
Efficient cluster compensation for Lin�Kernighan

heuristics

by

David M� Neto

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c� ���� by David M� Neto

Abstract

E�cient cluster compensation for Lin�Kernighan heuristics

David M� Neto

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

����

For certain problems such as the Traveling Salesman Problem� the Lin�Kernighan

heuristic and its derivatives are among the most successful algorithms known to opti�

mization practice� It usually runs quickly� producing nearly optimal answers� Unfortu�

nately� run times are usually longer on sharply clustered instances than on more uniform

instances� This dissertation introduces e�cient cluster compensation� an algorithmic

technique designed to reduce the performance penalty Lin�Kernighan su�ers on clustered

inputs� The technique aims to decrease running times while maintaining the quality of

the answers produced� The strategy is to prune unfruitful portions of the search space

by incorporating extra lookahead into the guiding utility function� The lookahead takes

the form of the cluster distance between two points� a value computed in constant time

given modest preprocessing�

E�cient cluster compensation reduces running times on nearly all inputs tested� not

just sharply clustered instances� When it increases running times� the slowdown is not

severe� E�cient cluster compensation therefore delivers overwhelming bene	t at little or

no cost�

Heuristics are notorious for behaving unpredictably� Making algorithmic choices and

tuning parameters is rightly described as a black art� A broader contribution of this thesis

is a better understanding of the qualitative behaviour of the Lin�Kernighan heuristic�

The key features of a worst�case result� Papadimitriou
s proof that Lin�Kernighan solves

a PLS�complete problem� are conjectured to be the cause of bad behaviour observed by

ii

Johnson� This intuition is validated by the performance improvement seen when cluster

compensation is used� and by comparing several of the results with perturbed data�

This thesis also introduces several novel instance generation algorithms� They are

used to test the generalizability and the robustness of the experimental results reported

in earlier chapters� and to test our intuition about the behaviour of the heuristic�

The Lin�Kernighan heuristic is best known as a heuristic for the Traveling Salesman

Problem� Yet the TSP heuristic is only one instance of the more general Lin�Kernighan

strategy to which cluster compensation applies� We test cluster compensation using it

in the Lin�Kernighan heuristic for the TSP and in a Lin�Kernighan heuristic for the

minimum weight perfect matching problem�

iii

Acknowledgements

Only a small part of an iceberg shows above the surface� The same is true of a

doctoral thesis�

Professor Derek Corneil supervised the work presented in this thesis� I cannot say

enough about him in this regard� In addition to bringing his considerable technical skill

and depth of knowledge to bear� he was also a tremendous grounding force� He was as

interested in my ordinary life as my research and technical life� His no nonsense attitude

is much appreciated�

Throughout my doctoral career I received excellent advice from the rest of my advisory

committee� Professors Allan Borodin� Ken Sevcik� Mike Molloy� Ken Sevcik� and Faith

Fich� They helped me keep the big picture in mind and steered me away from dead ends

and tar pits� When necessary� they also tended to the little things� like 	xing my spelling

and pointing out unclear passages�

Professor Vassos Hadzilacos graciously stepped in at a late date to read the thesis

and ask me tough questions at my departmental exam� Professors William Cook and

Mike Carter served as external examiners for my 	nal defense� Their truly constructive

criticism helped me clarify several crucial points in both my work and its relation to

the work of others� Of course� any faults remaining in the thesis are entirely my own

responsibility�

Early in my doctoral career Professor Tarek Abdelrahman introduced me to heuristics

for the Traveling Salesman Problem� and advised me to keep my �hands dirty� by always

returning to experiments as the 	nal authority on the performance of heuristics�

I thank the Department of Computer Science at the University of Toronto as a whole�

It fosters excellence in a collegial and multidisciplinary environment� There
s usually

someone who knows the answer� someone who knows there is no answer yet� someone

who knows there won
t likely be an answer� or someone knows there is no answer at

all�
Life is complex on the cutting edge�� The Department of Computer Science also

provided 	nancial support for a portion of my doctoral studies� As well� four years of my

graduate career were funded by the Natural Sciences and Engineering Research Council

of Canada�

As a student I have had many wonderful teachers� but I will single out two� Professor

Stephen Cook showed me time and again that di�cult ideas can be made easier if they are

expressed clearly� John Watkins� my high school history teacher� taught me invaluable

iv

skills for a complex world� to think critically� to weigh evidence� and to judge information

together with its source�

As a long�time teaching assistant� I also thank my students� Those blank stares were

a powerful invitation to re�evaluate the way I was thinking about an idea� or the way I

was expressing it� They taught me to do more than just brute�force it� and that thinking

about a problem in multiple ways can be very useful� It was very rewarding to see those

blank stares turn to �ashes of understanding�

I am lucky to have the school friends I do� Their long�time support and encouragement

are irreplaceable� They know who they are�
More importantly� they have my email

address� and I use theirs�� More recent friends were also excellent sounding boards for

my embryonic technical ideas�

I thank Rob and Nita Hill for funding the last part of my studies through a �exible

work arrangement� Mercifully� the work provided much needed cognitive relief� being

quite di�erent from my research� My new friends in industry also supported me with

encouragement and the latitude to pursue my graduate work�

Dr� Jack Birnbaum was a wonderful coach� giving me the tools to put many things

into perspective�

I thank my parents Jo�ao and Madelena Neto for valuing education� giving me the

freedom to study what I wanted� and for much appreciated 	nancial support throughout

my university career� My siblings John� George� Cecilia� Gene� and Teresa were my

earliest teachers and supporters�

My in�laws Cheryl and Dr� Michael Irving and their son Zachary are truly a second

family to me� For six years they shared their home while my wife and I worked through

graduate school� Their moral and physical support have been much appreciated�

Finally� I thank my wife� Dr� Robyn Irving� Her unconditional love and uncompro�

mising grace have seen me through the worst and the best of my whole graduate career�

I could not have had a more deeply committed supporter� She knows me like no other�

This thesis is dedicated to my 	rst child� who is only weeks away from being born�

Daddy 	nally got it out of the way� and can go on to more important things�

v

Contents

� Introduction �

��� The two problems �

��� Local search �

��� Clusteredness �

��� Related work �

����� Decomposition heuristics �

����� Adjusting the distance function �

����� The Kernighan�Lin heuristic �

��� Outline of the thesis �

� The Lin�Kernighan heuristic ��

��� The generic problem and strategy ��

����� Sequential changes and the cumulative gain criterion � � � � � � � ��

����� The cumulative gain criterion does no harm � � � � � � � � � � � � ��

����� Greedy choice ��

����� Feasibility rules ��

����� Tabu rules ��

����� Limited backtracking and candidate sets � � � � � � � � � � � � � � ��

����� Features in perspective ��

��� A more speci	c problem and strategy ��

����� The concrete cumulative gain criterion � � � � � � � � � � � � � � � ��

����� The concrete greedy selection criterion � � � � � � � � � � � � � � � ��

��� Summary ��

� E�cient cluster compensation ��

��� How Lin�Kernighan stumbles on clustered instances � � � � � � � � � � � � ��

vi

��� Cluster compensation ��

����� Cluster distance ��

����� Cluster distance as an estimate of future closing up costs � � � � � ��

����� Adjusting the cumulative gain criterion � � � � � � � � � � � � � � � ��

����� Adjusting the greedy selection criterion � � � � � � � � � � � � � � � ��

��� E�ciently computing cluster distance ��

����� Minimum spanning trees encode cluster structure � � � � � � � � � ��

����� Computing cluster distance in a tree � � � � � � � � � � � � � � � � ��

����� Resource requirements for preprocessing � � � � � � � � � � � � � � ��

����� Computing least common ancestors � � � � � � � � � � � � � � � � � ��

����� Cluster distance query summary ��

��� When to apply e�cient cluster compensation � � � � � � � � � � � � � � � � ��

��� Summary ��

� Lin�Kernighan for the Traveling Salesman Problem ��

��� Historical context ��

��� Feasibility ��

��� Tabu rules ��

��� Limited backtracking ��

����� High level backtracking ��

����� Low level backtracking ��

��� Candidate sets ��

��� Bounding search sequence lengths ��

��� Start tour ��

��� Data structures ��

����� Candidate lists ��

����� Oriented�tour abstract data type � � � � � � � � � � � � � � � � � � ��

����� Tabu lists ��

��� Iterated Lin�Kernighan ��

���� Summary ��

� Experimental methodology ��

��� Objectives ��

��� The computer code and execution environment � � � � � � � � � � � � � � � ��

vii

��� Items included in run time ��

��� Measuring tour quality ��

��� Measuring search sequence lengths ��

��� Kinds of test data ��

��� Details of the test bed ��

��� Representation of lengths ��

��� Summary ��

	 Experimental results for the TSP 	�

��� Breakdown of run times ��

��� Comparing performance ��

��� TSPLIB instances ��

��� Uniform geometric instances ��

��� Uniformly generated distance matrices ��

��� Bentley
s distributions ��

����� Points on a line segment ��

����� Summary ��

��� Probe depth and move depth pro	les of sample cases � � � � � � � � � � � ��

��� Summary ��

 Lin�Kernighan for minimum weight perfect matching ��

��� Why choose a problem in P� ��

����� Practical reasons ��

����� Theoretical reasons ��

��� An observation about perfect matchings � � � � � � � � � � � � � � � � � � ��

��� A Lin�Kernighan heuristic for weighted perfect matching � � � � � � � � � ��

��� Applying Lin�Kernighan to minimum�weight perfect matching � � � � � � ��

����� Feasibility� candidate sets� backtracking� and data structures � � � ��

����� Initial perfect matching ��

��� Iterated Lin�Kernighan for weighted perfect matching � � � � � � � � � � � ��

��� Experimental methodology ��

����� TSP instances can be weighted perfect matching instances � � � � ��

����� Measuring matching quality ��

��� Results ��

viii

����� Breakdown of run times ��

����� TSPLIB instances ��

����� Uniform geometric instances ��

����� Uniformly generated distance matrices � � � � � � � � � � � � � � � ��

����� Bentley
s distributions ��

����� Probe depths and move depths of sample cases � � � � � � � � � � � ���

��� Summary ���

� Instance generators ���

��� Distill and generate paradigm ���

��� Preserving cluster structure ���

����� Jitter ���

����� MST shake ���

����� MST explode and construct ���

����� MST dangle and construct ���

����� Cluster and noise ���

��� Corrupting cluster structure ���

����� Cluster discount ���

����� Cluster in	ll ���

��� Variations ���

����� Distill� expand� and generate ���

��� Summary ���

� Testing the instance generators ���

��� Selected seed instances ���

��� Results for the TSP ���

����� Jitter ���

����� MST shake ���

����� MST explode and construct ���

����� MST dangle and construct ���

����� Cluster noise ���

����� Cluster discount ���

����� Cluster in	ll ���

��� Results for minimum weight perfect matching � � � � � � � � � � � � � � � ���

ix

����� An anomaly with corners ���

����� Jitter ���

����� MST shake ���

����� MST explode and construct ���

����� MST dangle and construct ���

����� Cluster and noise ���

����� Cluster in	ll ���

����� Cluster discount ���

��� Summary ���

�� Conclusion �	�

���� Future work ���

������ Other parameter settings ���

������ Partial use of cluster compensation � � � � � � � � � � � � � � � � � ���

������ Closing the gap ���

������ Modeling the behaviour of the heuristic � � � � � � � � � � � � � � � ���

������ Maximization problems ���

������ Other instance generators ���

Bibliography �
�

A A completeness result �
�

A�� Introduction ���

A�� PLS ���

A�� TSP�LKCC is in PLS ���

A�� TSP�LK is PLS�hard ���

A���� Sketch of the construction ���

A���� Proof sketch ���

A�� TSP�LKCC is PLS�hard ���

A�� Summary ���

B Where to get the code ��	

C Computing platform details ���

C�� Hardware ���

x

C�� Software ���

D Depictions of geometric instances ���

xi

List of Tables

��� Case analysis for low level backtracking portion of Lin�Kernighan for the

TSP� Allowable choices are determined by the relative ordering of t� through

t� on the starting tour� Subcases are nested� � � � � � � � � � � � � � � � ��

��� Breakdown of running time into phases for Iterated Lin�Kernighan with

cluster compensation� The times are taken for a ���� iteration run on

geometric instance pcb����� and a ���� iteration run on random distance

matrix instance dsjr�������	� ��

��� Quality of output produced for TSPLIB instances by the Lin�Kernighan

heuristic for the TSP� Quality is measured as the percent excess over Held�

Karp lower bound� �LK� is the base Lin�Kernighan heuristic� and �LKcc�

is the Lin�Kernighan heuristic using e�cient cluster compensation� � � � � ��

��� Time taken on TSPLIB instances by the Lin�Kernighan heuristic for the

TSP� Time is measured as user CPU seconds� � � � � � � � � � � � � � � � ��

��� Quality of output produced by Lin�Kernighan for the TSP on uniform

geometric instances� Quality is measured as the percent excess over Held�

Karp lower bound� ��

��� Time taken on uniform geometric instances by the Lin�Kernighan heuristic

for the TSP� ��

��� Quality of output produced for the class of uniformly generated distance

matrices by the Lin�Kernighan heuristic for the TSP� Quality is measured

as the percent excess over an estimated Held�Karp lower bound� � � � � � ��

��� Time taken on the uniform distance matrix class of instances by the Lin�

Kernighan heuristic for the TSP� Time is measured as user CPU seconds� ��

xii

��� Quality of output produced for Bentley
s classes of instances by the Lin�

Kernighan heuristic for the TSP� Quality is measured as the percent excess

over an estimated Held�Karp lower bound� � � � � � � � � � � � � � � � � � ��

��� Time taken on Bentley
s classes of instances by the Lin�Kernighan heuristic

for the TSP� Time is measured as user CPU seconds� � � � � � � � � � � � ��

��� Breakdown of running time into phases for Iterated Lin�Kernighan with

cluster compensation� The times are taken for a ���� iteration run on

geometric instance pcb����� and a ���� iteration run on random distance

matrix instance dsjr�������	� Also shown is the time taken for the

Blossom IV code to 	nd optimal perfect matchings� � � � � � � � � � � � ��

��� Quality of output produced for TSPLIB instances by the Lin�Kernighan

heuristic for weighted perfect matching� Quality is measured as the percent

over optimal� �LK� is the base Lin�Kernighan heuristic� and �LKcc� is

the Lin�Kernighan heuristic using e�cient cluster compensation� � � � � � ��

��� Time taken on TSPLIB instances by the Lin�Kernighan heuristic for weighted

perfect matching� Time is measured as user CPU seconds� � � � � � � � � ��

��� Quality of output produced for the class of uniform geometric instances

by the Lin�Kernighan heuristic for the TSP� Quality is measured as the

percent excess over optimal� ��

��� Time taken on the uniform geometric instances by the Lin�Kernighan

heuristic for the TSP� Time is measured as user CPU seconds� � � � � � � ��

��� Quality of output produced for the class of uniformly generated distance

matrices by the Lin�Kernighan heuristic for the TSP� Quality is measured

as the percent excess over optimal� ��

��� Time taken on the uniform distance matrix class of instances by the Lin�

Kernighan heuristic for the TSP� Time is measured as user CPU seconds� ��

��� Quality of output produced for Bentley
s classes of instances by the Lin�

Kernighan heuristic for the TSP� Quality is measured as the percent excess

over optimal� ��

��� Time taken on Bentley
s classes of instances by the Lin�Kernighan heuristic

for the TSP� Time is measured as user CPU seconds� � � � � � � � � � � � ��

��� Quality of output produced by Lin�Kernighan for the TSP on seed instances����

xiii

��� Time taken on seed instances by the Lin�Kernighan heuristic for the TSP� ���

��� Quality of output produced by Lin�Kernighan for the TSP on jitter instances����

��� Time taken on jitter instances by the Lin�Kernighan heuristic for the TSP� ���

��� Quality of output produced by Lin�Kernighan for the TSP on mst�shake

instances� ���

��� Time taken on mst�shake instances by the Lin�Kernighan heuristic for the

TSP� ���

��� Quality of output produced by Lin�Kernighan for the TSP on mst
explode
construct

instances� Join length biases are ��
random choice�� ����� and �� and cor�
responding packing factors are �� ��� and ���� � � � � � � � � � � � � � � � ���

��� Time taken on mst
explode
construct instances by the Lin�Kernighan

heuristic for the TSP� Join length biases are ��
random choice�� �����

and �� and corresponding packing factors are �� ��� and ���� � � � � � � � ���

��� Quality of output produced by Lin�Kernighan for the TSP on mst
dangle
construct

instances� Packing factors of �� ��� and ��� were used� � � � � � � � � � � ���

���� Time taken on mst
dangle
construct instances by the Lin�Kernighan

heuristic for the TSP� Packing factors of �� ��� and ��� were used� � � � � ���

���� Quality of output produced by Lin�Kernighan for the TSP on cluster�noise

instances� ���

���� Time taken on cluster�noise instances by the Lin�Kernighan heuristic for

the TSP� ���

���� Quality of output produced by Lin�Kernighan for the TSP on cluster�

discount instances� ���

���� Time taken on cluster�discount instances by the Lin�Kernighan heuristic

for the TSP� ���

���� Quality of output produced by Lin�Kernighan for the TSP on in�ll instances����

���� Time taken on in�ll instances by the Lin�Kernighan heuristic for the TSP� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on the seed instances� and on corners��������� � � � � � � � � � � � ���

���� Time taken by the Lin�Kernighan heuristic for weighted perfect matching�

on the seed instances and on instance corners��������� � � � � � � � � ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on jitter instances� ���

xiv

���� Time taken on jitter instances by the Lin�Kernighan heuristic for weighted

perfect matching� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on mst�shake instances� ���

���� Time taken on mst�shake instances by the Lin�Kernighan heuristic for

weighted perfect matching� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on mst
explode
construct instances� Join length biases are ��
ran�
dom choice�� ����� and �� and corresponding packing factors are �� ��� and

���� ���

���� Time taken on mst
explode
construct instances by the Lin�Kernighan

heuristic for weighted perfect matching� Join length biases are��
random
choice�� ����� and �� and corresponding packing factors are �� ��� and ���� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on mst
dangle
construct instances� Packing factors of �� ��� and

��� were used� ���

���� Time taken on mst
dangle
construct instances by the Lin�Kernighan

heuristic for weighted perfect matching� Packing factors of �� ��� and ���

were used� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on cluster�noise instances� ���

���� Time taken on cluster�noise instances by the Lin�Kernighan heuristic for

weighted perfect matching� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on in�ll instances� ���

���� Time taken on in�ll instances by the Lin�Kernighan heuristic for weighted

perfect matching� ���

���� Quality of output produced by Lin�Kernighan for weighted perfect match�

ing on cluster�discount instances� ���

���� Time taken on cluster�discount instances by the Lin�Kernighan heuristic

for weighted perfect matching� ���

A�� Summary of steps in a Lin�Kernighan improvement on a standard tour�

In this example� the value of xi is �ipped from false to true� � � � � � � � � ���

xv

A�� Summary of steps in Lin�Kernighan improvement on a standard tour in

the new construction� Cumulative gains shown include the cluster distance

discount� See also Figure A�� and Table A�� � � � � � � � � � � � � � � � � ���

xvi

List of Figures

��� Encoding a sample ��change on a tour� Vertices t�� � � � � t� are shown� as

are the associated removed edges e�� e�� e�� e�� and the associated added

edges e�� e�� e�� e�� ��

��� We maintain a Hamiltonian cycle by constraining t�i	�� � � � � � � � � � � ��

��� Allowable backtracking cases for Lin�Kernighan for the TSP� The relative

ordering of vertices t� through t�
and sometimes t�� on the start tour

determine whether a Hamiltonian path results when those changes are

applied� Shown are possibilities when edges
t�� t���
t�� t���
t�� t��� and

t�� t�� are removed from the start tour while edges
t�� t���
t�� t���
t�� t��

are added� See also Table ���� ��

��� A double�bridge ��change� Edges
a� b��
c� d��
e� f�� and
g� h� are re�

moved� while
a� d��
b� c��
e� h�� and
f� g� are added� � � � � � � � � � � � ��

��� Probe and move depth pro	les for a n��� iteration run on instance grid��	������� ��

��� Probe and move depth pro	les for a n��� iteration run on instance uni��	������� ��

��� Probe and move depth pro	les for a n��� iteration run on instance dsj����� ��

��� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance grid��	������� � � � � � � � � � � ���

��� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance uni��	������� � � � � � � � � � � � ���

��� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance dsj����� � � � � � � � � � � � � � � ���

���
a� Seed instance pr���	� and
b� an instance generated by jitter from

pr���	� ���

xvii

���
a� Seed instance clusnorm����������
b� a minimum spanning tree
MST�

for clusnorm����������
c� an instance generated from the MST by mst�

shake�
d� a MST for the generated instance in part
c�� � � � � � � � � � � ���

��� There may be a range of ways to join the hull points ah and bh by an edge

of length l� We choose some way in which all the vertices of a are at least

l units from all the vertices of b� Part
a� shows a typical join� Parts
b�

and
c� show components a and b rotated to extremes before joining� � � ���

��� More compact instances are often formed if the longest edges of hulls a

and b are made to run parallel in the new component� � � � � � � � � � � � ���

��� Seed instance dsj����
part
a��� and 	ve instances generated from it by

mst�explode�construct� See also Table ���� � � � � � � � � � � � � � � � � � � ���

��� Parameters used by mst�explode�construct to generate parts
b� through
f�

of Figure ��� from instance dsj����� A negative join length bias indicates

a hull vertex and face chosen at random from a uniform distribution� � � ���

��� Output of mst�dangle�construct�
a� TSPLIB seed instance pla
��
�
b�

output of mst�dangle�construct on pla
��
�
c� TSPLIB seed instance

dsj�����
d� output of mst�dangle�construct on dsj�����
e� Bentley in�

stance grid��	�������
f� output ofmst�dangle�construct on grid��	����������

��� MST edge lengths in dsj����� pr���	� and uni��	������� plotted from

shortest to longest� ���

A�� Skeleton of light edges in the TSP instance constructed for the reduction

from ��SATFLIP to TSP�LK� ���

A�� An OR�device� corresponding to a clause with two literals� Parts
c��
d��

and
e� show the three ways of traversing the device� corresponding to the

three ways a two�literal clause can be satis	ed� � � � � � � � � � � � � � � � ���

A�� A rib corresponding to a literal xi appearing in three clauses� � � � � � � � ���

A��
a� Edge
aj� bj� and penalty edges connecting to the OR�device for clause

Cj�
b� OR�device picked up by top pair of penalty edges�
c� OR�device

picked up by bottom pair of penalty edges� � � � � � � � � � � � � � � � � � ���

A�� Sketch of steps in Lin�Kernighan improvement on a standard tour� � � � � ���

D�� TSPLIB instances�
a� lin����
b� pcb��	�
c� att��	�
d� gr����
e�

dsj�����
f� pr���	� ���

xviii

D�� TSPLIB instances�
a� pcb��
��
b� pr	��	�
c� pcb�����
d� fl�
���
e�

fnl�����
f� pla
��
� ���

D�� Sample Bentley instances�
a� uni��	�������
b� annulus��	�������
c�

arith�	��
d� ball��	�������
e� clusnorm��	�������
f� cubediam��	����������

D�� Sample Bentley instances�
a� cubeedge��	�������
b� corners��	
������

c� grid��	�������
d� normal��	�������
e� spokes��	������� � � � � ���

xix

Chapter �

Introduction

Since the ����s and the advent of the theory of NP�completeness� deciding if a partic�

ular problem is di�cult or easy to solve has naturally rested on determining whether

it can be solved in polynomial time or whether it is NP�hard ���� ��� ��� ���� For ap�

proximation problems in combinatorial optimization� more recent work in the theory

of MAX�SNP�completeness also encourages the �easy� vs� �hard� determination to be

based on membership in certain complexity classes ���� ����

Theory can guide practitioners needing to produce answers for their problems� It

informs them of the nature of algorithms likely to do the job� On the �ip side� hardness

results can suggest the problem be relaxed or reformulated�

Yet even when polytime algorithms are known for an exact or relaxed problem� they

may run too slowly on the instances one cares about� In that case the practitioner turns

to any algorithm that works in their problem domain� regardless of worst case or even

average case results� One
s own problems are hardly ever �average��

Ironically� often the algorithms providing the best answers in reasonable time and

space give only weak guarantees� The Lin�Kernighan heuristic for the Traveling Salesman

Problem
TSP� ���� has for a long time been the champion heuristic for that problem ����

���� It is also a key ingredient in the most successful exact algorithms for the TSP ��� ��

���� Lin�Kernighan for the TSP is a local search heuristic� taking a perhaps suboptimal

tour and improving it through sets of edge exchanges� Its performance guarantees are

rather weak� for an n vertex instance the resulting tour is not more than �
p
n times

longer than an optimal tour ������ and also the 	nal result is no worse than the initial

�The �
p
n approximation ratio holds for the ��Opt local search heuristic� and Lin�Kernighan subsumes

��Opt� For geometric instances the approximation ratio improves to O�log n��

�

Chapter �� Introduction �

tour it was given� As for running times� one can construct a family of graphs forcing

Lin�Kernighan for the TSP to take an exponential number of steps ������

In practice Lin�Kernighan usually runs quickly� Unfortunately� run times can be

much longer on sharply clustered instances than on more uniformly distributed in�

stances ���� ���� p� ����� This dissertation introduces e�cient cluster compensation�

an algorithmic technique designed to reduce the performance penalty Lin�Kernighan suf�

fers on clustered inputs� The technique aims to decrease overall running times while

maintaining the quality of the answers produced by the heuristic� The strategy is to

prune unfruitful portions of the search space by incorporating extra lookahead into the

utility function guiding the search� The lookahead takes the form of the cluster distance

between two points� a value which can be computed very quickly given modest one�time

preprocessing requirements�

In fact� e�cient cluster compensation reduces Lin�Kernighan running times on nearly

all classes of inputs tested� not just sharply clustered instances� In the rare cases clus�

ter compensation increases running times� the slowdown is not severe� E�cient cluster

compensation therefore earns a place alongside many other algorithmic techniques in the

practitioner
s toolbox� delivering overwhelming bene	t at little or no cost�

Heuristics are notorious for behaving unpredictably� Making algorithmic choices and

tuning parameters is rightly described as a black art� At a broader level� this thesis

contributes a better understanding of the qualitative behaviour of the Lin�Kernighan

heuristic� The key qualitative features of a worst�case analysis ���� are conjectured to be

the cause of bad behaviour observed by Johnson ����� and Johnson and McGeoch �����

