory operations ��� � which are essentially memory operations� each combined

with a conditional branch�and�link operation that is taken only if the reference su
ers a

cache miss� With informing memory operations� we can apply code duplication to sepa�

rate contexts based on previous cache outcomes� Figure ���� shows an example of how

this might be accomplished� Assume that self correlation has detected three common

cache outcome patterns for the load of �p in Figure �����a	� �i	 a long sequence of hits�

�ii	 a long sequence of misses� and �iii	 an alternating sequence of hits and misses� Given

these patterns� we could use the previous two cache outcomes to predict the next cache

outcome� as illustrated by the state diagram in Figure �����b	� Figure �����c	 shows how



�b� Predicting the next cache
outcome based on the last two

MM

MH
H

M

H HH

HM
MM

H

H

M

H = hit
M = miss

predict a hit
predict a miss

HH_loop_begin:

R <- info_load *p

R <- R + 10

if (p == 0) goto loop_exit

goto HH_loop_begin

/*just seen HH*/

MM_loop_begin:

if (p == 0) goto loop_exit

R <- info_load *p

R <- R + 10

goto MH_loop_begin

MH_loop_begin: if (p == 0) goto loop_exit

R <- R + 10

goto MH_loop_begin

HM_loop_begin:

if (p == 0) goto loop_exit

R <- info_load *p

R <- R + 10

goto HM_loop_begin
loop_exit:

/*just seen HM*/R <- R + 10

R <- R + 10 /*just seen MH*/

/*just seen MM*/R <- R + 10

goto HH_loop_begin

goto MM_loop_begin

R <- R + 10

/*just seen HH*/

/*just seen HM*/

/*just seen MH*/

/*just seen MM*/

jump upon a miss

jump upon a miss

jump upon a miss

jump upon a miss

R <- info_load *p

Figure ����� Example of using informing memory operations to implement self correlated
prediction� The single loop in �a	 is duplicated into the four loops shown in �c	� each of
them corresponds to a di
erent state in �b	�

the original loop could be replicated into four copies� where each copy encodes one of the

four states� The original load of �p is replaced by an informing version of the same load�

As a result of each informing load� one of two state transitions occur� �i	 if the load hits�

we will continue as normal and jump directly to next state associated with a hit� �ii	 if

the load misses� the informing mechanism will directly trigger a branch which we will set

to take us to the next state associated with a miss�

Again� code expansion is a concern here� In the worst case� we might expand the

code exponentially with respect to the length of the history pattern that is needed to

provide the correlation� Fortunately� our experimental results indicate that relatively



Chapter �� Correlation�Based Cache Miss Prediction ���

|0

|20

|40

|60

|80

|100

|120

|140
 N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e load stall

 100  101
  94

 100   98   96

N S C N S C

Perimeter Tsp

store stall
inst stall
busy

|0

|20

|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e load stall

 100
  94   93

 100   98   97

N S C N S C

Perimeter Tsp

store stall
inst stall
busy

�a� With one memory unit �b� With two memory units

Figure ����� Impact of correlation pro�ling on prefetching performance �N � no prefetch�
ing� S � prefetching directed by summary pro�ling� C � prefetching directed by corre�
lation pro�ling	�

short history lengths �four or fewer	 are su�cient in many applications� In addition�

we do not expect it to be necessary to enumerate all possible contexts of a particular

history length� as we do in our example� In many situations� we only need to di
erentiate

contexts that occur frequently but have substantially di
erent miss ratios� Enumerating

only these contexts can reduce the code expansion factor signi�cantly�

Applying Correlation Pro�ling to Software�Controlled Prefetching

To exemplify how correlation pro�ling can be exploited in software� we used both sum�

mary and correlation pro�ling to guide the manual insertion of prefetch instructions into

two applications� �perimeter and tsp	� In the case of correlation pro�ling� we used pro�

cedure cloning to isolate di
erent dynamic instances of a static reference� and adapted

the prefetching strategy accordingly with respect to the call sites� Two processor mod�

els� each with one or two memory functional units� were used in this experiment� other

simulation parameters are identical to those used in Chapter � �refer back to Table ���

for the details	� As we discussed in Section ������ changing the number of memory units

alters the e
ective prefetching overhead on superscalar machines� Doing so allows us to

experiment with di
erent degrees of overhead without modifying the prefetching code�

The input data sets are the �testing� sets shown in Table ����

Figure ���� shows the resultant execution time� normalized to the case without

prefetching� Note that the execution time of correlation�pro�ling directed prefetching
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has already included any possible overheads due to procedure cloning such as additional

instruction cache misses and branching� etc� As we observe from the �gure� correlation

pro�ling improves the performance of prefetching over summary pro�ling by isolating

dynamic hits and misses more e
ectively� thereby achieving similar bene�ts with signi��

cantly less overhead� This is especially the case with one memory unit where prefetching

overhead has a bigger impact on performance� For example� for perimeter� correlation

pro�ling speeds up prefetching by �� over summary pro�ling with one memory unit but

by only �� with two memory units� Overall� these results demonstrate that software can

exploit correlation pro�ling through code duplication to further increase the bene�t of

latency tolerance�

��
 Chapter Summary

To achieve the full potential of latency tolerance techniques� we have proposed correlation

pro�ling� which is a technique for isolating which dynamic instances of a static memory

reference are likely to su
er cache misses� We have evaluated the potential performance

bene�ts of three di
erent forms of correlation pro�ling on a wide variety of non�numeric

applications� Our experiments demonstrate that correlation pro�ling techniques outper�

form summary pro�ling in most cases by increasing the degree of bias in the miss ratio

distribution� and this improved prediction accuracy can translate into signi�cant reduc�

tions in the memory stall time for roughly half of the applications we study� We also

�nd that correlation pro�ling is fairly robust with respect to input data sets� Detailed

case studies of individual applications show that self correlation works well because the

cache outcome patterns of individual references often repeat in predictable ways� and

that control��ow correlation works mainly because many cache outcomes are call�chain

dependent� Although global correlation o
ers superior performance in some cases� for

the most part it mainly assimilates self correlation� Finally� we propose exploitation

of correlation pro�ling based on well�known history�based branch prediction techniques�

We demonstrate that hardware correlation�based predictors improve the e
ectiveness of

dynamic instruction scheduling� We also suggest that code duplication techniques could

be used to exploit correlation pro�ling in software and observe that correlation pro�ling

o
ers superior performance over summary pro�ling when prefetching on a superscalar

processor�
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Conclusions

The memory latency of accessing instructions and data has become a critical perfor�

mance bottleneck in many important computer applications� Caches are a crucial �rst

step toward addressing this problem� but they are not a panacea� As a result� a number

of latency�hiding techniques have been proposed� Among them� locality optimizations

and prefetching have demonstrated signi�cant success in regular numeric codes but their

potential in irregular non�numeric applications has been largely unexplored� This disser�

tation attempts to provide viable techniques that help unlock these techniques
 potential�

thereby improving the memory performance of non�numeric codes�

The techniques investigated and the key results of this dissertation are summarized

as follows�

Cooperative Instruction Prefetching� We began with a study on using prefetching

to hide the latency of fetching instructions� Our detailed evaluation of previous

instruction prefetching schemes reveals that only about one�third of the instruction

cache miss latency in a modern processor can be hidden by these schemes because

prefetches are usually launched too late� To address this problem� we proposed co�

operative instruction prefetching� which uses the compiler to automatically prefetch

non�sequential accesses far enough in advance while using the hardware to prefetch

sequential accesses aggressively under the guidance of a prefetch �lter� The results

of this cooperation are that� �rst� over ��� of the miss latency is successfully hid�

den by converting late prefetches into cache hits and that� second� the number of

useless prefetches is six times less than the best previous scheme� Moreover� the

compiler is able to schedule prefetches early enough while at the same time limiting

code expansion to only �� of the original program� We also demonstrated that the

e
ectiveness of cooperative prefetching can be further increased by using pro�ling

information to help reduce con�ict misses and unnecessary prefetches� From an ar�

���
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chitectural perspective� the performance advantages of cooperative prefetching are

sustained over a range of common miss latencies and bandwidth� Finally� coopera�

tive prefetching is cost�e
ective as well� since it delivers performance comparable to

�or even better than	 that of larger caches� but requires a much smaller hardware

budget�

Compiler�Based Prefetching for Recursive Data Structures� We continued by ex�

ploiting the potential of data prefetching in an important class of non�numeric codes

that contain pointer�based data structures� To overcome the pointer�chasing prob�

lem associated with prefetching these data structures� we designed three prefetch�

ing schemes and automated them in an optimizing research compiler� Detailed

evaluation of these schemes on a dynamically�scheduled processor demonstrates

that compiler�inserted prefetching can signi�cantly improve the execution speed of

pointer�based codes�up to more than twofold for those applications that su
er

the most from cache misses� While greedy prefetching is the most widely applicable

scheme� the other two schemes can provide superior performance when the traver�

sal orders of the data structures are predictable� In a few cases where prefetching

overhead outweighs the bene�t� the performance degradation is slight �usually less

than ��	� Our results also indicate that these prefetching schemes perform well

over wide ranges of miss latencies� memory bandwidth� and cache sizes� In addi�

tion� through increasing the prefetching distance� history�pointer prefetching and