This intuition is validated by the performance improvement seen when cluster compen�

sation is used� and by comparing several of the results with perturbed data�

This thesis also introduces several novel instance generation algorithms� They are

used to test the generalizability and the robustness of the experimental results reported

in earlier chapters� and to test our intuition about the behaviour of the heuristic�

The Lin�Kernighan heuristic is best known as a heuristic for tackling the Traveling

Salesman Problem� Yet the TSP heuristic is only one instance of the more general Lin�

Kernighan strategy to which cluster compensation applies� We test the general suitability

of cluster compensation by demonstrating its use in the Lin�Kernighan heuristic for the

�A technical requirement of Papadimitriou	s argument prevents the result from applying to current
implementations of the Lin�Kernighan heuristic� See also Section ��� and Appendix A�

Chapter �� Introduction �

TSP and in a Lin�Kernighan heuristic for the minimum weight perfect matching problem�

��� The two problems

The two concrete optimization problems considered in this thesis are the Traveling Sales�

man Problem and the minimum weight perfect matching problem�

The Traveling Salesman Problem is perhaps the most famous combinatorial opti�

mization problem of them all� Let G �
V�E� be a complete undirected graph with edge

weight function �� Throughout this thesis� n denotes the number of vertices in G� A

tour T of G is a cycle in G visiting all the nodes exactly once� Each tour thus speci	es

an ordering � of the vertices �� � � � � n� The length of a tour is the sum of the weights of

its edges� �
T � � �
�n� ����
Pn��

i
� �
�i� �i	��� The Traveling Salesman Problem asks us

to 	nd a shortest tour for the graph� See Lawler et al� ���� for an encyclopaedic account

of the TSP up to �����

Given an arbitrary graph G� a set M of edges of G is a matching if each vertex of G

appears in at most one member ofM � MatchingM is perfect if each vertex of G appears

in exactly one member ofM � As with the TSP� we are interested in the case where G is a

complete undirected weighted graph� Under those conditions� G has a perfect matching

if and only if n is even� The minimum weight perfect matching problem asks us to 	nd

a perfect matching with least total cost� i�e�� minimize
P

e�M �
e��

An important subclass of instances are those with geometric structure� Each vertex

has a set of coordinates� and the distance between two vertices is some metric on that

coordinate space� For example� in a two�dimensional Euclidean instance each vertex has

x and y coordinates and the distance between two vertices is the ordinary Euclidean

distance� Commonly used metrics include �����

� the Euclidean metric� or L� metric� �
u� v� �
q

ux � vx�� �
uy � vy���

� the Manhattan metric� or L� metric� �
u� v� � jux � vxj� juy � vyj�

� the maxnorm metric� or L� metric� �
u� v� � max
jux � vxj� juy � vyj��

To improve the comparability of results� researchers often force distance functions to be

integral� e�g�� by rounding to the nearest integer� or rounding up to the next larger integer�

Simply rounding to the nearest integer does not always preserve the triangle inequality

Chapter �� Introduction �

property of a metric� while rounding upward does�� We return to these considerations in

Section ����

Theory tells us much about the worst�case nature of the TSP ����� For instance�

the decision�problem variant of the TSP is NP�complete ���� ���� even for Euclidean

instances ����� For the general TSP� it is hard to approximate an optimal solution to

within a factor of
� � ��c� if c is given as an arbitrary parameter ����� This is so even

when the triangle inequality is assumed ����� Recent work shows the Euclidean TSP can

be approximated to within a factor of
����c� with O
n
logn�O�c�� running time ��� ����

although to date no experiments with this scheme have been reported� Exact polytime

algorithms are known for several special cases of the TSP ���� ����

As for weighted perfect matching� it can be solved with general weighted matching

algorithms ���� ���� These can be coded to run in O
n�� time for general instances ����

and in O
n��� log� n� time for geometric instances ����� Asymptotically faster algorithms

computing approximately optimal matchings are also known ���� ���� Asymptotic run�

ning times for approximate algorithms can also be reduced if the input is known to

be a geometric instance ���� ���� High performance implementations of general weighted

matching are also now available ��� ���� We use Cook and Rohe
s Blossom IV implementa�

tion to produce optimal perfect matchings against which the output of the Lin�Kernighan

heuristic can be compared�

��� Local search

The Lin�Kernighan strategy is itself part of the larger optimization paradigm known as

local search ���� A local search algorithm takes as input a feasible but possibly suboptimal

solution to the problem� It repeatedly tries to 	nd a better solution than the current

one by modifying the current one in some way� If a better solution is found then the

process starts again� with the newly found solution being the starting point for the new

search� Otherwise� the process terminates� and the current solution is returned as the

result� Local search is also known as hill climbing� For minimization problems� hill

descending would perhaps be a more appropriate term� See Johnson and McGeoch ����

for an in�depth account of local search for the TSP�

The set of solutions reachable from a given solution in one step is called the neighbour�

hood of that solution� Local search heuristics are characterized by the neighbourhoods

they de	ne� A large neighbourhood may give better answers but increases search time�

Chapter �� Introduction �

A small neighbourhood may give poor answers� but gives them very quickly�

A simple example of a local search heuristic is the ��Opt heuristic for the TSP ���� ����

Given a current tour T � all tours di�ering from T in exactly two edges are examined� If

one these other tours has lower cost� then we take it as our new tour and begin again�

The neighbourhood for ��Opt is the set of all ��changes� i�e�� the exchange of two old

edges for two new edges�

The idea behind ��Opt extends to larger neighbourhoods� For example� the ��change

neighbourhood� where up to three edges may be exchanged at a time� de	nes the ��Opt

heuristic� ��Opt usually runs longer than ��Opt� but it also produces better tours �����

In the extreme� one can use the k�change neighbourhood� where up to k edges are

exchanged at a time� But for even modest k� searching the k�change neighbourhood takes

too much time�
nk� steps� The Lin�Kernighan heuristic is also known as �variable�

depth�Opt� because it can 	nd improving exchanges involving many edges� theoretically

up to !
n� at a time� It uses several techniques to reduce the time required to search its

neighbourhood� In the worst case the time to search the Lin�Kernighan neighbourhood

is at most O
n��� In practice the total running time of the heuristic appears to grow

subquadratically �����

Two of the techniques used by Lin�Kernighan to keep running times low are the

cumulative gain criterion and greedy selection� They are discussed in detail in Chapter ��

Both use a utility function� the cumulative gain� to guide and prune the search� Cluster

compensation is an adjustment to the cumulative gain function in certain contexts� It

is e�cient cluster compensation because we also describe implementation techniques to

compute the adjustment very quickly� in small constant time�

Cluster compensation is orthogonal to the many other techniques used to make Lin�

Kernighan fast and e�ective in practice� In particular� e�cient cluster compensation

does not preclude or require any of the other techniques� Furthermore� the impact of

cluster compensation on legacy Lin�Kernighan code is small� on the order of �� lines

must be changed� Of course� e�cient cluster compensation requires new code as well�

See Appendix B for the availability of our implementation� The code implementing

cluster compensation itself is well separated from the code implementing the rest of the

heuristic�

Chapter �� Introduction �

��� Clusteredness

Intuitively� an instance is clustered if its vertices can be grouped so that the distances

between vertices in distinct groups are large in comparison to the distances between

near neighbour vertices within a group� Clusteredness is a characteristic of the distance

function �� We do not o�er a precise de	nition of clusteredness� but the arguments

in Section ����� suggest the following quantitative yardstick� Let T �
V�ET � be a

minimum spanning tree for G� Removing the longest edges in T breaks it into several

components� partitioning the vertices of G into clusters� Let � be the ratio of the length

of the longest edge in T to the length of the median length edge in T � When � is large�

the minimum distance between points in distinct clusters is large in comparison to the

minimum distance between points within any single cluster� When � is small� the gaps

between clusters are relatively small�

The � function on graphs is only a rough measure of clusteredness� It and its obvious

variations can be easily fooled by a clever adversary� We therefore avoid de	ning clus�

teredness in quantitative terms and instead rely on the reader
s visual intuition� Many

of the instances used in this thesis are geometric� and we depict them in Appendix D�

For example� instance fl�
��
Figure D��
d�� is very sharply clustered� whereas instance

fl����
Figure D��
e�� is relatively uniform� and instance pr���	
Figure D��
f�� is only

moderately clustered�

��� Related work

We direct the reader to Johnson and McGeoch
s comprehensive survey of local search

techniques for the TSP ����� There the Lin�Kernighan heuristic is compared to basic

polytime construction algorithms� to weaker local search heuristics such as ��Opt and

��Opt� and to more general local search metaheuristics such as general tabu search�

genetic algorithms� and simulated annealing� Lin�Kernighan and Iterated Lin�Kernighan

see Section ���� are found to occupy a large segment of the undominated time�quality

tradeo� curve� they provide the best quality output from among all algorithms running

within their time bounds� Furthermore� together they occupy the higher�quality end of

that tradeo� curve� while still running in observed subquadratic time�

Chapter �� Introduction �

����� Decomposition heuristics

Decomposition heuristics are very natural algorithms to try� especially when considering

clustered inputs� The idea is to break up the instance into subgroups� solve the problem

on the subgroups� and 	nally patch the pieces together� Theoretical work in this vein

for the TSP includes Karp
s average case results for partitioning schemes in the plane

����� and culminates with Arora
s polynomial time approximation scheme for Euclidean

TSP and other geometric problems ��� ���� The latter work describes an algorithm that

partitions space into hyperboxes so that near�optimal tours cross the boundaries between

hyperboxes only a small number of times� Dynamic programming is used to 	nd good

tour fragments at the base cases� and to combine tour fragments when unraveling the

recursion�

Decomposition heuristics work well� However� in comparison with the very fast run�

ning times of high quality Lin�Kernighan implementations� they can su�er from the

di�culty in the time required to 	nd a good partition of the vertices� and to recombine

the subsolutions� The best practical work appears to be due to Rohe ���� ���� who imple�

mented TSP and minimum weight perfect matching upper and lower bounding heuristics

for very large instances� up to �� million cities� Subproblems were chosen as random

contiguous subsets� and were worked on in parallel� Iterated Lin�Kernighan was used on

the subproblems� and the results were patched using a variant of k�opt� Runs of up to

several weeks long were used� Cluster compensation is orthogonal to these techniques�

and may be applied in the Lin�Kernighan runs on the subproblems�

����� Adjusting the distance function

We are aware of only one other Lin�Kernighan�based heuristic that changes the cost

function during execution� Gu ����
see also Section ��� in ����� implements a variant

of what one might call �Iterated ��Opt�� with the intent of improving the quality of

output at the expense of longer running times� Ahead of time one computes the average

distance between vertices� ��� and decides on �� the number of iterations of ��Opt to

be run� Iteration i of ��Opt is run on an instance with distance function �i de	ned as

follows�

�i
u� v� �

��
�

�� �
�
u� v�� �����i	� if �
u� v� 	 ��

�� �
�� � �
u� v����i	� otherwise

Chapter �� Introduction �

The tour found at the end of one ��Opt run is used as the start tour for the next iteration�

i�e�� the next ��Opt run� In the 	rst few iterations the distance function is smooth and

therefore not sharply clustered� With more iterations �i approaches �� with equality on

the last iteration� Gu used this strategy only on random distance matrix instances with

n � ���� and with ��Opt and Or�opt
a ��Opt variant��
However� changing the whole edge weight function in this way con�icts with many

of the key speedup techniques required to make Lin�Kernighan run fast in practice on

larger instances� For example� the candidate sets
near neighbour lists� as described in

Section ��� would be invalidated with each change in the underlying distance function�

They would therefore have to be recomputed before each new iteration�

Let us compare Gu
s �search space smoothing� technique with e�cient cluster com�

pensation� Our goals for cluster compensation are complementary� Gu aims to improve

quality while increasing running times� while cluster compensation is designed to re�

duce running times while maintaining quality� Cluster compensation does not change

the underlying distance function� so it does not impose as sti� a runtime penalty� Fur�

thermore� cluster compensation is designed speci	cally for the Lin�Kernighan heuristic�

taking advantage of the heuristic
s use of the cumulative gain function and its long search

sequences� Finally� cluster compensation is useful even with only single iteration runs of

Lin�Kernighan�

����� The Kernighan�Lin heuristic

The general Lin�Kernighan heuristic is an outgrowth of the Kernighan�Lin heuristic for

graph partitioning ���� ���� The Kernighan�Lin graph partitioning algorithm is the basis

for practical algorithms central to VLSI design automation ���� ��� ���� Lin�Kernighan

di�ers from Kernighan�Lin in two ways relevant to our work� First� Lin�Kernighan em�

ploys the cumulative gain criterion
see Chapter ��� whereas Kernighan�Lin does not�

Second� the intermediate structures within the Kernighan�Lin heuristic are always fea�

sible� so there are no hidden closing�up costs that must be taken into account� As we

shall see in Chapter �� cluster compensation is a way of adjusting the cumulative gain

criterion with the aim of partially accounting for closing up costs� The Kernighan�Lin

heuristic is therefore outside the scope of the work in this thesis�

Chapter �� Introduction �

��� Outline of the thesis

The remainder of the thesis is organized as follows� Chapter � describes the general

Lin�Kernighan strategy� Using clues from worst�case theoretical results� it also suggests

reasons for the slow running times on clustered inputs� Chapter � introduces the proposed

partial remedy� cluster compensation� and describes e�cient algorithms for the technique�

Chapter � describes how the general Lin�Kernighan strategy is applied to the Trav�

eling Salesman Problem� The emphasis is on the many details and techniques developed

since the original Lin and Kernighan paper ���� appeared �� years ago� Those techniques

are incorporated into the high quality implementations of today because they extend the

heuristic
s scalability without signi	cantly harming its ability to 	nd very good tours�

Chapter � describes the experimental methodology� how the experiments were designed�

a description of the test bed� what was measured� and how the measurements are pre�

sented and evaluated� It is written in the context of Lin�Kernighan for the TSP� but

almost all the considerations carry over to Lin�Kernighan for minimum weight perfect

matching� Chapter � presents the results for most of the experiments for the TSP� It

compares the quality of tours� overall running times� and probe and move depth pro	les�

The probe and move depth pro	les are measures of the overall work performed by the

optimization phase of the heuristic� and the progress it makes during that time� respec�

tively� They corroborate the running time and quality of output 	ndings while being

independent of programmer skill and platform speed�

Chapter � does for the minimum weight perfect matching problem what Chapters ��

�� and � do for the Traveling Salesman Problem� That is� it describes how the Lin�

Kernighan strategy can be applied to the minimum weight perfect matching problem�

how experiments were run for that problem� and the results of those experiments� The

Lin�Kernighan heuristics for the two problems are similar enough that much of their

implementations are shared� as are the experimental methodology and test data� The

experimental outcomes are quite similar as well�

Naturally� an experimental study cannot hope to test all possible inputs� Chapter �

describes several algorithms that transform one instance into many randomly generated

similar instances� The idea is to use a structural 	ngerprint of the input instance as the

basis for a random distribution from which new instances can be drawn� The structural

	ngerprints and the distributions built upon them are chosen to either emphasize or

downplay the clustering features a�ecting the running time of the Lin�Kernighan heuris�

Chapter �� Introduction ��

tic� This approach does three things for us� First� it lets us test the validity of our

intuition about the factors a�ecting the performance of the heuristic� Second� it gives us

a general way of creating an in	nite variety of test instances� By doing this we can hope

that our results will not be skewed by the idiosyncrasies of any 	nite sample of instances�

Third� it allows a practitioner to generate a test bed having the characteristics that might

recur in their own application domain� Chapter � reports the results of experiments on

data generated by the algorithms of Chapter ��

Chapter �� summarizes the thesis and suggests further work�

This dissertation is primarily an experimental work� Theorems and lemmas are pre�

sented along the way to motivate ideas and to prove the correctness and e�ciency of the

algorithms involved in cluster compensation� Appendix A discusses a worst�case result�

that the problem solved by the Lin�Kernighan heuristic using cluster compensation is

PLS�complete� It is a slight modi	cation of Papadimitriou
s argument showing that the

Lin�Kernighan heuristic solves a problem that is PLS�complete ����� Papadimitriou
s

argument is very robust� making our job quite easy�

Appendix B brie�y describes the implementation used for the experiments performed

in this thesis� and where to get it� Appendix C describes the computing platform used for

the experiments� Appendix D depicts the main geometric instances used in this thesis�

Chapter �

The Lin�Kernighan heuristic

Lin and Kernighan de	ned both a general strategy for optimization and its application

to the symmetric Traveling Salesman Problem
TSP������ E�cient cluster compensation

applies to a large subclass of algorithms described by their general strategy� This subclass

includes both their algorithm for the TSP and the approximation algorithm for minimum

weight perfect matching described in Chapter ��

This chapter describes the subclass to which e�cient cluster compensation can be

applied� Chapter � gives more detail about the original Lin�Kernighan algorithm for

the symmetric Traveling Salesman Problem
TSP�� Chapter � describes a Lin�Kernighan

heuristic for weighted perfect matching�

��� The generic problem and strategy

Lin�Kernighan heuristics approximately solve optimization problems of the following

form ����� From a space S 	nd a subset T satisfying some feasibility criteria and mini�

mizing some cost function�

Two main strategies are used� Like many other heuristics� at a high level Lin�

Kernighan heuristics use local search ���� Given a feasible structure T � the heuristic

tries to 	nd a feasible structure T � with lower cost by modifying T � If the search suc�

ceeds� then the new structure T � takes the place of the original structure T and the step

is repeated� This continues until no better T � can be found� The set of feasible structures

examined from starting point T during each step is called the neighbourhood of T � The

process is depicted in Algorithm ��

��

Chapter �� The Lin�Kernighan heuristic ��

Algorithm � Local search

Require
 T is a feasible structure

Ensure
 T is a locally optimal feasible structure

repeat

Search the neighbourhood of T

if We 	nd a lower cost feasible structure T � then

T �� T �

end if

until No lower cost feasible T � is found

����� Sequential changes and the cumulative gain criterion

The lower level strategy takes the following shape� Let us assume that all feasible sets

of interest have the same size� If the current solution T is not optimal� then it di�ers

from some optimal solution Topt by k elements� we can evolve T into Topt by removing

k elements and adding k elements� Such a modi	cation to a set is called a k�change�

Considering all feasible sets di�ering from T by k elements is expensive even for small k�

such a neighbourhood is too large� Even worse� it is unlikely that we know the value of

k�

At this lower level� Lin�Kernighan heuristics distinguish themselves by applying the

following two ideas� First� the k�change can be built sequentially� swapping one pair of

elements at a time�
The intermediate structures need not be feasible sets�� Second� we

maintain the cumulative gain� a running score of the improvement over the cost of T via

the current sequence of moves� We use the cumulative gain to reduce the number of pairs

considered for swapping�

Let us write gi for the gain made by the i
th swap� i�e�� the amount by which the i
th

swap decreases the cost of the current structure� The cumulative gain is the sum of each

of the gains made by swapping a pair of elements� the cumulative gain after j swaps

is cum gain
�j� �
Pj

i
� gi� We use the following rule� the cumulative gain criterion� to

bound the depth of the search�

Criterion ��� Extend the sequential change by one more swap only if the cumulative

gain will remain positive�

That is� after j swaps we add a j��
st swap with gain gj	� only if cum gain
�j��gj	� �

cum gain
�
j � ��� 	 ��
The new swap may actually increase the cost of the structure�

Chapter �� The Lin�Kernighan heuristic ��

i�e�� we can accept swaps with negative gain
gj	�
 ��� This allows the search to

escape some minima that would otherwise trap it�� The pruning action provided by the

cumulative gain criterion is central to the success of the heuristic�

����� The cumulative gain criterion does no harm

The cumulative gain criterion is reasonable because it prunes the search without dis�

carding any improving sequential k�changes� This is a consequence of the following fact

about sums� If a sum is positive� then its terms may be cyclically shifted so that all

the partial sums are positive� That is� if
Pn��

i

 ai 	 � then there is an integer s so that

�� � j
 n�
Pj

i

 a�i	s� mod n 	 ��

The proof is simple once one draws a picture� Let M� be the least partial sum in

the original list� and let m be the largest index at which that partial sum occurs
hence

M� �
Pm

i

 ai�� and let M
	 �

Pn
i
m	� ai be the remainder of the sum� Considered

in isolation� all the partial sums in M	 �
Pn

i
m	� ai are positive� Choose s � n � m�

shifting the terms making up the least partial sum to the end of the list� All the partial

sums in the new list are positive since the least partial sum in the new list occurs at the

end� and it is equal to the total sum� M	 �M�� which we know is positive��

The cumulative gain criterion embodies the following interpretation of this fact about

sums� A single search is trying to construct an unknown set of k swaps with positive

total gain by building sequentially from the 	rst swap forward� If during any step the

cumulative gain becomes negative� then we have taken the wrong path� We should stop

now and instead hope to 	nd the same improving set of swaps by beginning the search

with a di�erent swap� The fact about sums guarantees that if there is an improving set

of swaps� then there is a build sequence of those swaps which always maintains a positive

cumulative gain�

����� Greedy choice

At each step in the build sequence� many swaps might satisfy the cumulative gain crite�

rion� The natural choice is the greedy one�

Criterion ��� Choose the swap with maximum gain� In case no improving swaps can

be found� choose the one with least loss� Symbolically� maximize gi	��

Chapter �� The Lin�Kernighan heuristic ��

This greedy strategy carries with it the following implicit interpretation on the cumulative

gain�

Interpretation ��� The cumulative gain is a measure of the promise of the magnitude

of improvements to be found along the current search path�

This interpretation becomes pivotal in trying to improve the heuristic� as we shall see in

Section ����

We eventually come to a point where the swap sequence can go no further� all allow�

able swaps force the cumulative gain to become negative� We are free to choose any of

the feasible structures evolved from T using some pre	x of the now�terminated sequence

of swaps� perhaps together with one of the swaps previously eliminated by Criterion ����

We are greedy again and choose T � to be the one with least cost� it will be the basis for

the next search�

����� Feasibility rules

Each optimization problem has its own feasibility rules de	ning the set of valid outputs�

The intermediate structures examined during a search need not be feasible� But it helps

if they are �not too infeasible�� so that the search space is reduced� and so that the algo�

rithm can easily 	nd a sequence of swaps repairing it to feasibility� Such considerations

are problem�dependent� We shall see examples in Chapters � and ��

����� Tabu rules

It might be easy for the heuristic to get caught in an endless cycle of swaps� never

terminating its search� To prevent this from happening� the heuristic employs tabu

rules� restrictions on which elements can participate in a swap� A common tabu rule

is to never let an element participate in more than one swap per sequence� i�e�� never

delete an added element and never add a deleted element� This rule bounds the length

of any single sequence of swaps by the size of the original structure T � In Lin�Kernighan

heuristics the tabu rules act as a safety� and not as a primary guide for the search ���� ����

����� Limited backtracking and candidate sets

Of course� the set of structures discovered during the construction of a sequence of swaps

will not always contain a feasible structure with lower cost� In that case we would

Chapter �� The Lin�Kernighan heuristic ��

like to examine di�erent sequences of swaps� Lin and Kernighan suggest using limited

backtracking�

Feature ��� While no lower cost feasible structure is found� examine greedy swap se�

quences using all possible choices for the �rst few �e�g�� two� swaps�

The alternatives allowed by this rule are subject to the cumulative gain criterion� and

the feasibility and tabu rules�

There is usually a tradeo� between richness of the search space and the running time

of the search� Backtracking over a greater depth forces longer running times� backtracking

over a lesser depth con	nes the search space�

Instead of just reducing the backtracking depth� one may con	ne the search to more

likely territory by using candidate sets ���� ��� ���� Considering the nature of the opti�

mization problem� the structure of the input� and possibly user�supplied parameters� we

a priori de	ne the candidate set for element e � S to be those elements e� that are likely

to improve a structure locally when swapped with e� Then we can re	ne the backtracking

rule as follows�

Feature ��� While no lower cost feasible structure is found� examine greedy swap se�

quences using all possible choices for the �rst few swaps	 each swap in the sequence is the

replacement of an element by some member of its associated candidate set�

The sizes of the candidate sets are a primary factor in the running time of the heuristic�

as the main work of the algorithm is to scan the candidate sets repeatedly for feasible

and non�tabu swaps� Therefore� the user is usually given a degree of control over the size

of the candidate sets� a point to which we shall return in Chapters � and ��

����	 Features in perspective

All these features of the generic heuristic were described by Lin and Kernighan �����

Even at this level of abstraction it is easy to lose the forest for the trees� To know where

to focus our e�orts to improve the heuristic� it is useful to put its features in perspective�

The primary features of Lin�Kernighan are the building of the k�change one element

at a time� and the use of the cumulative gain criterion� The rest can be viewed as tweaks

for practicality or correctness� Choosing swaps greedily is less important although it is

a natural choice� The feasibility rules stem from the optimization problem itself� and

Chapter �� The Lin�Kernighan heuristic ��

cannot be changed� The tabu rules are simply a safety against non�termination� In the

case of Lin�Kernighan for the TSP� the current hypothesis is that tinkering with the tabu

rules does not change the basic behaviour of the algorithm ���� ����

��� A more speci�c problem and strategy

E�cient cluster compensation applies to Lin�Kernighan heuristics that specialize the

above strategy for use in a particular setting� This section describes this specialized set�

ting and strategy� The original Lin�Kernighan algorithm for the TSP uses this specialized

strategy� as does the algorithm for weighted matching described in Chapter ��

Given a complete undirected graph G �
V�E� with non�negative edge cost function

�� we want to 	nd a low�cost feasible set of edges� In this setting the space S is just the

set of all edges E� In the case of the Traveling Salesman Problem� the feasible structures

are the tours of G� In the case of weighted perfect matching� the feasible sets are the

perfect matchings of G� Let n be the number of vertices in G� i�e�� n �jV j�
To transform feasible set T into T � we use a k�change of edges� the removal of k

edges and the addition of k edges� As before� the swaps are done sequentially� More

importantly� a completed sequence of swapped edges forms an even�length cycle in G

alternating between removed edges and added edges� A completed k�change can there�

fore be encoded as a sequence of �k vertices of the original graph� t�� � � � � t�k� Odd�

numbered edges fe�i�� �
t�i��� t�i�gki
� are removed edges� and even�numbered edges
fe�i �
t�i� t�i	��gk��i
� and e�k �
t�k� t�� are added edges� Figure ��� shows how a par�

ticular ��change on a tour is encoded� Figure ���
a� shows the tour before the ��change

is applied� vertices t�� � � � � t� are marked� Figure ���
b� shows the new tour formed by

applying the ��change with t vertices as marked in part
a�� Figure ���
c� shows the edges

that di�er between the two tours of
a� and
b�� odd�numbered edges e�� e�� e� and e� are

edges removed from tour
a�� while even�numbered edges e�� e�� e� and e� are edges added

to tour
a�� Figure ���
d� unravels
c� to show t� through t� as a sequence� with added

edges drawn above the sequence� and deleted edges drawn below the sequence� Both

c� and
d� show the edges as directed� indicating a natural orientation associated with

building the ��change� The search for an improving k�change begins with the deletion of

edge e� �
t�� t��� and is structured around extending the t sequence of vertices�

Since the edge cost function � is non�negative� the cumulative gain criterion need

only be checked when considering adding an edge� i�e�� when considering extending the

Chapter �� The Lin�Kernighan heuristic ��

e� e� e�

e�

�d�

e� e� e� e�

t� t� t� t� t� t� t� t�

t� t�

t�

t�

t�t�

t�
t�

�a�

t� t�

t�

t�

t�t�

t�
t�

�b�

t� t�

t�

t�

t�t�

t�

t�

e�

e�

e�

e�

e�

e�

e�

e�

�c�

Figure ���� Encoding a sample ��change on a tour� Vertices t�� � � � � t� are shown� as are

the associated removed edges e�� e�� e�� e�� and the associated added edges e�� e�� e�� e��

t sequence with t�i	� we require cum gain
�i � �� 	 �� Furthermore� given a choice

for t�i	�� the feasibility constraints make it easy to select the next edge� vertex t�i	� is

either uniquely determined or drawn from a small set� So we take advantage of this

easy lookahead and consider candidates for t�i	� and t�i	� as pairs� choosing the pair

maximizing the new cumulative gain cum gain
�i���� This is not much more work� and

this extra lookahead leads to more intelligent choices ����� Thus the t sequence begins as

t�� t� and then grows by pairs� t�i	�� t�i	��

Note that the 	rst edge in the sequence is a deleted edge and it is not immediately

paired with an added edge� Afterward� edges are appended to the sequence in pairs�

To complete the alternating cycle� we need to append an added edge
t�i� t��� These

speci	cs of constructing the alternating cycle force a slight conceptual shift from the

general setting in which all swaps� even the 	rst� are atomic�

����� The concrete cumulative gain criterion

We now can give a more concrete de	nition of the cumulative gain function�

De�nition ��	 The cumulative gain function is de�ned as

cum gain
j� �
X

��l�j� l odd

�
tl� tl	���
X

��l�j� l even

�
tl� tl	���

Chapter �� The Lin�Kernighan heuristic ��

In these terms� the basic cumulative gain criterion from above requires that cum gain
j� 	

� for all j � �� and need only be checked for odd j�

Criterion ��
 �Basic Cumulative Gain �	��� Maintain the invariant cum gain
j� 	

��

While constructing a particular ftjg sequence we may have the good fortune of 	nding
some way of closing up the alternating cycle with a net improvement of� say� net gain

units�
Value net gain necessarily includes the closing up cost of adding edge
t�i� t���

That is� net gain � cum gain
�i�� �
t�i� t���� We continue the search by extending the

ftjg sequence beyond t�i in hope of 	nding even better net improvements� However� Lin
and Kernighan suggest tightening the cumulative gain criterion as follows�

Criterion ��� �Cumulative Gain �	��� Maintain the invariant

cum gain
j� 	 best net gain
j�

where best net gain
j� is the best net improvement provided by some alternating cycle

discovered during the construction of t�� � � � � tj�

This tighter version of the criterion is more common"the basic version is used only

rarely�

Note that the cumulative gain criterion deliberately ignores the immediate cost of

closing up the cycle with edge
t�i� t�� ����� That is� we do not require cum gain
�i� �
�
t�i� t�� 	 best net gain
�i�� We ignore the immediate closing up cost because it is too

pessimistic ����� We might be able to extend the t sequence by a few more vertices and

	nd a good way to close up the cycle� a way with net loss much less than �
t�i� t��� In

fact� we might get lucky and 	nd an alternating path back to t� with a big net gain�

����� The concrete greedy selection criterion

In this concrete setting� the greedy selection criterion is cast as follows� With vertices

t�� � � � � t�i given� we may have a choice among feasible non�tabu candidate pairs for vertices

t�i	�� t�i	� satisfying the cumulative gain criterion�

Criterion ��� �Greedy Selection �	��� We choose to extend the t sequence with the

candidate pair t�i	�� t�i	� that maximizes cum gain
�i� ���

Chapter �� The Lin�Kernighan heuristic ��

Since cum gain
�i � �� � cum gain
�i� � �
t�i� t�i	�� � �
t�i	�� t�i	��� and cum gain
�i�

is already determined by t�� � � � � t�i� this is the same as selecting the candidate pairs

maximizing ��
t�i� t�i	�� � �
t�i	�� t�i	���

��� Summary

This chapter gives a high level description of both the abstract Lin�Kernighan strategy

and a slightly more concrete version of that strategy� The concrete strategy is based

on three ingredients� constructing improving alternating cycles� using a cumulative gain

criterion to prune searches� and using a greedy selection criterion to choose among alter�

native moves�

With a few extra details� the concrete strategy can be used to build heuristics for

many optimization problems� The original Lin�Kernighan heuristic for the Traveling

Salesman Problem uses the concrete strategy� and is described in Chapter �� Chapter �

describes how the concrete strategy can be applied to minimum weight perfect matching�

E�cient cluster compensation� the technique motivated and described in the next

chapter� applies to any Lin�Kernighan heuristic using the concrete strategy�

Chapter �

E�cient cluster compensation

The Lin�Kernighan heuristic and its derivatives are champion heuristics in some do�

mains ���� ���� That is� they provide better solutions for a given amount of computational

e�ort� especially when looking for nearly optimal solutions� However� clustered instances

are more di�cult for the Lin�Kernighan heuristic� producing longer running times than

for uniform instances �����

This chapter motivates and describes e�cient cluster compensation� a technique

aimed at reducing the performance degradation caused by clustering in the input� but

without adversely a�ecting the quality of the output� This chapter describes the tech�

nique� Later chapters show how it a�ects the heuristic� both in practice and in theory�

��� How Lin	Kernighan stumbles on clustered in	

stances

The Lin�Kernighan heuristic for the TSP performs remarkably well on most instances

because the cumulative gain criterion e�ectively prunes the search space� Furthermore�

choosing to ignore the immediate closing up cost is important in the discovery of high

quality solutions�

However� choosing to ignore immediate closing up costs also makes the heuristic

vulnerable to long running times� Papadimitriou exploits this vulnerability in his proof

that the Lin�Kernighan heuristic for the TSP solves a problem that is PLS�complete �����

Roughly speaking� PLS is the class of problems solved by local search algorithms in

which each step takes time polynomially bounded in the size of the input� PLS stands

��

Chapter �� Efficient cluster compensation ��

for Polynomial Local Search� Just as with NP�completeness� a theory of reductions among

PLS problems may be used to de	ne the class of PLS�complete problems ���� ���� It is

conjectured that a search analog of NP properly includes PLS� and that PLS properly

includes a search analog of P� One consequence of Papadimitriou
s theorem is that one

can construct a family of graphs that force the Lin�Kernighan heuristic� with certain

relaxed tabu rules� to perform an exponential number of steps�

Papdimitriou
s proof uses a constructed graph with a small number of bait edges

whose sole purpose are to pump the cumulative gain function to optimistically large

values� This large cumulative gain� together with limited backtracking� force a deep

search of alternative paths in the constructed graph�

In fact� the graph is constructed so that all possible paths back to t� must end in an

edge at least as large as the bait edges removed at the beginning of the search� In this

case the heuristic is fooled into believing that a large improvement is in the works� and

spends much e�ort looking for one�

We will revisit this graph in Appendix A� where we adjust Papadimitriou
s proof to

show that Lin�Kernighan solves a PLS�complete problem� even if cluster compensation

is used�

Experiments show that the Lin�Kernighan heuristic for the TSP spends much more

time on clustered instances than it does on relatively uniform instances ����� We hy�

pothesize that the main problem presented by clustered instances is that edges crossing

relatively large inter�cluster gaps serve as bait edges� When removing such a large bridge

edge� the cumulative gain grows optimistically large� This large cumulative gain �bud�

get� allows the heuristic to spend much e�ort wandering in the newly visited cluster�

with little or no incentive to return to the originating cluster containing start vertex t��

The option of returning to the originating cluster usually involves adding to the structure

some necessarily long edge from the current cluster back to the originating cluster� The

cost of adding such a bridge edge is large� and this option is likely to be repeatedly dis�

carded by the greedy criterion the heuristic applies in choosing the next pair of vertices

t�i	� and t�i	��

Of course� we might get extremely lucky by 	nding a path back into the originating

cluster that removes a long bridge edge� However� as we 	nd increasingly better solutions�

the likelihood of encountering this very lucky case diminishes greatly over time� That

is� a decent solution typically contains few edges that bridge clusters� Furthermore� in

the case of the TSP� solutions are tours and hence connected subgraphs� that is� bridge

Chapter �� Efficient cluster compensation ��

edges must always exist�

��� Cluster compensation

The lesson of the previous section is the following� both the cumulative gain criterion and

the greedy selection criterion ignore immediate and future closing up costs� Although

this allows the heuristic much freedom to explore� the heuristic can be tricked into long

fruitless searches when it removes an edge bridging a large inter�cluster gap�

We would like to reduce the baiting impact of bridge edges� The key lies in the

implicit use of the cumulative gain as a measure of the promise of the magnitude of the

improvements likely to be found� We want to make the removal of inter�cluster edges

appear less promising� As it stands� the heuristic pays attention only to relatively local

factors in the selection of t�i	�
a candidate on vertex t�i
s list� and t�i	�
forced by

feasibility�� The heuristic does not know whether the edge it is considering for removal�

t�i	�� t�i	��� is a long inter�cluster bridge edge� or whether it is a long edge over densely

populated territory� If the edge is a long inter�cluster bridge then we want to discourage

its removal� If the edge is a long edge over a densely populated territory� then it is a

good candidate for removal and so we don
t want to discourage its removal�

We propose to re	ne the heuristic by giving both the cumulative gain and the greedy

selection criteria knowledge of the global cluster structure of the instance� Cluster com�

pensation is the use of the adjusted cumulative gain and greedy selection criteria in a

Lin�Kernighan heuristic in place of their standard versions� The standard versions are

Criteria ��� and ���� The adjusted versions are Criteria ��� and ���� given below�

����� Cluster distance

The knowledge of the cluster structure is given in the form of the cluster distance between

two vertices� The cluster distance between two vertices is just the length of the �longest

hop� one must take in traveling from one vertex to the other�

De�nition ��� �Cluster Distance� Let the bottleneck cost of path P be the weight of

a heaviest edge on P � Then the cluster distance between vertices u and v� written as

cG
u� v�� is the minimum bottleneck cost of any path from u to v in graph G�

When the underlying graph G is understood� we shall drop the subscript and simply

write c
u� v��

Chapter �� Efficient cluster compensation ��

����� Cluster distance as an estimate of future closing up costs

The cluster distance between two endpoints t� and t�i can be viewed as an approximate

lower bound on all possible future closing up costs�

Suppose vertices t� through t�i are 	xed� and that we are trying to complete an

alternating k�cycle by appending vertices t�i	� through t�k to our list� The unknown

portion t�i	� through t�k encodes an odd�length alternating path beginning with added

edge e�i �
t�i� t�i	��� removed edge e�i	� �
t�i� t�i	��� and on through added edge

e�k �
t�k� t��� The cluster distance between t�i and t� is a lower bound on the length of

the longest hop on this path� The net closing up cost of this yet to be discovered path is

�
e�i�� �
e�i	�� � � � �� �
e�k���� �
e�k��� � �
e�k��

There are k�i�� positive terms and k�i negative terms in this sum� Let us temporarily
make the unreasonable assumption that the largest term in magnitude is the positive term

�
e�L� and that all the other terms cancel� It follows that the net closing up cost of this

path is �
e�L�� and hence that the cluster distance from t�i to t� is a lower bound on the

future closing up cost�

Of course� the terms will not usually cancel as assumed� So the cluster distance is not

an actual lower bound on closing up costs� The assumption embodies the point of view

that the longest hop from t�i to t� is all that matters� that the lengths of edges before

and after that biggest hop are noise� But this 	rst�order approximation to future closing

up costs motivates the adjustments suggested in the following sections�

����� Adjusting the cumulative gain criterion

We want to tune the cumulative gain criterion so it does something in between always be�

ing pessimistic by counting the immediate closing up costs
i�e�� cum gain
�i���
t�i� t�� 	
best net gain
�i�� and always being optimistic and never counting future closing up costs

i�e�� cum gain
�i� 	 best net gain
�i��� The 	rst alternative is rejected because it re�

duces the quality of the solutions ����� The second alternative su�ers from fruitless

searches caused by bait edges�

We propose discounting the cumulative gain by the cluster distance between the start

vertex t� and the current end vertex t�i� The basic cumulative gain criterion is adjusted

as follows�

Chapter �� Efficient cluster compensation ��

Criterion ��� �Basic Cluster Compensating Cumulative Gain� Maintain the in�

variant

cum gain
�i�� c
t�i� t�� 	 �

where c
t�i� t�� is the cluster distance from t�i to t��

The common cumulative gain criterion is adjusted as follows�

Criterion ��� �Cluster Compensating Cumulative Gain� Maintain the invariant

cum gain
�i�� c
t�i� t�� 	 best net gain
�i��

where c
t�i� t�� is the cluster distance from t�i to t�� and best net gain
�i� is the maximum

net improvement provided by any alternating cycle discovered during the construction of

t�� � � � � t�i�

The cluster distance c
u� v� is bounded below by � as long as � is non�negative� Since

the edge
u� v� is a trivial path� c
u� v� is bounded above by the length of the edge from

u to v� namely �
u� v�� The adjusted cumulative gain criterion thus provides a middle

ground between the pessimistic and optimistic alternatives�

����� Adjusting the greedy selection criterion

The greedy selection criterion helps us decide between many possible choices for the pair

t�i	�� t�i	�� Being greedy� we seek to maximize the promise of improvement� Interpreta�

tion ��� tells us the promise of improvement for the pair t�i	�� t�i	� is just cum gain
�i����

As with the cumulative gain criterion� we introduce some pessimism by discounting by

the cluster distance�

Criterion ��� �Cluster Compensating Greedy Selection� We choose to extend the

t sequence with the candidate pair t�i	�� t�i	� that maximizes cum gain
�i����c
t�i	�� t���
where c
t�i� t�� is the cluster distance from t�i to t��

Again� cum gain
�i � �� � cum gain
�i�� �
t�i� t�i	�� � �
t�i	�� t�i	��� With the pre	x

t�� � � � � t�i 	xed� cum gain
�i� is 	xed� So maximizing cum gain
�i����c
t�i	�� t�� means
maximizing ��
t�i� t�i	�� � �
t�i	�� t�i	��� c
t�i	�� t���

Chapter �� Efficient cluster compensation ��

��� E
ciently computing cluster distance

Cluster compensation attempts to speed up the heuristic by adding code to the inner

loop� for each pair of vertices considered for t�i	�� t�i	� we must compute the cluster

distance c
t�i	�� t��� We had better make sure we can compute c quickly� This section

describes how� with modest preprocessing time and space� online queries of c can be

computed in constant time�

One might be tempted to precompute the cluster distance function and then use

a na#$ve table lookup for online queries� This takes space quadratic in the number of

vertices of the instance� But with appropriate supporting data structures� Lin�Kernighan

heuristics can e�ectively be applied to very large instances� For example� certain million�

city instances of the TSP can be tackled with linear space
about ��� megabytes� and in

under an hour of CPU time ���� ���� We would like cluster compensation to be e�ective

whenever Lin�Kernighan is e�ective� In particular� space consumption should be no worse

than linear in the number of vertices in the instance�

����� Minimum spanning trees encode cluster structure

The main ingredient is the observation that a minimum spanning tree for the underlying

graph embodies all the cluster structure we require�

Lemma ��� Let G �
V�E� be a connected weighted undirected graph� and let T �

V�ET � be any minimum spanning tree for G� Then the cluster distance in G between

any two vertices u and v is equal to the bottleneck cost of the unique path from u to v in

T � Symbolically� cG
u� v� � cT
u� v��

Proof
 The cluster distance cG
u� v� is the minimum bottleneck cost over all paths from

u to v in G� Since T is a subgraph of G� we immediately have cG
u� v� � cT
u� v��

We use contradiction to prove cG
u� v� � cT
u� v�� Let P be the unique path in T

from u to v� and let b be a longest edge on P � in particular� the weight of b is cT
u� v��

Removing edge b from T would separate T into two connected components� component

Tu containing u� and component Tv containing v� Now assume cG
u� v�
 cT
u� v�� Then

there is a �sneaky� path P � in G from u to v� all of whose edges have length less than

cT
u� v�� Let b
� be an edge in P � with one endpoint in Tu and the other endpoint in

Tv� Then we can form spanning tree T � from T by replacing b with b�� Tree T has

lower cost than does T � But this contradicts the fact that T is a minimum spanning

Chapter �� Efficient cluster compensation ��

tree for G� Hence our assumption that cG
u� v�
 cT
u� v� must be wrong� and therefore

cG
u� v� � cT
u� v��

The task then becomes computing a minimum spanning tree and then e�ciently

computing cluster distances in that tree� Implementations of cluster compensation should

allow the user to supply their own tree� The user often has special knowledge about

the instance allowing them to compute minimum spanning trees more quickly than the

more generic algorithms included with the cluster compensation software package� There

are many e�cient algorithms for computing minimum spanning trees� each tailored for

particular instance classes �����Without special knowledge of the input� Prim
s O
jV j��
algorithm is optimal since we assume our graphs are complete� If we know the instance

has geometric structure� then we can use Bentley
s k�dimensional search trees together

with Prim
s algorithm to compute minimum spanning trees in observed O
jV j log jV j�
time ���� ���� The MST problem is well�solved� so we shall assume we already have a

minimum spanning tree in hand�

����� Computing cluster distance in a tree

Computing cluster distances in a graph is the same as computing cluster distances in a

minimum spanning tree for the graph� The main work in e�ciently computing cluster

distances in any tree is the e�cient computation of least common ancestors in a related

binary tree�

De�nition ��	 The least common ancestor of vertices u and v in a rooted tree is the

ancestor w of both u and v with the property that any ancestor of both u and v is either

w or an ancestor of w� We write LCA
u� v� for the least common ancestor of u and v�

Computing cluster distances in T amounts to computing least common ancestors in

an associated topology tree Top
T �� We construct rooted binary tree Top
T � from T by

recording the execution history of running Kruskal
s minimum spanning tree algorithm

on T � Since T is already a minimum spanning tree� this can be viewed as a reconstruction

of T � with extra output on the side�

The vertices of T label the leaves of Top
T �� and the edges of T label the internal

nodes of Top
T �� VTop�T �
�� V 	ET � Each subtree of Top
T � corresponds to a connected

component of T formed during the execution of Kruskal
s algorithm on T � adding edge

e �
u� v� during reconstruction of T corresponds to adding internal node Re to Top
T �

Chapter �� Efficient cluster compensation ��

with its two children being the current roots of the components containing u and v� The

process is laid out in Algorithm �� The algorithm is simpler than Kruskal
s algorithm in

some ways because we know T is acyclic� so we know a priori that no edges of T will be

discarded�

Algorithm � Construct Top
T � from T �
Modi	ed Kruskal
s minimum spanning tree

algorithm��

Require
 T �
V�ET � is a weighted tree�

Ensure
 �u� v � V� u
� v� cluster distance cT
u� v� equals the weight of edge labeling

LCA
u� v� in Top
T ��

%% Forest F contains the current set of components as rooted trees�

%% We identify a subtree with its root�

F �� fLeaf
v� j v � V g %% Initialize with singletons�
for e �
u� v� in ET in non�decreasing weight order do

Find root
u�� the root of the tree containing Leaf
u� in forest F �

Find root
v�� the root of the tree containing Leaf
v� in forest F �

Form internal node Re with children root
u� and root
v��

F �� F 	 fReg n froot
u�� root
v�g
end for

Top
T � �� F

The correctness of Algorithm � is given by Lemma ����

Lemma ��
 �Correctness of Algorithm �� For any distinct vertices u� v � V � clus�

ter distance cT
u� v� equals the weight of the edge �of T � that labels the internal node

LCA
Leaf
u�� Leaf
v�� in Top
T ��

Proof
 Let distinct u� v � V be given� Let P be the unique path in T from u to v� and

let b be the last edge of P to appear in the sorted list used by Algorithm �� In particular�

cT
u� v� � �
b�� Let R be the root of the smallest subtree of Top
T � containing all nodes

labeled by the edges and vertices of path P �

Node R is an ancestor of both u and v� so R is an ancestor of LCA
u� v�� If R is

a proper ancestor of LCA
u� v�� then path P would be disconnected� Since P is not

disconnected� we have R � LCA
u� v��

Finally� tree Top
T � is built bottom�up� with later edges on the sorted list being

closer to the root� Since R is minimal� b must label R� and hence cT
u� v� equals the

Chapter �� Efficient cluster compensation ��

weight of the edge labeling of LCA
u� v��

����� Resource requirements for preprocessing

The running time of Algorithm � is dominated by two components� sorting the edges� and

	nding roots� Sorting the edges takes O
jV j log jV j� time� The only other super�linear
time factor is contributed by 	nding roots of trees� Just as Algorithm � is a modi	ed

version of Kruskal
s minimum spanning tree algorithm� we can adapt the standard im�

plementation of a part of Kruskal
s algorithm for the purpose of 	nding roots within

Algorithm ��

The standard version of Kruskal
s minimum spanning tree algorithm needs a way of

quickly 	nding out whether two vertices are in the same tree in the current forest� One

solution uses a union�	nd abstract data type
ADT� over the space of all n vertices �����

Initially all n vertices are in distinct sets� Operation �nd
u� answers some representative

element of the set to which u belongs� Given representatives r and s from distinct

sets� operation union
r� s� forms a new set� the union of the sets containing r and s�

The answer to a �nd
u� query may not change between union operations involving the

set containing u� We apply this abstract data type in Kruskal
s algorithm as follows�

At each stage in the execution of Kruskal
s algorithm� the vertices are partitioned into

subsets according to the connected components in existence at that time� Vertices u

and v are in the same component if and only if their respective subsets have the same

representative� i�e�� �nd
u� � �nd
v�� When a new edge
u� v� is added to the forest� we

merge the components containing u and v by performing operation union
�nd
u�� �nd
v���

A standard implementation for the union�	nd abstract data type uses a forest of trees

to represent a partition of the vertices into subsets ���� ��� Section ����� Each vertex in the

forest points to its parent vertex� if the vertex is a root� it points to some distinguished

nil value� Each root records the number of vertices in its own subtree� The representative

element of a set is always the root of the tree corresponding to that set� When a �nd
u�

query is issued� we follow parent pointers from node u to its root� To save time on future

�nd queries� we perform path compression� all pointers on the path from u to its root

are updated to point to the root� When a union
r� s� operation is issued� we compare the

sizes of the trees rooted at r and s� we join the trees by making the root of the smaller

tree point to the root of the larger tree� we also update the recorded size of the tree of

the remaining root� This implementation of the union�	nd ADT runs in almost linear

Chapter �� Efficient cluster compensation ��

time� a sequence of O
n� operations on a space of n elements takes O
n � �
n�� time�
where � is an extremely slow�growing sub�logarithmic function �����

Algorithm � requires that we be able to 	nd roots quickly�
It does not need to know

whether two vertices are in the same component since T is already known to be a tree��

The implementation of the union�	nd ADT given above is almost perfect for the job�

The only complication is that Algorithm � speci	es which nodes should be roots at any

particular time� while for e�ciency reasons the union�	nd implementation chooses the

roots based on tree size� However� we can modify the union�	nd implementation so that

its runtime characteristics are preserved while answering root�	nding queries according

to Algorithm �
s needs�

In the modi	ed union�	nd implementation� we include all of VTop�T � � fLeaf
u� j u �
V g 	 fRe j e � ETg as singletons� In processing edge e �
u� v� we form internal node

Re� performing union
�nd
Leaf
u��� �nd
Leaf
v��� and then union
�nd
Leaf
u��� Re��
We

could have used v in place of u in this last step�� We need to ensure that subsequent �nd

operations in this subtree
before the next union involving this tree� end up 	nding node

Re� Since node Re has not yet been merged with anything else� it is either the root or a

child of the root� If it is a child of the root� then we swap it with the root in only one

more step� This modi	ed implementation keeps the total cost of the sequence of O
jV j�
�nd and union operations bounded by O
jV j ��
jV j��� the same asymptotic bound as for
the standard union�	nd implementation� Since � grows sub�logarithmically� the running

time for all the root�	nding of Algorithm � is in O
jV j log jV j��
The total runtime for Algorithm � is therefore dominated by the time to sort the

edges� and is therefore in O
jV j log jV j��
Topology tree Top
T � has � jV j�� vertices and � jV j�� edges� so it may be stored in

linear space� Algorithm � can be made to use only linear space�

����� Computing least common ancestors

Now let us turn to 	nding least common ancestors� Let R be any rooted binary tree

having n leaves� With O
n logn� preprocessing time and O
n� extra space� online least

common ancestor queries in R may be answered in constant time ����� This technique

is applied to tree Top
T �� requiring the same asymptotic time and space bounds for

preprocessing as used by Algorithm ��

Chapter �� Efficient cluster compensation ��

����� Cluster distance query summary

Taken altogether� we have the following theorem�

Theorem ��� �Cost of computing cluster distance� Suppose we are given a weighted

connected undirected graph G �
V�E�� and a minimum spanning tree for G� With

O
jV j log jV j� preprocessing time and O
jV j� extra space for data structures� we can

compute arbitrary cluster distance queries in G in constant time�

All these arguments can be extended to the case where G is possibly disconnected�

with the following adjustments� First� the cluster distance between a pair of vertices

from di�erent components would be in	nite� Second� we would use a minimum spanning

forest instead of a minimum spanning tree� Finally� the least common ancestor for a

pair of vertices from di�erent components would need to be some distinguished non�edge

value� e�g�� nil� having in	nite weight� The resource bounds would stay the same�

��� When to apply e
cient cluster compensation

Are the overheads imposed by e�cient cluster compensation worth its bene	ts� When

should we apply the technique�

In the worst case� cluster compensation does not help� The technique was inspired in

part by the proof for the PLS�completeness of the problem solved by the Lin�Kernighan

heuristic� That proof is quite robust� needing little modi	cation to extend it in the case

the cluster compensation is employed by Lin�Kernighan� Appendix A gives a sketch of

the changes required�

In practice� the answer is more encouraging� The following chapters describe ex�

periments with implementations of the Lin�Kernighan heuristic for both the Traveling

Salesman Problem and the minimum weight perfect matching problem� In the experi�

ments� the bene	ts of e�cient cluster compensation almost always outweigh its overheads�

These results suggest e�cient cluster compensation should be used by default for geomet�

ric instances� For non�geometric instances� the extra overhead for computing minimum

spanning trees may be signi	cant enough to outweigh any advantage achieved by cluster

compensation during the optimization phase� More precisely� these judgements are for

Lin�Kernighan heuristics that use the concrete strategy described in Section ���� Other

options are outlined in Section �����

Chapter �� Efficient cluster compensation ��

Cluster compensation provides us with only a loose estimation on future closing up

costs
see Section ������� Because the estimate is loose� we do not expect cluster compen�

sation to take away completely the running time penalty Lin�Kernighan experiences on

clustered instances� That is� we do not expect the heuristic with cluster compensation

to run as quickly on clustered instances as it does on uniform instances� Rather� our

aim in applying cluster compensation is to make the heuristic run faster on a particular

instance than it would if we had not applied cluster compensation� We compare using

cluster compensation versus not using cluster compensation� rather than one instance

versus another�

��� Summary

We have described the di�culty Lin�Kernighan heuristics have with clustered instances�

suggesting the baiting e�ect of long inter�cluster edges as the primary culprit�

This chapter introduces the technique of cluster compensation� a way of modifying

the cumulative gain and greedy selection criteria of Lin�Kernighan heuristics� Our hope

is that cluster compensation reduces the baiting e�ect of inter�cluster edges� We have

seen how to compute a cluster distance in constant time� with one�time preprocessing

taking modest time and space�

But as with all heuristics� the real test is whether the technique works well in practice�

The following chapters describe experiments showing the e�ect e�cient cluster compen�

sation has on an implementation of the Lin�Kernighan heuristic for both the Traveling

Salesman Problem and the minimum weight perfect matching problem�

Chapter �

Lin�Kernighan for the Traveling

Salesman Problem

A great deal of work goes into making a high quality implementation of the Lin�Kernighan

heuristic� This chapter describes the details of the Lin�Kernighan heuristic for the Trav�

eling Salesman Problem within the framework given in Chapter �� We cover the details as

speci	ed by Lin and Kernighan and the quarter century of work that followed to improve

its scalability and e�ectiveness�

Johnson and McGeoch note that by omitting certain key features� one is liable to

end up with a heuristic producing worse tours than even ��Opt� Indeed� �Other authors

seem to think that &Lin�Kernighan
 is a synonym for ��Opt or even ��Opt'� ���� p� �����

We have taken great care to implement the key features so that these warnings do not

apply to our work� We also therefore take great care to explain those details properly�

We estimate that a high quality re�implementation would take upwards of eight months

full time work�

Many of the key features are directly usable and sensible in the context of the min�

imum weight perfect matching� Chapter � shows how the features translate into that

setting�

��� Historical context

The Lin�Kernighan heuristic was originally devised for the Traveling Salesman Problem�

Most aspects of modern high quality implementations of the heuristic were described in

the original paper by Lin and Kernighan ����� Modi	cations for extending the heuristic
s

��

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

practical applicability to ever larger instances include the use of data structures with bet�

ter asymptotic behaviour ����� taking advantage of geometric structure of the input �����

and miscellaneous shortcuts
such as Bentley
s �don
t look� bits� that have proven their

worth through experimentation ���� ����

The implementation used in our experiments is based on the description given by

Johnson and McGeoch in their survey of local search techniques for the Traveling Sales�

man Problem ����� Their survey reports results from experiments with a state of the

art implementation of the Lin�Kernighan heuristic� The following sections describe the

essential details of our implementation within the framework given in Chapter �� Of

course� the last word on the details of the implementation is the implementation itself

See Appendix B��

��� Feasibility

The 	rst essential detail is how the heuristic maintains feasibility and near feasibility of

intermediate structures� When the 	rst edge
t�� t�� is removed from a tour� we are left

with a Hamiltonian path
a path meeting all the vertices exactly once� beginning at t�

and ending at t�� When extending the t list of the Lin�Kernighan strategy
see Section

����� we choose pairs of vertices so that we are always left with a Hamiltonian path� That

way we need only add one edge to re�form form a tour�

The mechanism for maintaining a Hamiltonian path works as follows� If we extend the

t sequence with vertex t�
with t�
� t��� we are adding edge
t�� t��� and therefore creating

a cycle� We select t� as the neighbour of t�
on the Hamiltonian path� that is nearer to t�

than to t�� This removes edge
t�� t��� which breaks the cycle to form a new Hamiltonian

path� In general� we constrain t�i	� as being a particular path neighbour of t�i	� so that

after building sequence t�� � � � � t�i	�� we are always left with a Hamiltonian path�
We

relax this rule over a small pre	x of the t sequence for the sake of the backtracking rules�

See Section ����� The process is diagrammed in Figure ����

Of course� in a complete graph any Hamiltonian path starting at vertex u and ending

at vertex v can be transformed into a tour by adding edge
u� v�� So if we have a

Hamiltonian path after adding a pair of vertices to the t sequence� we can easily construct

a tour by adding an edge between the two endpoints of the path� t� and t�i�

In fact� each pair of candidates for t�i	� and t�i	� is checked to see if it would allow

us to make a better tour� That is� if u and v are possibilities for t�i	� and t�i	�� we check

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

t� t�i t� t�i

t�i	�

t� t�i

t�i	�
t�i	�

Figure ���� We maintain a Hamiltonian cycle by constraining t�i	��

to see if net gain
t�� � � � � t�i� u� v� 	 best net gain� The value

net gain
t�� � � � � t�i� u� v� � cum gain
�i�� �
t�i� u� � �
u� v�� �
v� t��

is the net tour improvement we would attain if we extended the t sequence to t�� � � � � t�i� u� v

and then closed up the Hamiltonian path to form a tour by adding edge
v� t��� If in fact

stopping with u and v represents a better alternative than the best tour improvement

found so far� then we update best net gain to be net gain
t�� � � � � t�i� u� v� and continue

the search�

Although u and v might give us the best net tour improvement� some other candidate

pair u� and v� might give us a better cumulative gain�
For this to happen� the closing up

cost when using u and v must be less than the closing up cost when using u� and v�� That

is� �
v� t��
 �
v�� t���� As always� we extend the t sequence with the pair maximizing

the cumulative gain� In this case it means using pair u� and v�� i�e�� we choose t�i	� � u�

and t�i	� � v��

��� Tabu rules

If left unrestricted� some choices for vertices t�i	� and t�i	� don
t make sense because

they don
t make progress� For example� in the previous section we required that t� be

distinct from t�� if t� � t� then we
d be adding an edge we had just removed� Similar

behaviour can occur with multiple edges at a time� That is� some sequences of choices

can force the algorithm into endlessly swapping the same set of edges in and out of the

current Hamiltonian path�

To avoid these problems� Lin and Kernighan devised two tabu rules� never delete an

added edge� and never add a deleted edge� These eliminate the possibility of cycling�

and also have the side e�ect of limiting the depth of the search� The 	rst rule limits the

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

search to at most jV j swaps� The second rule limits the search to at most O
jV j�� swaps�
since there are up to O
jV j�� non�tour edges available at the beginning of each search
sequence� Modern implementations use only the 	rst rule� i�e�� never delete an added

edge ���� ���� Our implementation does the same�

Papadimitriou
s proof that a stylized version of the Lin�Kernighan heuristic for the

TSP solves a PLS�complete problem requires that only the �never add a deleted edge�

rule rule be used by the algorithm� The result is conjectured to hold if the �never delete

an added edge� rule is used either alone or in conjunction with �never add a deleted

edge�� ����

��� Limited backtracking

With a tour T in hand� we construct a t sequence to try to 	nd a better tour T �� Most

t sequences we construct do not lead us to a better tour� We use a limited backtracking

scheme so that many alternative t sequences can be tried� The backtracking can be

decomposed into a high level and a low level�

����� High level backtracking

At a high level� we iterate t� through all the vertices in V as long as no improvement is

found� For each choice for t� we build a t sequence starting with t� and use the low level

backtracking scheme until it 	nds a better tour� We can choose the best improvement

found by the low level backtracking scheme� if any�

There are two shortcuts we can apply to this backtracking scheme� First� we don
t

need to examine all possible tour improvements the low level backtracking scheme can

	nd� Second� we don
t need to re�examine all the vertices every time we start with

another tour�

The 	rst shortcut is as follows� The 	rst tour improvement answered by the low level

backtracking scheme is declared the winner� We need not iterate t� through the rest of

the vertex set V � Instead we apply the improvement to T to form T � and restart the

local search� iterating t� anew over V �

The second shortcut is more involved� The ��opt and ��opt local search heuristics use

the same restart mechanism described here� When experimenting with ��opt and ��opt�

Bentley noticed that after a while the local search stops making progress in much of the

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

graph ����� That is� large portions remain the same between one tour and the next in the

local search process� The vertices in these stable regions are examined again and again

without 	nding improvements� Bentley therefore introduced �don
t�look� bits for those

heuristics ���� ���� and they apply equally well to the Lin�Kernighan heuristic �����

Don
t�look bits work as follows� Each vertex has a bit that determines whether it

should be used as vertex t� in constructing a t sequence� If the bit for vertex v is o��

then v should be used as a choice for t�� if the bit is on� then v shouldn
t be used as a

choice for t�� At the beginning of the local search� all vertices have their bits turned o��

At each stage of the local search� the high level backtracking considers all vertices as

candidates for t�� For a given choice t� � v� there are two outcomes� either we 	nd a tour

improvement or we don
t� even while trying all t sequences according to the low level

backtracking scheme� If we 	nd a tour improvement with t� � v� then all the vertices

involved in the edge exchange have their don
t�look bits turned o�� Those vertices are

considered to be in the �active� region of the graph� If we don
t 	nd a tour improvement

with t� � v then we turn v
s don
t�look bit on� v is considered to be in the �stable�

region of the graph�

Don
t�look bits save work by focusing the algorithm
s attention on the actively chang�

ing portions of the graph� The number of vertices having their don
t�look bits turned o�

decreases greatly over time�

We can represent don
t�look bits as membership in a set Active� A vertex is in the

Active set if and only if its don
t�look bit is o�� Iterating over the set� and inserting and

removing elements from the set can be done e�ciently�

Our implementation of the Lin�Kernighan heuristic for both the TSP and the mini�

mum weight perfect matching uses don
t�look bits� The local search process� including

the high level backtracking scheme� is depicted in Algorithm ��

In our implementation� the Active set is a 	rst�in�	rst�out queue supporting a constant

time membership test� similar in spirit to the sparse set representation of Briggs and

Torczon ����� At initialization time� line � of Algorithm �� all the vertices are inserted

in random order� Thereafter when a vertex is to be made active again� in line � of

Algorithm �� it is inserted at the end of the Active queue only if it isn
t already in the

queue� The implementations of Johnson et al� and Applegate et al� handle the active

queue similarly ���� ���

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

Algorithm � Local search and high level backtracking� with don
t�look bits�

Require
 T is a tour on graph G �
V�E�

Ensure
 T is a LK�optimal tour on G

� Active �� V

�� while Active
� � do
�� Choose v � Active

�� Run low level backtracking on T with t� � v

� if We 	nd a better tour T � using t�� � � � � t�i then

�� Active �� Active 	 ft�� � � � � t�ig
�� T �� T �

�� else

�� Active �� Active n fvg

�� end if

� end while

����� Low level backtracking

When a search sequence from a given vertex t� fails to 	nd a tour improvement� the algo�

rithm backtracks� Lin and Kernighan specify that� as long as searches fail� all alternatives

for t� through t� should be tried� As always� the backtracking choices are constrained by

feasibility criteria� tabu rules� and candidate sets�

However� the choices for t� through t� are also constrained so that a Hamiltonian

path would remain if the changes speci	ed by the whole pre	x are applied� Allowable

choices may be determined by the relative order of vertices t� through t�
and sometimes

through t�� on the start tour before any changes are applied� Table ��� shows the case

analysis tree� Subcases are indicated by nesting within the table� Recall that t� and t�

are always tour neighbours� so they are always adjacent in the relative orderings� The

same is true for the pairs
t�� t���
t�� t��� and
t�� t��� However� any number of vertices

may occupy the positions marked by the precedence symbol
��� In fact� the t vertices
on either side of a precedence marker may denote the same tour vertex� Each possible

ordering among the 	rst few t vertices is marked in the table as either allowable or not

allowable� Allowable con	gurations are depicted in Figure ���� the start tour would be

shown as a circle�

We allow choices for t� through t� that result in a Hamiltonian path even though

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

Relative order of t�� � � � � t� on start tour Allowable� i�e�� Diagram� if

Relative order of t�� � � � � t� forms a allowable

Relative order of t�� � � � � t� Hamiltonian

path�

t�t� � t�t� � t� no

t�t� � t�t� � t�t� � t� yes Fig� ���
a�

t�t� � t�t� � t�t� � t� yes Fig� ���
b�

t�t� � t�t� � t�t� � t� no

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
c�

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
d�

t�t� � t�t� � t�t� � t� no� no for all

��change subcases

t�t� � t�t� � t� yes Fig� ���
e�

t�t� � t�t� � t�t� � t� no

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
f�

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
g�

t�t� � t�t� � t�t� � t� yes Fig� ���
h�

t�t� � t�t� � t�t� � t� yes Fig� ���
i�

t�t� � t�t� � t�t� � t� no

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
j�

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
k�

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
l�

t�t� � t�t� � t�t� � t�t� � t� yes Fig� ���
m�

Table ���� Case analysis for low level backtracking portion of Lin�Kernighan for the TSP�

Allowable choices are determined by the relative ordering of t� through t� on the starting

tour� Subcases are nested�

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

t� t�

t�

t�

t�t�

t�
t�

�m�

t� t�

t�
t�t�

t�

�i�
t� t�

t�

t�

t�t�

t�
t�

�j�

t� t�

t�

t�

t�t�

t�
t�

�k�

t� t�

t�

t�

t�t�

t�
t�

�l�

t� t�

t�t�

�e�

t� t�

t�

t�

t�t�

t�
t�

�f�

t� t�

t�

t�

t�t�

t�
t�

�g�

t� t�

t�
t�t�

t�

�h�

t� t�

t�
t�t�

t�

�a�

t� t�

t�
t�t�

t�

�b�
t� t�

t�

t�

t�t�

t�
t�

�c�

t� t�

t�

t�

t�t�

t�
t�

�d�

Figure ���� Allowable backtracking cases for Lin�Kernighan for the TSP� The relative

ordering of vertices t� through t�
and sometimes t�� on the start tour determine whether

a Hamiltonian path results when those changes are applied� Shown are possibilities

when edges
t�� t���
t�� t���
t�� t��� and
t�� t�� are removed from the start tour while

edges
t�� t���
t�� t���
t�� t�� are added� See also Table ����

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

those choices for t� through t� do not� Parts
a� and
b� of Figure ��� show such cases�

Some choices for t� through t� do not result in a Hamiltonian path� but may be

extended with choices for t� and t� so that t� through t� speci	es a change that results

in a Hamiltonian path� All such alternatives for t� through t� are tried� but for each of

them� only the 	rst pair
t�� t�� is tried� Diagrams
c��
d��
f��
g��
j��
k��
l�� and
m�

in Figure ��� depict these cases�

The original Lin and Kernighan implementation uses this backtracking schema� as

does our own� and the Johnson et al� implementation described in ����� In the interest

of saving computational work� some researchers suggest using a more limited backtrack�

ing schema ����� However� Johnson and McGeoch argue that reducing the backtracking

schema is a poor tradeo� ����� In this they agree with Lin and Kernighan� that back�

tracking over a larger pre	x incurs �a considerable time penalty�� while backtracking to

only shallower levels �weakens the procedure� ���� p� ����� In practice� the more exten�

sive backtracking schema used here leads to better tours and does not require much more

computational work�

��� Candidate sets

The low level backtracking schema speci	es the allowable relative orderings of t� through

t�
or t��� If t� and t� are 	xed� there may be many choices for t�� Similarly� if t� through t�

are 	xed� there may be many choices for t�� In general� with t� through t�i 	xed� there can

be many choices for t�i	�� As a time�saving measure� these choices are constrained with

candidate lists� though without appreciable loss in tour quality ���� ��� ���� Candidate

lists are also known as neighbour lists �����

When discussing the general Lin�Kernighan scheme� we described the candidate set

for an element e � S as those elements e� � S that are likely to improve the solution

locally when they are swapped with e� In the TSP� the elements e are edges of the

graph� The union of all the candidate sets is the candidate subgraph of the instance� We

represent the candidate subgraph as a list of adjacencies� each vertex knows its neighbours

in the candidate subgraph� Vertex t�i	� is chosen from one of the neighbours of t�i in the

candidate subgraph�

What candidate sets are appropriate for the TSP� Lin and Kernighan suggest using

the �� nearest neighbour subgraph as the candidate subgraph� That is� in the candi�

date subgraph each vertex is adjacent to its �� nearest neighbours in the whole graph�

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

Naturally� one can use any number of nearest neighbours�

For geometric instances� Johnson suggests using quadrant�based neighbours �����
Re�

call that a geometric TSP instance is one in which the vertices are given coordinates� and

the distance function is some metric over that coordinate space�� For example� in a ��d

Euclidean TSP instance� the quadrant�based �� nearest neighbours of a vertex v is the

union of the �� nearest neighbours to v that lie to the north�east of v� together with the

�� nearest to the north�west� the �� nearest to the south�east� and the �� nearest to the

south�west� Each vertex would thus have up to �� vertices on its candidate list�
Ver�

tices on the boundaries of the instance might not have enough neighbours in a particular

direction to 	ll up the quota for that quadrant�� This candidate subgraph provides a

richer interconnection network to explore� especially when clustering is present in the

input� Quadrant�based lists can be built e�ciently using Bentley
s k�d trees ����� The

quadrant�based idea easily extends to higher dimensions�

For ��d geometric instances� Reinelt suggests using a Delauney triangulation as the

basis for the candidate subgraph ����� The Voronoi region of a vertex v in G is the

set of points on the plane that are closer to v than to any other vertex of G� Taken

together� the Voronoi regions of all the vertices in a graph form a tiling of the plane�

The Delauney triangulation of G is a graph with the same vertices as G� The pair
u� v�

is an edge of the triangulation if and only if the Voronoi region of u is adjacent to the

Voronoi region of v� The Delauney triangulation can be computed in O
n logn� time�

Furthermore� it contains at most �n edges and includes a minimum spanning tree for G

as a subgraph ���� ��� ����

Another kind of candidate subgraph is based on ��matchings� Each vertex in a tour

is touched by two edges� i�e�� a tour is a ��matching of the graph� In light of this�

some researchers suggest using the edges present in a minimum weight ��matching as a

candidate subgraph� One can formulate the minimum weight ��matching problem as a

linear program� where each edge e in the graph is associated with an indicator variable

xe forced to take values of either � or �� An edge e is included in the ��matching when

the solution to the linear program has xe � �� and is not included otherwise ����� One

can also relax the integrality constraints on the indicator variables� allowing them to take

on all values between � and � inclusive� The solution to the relaxed linear program is a

minimum weight fractional ��matching � A candidate subgraph for Lin�Kernighan may

consist of the set of edges whose indicator values are positive
though not necessarily as

large as �� in a minimum weight fractional ��matching ��� ����

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

Finally� one can always take the union of multiple candidate subgraphs to produce a

possibly� larger candidate subgraph� The Concorde software suite has the ability to do

so ����

Candidate subgraphs are designed to focus the attention of the search heuristic on

fruitful territory� But there is a tradeo�� Making the candidate subgraph larger enriches

the search space� providing possibly better tours at the expense of longer running times�

Making the candidate subgraph smaller impoverishes the search space� reducing running

times at the expense of providing possibly worse tours� However� simple choices for

candidate subgraphs often serve well for a variety of situations� On any instance� the

��� or ���nearest neighbour subgraph o�ers a good tradeo�� on Euclidean graphs� the

quadrant�based �� nearest neighbour subgraph is a good choice ���� ����

Our implementation of the Lin�Kernighan heuristic can 	nd and use unrestricted

nearest neighbours lists� quadrant�based neighbour lists� and the unions of these two

kinds of lists�

��� Bounding search sequence lengths

With the tabu rule �never delete an added edge�� search sequences are bounded� For an

instance with n vertices� only n edges can be added to the tour� and hence the t sequence

must end by t�n� representing up to n edge exchanges�

However� most search sequences are much shorter than n exchanges� and most im�

proving moves are shorter still ���� p� ����� For a wide range of TSP instances� the average

depth of a search sequence is � edge exchanges
to t���� only three or four edge exchanges

beyond the backtracking depth ���� p� ����� A long search sequence is an indication of

either the rare case of a very extensive improvement being built� or is an unfruitful waste

of e�ort� In order to catch the long search sequences� some researchers suggest forcibly

stopping a search sequence at a 	xed depth� For example� Applegate et al� suggest

stopping at �� edge exchanges beyond the backtracking depth ���� i�e�� stop at t�
� or

t�
�� Johnson and McGeoch follow this suggestion for their results on �production mode

Iterated Lin�Kernighan� ���� p� �����
See also section ����� Reinelt suggests the sharper

limit of stopping after just �� edge exchanges in total ����� i�e�� stop at t�
�

Cluster compensation itself is designed to shorten search sequences� We shall see that

it reduces the frequency and impact of unfruitful searches� but that it does not eliminate

them� For our own experiments� we follow Applegate et al� and bound search sequences

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

to at most �� edge exchanges beyond the backtracking depth�

��� Start tour

The Lin�Kernighan heuristic is a local search algorithm� and therefore requires a start

tour that it tries to improve� For our experiments� we follow Johnson et al� in using a

randomized greedy algorithm for the start tour �����

A pure greedy tour for instance G �
V�E� is constructed as follows� with n being

the number of vertices� n �jV j� The algorithm is similar in spirit to Kruskal
s minimum
spanning tree algorithm� In n steps we grow a set of edges from the empty set to a whole

tour on the graph� Set Ti is the set of i edges after i steps of the algorithm� T
 is empty�

Tn�� is a Hamiltonian path� and Tn is a tour� For steps i from � through n � �� set Ti
consists of disjoint simple paths containing a total of i edges� During the execution of

the algorithm� we examine the edges in E in order from shortest to longest� During step

i� with i
 n� �� we form Ti	� from Ti by adding the next shortest edge that maintains

the invariant� i�e�� the edge does not create a cycle and it does not force some vertex to

be of degree �� In the last step we make the tour Tn from the Hamiltonian path Tn�� by

adding the edge between the path
s two endpoints�

There is only one di�erence between this greedy tour algorithm and Kruskal
s mini�

mum spanning tree algorithm� In Kruskal
s minimum spanning tree algorithm� an edge

is discarded if it would create a cycle� In this greedy tour algorithm� an edge is discarded

if it would create a cycle prematurely
before the n
th edge is to be added�� or if it would

force some vertex to be of degree ��

Tours discovered by this greedy algorithm are suitable for use by local search heuristics

because they consist of mostly short edges and have a few large �defects� that can be

exploited by the local search technique ���� ���� p� ����� The short edges are added at

the beginning stages of the greedy algorithm� and the defects are the long edges added

in the latter stages of the greedy algorithm�

The synergy between the output of the greedy algorithm and local search heuristics is

intensi	ed whenever Bentley
s �don
t�look� bits are used� i�e�� if we use an Active queue

as described in Section ������ In this case the heuristic will quickly 	nd that it cannot

improve the tour within the vicinity of the short edges� The vertices in those areas will

tend to drop out of the Active queue quickly� The local search heuristic will therefore

focus its attention on the large defects in the tour� where wholesale improvements can

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

be made� This is especially true for the Lin�Kernighan heuristic with its ability to 	nd

changes involving many edges� i�e�� changes encoded by a long t vertex sequence�

In order to introduce some variation between executions of the Lin�Kernighan heuris�

tic� we use a randomized version of the pure greedy algorithm in our experiments� In

the pure greedy algorithm we always inserted the next allowable edge� In the random�

ized version� during the 	rst n� � steps we determine the two next allowable edges and
choose randomly between them�
One must ensure that the two edges are distinct� A

na#$ve implementation can get caught always choosing between
u� v� and
v� u�� Within

the implementation these two edges might have a distinct representation� but they will

have the same weight� Since the graph is undirected� choosing between these two does

not introduce any variation at all� This problem is especially pronounced if all the edge

weights are distinct� the forward representation of an undirected edge will always be

paired with its backward mate�� We follow Johnson et al� in choosing the shorter of

the two edges with probability of �%� ����� and the longer of the two with the remaining

probability of �%�� The edge not chosen goes back into the pool of available edges�

The extra time taken by the randomized greedy algorithm to 	nd distinct allowable

edges is not signi	cant� The penalty is roughly ten percent or less extra running over that

of the pure greedy algorithm� To put this into perspective� within our implementation

the time taken by the randomized greedy algorithm is roughly one tenth the time it takes

to build a �� nearest�neighbour candidate subgraph� using Bentley
s k�d trees for both

algorithms�

��
 Data structures

We need good data structures to achieve low running times� especially as instance sizes

grow� Equally important� the data structures should be well�matched to the heuristic�

We want to make the common cases fast� and if possible� make the fast cases com�

mon ����� For example� if the heuristic uses some operation on an abstract data type

ADT� many more times than the other operations of that ADT� then we tune the im�

plementation of that ADT to make the common operation fast� Similarly� we try to tune

the implementation to be faster on commonly used argument patterns�

In terms of execution time� the main work of the Lin�Kernighan heuristic is examining

the vertices that might become t�i	� and t�i	�� given vertex t�i� We should therefore pay

close attention to the data structures supporting these operations�

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

��
�� Candidate lists

Candidates for t�i	� appear on the candidate list for t�i� Since we will revisit each

candidate list many times� we compute all candidate lists once as a preprocessing step�

The list for vertex v is ordered from nearest to farthest neighbour of v in the hope that

more promising moves are found 	rst ����� For geometric instances� Bentley
s k�d search

trees are useful for creating both ordinary and quadrant�based nearest neighbour lists

since k�d trees support fast near�neighbour searching for geometric point sets ���� ����

Sorted candidate lists are a general feature of Lin�Kernighan heuristics� so preparing

them in advance is useful for all Lin�Kernighan heuristics� In particular� it is useful for

Lin�Kernighan for minimum weight perfect matchings�

��
�� Oriented�tour abstract data type

Vertex t�i	� is always a neighbour of vertex t�i	�� Within the backtracking cases� i�e��

up to t� or t�� vertex t�i	� can often be either tour neighbour of t�i	�� Beyond the back�

tracking cases� vertex t�i	� can be only one neighbour of t�i	� as discussed in Section ����

In the latter cases determining which tour neighbour depends on the relative ordering of

vertices t�� t�� t�i� and t�i	� within the current working Hamiltonian path�

Another common operation is the exchange of edges in the current Hamiltonian path�

As shown in Figure ���� adding t�i	� and t�i	� to the t list corresponds to reversing the

portion of the path from t�i to t�i	�� That portion of the path can be very large� especially

as instance sizes grow�

Fredman et al� ���� describe an oriented tour abstract data type supporting these

queries
predecessor� successor� and relative ordering� and the updates
reverse a seg�

ment�� A Hamiltonian path from t� through t�i is represented as the tour consisting of

that Hamiltonian path together with the edge
t�� t�i�� We can just ignore edge
t�� t�i�

when we need to think of the tour as a Hamiltonian path�

Fredman et al� report experiments on four kinds of implementations for the oriented

tour� arrays� two�level trees ����� segment trees ���� and splay trees ����� An array�based

implementation is suitable for instances with up to about a few thousand cities� primarily

because its simplicity makes it fast� For instances with between a few thousand and a

million cities� implementations based on two�level trees� segment trees� and splay trees are

better than arrays� In practice� two�level trees and splay trees are the most competitive

in this range� Here we discuss the key features of the array� two�level tree� and splay tree

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

implementations�

The array�based implementation represents the tour as two arrays� One array cor�

responds to one of the n permutations � that the tour de	nes over the set of vertices�

and the other corresponds to the inverse permutation ���� For example� if vertex v is in

position i on the tour� then pi�i� � v and pi inv�v� � i� The predecessor� successor� and

relative ordering queries can each be performed in constant time� Reversing a segment

of the tour is just reversing the corresponding segment in the pi array� and updating the

inverse array accordingly� This takes time proportional to the length of the segment being

reversed� Reversing a segment of a tour is the same as reversing the complement of that

segment� so we can always choose to reverse the shorter of the two� Unfortunately� this

trick does not remove the linear worst�case time for the update operation� As instance

sizes grow into the many thousands� the time for update operations begins to dominate

the run time for the heuristic�

Two�level trees represent the tour as a tree with large arity� much like a �attened

B�tree� both the root and its children can be of width O

p
n� ����� Two�level trees

support the queries in constant�time and the updates in worst�case O

p
n� time� However�

experience shows that most updates are over short segments� so it is recommended that

the children should each be about ��� wide� even for instances with up to a million

cities �����

Splay trees support each of the queries and updates in amortized O
logn� time� They

represent the tour as a splay tree� where each node is labeled by a vertex of the tour�

and each subtree represents a contiguous segment of the tour� To support fast reversal of

tour segments� each node in the splay tree is also equipped with a reversal bit� When the

reversal bit is o�� the tour segment is read from the subtree with an in�order traversal�

when the reversal bit is on� the tour segment is read from the subtree with a reversed

in�order traversal�

Fredman et al� also prove a lower bound of worst�case amortized !
logn� log logn�

time per operation for the oriented tour abstract data type in the cell probe model of

computation� Therefore implementations taking O
logn� time per operation "splay

trees
amortized only�� implementations based on AVL trees ����� and a balanced nested

ring implementation ����" are nearly optimal in a theoretical worst�case sense�

Our implementation supports both array�based and two�level tree�based oriented

tours� For our experiments� we use arrays for instances with up to ���� cities� and

two�level trees for instances with more than ���� cities�

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

��
�� Tabu lists

Another common operation performed by the heuristic is checking the tabu conditions�

i�e�� determining whether a certain edge has been removed or added during the current

search sequence�
Recall that our implementation uses only the rule� �never delete an

added edge��� The tabu�checking problem can be solved by storing the disallowed edges

in a set and checking for membership�

There are many possible implementations� and we should use the one best suited to

the usage pattern of the Lin�Kernighan heuristic� and whose data structures 	t within

memory� Recall from Section ��� that search sequences are usually very short"the

average length is roughly � edge exchanges� or until t��� Consequently� the tabu lists are

also very short on average� This usage pattern favours simple tabu list implementations�

If large instances are to be tackled� then using a bit vector to record tabu edges is

undesirable� since there are O
n�� edges in an instance with n vertices� For scalability�

we require a data structure that incurs a space overhead of at most O
n� cells�

Our implementation can use one of three data structures meeting this requirement�

a linear array� a splay tree� and a hash table�

Our implementation stores the t sequence in a one�dimensional array� One choice for

checking whether an edge is tabu is to scan the t array� Adding elements to the tabu list

is automatic� a new element is added when the t array is extended� This scheme is simple

and incurs no space overhead� Since it revisits space already being used by the heuristic�

it takes full advantage of the processor
s cache� it is likely that the t array already resides

in the fastest portion of the processor
s memory� However� this scheme can get quite

expensive when a search sequence gets long� If the search sequence reaches a depth of l

steps� then !
l�� time has been spent checking tabu conditions for that sequence� This

linear array scheme is best when the t sequences are short on average�

A splay tree can also be used to store the tabu edges� Both adding an edge to the

tabu list� and checking for membership take amortized logarithmic time� i�e�� O
log l��

where l is the size of the current tabu list� Splay trees have a nice locality property

that might make them more suitable than other tree data structures� recently accessed

elements always reside near the root of the tree� and so are found more quickly ����� In

the case of tabu checking� this means that an edge that actually is tabu is often found

to be tabu quite quickly� We expect there to be some locality in the tabu queries for the

following reason� For most of the execution of the heuristic� the edges being added to the

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

tour
and hence checked for tabu�ness� are likely to be short relative to the entire tour�

So a search sequence will often reexamine the same vertices and edges during a single

search sequence� However� splay trees have a high constant of proportionality� and so are

better than linear arrays only when search sequences often become quite long�

The third option� a hash table� can often provide constant time addition and mem�

bership checking� However� hashing is more involved than the linear scan� A simple

hash function is likely to be best� such as the exclusive�or of the two vertex numbers ����

When the search sequence is ended� the tabu list is emptied in preparation for the next

sequence� Quickly clearing out the hash table becomes an issue� Since search sequences

are usually short� the buckets are likely to be sparse relative to the entire table� Checking

every bucket is too much work� only the �full� buckets should be touched� This problem

can be handled by maintaining a linked list of the dirty buckets�

Both hash tables and splay trees incur a space overhead� So in comparison to the

linear array tabu check� these more elaborate tabu data structures add pressure to the

processor
s 	rst�level cache� possibly slowing down the entire heuristic� This would reduce

the attractiveness of these fancier data structures in comparison to the linear array check�

We leave cache pressure measurements to other researchers� In choosing which tabu list

implementation to use� we instead rely on overall runtime measurements on a variety of

instances�

One might combine schemes to form a hybrid tabu check� We can use the linear

array approach when the t sequence is short� and switch over to either the hash table

or some other scheme with good asymptotic behaviour when the t sequence grows long�

This hybrid may slow down the tabu checking for both the short and long cases since one

must check which search to perform on each search� This might overwhelm any savings

expected from the hybrid approach� We leave such investigations to other researchers�

with the recommendation that probing depths for a wide variety of instance classes be

observed before settling on a crossover point� Note that cluster compensation is designed

to shorten search sequences� and therefore skews the distribution of search sequence

depths� Furthermore� we conjecture that cluster compensation provides a greater time

saving than any hybrid tabu set implementation would give on its own�

For our implementation� the simple linear array check provides the fastest running

times� regardless of whether cluster compensation is used� We therefore always use the

linear array tabu check in our experiments�

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

a b

e
f

cd

g
h

Figure ���� A double�bridge ��change� Edges
a� b��
c� d��
e� f�� and
g� h� are removed�

while
a� d��
b� c��
e� h�� and
f� g� are added�

��� Iterated Lin	Kernighan

One can run any local search heuristic multiple times in sequence� applying mutations

to the current solution between iterations� This technique is called chained local opti�

mization and can be viewed as a genetic algorithm with a population size of � ���� ����

p������ Martin� Otto (Felten showed how performing mutations in between runs of the

��opt heuristic could be a powerful technique for 	nding short tours ���� ����

The tour mutations used by the Martin et al� heuristic are randomly chosen double�

bridge ��changes� biased to result in adding some short edges� A double�bridge move is

depicted in Figure ���� It consists of two ��changes performed in parallel� If the ��changes

are run in sequence� then the intermediate result is two subtours� So double�bridge moves

cannot be discovered by the ��opt heuristic� Double�bridge moves remove four edges and

add four edges� so they cannot be discovered directly by ��opt heuristics� Improvements

found by the Lin�Kernighan heuristic always form an even�length cycle alternating be�

tween added edges and removed edges� so double�bridge moves elude the Lin�Kernighan

heuristic as well ����� Double�bridge moves therefore make for good mutations on tours

since they are not easily undone by the common TSP local search heuristics�

Martin et al� use an Active queue of cities to focus the search as described in Section

������ When starting a new iteration of ��opt� they load the Active queue with the eight

cities that were involved in the double bridge mutation� and no others� The new run of

the ��opt heuristic immediately sets to work trying to repair the damage caused by the

mutation�

An improved solution found by a ��opt search is always accepted as the new incumbent

tour� i�e�� it becomes the start tour for the next step� If the tour in hand at the end of

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

a ��opt search is worse than the incumbent tour� then the Martin et al� heuristic allows

this worse tour to become the new incumbent tour with some small probability� Over

time the sequence of probabilities decay� similar to the way the probability for accepting

uphill moves decays in simulated annealing heuristics ���� ���

Following the ideas of Martin et al�� Johnson ���� combined the Lin�Kernighan heuris�

tic with double�bridge mutations� and disallowed altogether the possibility of accepting

a worse tour as the incumbent� The result is the Iterated Lin�Kernighan
ILK� heuristic�

It is similar to Baum
s iterated descent for the TSP ���� ���� which uses ��opt in place

of Lin�Kernighan� and a random ��change in place of the double�bridge ��change�

Johnson
s initial implementation of Iterated Lin�Kernighan loaded all the cities into

the Active queue at each iteration� and did not bias the double�bridge mutations� Iterated

Lin�Kernighan proved to be very powerful� Given enough time� it found better tours than

other heuristics run for the same time� often 	nding optimal tours for those instances

with known optima� Since then� the Johnson et al� implementation has been updated to

use the Martin et al� rule of loading the Active queue with only the eight cities involved

in the mutation� For the same number of iterations� this change reduces running times

substantially� but also slightly worsens the quality of the tours found� On a time�equalized

basis
rather than on an iteration�equalized basis�� the change is cost�e�ective ���� p� �����

Our implementation follows the recent behaviour of the Johnson et al� implementa�

tion� It can perform any number of pre�speci	ed iterations� it does not bias its ��change

mutations� between iterations it loads the Active queue only with the eight cities whose

tour neighbours change with the mutation� and it never allows a worse tour to become

the incumbent�

���� Summary

At over �� years old� Lin�Kernighan is one of the older heuristics still in use for the

TSP� This chapter describes many of the features that have been tried and accepted

as mainstream additions to the heuristic over that period of time� With them� Lin�

Kernighan has remained formidable competition for newer heuristics�

Lin�Kernighan has many features and tunable parameters� This chapter describes

them in enough detail so that the reader can compare the implementation used for the

results in this thesis with other implementations described in the literature� Just as

important� the reader has the tools to compare the experiments reported here with those

Chapter �� Lin�Kernighan for the Traveling Salesman Problem ��

in the literature� for example by considering di�erences in the candidate subgraph or

the backtracking cases used in both� The reader also has enough detail to begin a new

implementation and replicate our work�

Of course� the 	nal authority on our implementation is the source code itself� See

Appendix B for details on obtaining the source code�

Chapter �

Experimental methodology

This chapter describes our experimental methodology� We explain the purpose of the

experiments and all factors a�ecting their outcomes� We describe the experimental envi�

ronment well enough so that our results can be compared with those of other researchers�

We discuss the values measured� including their interpretation and why they are mea�

sured� We also describe the test data� which consists largely of instances identical to or

very similar to those used by other researchers�

��� Objectives

Is e�cient cluster compensation a worthwhile technique� To answer this� we run ex�

periments to compare two versions of the Lin�Kernighan heuristic� one with cluster

compensation� and the other without it� The two main performance criteria are running

time and tour quality�

For each instance we perform many kinds of experiments on both versions of the

heuristic� We perform a single run of the heuristic� and equal numbers of Iterated

Lin�Kernighan iterations� We consider the two versions on a time�equalized basis� to

determine whether adding cluster compensation to Lin�Kernighan provides better tours

in the same time�

��� The computer code and execution environment

The computer program code is a Literate C program written by the author using Knuth

and Levy
s CWEB system ���� ���� A single code base is used for both versions� The

��

Chapter �� Experimental methodology ��

di�erent versions are generated by specifying di�erent options to the compiler� By using

the same code base we remove variability due to di�erences in programmer skill�

The baseline version of the code follows as closely as possible the description of the

Johnson et al� implementation given by Johnson and McGeoch ����� For brevity� we

will often call it LK � The important details of our implementation have been given in

the previous chapters� The version employing e�cient cluster compensation is the same

as the baseline version� except that the ordinary cumulative gain and greedy selection

criteria
Criteria ��� and ���� are replaced by their cluster compensating versions
Crite�

ria ��� and ���� respectively�� We will often call it LKcc� for �Lin�Kernighan with cluster

compensation��

The experiments were run on the author
s home computer� a system with a ���MHz

Pentium II CPU�� and ��� megabytes of random access memory� The system runs

version ��� of the Red Hat Linux operating system�� We used the GNU C compiler�

version �������� with optimization level
O	� More details on the hardware and software

environment can be found in Appendix C�

The experiments were performed when the system was unloaded� only the minimal

set of system processes were running in addition to the code being measured� Run times

are always in user CPU seconds� the time spent executing the user
s code� and do not

include the system time� the time spent executing the operating system code
e�g�� for

servicing page faults or performing context switches�� We use the getrusage library call

to determine the user CPU time spent by the program� As with most Unix� and Unix�

like systems� time measurements are meaningful to a resolution of no better than one

hundredth of a second�

Benchmarks� though imperfect� can o�er some idea of the speed of a computer system�

Our system runs the DIMACS benchmark wmatch test � in ���� CPU seconds and wmatch

test � in ���� CPU seconds� The wmatch benchmark is Rothberg
s implementation of

Gabow
sO
n�� time algorithm for weighted matching� The two versions of the benchmark

are executions of the wmatch code on two particular inputs ���� ���� In comparison� the

experiments reported by Johnson and McGeoch for the Johnson et al� implementation

use a single ���MHz MIPS R���� processor of an SGI Challenge machine ����� That

��Pentium� and �Pentium II� are trademarks of Intel Corporation�
��Red Hat� is a registered trademark of Red Hat Software Incorporated� �Linux� is a registered

trademark of Linus Torvalds�
�Unix is a trademark of the X�Open Company� Ltd�

Chapter �� Experimental methodology ��

system is about nearly four times slower than ours� running the wmatch test � in ���

seconds and the wmatch test � in ��� seconds�

��� Items included in run time

Time measurements for the heuristic do not include the time taken to read the instance

from a 	le� nor to output the results� However� they do include the time for all preprocess�

ing required by the heuristic� including the building of candidate sets� and construction

of a start tour� In particular� run times for the cluster compensating version include the

extra preprocessing that e�cient cluster compensation requires� The cluster compensat�

ing version adds a few items to the baseline version� as described in Chapter �� building

a minimum spanning tree
MST�� re�processing the MST into a topology tree� preparing

data structures for fast least common ancestors on the topology tree� and 	nally� when

deciding on eligibility and prioritization of prospective edge exchanges� the cumulative

gain function is discounted by the cluster distance between the two endpoints of the

Hamiltonian path� To maximize the fairness of the comparison� the baseline version does

not pay runtime costs for cluster compensation�

Our experiments for weighted perfect matching follow the same rules about running

times�

��� Measuring tour quality

We follow Johnson and McGeoch in measuring tour quality in terms of percentage over

the Held�Karp lower bound ���� ��� ���� For any instance� the Held�Karp bound provides

a lower bound on the length of an optimal tour� The bound is usually very tight� For a

wide variety of instances� it averages less than ���) below the optimal tour length �����

Furthermore� the Held�Karp bound can be computed or approximated in a reasonable

amount of time"much less time than required to compute the length of an optimal tour�

The Held�Karp lower bound is based on the ��tree relaxation with Lagrangean mul�

tipliers� A ��tree on a graph G with n nodes is a connected subgraph of G containing

all n vertices and exactly n edges� Since a tour for G is a ��tree for G� a minimum

weight ��tree is no heavier than a minimum weight tour� We can restrict our attention

to ��trees in which vertex n is of degree two� In this case� a minimum weight ��tree is

Chapter �� Experimental methodology ��

just a minimum spanning tree on the 	rst n � � nodes� together with the two shortest
edges incident upon node n�

The ��tree relaxation alone provides a rough estimate on optimal tour length� How�

ever� the use of real�valued Lagrangean multipliers improves the estimate considerably�

Lagrange multipliers are used in the following way� Instead of computing minimum ��

trees with the basic distance function �� compute minimum ��trees with cost function

��
i� j� � �
i� j� � �i � �j� where � is an arbitrary n�dimensional vector over the reals�

How does this help us� For a given graph� let L
�� be the length of a shortest ��tree

using cost function �� and let Topt
�� be the length of a shortest tour using the same

cost function ��� Then for any real vector �� we have from before that

L
�� � Topt
���

Since each tour is a ��tree in which each vertex is of degree �� we have

Topt
�� � �
X
i

�i � Topt
���

In particular� a shortest tour under the modi	ed cost function �� is therefore also a

shortest tour under the the original cost function �� Quantity Topt
�� is just the length

of a shortest tour with the original cost function� Substituting for Topt
�� in the 	rst

equation� we get the inequality

L
��� �X
i

�i � Topt
���
����

The Lagrange multipliers give us an extra n degrees of freedom in 	nding lower

bounds for the optimal tour length� The task then becomes 	nding a � vector that makes

inequality ��� as tight as possible� Held and Karp prove that the objective function is

convex over the space of possible values for �� and prove convergence for an iterative

ascent algorithm with certain parameters ���� ���� At each step the � vector is adjusted�

and a new ��tree is computed�

An optimal � vector can also be computed directly via linear programming� Held

and Karp formulate the problem of maximizing L
�� as a linear program� Furthermore�

they show this formulation to be equivalent to a version of the standard linear pro�

gramming formulation of the symmetric TSP where the integrality constraints have been

removed ���� Sections � and ��� The direct linear programming solution is complicated

by the fact that the number of constraints grows exponentially with n� However� with

Chapter �� Experimental methodology ��

care the solution can still be constructed in polynomial time� In fact� instances with n

exceeding �� ��� have been solved directly using code due to Applegate et al� ��� ����

When possible� we use directly computed Held�Karp lower bounds� These are reported

for TSPLIB instances by Reinelt ����� by Johnson et al� ������ and by Johnson ������

When directly computed Held�Karp bounds are not known� we use approximate

bounds� One can approximate the Held�Karp bound by using the iterative ascent tech�

nique� Once the bound converges or some other stopping criterion is met� we take the

largest bound as an approximation to the Held�Karp lower bound� The approximate

bounds discovered in this way are conservative� they are never higher than the real Held�

Karp lower bound� Furthermore� they are usually quite close to the directly computed

Held�Karp lower bound� often within ����) ���� p� ����� We use approximate bounds

computed by our own implementation of these ideas� using up to ����� ��trees for a single

instance� Although our estimates might not be as tight as those of others in an absolute

sense� they are still useful for comparing between the two versions of the Lin�Kernighan

heuristic�

��� Measuring search sequence lengths

E�cient cluster compensation is designed to shorten Lin�Kernighan search sequence

lengths� especially on clustered instances� To test this hypothesis� our experiments also

measure these search sequence lengths� Two kinds of depths are of interest� The 	rst is

the depth at which a search sequence stops� We call this the probe depth� The second is

the depth at which the best tour improvement found during this sequence ends� We call

this the move depth� If no tour improvement is found during a sequence� then the move

depth is zero�

For example� during a single search sequence we might 	nd a tour improvement with

a net gain of �� units using t� through t��� and another with a net gain of �� units

using t� through t��� We might continue the search until reaching t��� at which point all

alternatives force a negative cumulative gain� The search stops at t��� and we roll back

�Johnson et al� note a discrepancy between themselves and Reinelt for the Held�Karp lower bounds
for two TSPLIB instances� One is a misprint in Reinelt	s book� and they diagnose the other as likely
being due to �oating point precision di�erences between the two implementations�

�Johnson reports the directly computed Held�Karp lower bound for fl���� to be ������ when rounded
up to the next integer�

Chapter �� Experimental methodology ��

and commit to the changes encoded in the best net improvement found� encoded with t�

through t��� In this case� the probe depth is �� and the move depth is ���

The heuristic gets into trouble when it has many deep probes without an accompa�

nying number of deep moves� The move depth histograms alone are useful for 	nding a

good cuto� point for bounding probe lengths as discussed in Section ���� Each execution

records a histogram of probe depths and move depths� In Sections ��� and ����� we

shall see examples of probe depth and move depth histograms for executions on selected

instances�

��� Kinds of test data

We use 	ve kinds of test instances� TSPLIB instances� random geometric instances�

random distance matrices� ten of Bentley
s geometric classes� and generated data based

on selections from each of the 	rst four kinds of instances� The 	rst three classes are

those used by Johnson and McGeoch� Bentley
s geometric classes are synthetic Euclidean

instances used to test various tour construction heuristics and the ��opt and ��opt local

search heuristics ����� The last class is the result of the work reported in Chapter ��

We shall see in Chapter � that TSP instances can also be used for the weighted perfect

matching problem� and we use them in this way�

TSPLIB is a library of TSP instances collected by Reinelt from the literature and

from applications ����� Most instances are symmetric� and most are even two�dimensional

Euclidean instances� There are ��� symmetric instances in TSPLIB� but only �� of them

have ���� vertices or more� and only � have more than ����� vertices� We use the subset

of �� instances used by Johnson and McGeoch� the largest having ���� vertices�

Randomly generated Euclidean instances are also commonly used by researchers� For

an n vertex instance� n points are drawn from a uniform distribution over a square� and

the distance between two points is the Euclidean distance� These instances typically show

almost no clustering at all� In fact these instances are so regular that the ratio of the

optimal tour length to
p
n converges almost surely to a constant COPT as n grows without

bound ����� Furthermore� the ratio of the Held�Karp lower bound to
p
n converges almost

surely to a constant CHK as n grows without bound ����� Johnson et al� give empirical

formulae for both the expected Held�Karp bound and the expected optimal tour length

for this class of instances�

In the class of random distance matrix instances� the distance between any two ver�

Chapter �� Experimental methodology ��

tices is randomly drawn from a uniform distribution over the unit interval ��� ���
All the

distributions are independent�� They �do not have any apparent relevance� �but� they are

interesting from a theoretical point of view������ p� ���� Even so� it is the second most

popular class of instances used by researchers ����� As long as the edge lengths are drawn

from a 	xed interval� the expected length of an optimal tour is bounded by a constant

independent of the number of vertices �����

The random Euclidean and the random distance matrix instances are typically very

uniform� We therefore do not expect e�cient cluster compensation to dramatically im�

prove Lin�Kernighan on them� Equally important� the performance of Lin�Kernighan

using cluster compensation should not seriously degrade on them�

Bentley implemented a suite of direct tour construction heuristics and the ��opt and

��opt local search heuristics
and some in between ��opt and ��opt�� Each took advantage

of k�d trees to make them run fast on geometric data ����� To test the suite of algorithms�

Bentley used eleven classes of synthetic geometric instances� Instances in each class are

either similar to those found in some application for the TSP� or are designed to evoke

bad behaviour in some construction heuristics� Some instance classes are easy to solve for

both construction heuristics and Lin�Kernighan� and other instance classes are di�cult

to solve� The classes are�

uni Points randomly drawn from a uniform distribution within a square�
U ��� �����

annulus Points randomly drawn from uniform distribution on a circle� a circle is a

zero�width annulus�

arith x coordinates are perfect squares
�� �� �� �� ��� � � ��� and the y coordinate is always

��
The distances between successive points increases arithmetically��

ball Points randomly drawn from a uniform distribution within a circular disk�

clusnorm Choose �� points randomly from a uniform distribution over a unit square�

Then draw points randomly from normal distributions centred on those points� use

a standard deviation of �����

cubediam Coordinate x chosen randomly from a uniform distribution over ��� ��� and

then set y � x�

cubeedge Coordinate x chosen randomly from a uniform distribution over ��� ��� and

y � ��

Chapter �� Experimental methodology ��

corners Four separated uni distributions� U ��� ��� centred at
�� ���
�� ���
�� ��� and

�� ���

grid Choose n points from a square grid that contains about ���n points�

normal Each coordinate is drawn independently from a normal distribution with mean

� and standard deviation of ��

spokes Half the points drawn from
U ��� ��� ���� and the other half drawn from
���� U ��� ����

This looks like a big �plus� sign
����

We omit class cubeedge from our experiments because from the perspective of the Lin�

Kernighan heuristic� it is very similar to class cubediam�
Preliminary experiments

showed that the heuristic behaves almost identically on a geometric instance and on

rotations of that instance through any angle�� We expect e�cient cluster compensation

to be most valuable on distributions corners and clusnorm since they are the most

dramatically clustered�

The last class of instances are those generated by the algorithms described in Chapter

�� Those algorithms are designed to randomly generate new instances from old instances�

Certain of the algorithms are designed to preserve the cluster structure of the seed in�

stance� while others are designed to destroy it� Each generating algorithm pays attention

to the aspects of the seed instance
s cluster structure to which Lin�Kernighan reacts� See

Chapter � for more�

��� Details of the test bed

Our test bed includes the following instances from each of the classes described in the

previous section�

We follow the TSPLIB convention of including the number of vertices in the instance

as a su�x on the name of the instance� The pre	x either names the source of the instance�

or describes the instance class� Extra parameters describing a generated instance� such

as the seed used to create a random instance� are given between the pre	x and the su�x�

When discussing aggregated statistics about a class of generated instances� we drop the

parameters from the name� For example� an individual uniform Euclidean instance with

���� vertices and seed ��� is named uni��	������� but results for all uniform Euclidean

instances with ���� vertices are listed under uni������

Chapter �� Experimental methodology ��

Of the TSPLIB instances� we use lin���� gr���� pcb��	� att��	� gr���� dsj�����

pr���	� pr	��	� pcb����� fl�
��� fnl����� and pla
��
� The number of vertices in

each is encoded as a su�x of its name� Instance gr��� uses great�circle distances on the

earth� and the rest are two�dimensional Euclidean instances in the plane� The length of a

shortest tour is known for each� as is the directly computed Held�Karp lower bound ��� ��

��� ��� ���� The source of these instances includes positions of world cities� applications in

printed circuit board manufacturing� and applications in VLSI customization� Instance

dsj���� is synthetic� designed to be di�cult for local search heuristics ����� Instance

fl�
�� is singled out by Johnson and McGeoch as particularly di�cult for Lin�Kernighan

because it is so �pathologically clustered�� even more so than instance dsj���� ���� p� ����

Fig� �����

We use 	ve random uniform Euclidean instances of sizes ���� ����� and ����� The

sizes are chosen to be increasing half�powers of ��� so we can easily see whether running

times increase quadratically with the number of vertices� These instances are grouped

according to size� and the outcomes for each group are presented as arithmetic means�

From the random distance matrix class� we use 	ve instances each of size ���� �����

and ���� vertices� As with the random Euclidean instances� the results are grouped

according to size and the outcomes for each group are presented as arithmetic means�

We use 	ve instances of size ���� from nine of the Bentley distributions� The arith

distribution is deterministic� producing only one instance for each size� so we only use

one instance of size ���� from it� The results are presented as arithmetic means�

We also use generated instances� See Chapter � for a description of the instances and

for the results on those instances�

For non�geometric instances� the �� nearest neighbour subgraph is used as the can�

didate subgraph� Geometric instance gr��� uses the �� nearest neighbour candidate

subgraph as well� All other geometric instances are ��dimensional Euclidean instances�

and the candidate subgraph used for each is the union of the �� nearest neighbour sub�

graph with the �� quadrant�based nearest neighbour subgraph
� nearest neighbours in

each of the four directions��

When computing averages� we are not trying to estimate expected values� Our test

beds are too small for that� Rather� we merely want to be able to highlight distinctions

that might exist for those kinds of instances between using or not using e�cient cluster

compensation� This follows in the spirit of Johnson and McGeoch ����� where entirely

di�erent heuristics are compared�

Chapter �� Experimental methodology ��

��
 Representation of lengths

Many instances use Euclidean distances� and hence involve square root terms� One

might therefore wonder about problems in computing sums and performing comparisons

between length values� Should we use algebraic methods to keep represented values exact�

Since data generated from applications are usually approximate themselves� going to such

measures is likely to be overkill�

We might instead use �oating point numbers to represent lengths� But then how much

precision should be used� Furthermore� �oating point number systems are notorious for

breaking the laws of arithmetic such as the associativity of addition� How are we to safely

compare results from di�erent implementations� Are the optima even well�de	ned�

An early version of our software once found itself in an endless loop when optimizing

a particular Euclidean instance where edge lengths were not forced to be integers� On

this instance the code would 	nd an improving ��change resulting in a small positive net

gain� In the next search sequence� it computed the inverse ��change as also having a

small positive net gain� In e�ect the alternating sum of edge weights computed in the

forward direction was positive� and in the reverse direction was negative' Therefore the

code ended up doing and undoing the same ��change� ad in�nitum�

One can ameliorate �oating point problems by paying attention to certain characteris�

tics of the �oating point hardware� For example� we 	xed the problem from the previous

paragraph by imposing two changes when using an inexact type for representing lengths�

The 	rst change prevents the algorithm from considering too�small improvements� The

heuristic maintains a value we call instance epsilon� the length of the incumbent tour mul�

tiplied by machine epsilon�
Machine epsilon is the smallest positive value
 such that

the �oating point hardware distinguishes between ��
 and ��� Comparisons between the

cumulative gain and the best net gain are made conservative by adding instance epsilon

to one side� That is� the comparison in the Cumulative Gain Criterion ��� is changed

from

cum gain
j� 	 best net gain
j�

to

cum gain
j� 	 best net gain
j� � instance epsilon�

This change protects us from 	nding improvements that would not even register as a

change in the current tour length�

Chapter �� Experimental methodology ��

The second change splits the cumulative gain variable� Since alternating sums are

notoriously di�cult for �oating point hardware to compute accurately� we keep the sum of

the positive terms in one variable� and the sum of the negative terms in another variable�

The actual cumulative gain is the di�erence of the two�

Such precautions are helpful� though certainly non�standard� Most researchers avoid

these problems altogether by mandating that all edge lengths be integers ����� In fact� all

TSPLIB instances are speci	ed to have integral edge weight functions� Our implemen�

tation can use either a �oating point type or an integer type to represent length values�

the option is selected at compile�time�

Forcing integrality has some consequences� As mentioned in Section ���� merely

rounding lengths to the nearest integer does not preserve the triangle inequality� So some

instances specify that lengths needing rounding be rounded to the next larger integer�

this preserves the triangle inequality�

For our synthetic instances� distributions over a unit interval ��� �� are scaled by a

factor of a million to become distributions over ��� ����� Normal distributions are scaled

in a similar way� In the case of Bentley
s corners distribution� the four corners also

have their coordinates scaled by a million� to become
�� ���
� � ���� ���
�� � � ����� and

� ����� � ������ In the random distance matrices edge lengths are drawn from the uniform
distribution over �� � � � � ���� note that zero distances are excluded� These rules follow the

practice of Johnson et al� and of Bentley ���� ����

��� Summary

This chapter describes our experiments� They are designed so that their outcomes can

provide a fair assessment of the utility of e�cient cluster compensation� The experiments

follow the methodology of other researchers
 work so that the results may be meaningfully

compared� Lastly� enough detail is given so that our experiments are repeatable by others�

Chapter 	

Experimental results for the TSP

This chapter presents the results of the experiments with the Lin�Kernighan heuristic

for the TSP� both with
LKcc� and without
LK� e�cient cluster compensation� The

results are based on experiments with the implementation described in Chapter �� The

experimental methodology was given in Chapter �� including a description of the test

bed of instances� The results for instances generated from other instances are postponed

until Chapter � where the generating algorithms themselves are described�

We discuss both the quality of the tours produced by the two variants of the heuristic�

and the running times required to produce those tours� We also show sample probe and

move depth pro	les for selected instances� and describe how they correlate with observed

running times and tour quality�

Finally� we draw some conclusions about the e�ectiveness of e�cient cluster compen�

sation�

��� Breakdown of run times

All the reported run times include the time required for preprocessing� Table ��� gives an

idea of how much time is spent during each phase of a run of Lin Kernighan for the TSP�

It lists the times for each phase in a typical n iteration run by Iterated Lin�Kernighan

when using cluster compensation� The two instances are the geometric TSPLIB instance

pcb���� having ���� vertices� and the random distance matrix instance dsjr�������	

having ���� vertices� The candidate subgraph used for dsjr�������	 is the �� nearest

neighbour subgraph� The candidate subgraph use for pcb���� is the union of the ��

nearest neighbour subgraph and the �� quadrant�based nearest neighbours
For each

��

Chapter 	� Experimental results for the TSP ��

Time
sec� Time
sec�
Phase pcb���� dsjr�������	

Build a ��d tree ���� n%a
Build a minimum spanning tree ���� ����
Process the minimum spanning tree in
preparation for later cluster distance
queries

���� ����

Build a candidate subgraph ���� ����
Construct a randomized greedy tour ���� ����
Lin�Kernighan optimization phase
	rst
iteration�

���� ����

n� � subsequent iterations of Iterated
Lin�Kernighan

������ ������

Table ���� Breakdown of running time into phases for Iterated Lin�Kernighan with clus�

ter compensation� The times are taken for a ���� iteration run on geometric instance

pcb����� and a ���� iteration run on random distance matrix instance dsjr�������	�

vertex v� � neighbours are chosen in each of the four quadrants surrounding v���

Iterated Lin�Kernighan without cluster compensation skips two of these initial phases�

it does not build a minimum spanning tree� nor does it preprocess that tree for subsequent

online cluster distance queries� However� we will see that the base Lin�Kernighan heuristic

generally spends more time in the Lin�Kernighan optimization phases�

The preprocessing steps are fast because they use the k�d tree� Runs on non�geometric

instances avoid building a k�d tree� but they spend more time enumerating the edges

when building a minimum spanning tree� a candidate subgraph� and a greedy tour�

Prim
s algorithm for constructing a minimum spanning tree examines each edge once� so

running time for that phase increases quadratically with the number of vertices� For an

unstructured graph� the time to build a nearest neighbour candidate subgraph increases at

least as fast as the number of edges� since all the edges must be enumerated in order to 	nd

the shortest ones� Both phases become bottlenecks when processing larger unstructured

graphs� However� Prim
s algorithm is fast enough so the time to 	nd a minimum spanning

tree is usually dominated by the time to build the candidate subgraph and the greedy

tour�

The preprocessing phases� from building a ��d tree to building the candidate subgraph�

are performed once only� regardless of the number of Iterated Lin�Kernighan iterations

Chapter 	� Experimental results for the TSP ��

used� The cost of preprocessing is therefore amortized to insigni	cant levels if we use

a large number of iterations� Often the 	rst Lin�Kernighan iteration takes a long time�

making preprocessing time only a small concern�

��� Comparing performance

All tables comparing the performance of Lin�Kernighan with and without cluster compen�

sation use di�erences to compare percent excess over Held�Karp� and ratios to compare

running times� We use the di�erences to compare percentages because the di�erences

are small� and because the Held�Karp lower bound depends upon the instance only� As

noted in Chapter �� some of the Held�Karp bounds are directly computed while others

are approximated values computed by iterative ascent�

We show the ratio of running times rather than di�erence for several reasons� First�

the di�erences in running times can be quite large� often larger than the smaller running

time itself� Second� the heuristic has many tunable parameters that greatly a�ect running

times� The ratio of running times can be used as an estimate of the relative speeds of the

two variations of the heuristic when using di�erent parameter settings� Finally� in the

context of ever�faster computing platforms� ratios of running times are more meaningful

than di�erences in running times�

��� TSPLIB instances

Table ��� compares the quality of the tours generated by the two versions of the Lin�

Kernighan heuristic on TSPLIB instances� Ten experiments were performed for a single

iteration and n��� iterations� six experiments were performed for n iterations� For com�

parison purposes� we show the di�erence between the average percentage excesses for each

instance� A positive di�erence indicates that base Lin�Kernighan 	nds better tours than

Lin�Kernighan with cluster compensation� Table ��� shows the average running times

for the same experiments� For comparison purposes� we show the ratio of the running

times� A ratio greater than � indicates that Lin�Kernighan with cluster compensation

ran faster than base Lin�Kernighan�

Table ��� shows there is a small loss in the quality of the tours when cluster com�

pensation is used� After one iteration of Lin�Kernighan� there is a loss of up to ���) in

Chapter 	� Experimental results for the TSP ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

lin��� ���� ���� ���� ���� ���� ���� ���	 ��
� ����

pcb

� ���� ��
� ����� ���� ���� ���� ���� ��	� ����

att��� ���� ���� ���� ���� ���� ���� ���� ���� �����

gr��� ���� ���
 ����� ���� ���
 ���� ��	
 ��	� �����

dsj���� ���	 ���� ���� ���� ���� ����� ���
 ���� �����

pr���� ���� ���� ���� ��	� ��	� ���� ���� ���	 ����

pcb��	� ���� ���� ����� ���� ���� ���� ���� ���� �����

pr���� ���� ���
 ���
 ���� ���� ����� ��
� ���� ����

pcb���� ���� ���� ���� ���� ��
� ���� ���� ���� ����

�	�� ����
��� ���� ���
 ��
� ���� ���� ���
 ����

fnl

�� ���� ���� ���� ���	 ���� ���� ��	� ��	� ����

pla	��	 ���� ���� ����� ���� ���� ���
 ��	� ��	
 ����

Table ���� Quality of output produced for TSPLIB instances by the Lin�Kernighan heuris�

tic for the TSP� Quality is measured as the percent excess over Held�Karp lower bound�

�LK� is the base Lin�Kernighan heuristic� and �LKcc� is the Lin�Kernighan heuristic

using e�cient cluster compensation�

Chapter 	� Experimental results for the TSP ��

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

lin��� ��	� ���� ��	� ���� ���	 ��	� ���	� ���� ��	�

pcb

� ���
 ���
 ��	�
�
� ��	� ���� �	��	 ����� ���	

att��� ���� ��
� ����
��	 ���� ���	 �	��� ����� ��
�

gr��� �	��� ���� ���� �
�
� �����
��� 	
���� ������ ���	

dsj���� ����� ��	� ���� ������ ����
 	��� �����	� ������ ����

pr����
��� ��
� ���� ����� ���� ���� ������
���� ��	

pcb��	� ��
� ���
 ���� 	���
��� ��	� ����� ����
 ����

pr���� ���� ���� ���� ���	
 ����� ��	� ��	��� ����
 ��	�

pcb���� ���� ��
� ���� ����
 ���	� ���� ��	��� ��
��� ��	�

�	�� �
���� ����	 ���� ��
��
� ������� ���� �������� �
������ ����

fnl

��
���
��� ���� ����	 �	��� ���	 ������ ����
� ����

pla	��	 ����� �
��� ���� ���	��� ������ ���	 ������
� �����	� ��	�

Table ���� Time taken on TSPLIB instances by the Lin�Kernighan heuristic for the TSP�

Time is measured as user CPU seconds�

Chapter 	� Experimental results for the TSP ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni���� ���� ���� ���� ���	 ���� ���� ���
 ���	 ����

uni����� ��	� ���� ���� ���� ���� ���
 ���� ���� ����

uni����� ���� ���� ���� ���� ���
 ���� ���� ���
 ����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on uniform geo�

metric instances� Quality is measured as the percent excess over Held�Karp lower bound�

excess over Held�Karp� but the di�erence is usually much smaller� By n iterations� the

loss is very small� always less than ���)� In some cases cluster compensation helps the

heuristic 	nd better tours�

However� the running times tell the real story� Cluster compensation makes the

heuristic run anywhere from ��� times faster to almost �� times faster� The only exception

is a slowdown of �) for a single iteration of fnl����� and that is a di�erence of only ����

seconds�

��� Uniform geometric instances

Tables ��� and ��� show the results of experiments on uniform geometric instances with

���� ����� and ���� vertices� This instance class is the same as Bentley
s uni class�

Instances of this type are not sharply clustered� and are very easy for the Lin�Kernighan

heuristic� The main di�culty in running experiments on larger instances is computing the

Held�Karp lower bound� although one can rely on expected Held�Karp values reported

by Johnson et al� ����

The results are similar here as for the TSPLIB instances� Cluster compensation causes

only a very small loss in tour quality� ����) or less� and it speeds up the heuristic by

roughly ��) to ���)� Indeed� the speedup ratio increases with the number of iterations�

This e�ect is cannot be accounted for by the amortization of the extra preprocessing

costs over more iterations� Cluster compensation is saving work�

The instances sizes are increasing half�powers of ��� ���
 ������ ���� � ���� and

����
 ������ If the running time for Lin�Kernighan heuristic increases faster than

Chapter 	� Experimental results for the TSP ��

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni���� ���� ���� ���� ���� ��	� ���� ��	�
�	� ����

uni����� ���	 ��	� ���
 	���
��	 ���� ����� ���
	 ����

uni����� ���� ���� ���	 ����� �	��� ���	 ������ ������ ��	�

Table ���� Time taken on uniform geometric instances by the Lin�Kernighan heuristic

for the TSP�

quadratically� then we would expect the running times to increase by �� times or more

from one size to the next� That is not the case here� even for n iterations with increasing

n�

��� Uniformly generated distance matrices

Table ��� compares the quality of the tours generated by the two versions of the Lin�

Kernighan heuristic on instances generated by drawing distances randomly from a uni�

form distribution� Three instance sizes were used� ���� ����� and ���� vertices� Five

instances were generated for each size� and ten experiments were performed on each

instance�

Table ��� shows the average running times for the same experiments� For comparison

purposes� the ratio of the average running times are listed�

Cluster compensation consistently allows Lin�Kernighan to provide slightly better

tours than usual� by up to ����)� For larger instances� the extra preprocessing costs for

cluster compensation initially dominates the time savings cluster compensation provides

during the optimization phase� With more iterations the savings eventually outweigh the

startup costs� and even the speed up ratio increases with the number of iterations�

The uniform geometric case of the previous section showed that the transition point

where cluster compensation becomes favourable time�wise is less than a single Iterated

Lin�Kernighan iteration� In the non�geometric case the transition point is still below a

single iteration for smaller instances� as instances grow larger a larger number of iterations

are needed before cluster compensation is a time win�

Chapter 	� Experimental results for the TSP ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr���� ���� ���� ����� ���� ���� ����� ��
	 ��
� �����

dsjr����� ���� ���� ����� ��	� ��	� ����� ���� ���� ����

dsjr�����
���
��	 ����� ��	� ���� ����� ���� ���� �����

Table ���� Quality of output produced for the class of uniformly generated distance

matrices by the Lin�Kernighan heuristic for the TSP� Quality is measured as the percent

excess over an estimated Held�Karp lower bound�

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr���� ���� ��

 ���	 ���� ���� ���� ���
� ����� ����

dsjr�����
��� ���� ���� ����� ���	� ��	� ������ ������ ���

dsjr����� ����
 ����� ���� �	�	� ����� ���� ��	��� �����	 ����

Table ���� Time taken on the uniform distance matrix class of instances by the Lin�

Kernighan heuristic for the TSP� Time is measured as user CPU seconds�

Chapter 	� Experimental results for the TSP ��

As with the uniform geometric instances� the running times do not increase quadrati�

cally with the number of iterations� at least over the upper range of instance sizes� Again�

this holds true even for n iteration runs with increasing n� However� we expect the pre�

processing time for cluster compensation to eventually dominate the time used in the

optimization phase as instance sizes increase�

Table ��� also displays the beginnings of the trend noted by Johnson and McGeoch ����

p� ����� As instance sizes increase� Lin�Kernighan in general produces worse tours for

random distance matrices� This is the case for both versions of the heuristic� We shall

see that this trend is repeated and more obvious for weighted perfect matchings�

��� Bentley�s distributions

Table ��� compares the quality of the tours generated by the two versions of the Lin�

Kernighan heuristic on Bentley
s classes of instances� Class arith is deterministic� al�

ways specifying the same instance� so only one instance was generated for it� and 	ve

experiments were performed on that instance� Five instances were generated from class

cubediam� and one experiment was performed on each� Five instances were generated

from each of the other classes� and three experiments were run on each of those instances�

Table ��� shows the average running times for the same experiments� For comparison

purposes� the ratio of the average running times are listed�

Classes arith� cubediam� and spokes are peculiar and are discussed in the next

section� The results from the remaining classes are unsurprising� Both versions of the

heuristic 	nd good tours� usually less than � percent above optimal� Only in two cases

uni and clusnorm� does cluster compensation make Lin�Kernighan 	nd tours more than

a tenth of a percent worse than it would otherwise� Even then� that occurs not after a

single iteration� but after n��� iterations�

The running times vary a great deal both across instance classes and between the

two versions of the heuristic� The big surprise is the running time for class cubeedge�

topping out at three hours or more for ��� iterations on a ���� city problem� The next

section gives possible explanations for these unusually long runs� For a large number

of iterations� cluster compensation occasionally makes Lin�Kernighan slower� by up to �

percent on classes annulus and grid� Those two have a very regular structure spread

out in two dimensions� and hence insigni	cant clustering� The most impressive result for

cluster compensation is that it speeds up Lin�Kernighan by up to �� times on the very

Chapter 	� Experimental results for the TSP ��

Percentage excess

� iteration n��� iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ��		 ���� ���	 ���
 ���� ����

annulus����� ���� ���� ���� ���� ���� ����

arith����� ����� ����� ���� ����� ����� ����

ball����� ���� ���� ���� ���
 ���� ����

clusnorm����� ���� ���	 ����� ���� ���� ����

cubediam�����
����
���� ����
����
���� ����

corners����� ���� ���� ���� ���� ���� �����

grid����� ���
 ���� ���
 ���� ���� ����

normal����� ���� ���� ����� ���	 ���� �����

spokes����� ��	� ��	� ���� ��	� ��	� ����

Table ���� Quality of output produced for Bentley
s classes of instances by the Lin�

Kernighan heuristic for the TSP� Quality is measured as the percent excess over an

estimated Held�Karp lower bound�

Chapter 	� Experimental results for the TSP ��

Running time

� iteration n��� iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ��		 ��
� 	���
��� ����

annulus����� ��
� ���
 ��
� ������ ��
��	 ����

arith����� ���� ��	� ���� ������ �����	 ���

ball����� ���
 ��	� ���� 	�	� ��	� ����

clusnorm����� �
��� ��	�
��� ����	� ����� ����

cubediam����� ������ �
���� ���	 �
�����
 ������	� ����

corners����� ����� ���� ���	

����� ����� �����

grid����� ���� ���� ���� ��

 ��	� ����

normal����� ���	 ���� ���� �
�
�
��� ����

spokes����� �
��� ����
 ���� ������ ������ ����

Table ���� Time taken on Bentley
s classes of instances by the Lin�Kernighan heuristic

for the TSP� Time is measured as user CPU seconds�

sharply clustered corners distribution� Other timing results show cluster compensation

speeding up the heuristic by between �� and ��� percent�

There is an interesting correlation between the two tables� The running time for many�

iteration Lin�Kernighan with cluster compensation is longest when it fails to improve the

tour after the 	rst iteration�
Base Lin�Kernighan runs a long time on class corners�

but that is explained by its sharply clustered structure� in contrast� Lin�Kernighan with

cluster compensation runs quickly on corners�� Either both phenomena have the same

root cause� such as the peculiar structure of those inputs� or one causes the other� Long

running times have several causes� deep searches� much backtracking� and large Active

queues� Since the Active queue contains only eight cities between iterations� we eliminate

the possibility that failing to improve the tour causes long running times� Instead� we

suspect that the peculiar structure of the instances is the root cause of both� First�

optimal and near�optimal tours are easy to 	nd� Second� any perturbation is quickly

undone� but perhaps involving large numbers of vertices� and therefore blowing up the size

of the Active queue� These two features of an instance can cause the observed correlation

between the two tables� The next section analyzes classes arith and cubediam in more

Chapter 	� Experimental results for the TSP ��

detail�

����� Points on a line segment

Several of the Bentley classes evoke unusual results� The most glaring di�erences are the

large percent excess over Held�Karp for classes arith� cubediam� and to a lesser extent�

spokes� Those three classes are also outliers when it comes to running times�

Classes arith and cubediam are peculiar� each such instance has all its vertices

lying on a line segment� Any tour passing the position of each vertex exactly twice is

optimal�� This is a special case of how one can construct an optimal tour for a set of

points on a convex hull by following the convex hull path either forward or backward�

Any other ordering induces a tour with path crossings� such tours can always be improved

by applying a ��change to uncross the path�

The Lin�Kernighan heuristic takes a long time on these instances� The greedy tour

for points on a line segment consists of all the edges between consecutive points on the

line segment and closes up that Hamiltonian path by adding the edge between the two

end points� The randomized greedy tours are likely to also include the long edge� That

last edge is very long� half the optimal tour length� Any time the Lin�Kernighan heuristic

breaks that long edge� the cumulative gain rises enormously� and the heuristic is therefore

encouraged to perform very deep searches� When the tour is locally optimal "as the

greedy tour is" the problem is compounded since the heuristic ends up backtracking

over all its cases� each one becoming a deep search� Cluster compensation does not help

much in these cases since the cluster distance between the two endpoints is likely to be

very short relative to the actual distance between the endpoints�

The greedy heuristic 	nds an optimal tour for these instances� Randomized greedy

tours are likely to be very close to optimal� In our experiments� the Lin�Kernighan op�

timization phase is given a randomized greedy tour to try to improve� The optimal tour

length for the arith class can be computed analytically�� Examining the raw data shows

that the randomized greedy algorithm 	nds an optimal tour roughly ��) of the time�

and the suboptimal tours it 	nds are very close to optimal� usually to within one part in

a million� In all the runs for this instance� the Lin�Kernighan heuristic 	nds an optimal

tour� We strongly suspect the same behaviour occurs for the cubeedge classes� The

�We are ignoring the e�ect of rounding that might make a di�erence in the cubediam class of instances�
�The optimal tour length for an n vertex arith instance is � � �n�
���

Chapter 	� Experimental results for the TSP ��

high percentage excesses listed in Table ��� for classes arith and cubediam are there�

fore a result of poor lower bounds provided for these instances by the iterative ascent

approximation to the Held�Karp lower bound� There are two possibilities for this failure�

First� the parameters used for the iterative ascent may be insu�cient for convergence�

and a Held�Karp bound discovered through direct linear programming methods would

	nd a tighter bound� The alternative is that the �Held�Karp gap�� the relative di�er�

ence between the exact Held�Karp lower bound and the optimal tour length for a given

instance� is signi	cantly larger for these line segment instances than observed so far for

other instance classes �����

We suspect that the spokes distribution evokes similar behaviour from the iterative

ascent Held�Karp heuristic� the greedy tour heuristic� and the Lin�Kernighan optimiza�

tion heuristic� It has a similar line�oriented structure� two line segments that cross as

in a plus sign
��� A second clue is that both versions of the Lin�Kernighan heuristic�

with and without cluster compensation� fail to improve the tour after the end of the 	rst

iteration� Furthermore� the individual instances used in the experiments are very similar�

but the approximated Held�Karp bounds computed for each vary a great deal while the

individual upper bounds computed by the Lin�Kernighan heuristic do not vary much�

The same behaviour is observed for the cubediam distribution�

The large excess over the lower bounds are a red herring� but the long running times

are still worrisome� It is ironic that such simply structured instances with easily computed

optimal
or near�optimal� tours could force the Lin�Kernighan heuristic to run so long�

����� Summary

Overall� cluster compensation speeds up Lin�Kernighan the most when clustering is

sharpest� on classes corners� clusnorm� and normal�
One might not think of normal

instances as clustered� but the cities on the outside fringe are actually quite far apart� A

minimum spanning tree for such an instance therefore has long edges toward the outside

of the instance� and the cluster distances therefore grow relatively large�� The highly uni�

form grid class is the only case where cluster compensation makes Lin�Kernighan run

more slowly both after a single iteration and many iterations� Even then� the slowdown

is not more than nine percent�

The quality of the tours is good� usually within two percent of optimal� once adjust�

ments to the approximated Held�Karp bound are taken into account� Both Lin�Kernighan

Chapter 	� Experimental results for the TSP ��

variations are well matched with respect to each other� producing tours of similar quality�

��� Probe depth and move depth pro�les of sample

cases

Recall from Section ��� that the probe depth of a search is the maximum t index examined

during that search� and that the move depth is the maximum t index of the improving

move� if any� discovered during that search� Aggregate probe depths measure the amount

of work performed by the heuristic� while aggregate move depths measure the progress

made by the heuristic� Cluster compensation is designed to reduce the overall amount of

work performed by the heuristic by shortening search sequences on average�

Figures ���� ���� and ��� are histograms of probe and move depths for typical n���

iteration runs for instances grid��	������� uni��	������� and dsj����� respectively�

These instances were chosen because they are all the same size yet are examples forcing

the heuristic to display behaviours from across the spectrum� Instance grid��	������

is one of the few instances causing cluster compensation to slow down Lin�Kernighan for

the TSP� by about ��)� Instance uni��	������ evokes more typical behaviour� where

Lin�Kernighan with cluster compensation runs between �� and �� percent faster than

base Lin�Kernighan� Instance dsj���� makes Lin�Kernighan with cluster compensation

run � to �� times faster than base Lin�Kernighan� Absolute running times are also much

longer on dsj���� than the other two�

In each of the three cases� the move depth histogram for LKcc closely tracks the

move depth histogram for LK� In other words� Lin�Kernighan with cluster compensation

is 	nding improving k�edge exchanges for similar k values with the same frequency that

ordinary Lin�Kernighan does� We presume that overall the improvements are of similar

magnitude as well since the ending tour lengths are also very close�

However� the probe depth pro	les tell the tale on running times�

For grid��	������� the probe depths for LKcc closely match LK� That is� clus�

ter compensation does not greatly change the amount of search work performed by the

heuristic� as measured by depths alone� On closer inspection we notice that LKcc per�

forms fewer short
depth ��� searches and more long
depth ��� and ���� searches than

LK does� Note that the amount of work for a search of depth l increases at least linearly

with l� so the peaks at the upper end are quite signi	cant� The extra running time on

Chapter 	� Experimental results for the TSP ��

� �� �� �� ��
��

�

�

��

�

���

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

���

���

���

���

���

���

���

Length of t sequence

LKcc
LK

Probe and move depths for grid�����	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n��� iteration run on instance

grid��	�������

Chapter 	� Experimental results for the TSP ��

� �� �� �� ��
��

�

��

���

���

���

��

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

���

��

�
�
��

Length of t sequence

LKcc
LK

Probe and move depths for uni���
�	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n��� iteration run on instance

uni��	�������

Chapter 	� Experimental results for the TSP ��

� �� �� �� ��
��

�

���

���

���

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

���

��

�
�
��

��
��

��
�
��

Length of t sequence

LKcc
LK

Probe and move depths for dsj	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n��� iteration run on instance dsj�����

Chapter 	� Experimental results for the TSP ��

this instance is therefore explained by three factors� preprocessing overhead� the added

work of computing and subtracting cluster distance inside the heuristic
s inner loop� and

the extra deep searches� With search depths closely matched overall� the extra overhead

inside the inner loop may become especially signi	cant�

For uni��	������ the probe depths are always lower for LKcc than for LK� Cluster

compensation is dramatically reducing the frequency of searches� especially below a depth

of �� cities
or �� edge exchanges�� This accounts for the time savings produced by cluster

compensation�

For dsj���� the probe depths are always lower for LKcc than for LK� On this instance

LK performs roughly ���� or more probes at all depths� explaining the extraordinarily

long running times for an instance of that size� Cluster compensation reduces the probe

depth pro	le� and therefore running times� to more ordinary levels� LKcc performs

roughly only ��) more searches at depths of �� cities and fewer on dsj���� than on

uni��	������� However� LKcc still displays a small peak at depths of ��� and ��� cities�

enough to explain why LKcc takes �� seconds for a n��� iteration run on dsj���� but

only � seconds for a n��� iteration run on uni��������

There are a few common trends across the instances� First� Lin�Kernighan with

cluster compensation produces similar improvements to those produced by ordinary Lin�

Kernighan� Second� improving moves are found on only a small fraction of searches�

Third� higher probe depth pro	les correlate with longer absolute running times� Finally�

cluster compensation really does reduce search depths overall as it was designed to do�

and that this reduction in work translates into shorter running times�

��
 Summary

E�cient cluster compensation often greatly speeds up the Lin�Kernighan heuristic� Over

many kinds of instances� running time improvements of ��) to ���) are common� The

speedup ratios are data dependent� Cluster compensation provides greater time savings

on more sharply clustered instances� Only on the most regular and uniformly structured

instances does cluster compensation slow down the heuristic� Even then� the lost time

amounts to less than ��) after a single Iterated Lin�Kernighan iteration� With more

iterations cluster compensation again proves to be a time saver on those instances�

The sample probe and move depth pro	les show that cluster compensation does

reduce the work performed by the heuristic� In contrast with raw running times� the

Chapter 	� Experimental results for the TSP ��

depth pro	les are independent of computing platform� programmer skill� and the amount

of e�ort put into tuning the implementation code�

There is very little or no loss at all in the quality of the tours found when cluster

compensation is used� The di�erences in tour lengths are less than a tenth of a percent�

for an equal number of iterations�

Cluster compensation a�ects both running time and tour quality simultaneously�

From a practical point of view� cluster compensation gives us the luxury of perform�

ing more iterations in the same allotted time� Since the quality of the incumbent tours

improves with more iterations� cluster compensation holds the promise of more �bang for

the buck� when using Lin�Kernighan� This can only improve Lin�Kernighan
s reputation

as a formidable optimization heuristic�

Chapter

Lin�Kernighan for minimum weight

perfect matching

This chapter describes how the general Lin�Kernighan strategy described in Chapter �

and in particular Section ��� can be adapted for 	nding low�weight perfect matchings�

That is� we describe a Lin�Kernighan heuristic for minimum weight perfect matchings�

Rohe ���� also reports experience with a similar Lin�Kernighan heuristic for minimum

weight perfect matching�

Many of the features of Lin�Kernighan for the TSP can be carried over to Lin�

Kernighan for matching� In many ways the matching heuristic is much simpler�

��� Why choose a problem in P�

Minimum weight perfect matchings can be found in polynomial time� Algorithms based

on a primal�dual approach to a linear programming formulation of the problem can 	nd

optimal solutions for an n node weighted graph in O
n�� time ����� Even faster times are

possible for geometric instances ����� Why bother with a heuristic when we have exact

algorithms that run in polynomial time� In particular� why look at the e�ect of cluster

compensation on the behaviour of Lin�Kernighan for perfect matching� There are two

main reasons� one practical and the other theoretical�

��

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

	���� Practical reasons

When instances get very large� cubic or even quadratic running times can be considered

impractical� Even for Lin�Kernighan for the TSP� run times grow sub�quadratically on

uniform geometric inputs ���� p� ����� Trading poorer quality answers for less compu�

tational e�ort can be useful when tackling polytime solvable problems as much as it is

useful when tackling problems with NP�hard analogues� For example� Bentley used ��

Opt to 	nd low�weight perfect matchings in an approximate version of the Christo	des

construction algorithm for the TSP ����� Lin�Kernighan may provide a useful tradeo�

for practical problems� even in comparison to highly scalable implementations ��� ���

of the exact algorithms� We want to know whether cluster compensation improves the

behaviour of Lin�Kernighan in this domain�

	���� Theoretical reasons

Using Lin�Kernighan for weighted perfect matching is interesting from a theoretical per�

spective as well� Polytime algorithms for matching can often be viewed as local search

algorithms� where each step consists of 	nding an alternating path in the graph to improve

the current matching �����

In this sense these matching algorithms are very similar to the concrete Lin�Kernighan

heuristic of Section ���� a local search algorithm that 	nds improving alternating cycles�

The PLS�completeness of Lin�Kernighan for the TSP shows us that relying only on

improving alternating cycles is not entirely satisfying from a theoretical perspective� A

consequence of this fact is that one can construct a family of TSP instances and associated

starting tours that force Lin�Kernighan to take an exponential number of steps� Hill

climbing
or descending� as the case may be� in the space of tours is di�cult if only

�improving alternating cycle� moves are allowed� The space of tours is rather ornery

from this perspective� Yet polytime algorithms for matching are based on just this kind

of downhill move� So in broad terms we know the space of matchings is structured rather

more nicely than is the space of tours�

Weighted perfect matching thus provides an interesting domain in which cluster com�

pensation can prove itself� Does cluster compensation provide bene	ts to Lin�Kernighan

in the well�structured space of matchings� similar to the bene	ts it provides in the more

ornery space of tours� Using both kinds of test beds allows us to demonstrate the versa�

tility of cluster compensation�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

��� An observation about perfect matchings

The applicability of Lin�Kernighan to 	nding low�weight perfect matchings rests on the

following observation about perfect matchings� the di�erence between two perfect match�

ings is just a set of disjoint cycles� This is very similar in spirit to a preliminary result

in the theory of general matchings of graphs� namely that a matching M in a graph G

is maximum if and only if there is no augmenting path in G with respect to M �
For

example� see Lemma ���� and Theorem ���� in ������ The point is not that the result

about perfect matchings is novel� but that the proof gives us insight into the applicability

of Lin�Kernighan to matching problems�

Lemma
�� Let M� and M� be distinct perfect matchings for the complete graph G �

V�E�� Mi � E� Then the symmetric di
erence between the two matchings� M� �M� �

M� nM��	
M� nM��� consists of disjoint alternating cycles� Each such cycle alternates

between edges in M� and edges in M��

Proof
 The proof is by strong induction on the number of elements in the symmetric

di�erence� The proof is constructive� yielding an algorithm for transformingM� intoM�

one alternating cycle at a time� The tactic for 	nding each cycle is akin to 	nding a loose

thread in a sweater and just pulling�

Let e� �
t�� t�� be some edge in M� nM�� There is a unique edge e� �
t�� t�� �M��

Each vertex has exactly one mate in any perfect matching� thus e� �M�nM�� Continuing

from t�� we can 	nd the unique edge e� �
t�� t�� � M� and can similarly show that

e� �M� nM��

In general� given vertex tj we can always 	nd a unique mate tj	� in the appropriate

perfect matching� if j is odd� we 	nd the unique edge ej �
tj� tj	�� in M�� if j is even�

we 	nd the unique edge ej �
tj� tj	�� in M�� In particular� edges eh and ei are in the

same matching if and only if h and i are either both even or both odd� Since the graph

is 	nite� we must eventually loop back onto the t sequence� i�e�� we 	nd a smallest L for

which tL � ti for some i
 L� We will show that L is odd and tL � t��

We show that ti
� tj whenever �
 i
 j � L� First� tj
� tj	� by construction since

there are no self�loops in the graph� Second� tj
� tj	� for otherwise both ej �
tj� tj	��

and ej	� �
tj	�� tj	�� �
tj	�� tj� would be in the same matching� Now suppose j� i 	 �

and tj � ti� If j�i is odd then ti � tj would have two distinct mates in the same matching�

namely ti	� and tj��� violating the perfect matching property�
We know ti	� and tj��

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

are distinct because i��
 j � �
 L and L is minimal�� If j � i is even and i 	 �� then

ti � tj would have two distinct mates in the same matching� namely ti�� and tj��� again

violating the perfect matching property�
We know ti�� and tj�� are distinct because

i � �
 j � �
 L and L is minimal�� We conclude that tL � t�� The argument also

shows that L� � cannot be odd� and therefore that L must itself be odd�
The vertex sequence t�� � � � � tL�� encodes a cycle of edges e�� � � � � eL�� in the symmetric

di�erence M� �M�� alternating between members of M� and members of M�� That is�

the sequence encodes a k�change �
with k �
L������ that� when applied toM�� forms a

perfect matching �M� that is closer toM� thanM� is� That is� j�M��M� j
 jM��M� j�
We can then apply strong induction to complete the proof�

The proof shows how to transform any perfect matchingM� into any perfect matching

M� by applying a set of changes in sequence� where each change is encoded by an alter�

nating cycle� Furthermore� applying any alternating cycle to a perfect matching yields

another perfect matching� That is� if M is a perfect matching for a complete graph G�

and � is an even�length cycle in G alternating between edges in M and edges in not in

M � then �M �M � � is also a perfect matching on G�

��� A Lin	Kernighan heuristic for weighted perfect

matching

The previous section describes a process for transforming one perfect matching into

another by applying changes encoded by alternating cycles� This is precisely how the

concrete Lin�Kernighan strategy operates� The notation in the proof is suggestive� the t

and e sequences in the proof are exactly the t and e sequences of Section ���� immediately

yielding a Lin�Kernighan heuristic for weighted perfect matching�

There are two main di�erences between the algorithm used in the proof of the lemma

and the Lin�Kernighan heuristic for minimum weight perfect matching� First� the heuris�

tic does not know the destination toward which it is progressing� an LK�optimal perfect

matching M�� The heuristic has to discover the destination for itself� Second� only

improving k�changes are accepted�

It is interesting to note that given any initial perfect matching M
 and an optimal

perfect matchingMopt� Lin�Kernighan can potentially 	nd its way fromM
 toMopt� Each

step is the discovery of an improving alternating cycle �i� That is� there are no struc�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

tural barriers stopping Lin�Kernighan from 	nding optimal perfect matchings� Contrast

this situation with that for the TSP� Lin�Kernighan for the TSP cannot construct an

improving double�bridge ��change
see Section �����

However� Lin�Kernighan for weighted perfect matching is not guaranteed to 	nd opti�

mal matchings� To guarantee optimal perfect matchings with Lin�Kernighan� one would

have to dispense with the usual shortcuts"candidate sets and only limited backtrack�

ing� The greedy selection criterion would become less prominent because backtracking

would have to occur at all depths�
The cumulative gain criterion could stay because of

the fact about positive partial sums�� Dispensing with these shortcuts would make Lin�

Kernighan impractical in comparison with the exact polytime algorithms� The genius of

the polytime algorithms for matching is in 	nding the right improvements� and proving

that they lead to optimality in reasonable time�

Still� the observation gives hope that the perfect matchings found by Lin�Kernighan

may be rather good� Furthermore� the fast running times of Lin�Kernighan for the TSP

gives hope that Lin�Kernighan for weighted perfect matching will also have fast running

times�

��� Applying Lin	Kernighan to minimum	weight per	

fect matching

This section summarizes the details required to fully specify the Lin�Kernighan heuristic

for minimum�weight perfect matching� We borrow as much as possible from details for

the TSP setting� given in Chapter ��

	���� Feasibility� candidate sets� backtracking� and data struc�

tures

The heuristic has no problem maintaining feasibility and near�feasibility� Applying

changes encoded by any alternating cycle to a perfect matching always results in a

perfect matching� So Lin�Kernighan for weighted perfect matching need not do anything

special in this regard� This simpli	es the code a great deal in comparison to the TSP

case�

We use the same tabu rule as in the TSP case� namely �never delete an added edge��

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

This prevents endless cycling in a single search�

Because we seek low�weight solutions� we can use the same candidate sets as for

the TSP� In our implementation� the candidate set for a vertex is either its nearest few

neighbours in the graph� or the nearest few quadrant�based neighbours� or the unions of

these two�

We use limited backtracking as in the TSP case� We adopt the same high�level back�

tracking scheme using don
t�look bits� See Algorithm � in Section ������ but substitute

�perfect matching� for �tour�� The low�level backtracking code bene	ts greatly from

the simpler feasibility requirements� making it is easy to specify an arbitrary depth over

which low�level backtracking should occur� In keeping with the TSP case� we backtrack

over all possibilities for t� through t�� subject to the candidate sets� That is� for each

choice of t�� all candidates for t� and t� are tried� recall that t�i	� is 	xed once t�i	� is

chosen� Compare this with the TSP case where given t�� there are always two choices

for t�� and given t� through t� there are two choices for t�� and 	nally given t� through

t� there are often two choices for t�
see Figure ����� Even with the same candidate sets�

backtracking in the matching heuristic involves fewer possibilities than does backtracking

in the TSP heuristic�

As in the TSP case� we bound the search sequence lengths as a safety measure� This

prevents the heuristic from wasting time on extremely deep searches that may not yield

an improving move� Search sequences are limited to at most �� edge exchanges beyond

the backtracking depth� i�e�� they can extend no farther than t�
��

In comparison to the TSP case� the simpler feasibility requirements for perfect match�

ing lead to simpler data structures� The only operations we need to perform on a matching

are to ask a vertex for its current mate� and to mate a pair of vertices� We can use an

array mate to record the perfect matching� if
u� v� is in the matching� then mate�u� � v

and mate�v� � u� The query and the update each take constant time using this scheme�

The scheme is also space�e�cient� using O
n� memory cells for an n vertex graph�

We also adopt the same data structures from the TSP case for the candidate subgraph

adjacency lists�� the tabu list
a simple array��

	���� Initial perfect matching

The heuristic needs to be seeded with a perfect matching� For this we use a randomized

greedy perfect matching� It is similar in spirit to Kruskal
s algorithm for minimum

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

spanning trees� and the greedy heuristic for the TSP�

A pure greedy perfect matching for G �
V�E� is constructed as follows ����� We

begin with an empty matching M
 � �� In each of jV j �� stages we add one more edge
to the matching to form Mi� answering MjV j�� as our greedy perfect matching� Given a

matchingMi on G� we say edge
u� v� is allowable ifMi	f
u� v�g is also a matching� i�e��
if neither u nor v have mates in Mi� We examine the edges E in non�decreasing order�

always adding the next allowable edge�

A randomized greedy perfect matching is built in the same way� except that we choose

randomly between the next two distinct allowable edges� With probability �%� we add

the lighter of the two edges� and otherwise choose to add the heavier of the two� The

allowable edge not added to the matching goes back into the pool of available edges�

We can use the same data structures for these greedy matching algorithms as we

used for the greedy tour algorithms� In particular� we use a priority queue to hold� for

each vertex v� a small number of the shortest remaining edges incident upon v� In the

geometric case� we can apply k�d trees for semi�dynamic point sets to feed the priority

queue� The �semi�dynamic� aspect of k�d trees allows vertices to be hidden from future

nearest neighbour queries� Within the greedy matching algorithm� a vertex becomes

hidden as soon as it is matched�

We expect greedy perfect matchings to be good starting points for Lin�Kernighan

for minimum weight perfect matching for the same reasons greedy tours are good for

Lin�Kernighan for the TSP� First� many of the edges in a greedy perfect matching will be

between mutual nearest neighbours� Those portions of the graph should rapidly quiesce�

i�e�� those vertices will quickly be removed from the Active queue� Second� there are a

few large defects in the matching� namely the last few edges added during the greedy

algorithm� Those long edges will provide a large cumulative gain when removed from the

matching� driving the heuristic to make large gains through a few deep searches�

��� Iterated Lin	Kernighan for weighted perfect match	

ing

Iterated Lin�Kernighan can certainly be applied in the perfect matching case� In the TSP

case we use a random double�bridge ��change to try to kick the heuristic out of a local

optimum� Since a double�bridge ��change cannot be encoded as an alternating cycle�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

the heuristic is not easily led back to the same local optimum� However� Lemma ���

tells us that a similarly bad construction does not exist for perfect matchings� Any legal

��change on a perfect matching is undone either by a single alternating cycle with eight

edges total� or by two alternating cycles with four edges each� Indeed any k�change is

undone by a collection of disjoint alternating cycles�

Between iterations� our implementation of Iterated Lin�Kernighan for perfect match�

ing applies a random ��change �kick� in the form of a single alternating cycle with eight

edges� We hypothesize that the heuristic has a more di�cult time undoing a single eight�

edge cycle than it does undoing two four�edge cycles� We therefore hope to achieve a

greater kick out of local minima even while using a kick with such small cardinality� Rohe

uses kicks in the form of k�changes with much larger k� e�g�� k��� and k��� ���� ����

We use k�� so we may more easily compare the iterated matching heuristic with the

iterated TSP heuristic�

As with the TSP case� the choice of perturbations is unbiased� only the eight vertices

involved in the ��change are loaded into the Active queue� and 	nally� we never allow a

heavier perfect matching to become the incumbent�

��� Experimental methodology

It may be interesting to measure Lin�Kernighan for weighted perfect matching with an eye

toward comparing it with other heuristics and exact algorithms for the problem� However�

our purpose is to measure the e�ectiveness of cluster compensation� Our experiments

are structured around this goal� and are therefore very similar to those we perform in

the TSP setting� There are only two di�erences from the TSP case� some of the data is

modi	ed� and we measure the quality of the answers di�erently�

	���� TSP instances can be weighted perfect matching instances

A complete graph has a perfect matching if and only if it has an even number of vertices�

Every TSP instance with an even number of vertices can therefore be used as an instance

of the weighted perfect matching problem� If a TSP instance has an odd number of

vertices� then we can remove one vertex to make it a legal instance for the weighted

perfect matching problem� For geometric instances� we follow Applegate and Cook and

remove the most �northeast� point ���� More precisely� we remove the vertex with the

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

greatest x coordinate� break ties by removing the vertex which also has the greatest y

coordinate� We do not adapt non�geometric TSP instances having an odd number of

vertices for use as weighted perfect matching instances�

	���� Measuring matching quality

We measure the weight of the matchings produced by the Lin�Kernighan heuristic against

the optimal values produced by an exact algorithm for the problem� We use the highly

scalable Blossom IV implementation due to Cook and Rohe ���� to compute optimal

matchings�

��� Results

The following sections describe the results of the experiments for weighted perfect match�

ings� The results for instances generated from other instances are postponed until Chap�

ter � where the generating algorithms themselves are discussed�

	�	�� Breakdown of run times

Table ��� shows how running times break down for typical runs on two instances� geomet�

ric instance pcb���� and random distance matrix dsjr�������	� Table ��� is analogous

to Table ��� describing the time for the phases involved in Lin�Kernighan for the TSP�

The preprocessing steps are the same for both the TSP and perfect matching� except

that the TSP heuristic constructs a greedy tour� while the matching heuristic constructs

a greedy perfect matching� The preprocessing times are therefore similar to the TSP

case�

The optimization phase is much shorter for perfect matching than it is for the TSP�

This has an e�ect on the conditions under which cluster compensation makes the heuristic

run faster� There is less work to optimize away�

For comparison� Table ��� also lists the time used by the Blossom IV code to 	nd

optimal perfect matchings on those instances� The times vary a great deal with the kind

of instance being optimized� much more than for the Lin�Kernighan heuristic� Clearly�

	nding an optimal perfect matching for pcb���� in less than one second is preferable to

	nding a suboptimal one in � seconds� But we shall see that Lin�Kernighan for weighted

perfect matching is robust in the face of di�erent inputs� and scales very well� In our

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Time
sec� Time
sec�
Phase pcb���� dsjr�������	

Build a ��d tree ���� n%a
Build a minimum spanning tree ���� ����
Process the minimum spanning tree in
preparation for later cluster distance
queries

���� ����

Build a candidate subgraph ���� ����
Construct a randomized greedy perfect
matching

���� ����

Lin�Kernighan optimization phase
	rst
iteration�

���� ����

n� � subsequent iterations of Iterated
Lin�Kernighan

���� ����

Time for Blossom IV to 	nd an optimal
perfect matching

���� ������

Table ���� Breakdown of running time into phases for Iterated Lin�Kernighan with clus�

ter compensation� The times are taken for a ���� iteration run on geometric instance

pcb����� and a ���� iteration run on random distance matrix instance dsjr�������	�

Also shown is the time taken for the Blossom IV code to 	nd optimal perfect matchings�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

lin��� ���� ���� ���� ���� ���� ���
 ���� ��	� ����

pcb

� ���� ��
� ���� ���	 ��
� ���� ��	� ���� ���

att��� ��	� ��	� ���� ���� ���� ���� ���� ���� ����

gr��� ���� ���� ���� ���� ���� ���� ���� ���� ����

dsj���� ��	� ���� ����
 ���� ���� ����� ���� ���� �����

pr���� ���� ���� ���� ���� ��
� ���� ���� ���� �����

pcb��	� ���� ���� ���	 ���� ���� ���� ���� ���	 ����

pr���� ��
� ���� ���� ���� ���� ���	 ���
 ��
� ����

pcb���� ���� ���� ���� ���� ���� ���
 ���� ���� ����

�	�� ����
�

 ���� ��	
 ���� ���� ��	
 ���� ����

fnl

�� ��	� ���� ���	 ��		 ���� ���� ��	� ���� ����

pla	��	 ���� ���
 ���� ��
� ���� ���� ���� ���� ��
�

Table ���� Quality of output produced for TSPLIB instances by the Lin�Kernighan heuris�

tic for weighted perfect matching� Quality is measured as the percent over optimal� �LK�

is the base Lin�Kernighan heuristic� and �LKcc� is the Lin�Kernighan heuristic using ef�

	cient cluster compensation�

experience the time and space required for Lin�Kernighan for matching increases more

slowly than the time and space required for the Blossom IV code�

	�	�� TSPLIB instances

Table ��� compares the quality of the tours generated on TSPLIB instances by the two

versions of the Lin�Kernighan heuristic for weighted perfect matching� Ten experiments

were performed for each instance� Each experiment on an n vertex instance is an n

iteration Iterated Lin�Kernighan run� For comparison purposes� the di�erences in the

average percentage excess is also shown� Table ��� shows the average running times for

the same experiments� For comparison purposes� the ratio of the average running times

are listed�

As with the results for the TSP� the Lin�Kernighan heuristic in general produces very