data�linearization prefetching can cope with very large miss latencies� Compared

with the only other compiler�based pointer prefetching scheme found in the liter�

ature� our schemes o
er substantially better performance by avoiding unnecessary

overhead and hiding more latency�

Memory Forwarding� In addition to tolerating latency through prefetching� reducing

latency by re�optimizing data layout at run�time provides another rich opportu�

nity to improve memory performance� Unfortunately� it is extremely di�cult to

guarantee that such optimizations are safe in practice on today
s machines� since

accurately updating all pointers to an object requires perfect alias information�

which is well beyond the scope of the compiler for languages such as C� To over�

come this limitation� we proposed a technique called memory forwarding which

e
ectively adds a new layer of indirection within the memory system whenever

necessary to guarantee that data relocation is safe� Because actual forwarding

rarely occurs �it works as a safety net	� the mechanism can be implemented as an

exception in modern superscalar processors� Our experimental results demonstrate
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that the aggressive layout optimizations enabled by memory forwarding can result

in signi�cant speedups�more than twofold in a few cases�by reducing the number

of cache misses� improving the e
ectiveness of prefetching� and conserving memory

bandwidth�

Correlation�Based Cache Miss Prediction� Finally� we investigated cache miss pre�

diction in non�numeric codes� An important use of such prediction is to reduce the

unnecessary overhead of prefetching and other latency tolerance techniques by ap�

plying them only to the dynamic references that are likely to su
er cache misses�

We proposed a new class of prediction techniques that correlate future cache misses

with recent control��ow paths or with recent cache miss behavior� Our experimen�

tal results show that roughly half of the �� non�numeric applications we study can

potentially enjoy signi�cant reductions in memory stall time by exploiting at least

one of the three forms of correlation we consider� control��ow correlation� self cor�

relation� and global correlation� In addition� our detailed case studies illustrate that

self correlation succeeds because a given reference
s cache outcomes often contain

repeated patterns� and control��ow correlation succeeds because cache outcomes

are often call�chain dependent� Lastly� we demonstrated that correlation�based

miss prediction can boost the performance of dynamic instruction scheduling and

software�controlled prefetching�

	�� Future Work

The techniques developed in this research target non�numeric codes in general� Nonethe�

less� most of the workloads we experimented with were drawn from the technical com�

munity� Perhaps the most obvious next step is to extend this research to directly address

commercial workloads� Although there are already a number of studies on measuring the

performance of such workloads� studies on actually improving their performance are rare�

We are encouraged by some preliminary research ��� which extends our data prefetch�

ing techniques to handle more commercially�oriented applications� and we believe that a

thorough study on the applicability of our techniques to these applications is warranted�

We are also interested in further exploring the design space of memory forwarding�

In particular� we hope to eliminate the need for physical forwarding bits to distinguish

forwarded data� By using some combination of data encoding and exception handling�

we might be able to emulate these forwarding bits mostly in software� and thereby imple�

ment memory forwarding without changing the memory hierarchy� In addition� compiler

techniques that utilize memory forwarding are desirable� Ultimately� we want to auto�
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mate dynamic data layout optimizations �for common data structures	 in the compiler�

With correctness guaranteed by memory forwarding� the next problem will be how to

accurately estimate the cost!bene�t tradeo
 of these optimizations� The use of dynamic

information through pro�ling feedback or adaptive code appears to be essential for ad�

dressing this problem�

So far� we have been focusing on optimizing existing programs� Another research

direction is to develop tools that can help programmers write new programs that are

�memory friendly�� To maximize performance� we may need to attack the memory

latency problem at an algorithmic level� That is� memory latency should be taken into

account when we estimate the running time of an algorithm� For example� there have

been some studies on designing searching and sorting algorithms with the consideration of

memory latency ��� � However� this approach requires programmers to fully understand

the memory hierarchy� which is highly unlikely in general� since the memory hierarchy is

increasingly complex and is also machine�dependent� An intermediate solution between

this �programmer�centric� extreme and the �compiler�centric� extreme is to develop

libraries of intelligent
 memory�conscious data structures� These structures would collect

run�time information about memory behavior� Based on this information� they can decide

themselves which implementation of a data structure should be used� how often data

relocation should happen� and which prefetching strategy should be taken� We envision

that such libraries could be implemented for a wide range of languages� including C�

C##� and Java� In addition� these new libraries can share the same interfaces to some

�standard� libraries of these languages �e�g�� the Standard Template Library �STL	 ���� 

for C##� the java�util package ��� for Java	 so that programmers would have less

di�culty in using them�

Finally� the techniques that we developed for prefetching� improving locality� and

predicting cache misses can potentially be extended to cope with other forms of latency�

Important candidates include accessing �le systems and communicating across networks�

including the World�Wide Web�
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Overall Experimental Methodology

In this appendix� we discuss the overall experimental methodology used throughout this

dissertation� Since each of the techniques we studied addresses di
erent aspects of the

problem �of improving the cache performance of non�numeric codes	� di
erent experi�

mental setups may be required to evaluate di
erent techniques� Therefore� the detailed

setups are reported individually along with the corresponding technique in each chapter�

Here� we instead focus on the rationales for con�guring our experiments�in particular�

those used for running simulations and selecting benchmarks�

A�� Simulations

Since some of our proposed techniques involve new hardware features that do not exist

in any real processors� using simulation is the most viable approach to performing quan�

titative evaluation of these techniques� In addition� using simulation has two advantages

over running on real machines� ��	 Through simulations we can obtain extremely de�

tailed or tailored statistics that are not available on real machines� ��	 Simulations allow

us to experiment with a range of hardware con�gurations� However� the disadvantages

are that simulations are several orders of magnitude slower than the actual execution

and that simulation results need to be validated� We will shortly discuss how these two

issues were addressed in our experiments� Let us �rst brie�y describe our simulator�

Figure A�� shows the organization of our simulation system� Our simulator can be

driven by either the pixie ���� or mable ��� traces generated on MIPS machines� These

traces list all of the instruction and data addresses in the order that they appeared in

the actual execution�

Our simulator performs detailed cycle�by�cycle simulations of a generic dynamically�

scheduled� superscalar processor with the structure shown in Figure A��� It models the

rich details of the processor including the pipeline� register renaming� the reorder bu
er�

���
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emulator

pixie

simulator

mable

original
executable

program
executable

pixified

program
results

simulation

trace
mable

trace
pixie

Figure A��� Organization of our simulation system� Each simulation run is driven by
either a pixie or a mable trace �but not both	�

branch prediction� branching penalties� speculative instruction fetching �including incor�

rect execution paths	� the memory hierarchy �including tag� bank� and bus contention	�

etc�

To increase simulation speed� the simulator uses an event�driven approach� where

only the actions that really need to be performed in a particular simulation cycle are

considered� This is more e�cient than the polling�based approach which considers all

possible actions in each cycle to determine what need to be performed�

Three approaches were used together to validate simulation results� First� to ensure

that the simulator correctly implemented the desired functionality� an extensive number

of assertions were added to the simulator source code to detect unexpected events and

conditions� Second� di
erent parts of the simulation statistics were checked against each

other to make sure that they were consistent� Third� to know whether our simulator

correctly predicted the run�time behavior of an application running on an equivalent real

processor� simulation results were compared to those reported by other researchers using

their own simulators� We found that the discrepancies between our results and theirs

were small�

A�� Benchmarks

The benchmarks used in this dissertation were all non�numeric applications which were

either publicly available or drawn from some common benchmark suites� The selection

of the benchmarks for evaluating a particular technique was based on their relevance

to the performance characteristic being investigated� For example� we focused only on
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applications that have large instruction footprints in the instruction prefetching study�

Details of the benchmarks used for each technique are provided in the corresponding

chapter� Below� we give an overview of our benchmarks�

Similar to other studies� we used the �standard� benchmarks provided by SPEC�

These included the entire SPEC��int suite ��� and three applications �eqntott� espresso�

sc	 from the SPEC��int suite ��� � Nevertheless� SPEC benchmarks alone might not

be su�cient for our purpose since some studies already revealed that the cache perfor�

mance of many SPEC benchmarks was not as problematic as that of many important

non�numeric programs ��� � Therefore� we used additional benchmarks including all of

the ten applications from the Olden benchmark suite ���� � a uniprocessor version of a

SPLASH�� benchmark ���� �raytrace	� and eight applications from the public domain

�awk �� � porky ���� � postgres ���� � radiosity ��� � skweel ���� � smv ��� � tcl ���� � and

vis ��� 	� Altogether� our benchmark collection covered a wide range of applications in�
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cluding database servers� graphics programs� hardware veri�cation systems� interpreters�

compilers� simulators� etc� All of these applications were written in C except that two

were in C##� Their size ranged from several hundreds to over a hundred thousand source

lines� All of them were run to completion in our experiments�

The input data for our experiments was chosen from those provided along with the

benchmarks or those that had been used to produce some previously published results�

When there were more than one such data sets� we attempted to pick the one that

resulted in the longest execution time� Nevertheless� to make our experiments feasible�

we only used input that took less than one week to simulate �which took less than three

minutes or so in the actual execution	�
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