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

lin��� ���� ���
 ���
 ���	 ���� ���� ��

 ���� ��	�

pcb

� ���
 ���� ��
� ���� ���� ��	� ���� ��	� ����

att��� ���� ���� ���� ��
� ��

 ���� ���� ��	� ����

gr��� ��	� ���� ���
 	��� ���� ���� �	��
 	�	
 ���	

dsj���� ���� ���� ����
�	� ���� ���� ����	 ���� 	���

pr���� ���� ���� ���� ���	 ��	� ��	� ���� ���
 ����

pcb��	� ���� ���� ���� ���� ���� ���� ��	� ��

 ����

pr���� ���� ���� ���	 ���� ���	 ���� ��
� ���	 ����

pcb���� ���� ���� ���� ���	 ��
� ���� ����� ���� ����

�	�� ����
 ���� ���� �
��� �
��� ���� �

�		
	��	 ����

fnl

�� ���� ���� ���� ���� ���� ���� ����� ���� ����

pla	��	 ���	� ���
 ���� ����
 ���
� ���� 	���� ����� ����

Table ���� Time taken on TSPLIB instances by the Lin�Kernighan heuristic for weighted

perfect matching� Time is measured as user CPU seconds�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

good solutions� The weighted matchings it 	nds are usually within �) of optimal� This

is the case after only the 	rst iteration for all instances except the most sharply clustered

instance� fl�
��� By iteration ����� the relative quality of the matchings found for it

are as good as for the other instances�

However� cluster compensation usually forces Lin�Kernighan to produce matchings

of poorer quality� its percentage excess over optimal being usually between ����) and

����) greater than base Lin�Kernighan� This is true over all iteration ranges� There are

outliers on both the worse and better side� In some cases� cluster compensation helps

Lin�Kernighan 	nd matchings that are roughly ����) better than found by base Lin�

Kernighan� In general� the degradation in the output caused by cluster compensation on

these instances is more accentuated than is the case for the TSP�

As for running times� Lin�Kernighan for weighted perfect matching runs far more

quickly than Lin�Kernighan for the TSP� between roughly �� and ��� times faster� de�

pending on the variation and the instance used for comparison�

Cluster compensation usually reduces running times� with the speedups being con�

sistent with the results for the TSP� Only on instance att��	 does cluster compensation

increase running times� That instance uses the special ATT metric� and our implementa�

tion treats it as a general distance matrix� The increased running time is likely caused

by the use of a less e�cient MST algorithm than is available for Euclidean instances�

By n iterations the di�erence is only ���� seconds� near the edge of the accuracy Linux

provides on the Intel Pentium architecture� and representing a relative di�erence of less

than �)�

	�	�� Uniform geometric instances

Table ��� shows the percent excess over optimal of the matchings generated by the two

versions of the Lin�Kernighan heuristic on uniform geometric instances� Three instance

sizes were generated� with ���� ����� and ���� vertices� Five instances were generated

for each size� and ten experiments were performed on each instance�

Both versions of the heuristic 	nd very good answers� less than ���) above optimal

even after only the 	rst iteration� On the larger size inputs� cluster compensation forces

the heuristic to 	nd answers about ����) greater excess than the base version of the

heuristic�

Table ��� shows the average running times for the same experiments� For comparison

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni���� ��	� ���� ����� ���� ���� ����	 ���� ���� �����

uni����� ���� ���� ���� ���� ���� ���� ���� ���� ����

uni����� ���� ���
 ���� ���� ���� ���� ���� ���� ����

Table ���� Quality of output produced for the class of uniform geometric instances by

the Lin�Kernighan heuristic for the TSP� Quality is measured as the percent excess over

optimal�

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni���� ���� ���� ���� ���� ���	 ���� ���� ���� ���	

uni����� ���� ���� ���� ���� ���� ���� ���� ���� ����

uni����� ���� ���	 ���� ���� ���� ���� ��
� ���� ����

Table ���� Time taken on the uniform geometric instances by the Lin�Kernighan heuristic

for the TSP� Time is measured as user CPU seconds�

purposes� the ratio of the average running times are listed�

Running times were very low for both versions of the heuristic� Still� cluster com�

pensation
s advantage grows from roughly ��) overall speed improvement to over ��)�

These speedups are consistent across all the instance sizes� Again� times for weighted

perfect matching are much faster than for the TSP
Cf� Table �����

	�	�� Uniformly generated distance matrices

Table ��� compares the quality of the matchings generated by the two versions of the

Lin�Kernighan heuristic on instances generated by drawing distances randomly from

a uniform distribution� Three instance sizes were generated� with ���� ����� and ����

vertices� Five instances were generated for each size� and ten experiments were performed

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr���� ���� ���� ����� ���	 ���� ����	 ���� ���� �����

dsjr����� ���	 ���� ����� ���� ���� ���
� ���� ���� �����

dsjr����� ���

�
� �����
��� ���� ����� ��	
 ���� ���	�

Table ���� Quality of output produced for the class of uniformly generated distance

matrices by the Lin�Kernighan heuristic for the TSP� Quality is measured as the percent

excess over optimal�

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr���� ���� ���� ���� ���� ���� ���� ���� ���� ����

dsjr����� ���� ���
 ���� ���� ���� ���	 ���

�	� ����

dsjr����� ����� ����� ���� ���
� ����� ���� �	��
 ���	� ���	

Table ���� Time taken on the uniform distance matrix class of instances by the Lin�

Kernighan heuristic for the TSP� Time is measured as user CPU seconds�

on each instance�

Table ��� shows the average running times for the same experiments� For comparison

purposes� the ratio of the average running times are listed�

As with the TSP� both variations of Lin�Kernighan 	nd worse answers as instance

sizes grow� The e�ect is more marked than in the TSP case� At these sizes� however�

the excess above optimal is still at most roughly �)� Cluster compensation consistently

helps Lin�Kernighan 	nd better tours� roughly ���) closer to optimal� with the advantage

growing as instance sizes grow�

Cluster compensation increases the running time of the heuristic in most cases� Two

related factors explain the slowdown� First� as in the TSP case LKcc must pay the

extra costs for building and processing a minimum spanning tree� On a general matrix�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

the time to 	nd a MST grows quadratically in the number of vertices� Second� the

optimization phase on perfect matchings runs very quickly� Preprocessing time therefore

becomes signi	cant� moreso than it was in the TSP case� The preprocessing times for

weighted matching are similar to those for the TSP� On a ���� vertex instance� LK

takes roughly �� seconds to build �� nearest neighbour candidate subgraph and to 	nd

a greedy matching� LKcc does the same as LK and also takes an extra ��� seconds to

build a minimum spanning tree and process it for later cluster distance queries� Yet

LK takes less than � seconds to complete the 	rst iteration of the optimization phase�

There is simply no man*uvreing room� the 	rst iteration of LK ends before the 	rst

iteration of LKcc begins' However� cluster compensation makes iterations faster on

average� LKcc eventually pays back its preprocessing cost� The iterations required to

completely amortize the extra costs increases with the size of the instance� n��� iterations

su�ces for n � ���� n iterations su�ces for n � ����� and we expect that just over n

iterations su�ces for n � �����

Even without the aid of specialized data structures� the absolute running times are

quite reasonable� being comparable to many of the TSPLIB instances tested�

Again� we have used instance sizes increasing in half�powers of ��� ���
 ������

���� � ���� and ����
 ������ If the running time for the Lin�Kernighan heuristic

increases faster than quadratically� then we would expect the running times to increase

by a factor of ten or more from one instance size to the next� This is roughly the

case for single�iteration Lin�Kernighan� but only because preprocessing times increase

quadratically for both variations of the heuristic�

	�	�� Bentley�s distributions

Table ��� compares the quality of the matchings generated by the two versions of the

Lin�Kernighan heuristic on Bentley
s classes of instances� Five instances were generated

from each class� and ten experiments were performed on each beginning from randomized

greedy matchings� Because the running times were so fast� we had the luxury and the

patience to include class cubeedge in our experiments� As expected� Lin�Kernighan

behaves much the same on class cubeedge as it does on class cubediam� This supports

our decision to skip class cubeedge in the TSP experiments�

Table ��� shows the average running times for the experiments� For comparison

purposes� the ratio of the average running times are listed�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ���� ���� ���� ���� ���� ���� ���� ���� ����

annulus����� ���� ���� ����� ���� ���� ����� ���� ���� �����

arith����� ���� ���� ���� ���� ���� ���� ���� ���� ����

ball����� ���� ���� ���� ���� ���� ���	 ���� ���� ���	

clusnorm����� ���� ���� ���
 ���� ���� ���� ���
 ���� �����

cubediam����� ���� ���� ���� ���� ���� ���� ���� ���� ����

cubeedge����� ���� ���� ���� ���� ���� ���� ���� ���� ����

corners����� ��		 ���
 ���� ��	� ���� ���	 ��	� ���
 ���

grid����� ���� ���� ����� ���� ��	� ����� ��	
 ��	� ����

normal����� ���	 ���� ����� ���
 ���� ����� ���� ���� �����

spokes����� ���� ���� ���� ���� ���� ���� ���� ���� ����

Table ���� Quality of output produced for Bentley
s classes of instances by the Lin�

Kernighan heuristic for the TSP� Quality is measured as the percent excess over optimal�

Chapter
� Lin�Kernighan for minimum weight perfect matching ��

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ���� ���� ���� ���� ���� ���� ���� ����

annulus����� ���� ���� ���� ���� ��	� ���� ���� ��
� ����

arith����� ��
� ���� ���
 ���� ���� ��	
 ���� ���� ����

ball����� ���� ��
� ���� ���� ���� ���� ���� ���� ����

clusnorm����� ���� ��	
 ��	� ���� ���� ���� 	�	� ���� ���

cubediam����� ���� ��	� ���
 ���
 ���� ���� 	��� ��	
 ����

cubeedge����� ���� ��	� ���� ��		 ���� ���� ��	� ���� ����

corners����� ���� ���� ���� ���� ���� ���
 ���	 ���� ����

grid����� ���� ���� ��	� ���� ���� ���� ���� ���	 ����

normal����� ���� ���
 ���� ���� ���� ����
��� ���� ����

spokes����� ���� ���� ��

 ���� ���� ��	
 	��� ���	 ����

Table ���� Time taken on Bentley
s classes of instances by the Lin�Kernighan heuristic

for the TSP� Time is measured as user CPU seconds�

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

The matchings produced by Lin�Kernighan are very good� with excesses over opti�

mal of less than �)� Across the di�erent distributions� cluster compensation does not

signi	cantly impair the quality of the matchings produced by Lin�Kernighan�

An interesting pattern emerges if we look individually at the distributions uni� corners�

and ball� These are the three classes where cluster compensation makes Lin�Kernighan

produce worse matchings than the base version of the heuristic� The e�ect is small� a

degradation of less than ���)� However� in all three cases the matchings produced by

LKcc after ���� iterations are worse than those produced by base LK after only the 	rst

iteration� We are at a loss to explain why these three classes force cluster compensation

to produce worse matchings� classes uni and ball are not sharply clustered� while class

corners is the most sharply clustered� However� this quality of output comparison does

point out how little of a �kick� the ��change perturbation gives between iterations� In

particular� the heuristic has a hard time improving a poor matching with extra iterations�

This experience a�rms Rohe
s choice of using k�changes with k much larger than ��

Running times are much faster for matching than for the TSP� Cluster compensation

makes Lin�Kernighan have very uniform running times indeed on these classes� ����

iteration runs all averaged less than three seconds of CPU time� This is consistent with

the times for TSPLIB instances of similar size� The run times for the base heuristic vary

more� from just under � seconds for ���� iterations to just under �� seconds for ����

iterations�

Classes arith� cubediam� cubeedge� and spokes are peculiar for weighted perfect

matching as they were for the TSP� Both variations of Lin�Kernighan found an optimal

matching on the 	rst iteration� This is the same behaviour as we surmise for the TSP

runs on these instances�
Section ����� explained the high excess over Held�Karp on this

class of instances on a poor lower bound�� A pleasant surprise is that matching run times

remain reasonable for these classes� The run times for base Lin�Kernighan are usually in

the same ballpark as for the other Bentley classes� with the aid of cluster compensation�

the run times for these classes are essentially indistinguishable from the run times for

the others� Contrast these results with the TSP results� where these line�oriented classes

were very tough for Lin�Kernighan�

In only one case does cluster compensation slow down Lin�Kernighan� At ���� it�

erations on ���� city instances from the grid class� cluster compensation slows down

Lin�Kernighan by ��)� The preprocessing overhead for cluster compensation does not

fully account for this slowdown� For ���� city instances� extra preprocessing overhead

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

for cluster compensation is roughly ��� seconds� Online computation of cluster distances

during the optimization phase proper likely accounts for the other lost ��� seconds� Still�

these extra overhead times are miniscule� at least at this instance size�

	�	�� Probe depths and move depths of sample cases

Probe and move depths helped us understand the speedups attained in the case of the

TSP� This section discusses the probe and move depths for typical runs of the matching

heuristic on the same three instances�

Figures ���� ���� and ��� are histograms of probe and move depths for typical n

iteration runs for instances grid��	������� uni��	������� and dsj����� respectively�

Our 	rst observation is about the success of the heuristic in 	nding improvements�

The move depth graphs show the number and depth of improving exchanges actually

found by both heuristics� For each instance� the move depth graphs for both variants of

the heuristic track each other very closely� and in many places are perfectly superimposed�

This shows that cluster compensation does not signi	cantly impair the ability of Lin�

Kernighan to 	nd improving move sequences at any depth�

The probe depths re�ect the amount of search work performed by the heuristic�

Cluster compensation slows down Lin�Kernighan for weighted perfect matching by an

average of ��) after n iterations on grid instances� In contrast� cluster compensation

produces a speedup of ���� for uni instances� and a speedup of nearly � for dsj�����

These running time results should be re�ected in the probe depths�

The probe depths for both variants of the heuristic on instance grid��	������ are

almost identical� Also� relatively few probes go deeper than t����� So cluster compen�

sation does not reduce search work on this instance� In fact it only slows things down

because it requires that least common ancestors be computed in the inner loop of the

heuristic� and it also requires extra time for preprocessing� This agrees with the running

time results� a slowdown of ��) for this instance class�

The probe depths for both variants on uni��	������ are also quite close to each

other� This time� cluster compensation slightly reduces the number of searches ending

between � and �� cities deep� This is apparently enough of a work savings to reduce

running times by a third over the base Lin�Kernighan� We must admit being surprised

at how such a small di�erence in probe depths can translate into that large of a speedup�

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

� �� �� �� ��
��

�

���

���

���

���

���

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

����

����

����

����

Length of t sequence

LKcc
LK

Probe and move depths for grid�����	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance grid��	�������

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

� �� �� �� ��
��

�

���

���

���

���

���

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

����

����

����

Length of t sequence

LKcc
LK

Probe and move depths for uni���
�	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance uni��	�������

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

� �� �� �� ��
��

�

���

���

���

���

���

Length of t sequence

LKcc
LK

Number of
improving
moves

committed
at that depth
�move depths�

� �� �� �� ��
��

�

����

����

����

Length of t sequence

LKcc
LK

Probe and move depths for dsj	

Number of
searches
stopping

at that depth
�probe depths�

Figure ���� Probe and move depth pro	les for a n iteration run of Lin�Kernighan for

weighted perfect matching on instance dsj�����

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

Still� the results are consistent between the running time speedup and the probe depths�

At 	rst blush the probe depth trend for instance dsj���� appears the same as for

uni��	������� with cluster compensation reducing the number of probes ending in the

middle depths� between �� and �� cities deep� But a closer look reveals that base Lin�

Kernighan has a small peak at depths of over ��� cities� while Lin�Kernighan with cluster

compensation does not� Examining the raw data for this plot shows that base Lin�

Kernighan performs ��� searches ending ��� cities or deeper� while Lin�Kernighan with

cluster compensation performs only � searches that deep� Recall that the work involved

for a search of depth l grows at least linearly with l�
If the simple linear time tabu check

is used in adding each new city to the t list� it grows at least quadratically with l�� So

the small peak at the large depths are more signi	cant than they might 	rst appear� The

��� to � margin at those depths is certainly enough to explain the speedup of almost �

times provided by cluster compensation� especially given that there is very little other

search work being performed�

Overall� the move depth graphs show that cluster compensation does not reduce the

improvement�	nding power of the Lin�Kernighan heuristic for weighted perfect matching�

The probe depth graphs show that even slightly less work translates into lower running

times� For instance grid��	������ cluster compensation does not reduce overall work

and it therefore increases the running time for the heuristic�

��
 Summary

This chapter motivates the use of a Lin�Kernighan style heuristic for minimum weight

perfect matching� It describes the details of such a heuristic� noting that it can share

much of the same implementation as a Lin�Kernighan heuristic for the TSP� We have

given the results of experiments with the heuristic on the same data as the experiments

for the TSP�

If an application absolutely requires optimal matchings� then the Blossom IV code

will 	nd them� given enough time and space� However� if getting within �) of optimal

is good enough� then a single iteration run of Lin�Kernighan will usually 	nd it� and in

very short order�

When preprocessing costs are small� such as for geometric instances or on small in�

stances� cluster compensation usually speeds up Lin�Kernighan by between ��) and

���)� However� the quality of the output degrades slightly� increasing the excess above

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

optimal by about ���) to ���)� Except for the very di�cult instances� the extra time

saved by cluster compensation can be spent on more iterations� but the matchings it pro�

duces with new iterations improves only very slowly when using ��changes as kicks� For

better quality answers and more progress over time� we suggest following Rohe ���� and

using k�changes with k much larger than �� For more di�cult instances such as fl�
���

the rate of improvement for both variations of Lin�Kernighan is much better� with more

iterations producing much better matchings� In that case� cluster compensation allows

���� iterations in only ��) more time than base Lin�Kernighan uses for ��� iterations�

and 	nds matchings only ���) above optimal compared to ����) for base Lin�Kernighan�

For large non�geometric instances over the range of iterations studied here� cluster

compensation may not produce faster Lin�Kernighan runs� The preprocessing overhead

can dominate the time saved during the optimization phase� The main component in the

preprocessing phase is 	nding a minimum spanning tree� Every edge must be examined

at least once� and already that O
n�� time dominates the worst�case asymptotic time for

the rest of the cluster compensation preprocessing phase and the observed subquadratic

behaviour of the optimization phase� However� there are three bright spots� First� Lin�

Kernighan with cluster compensation tends to catch up to base Lin�Kernighan as more

iterations are used� Second� an application may have special knowledge of its instances�

allowing minimum spanning trees to be computed much more quickly than by the general

methods used here
Prim
s algorithm�� In that case� cluster compensation would not

be dragged down so badly by the extra preprocessing time it requires� Third� cluster

compensation helps Lin�Kernighan 	nd better matchings� For the dsjr classes of inputs�

that advantage is a reduction in the excess above optimal of between ���) and ���)�

The rate of improvement in the quality of the output with extra iterations is slower for

weighted perfect matching than for the TSP� This may have two causes� First� the 	rst

iteration of Lin�Kernighan usually 	nds much better matchings than Lin�Kernighan for

the TSP 	nds tours� Second� the double�bridge mutation gives Iterated Lin�Kernighan

for the TSP a greater �kick� out of local minima than the ��change does for Iterated Lin�

Kernighan for weighted perfect matching� Lemma ��� suggests that only very elaborate

perturbations can give a much greater kick than the ��change used here�

We come to similar conclusions for weighted perfect matching as for the TSP� Cluster

compensation usually speeds up Lin�Kernighan� with only a slight loss in the quality of

the output� Cluster compensation provides a good tradeo� for a wide variety of instance

classes� When non�geometric instances are used� more iterations are required before

Chapter
� Lin�Kernighan for minimum weight perfect matching ���

cluster compensation saves overall running time� For geometric data� only very rigidly

uniform and therefore unclustered instances such as those drawn from the grid class make

Lin�Kernighan with cluster compensation take more time than base Lin�Kernighan�

Chapter �

Instance generators

This chapter describes algorithms for generating new instances from old� There are a

few reasons one might want to do this�

First� we want to assure ourselves that the experimental results reported thus far are

not �ukes� dependent upon some peculiar characteristic of the test data used� That is�

we want to know if the results presented so far are robust�

Second� practitioners deciding whether to apply e�cient cluster compensation for

their own problem take several factors into account� including applicability of the tech�

nique and ease of coding� But perhaps the most important factor is whether the per�

formance win applies to their own problem domain� Testing only on a small number of

standard instances and on uniform instances of one kind or another does not help in this

respect� Since we cannot report experiments on all possible instance classes� we describe

tools whereby the reader can generate many test instances based on their own data�

Some of the algorithms described here for generating test data are designed to preserve

the main characteristics of the input instance to which Lin�Kernighan reacts� That is�

the Lin�Kernighan heuristic� both with and without cluster compensation� should be�

have similarly on the generated data as it does on the original data� The practitioner

can therefore build their own domain�speci	c test bed of instances� This test bed can be

used to decide whether to apply Lin�Kernighan in their own ongoing work with similarly

structured inputs�

Third� the tools in this chapter let us test our intuition about why Lin�Kernighan

performs less well on clustered inputs and why cluster compensation helps in those cases�

The algorithms described here divide naturally into two categories� The 	rst category

includes algorithms designed to preserve the essential cluster structure of the input in�

���

Chapter �� Instance generators ���

stances� If our intuition is correct� then Lin�Kernighan should behave similarly on output

instances as it does on the input instance to these kinds of algorithms� The second cat�

egory includes algorithms designed to destroy cluster structure by moving vertices into

the gaps between widely separated clusters� If our intuition is correct� the base Lin�

Kernighan heuristic should perform better on the derived instance than on the original

instance� and cluster compensation should give less of an advantage over baseline on the

derived instance than it does on the original instance�

The following sections describe the distill and generate paradigm for data generation�

and several algorithms within this paradigm� The next chapter reports on experiments

with the Lin�Kernighan heuristic on selected instances generated in this way�

�� Distill and generate paradigm

We generate new instances from old seed instances in two steps� We 	rst distill the

important features of the seed instance into a few key values� throwing much information

away� The characterization of the seed instance is used to de	ne an implicit random

distribution over instances� We can then generate as many new instances as we like from

the distribution�

Hutton ���� shows the e�ectiveness of the characterize and generate paradigm for

creating benchmark data in the context of optimization problems for very large scale

integrated circuit design� Hutton calls the generated instances clones because for the

most part the optimization algorithms were unable to distinguish between the original

seed instance and the generated instances�

Our goals here are narrower� Our context is a particular optimization algorithm
the

Lin�Kernighan heuristic�� not an optimization problem� The characterization and gener�

ation algorithms are tailored to the behaviour of the heuristic and how it responds to the

quality and severity of clustering in the input� They are also designed to highlight or mute

any performance di�erences e�cient cluster compensation provides to the Lin�Kernighan

heuristic� This narrower focus� together with the results of Section ����� motivates the

use of a minimum spanning tree of the instance as the primary characterization of the

seed instance in many of the algorithms described below�

Chapter �� Instance generators ���

�� Preserving cluster structure

The 	rst category of algorithms tries to preserve the essential cluster structure of the

seed instance� The algorithms have di�erent restrictions on the form of the input� some

may be used only on geometric inputs� while others may be applied to any instance�

���� Jitter

The 	rst generation algorithm� jitter� is an obvious one� it moves each vertex of the

instance a random distance in a random direction� It requires the seed instance to be

geometric in nature� and produces geometric outputs� If the range of distances is small�

then the generated instances will have almost exactly the same structure as the seed

instance� This algorithm can therefore be quite conservative� It is also conservative in

the sense that it preserves the triangle inequality�

This generation algorithm models errors in the measurement of coordinates of some

physical quantity� It can therefore be used to observe the sensitivity of an optimization

heuristic to small perturbations of the input�

The jitter algorithm moves each node u in a random direction by a distance r where

r is drawn from a normal distribution with mean � and a standard deviation of d � l
u��
Parameter d is a scaling factor that may be set arbitrarily� perturbations grow with d�

Length l
u� is a benchmark length for node u� providing a standard �yardstick� length

in the context either of the local area of the graph near u� or globally� There are two

factors that go into l
u�� context scope and reducing function� Let T be a minimum

spanning tree for the seed instance� The global context for node u is all the edges in T �

and the local context for u is all the edges in T incident upon u� The reducing function

is used to derive the benchmark length l
u� from the set of edges in the chosen context

for u� Reasonable reducing functions include the minimum edge length� the maximum

edge length� or the mean edge length�

In our experiments� scaling factor d is ��� and the benchmark length for any node

is always the average length of an edge in the minimum spanning tree T � i�e�� l �

�
T ��
n � ���
That is we always use the global context and the �arithmetic mean�
reducing function�� Figure ��� shows TSPLIB instance pr���	 on the left and� on the

right� an instance on the generated by algorithm jitter with these parameters�

One can imagine ways to extend jittering to non�geometric inputs� For example�

Chapter �� Instance generators ���

�a� �b�

Figure ����
a� Seed instance pr���	� and
b� an instance generated by jitter from pr���	�

we could add a random number to each edge length� Note that such a transformation

would not necessarily preserve the triangle equality� We leave investigations into jitter

algorithms for non�geometric instances to other researchers�

���� MST shake

Algorithm jitter is often fairly conservative� We can make more radical but still cluster�

appropriate change in an instance by transformations whose nature are more closely

tied to its cluster structure� The minimum spanning tree of an instance encodes its

cluster structure� and we can even view it as the skeleton of the instance� Taking the

biological analogy further� we can generate new instances by articulating that structure�

i�e�� bending the skeleton at key points� We call this tree shaking� after the mental image

of a tree waving in the wind� More speci	cally� we call the algorithm mst�shake because

it is a minimum spanning tree that we manipulate� As with jitter� algorithm mst�shake

takes a geometric instance as input and produces a geometric output�

Algorithm mst�shake operates as follows� We use two parameters� a scaling factor� d�

and the number of branches to shake� b� Let T be any minimum spanning tree for the

seed instance� We perform a rotation for each of the b longest branches
edges� of T �

Each of these long branches e �
u� v� breaks T into two components� one component� Tu�

contains u and the other end� Tv� contains v� Each vertex in Tu is at least �
e� � �
u� v�

units away from every vertex in Tv� with equality at points u and v� Without loss of

Chapter �� Instance generators ���

generality suppose there are at least as many vertices in component Tu as there are in Tv�

We choose an angle � from a normal distribution with mean � and standard deviation

d � ����� and rotate all the vertices in the smaller component Tv by angle � around node
v� This rotation can be likened to the smaller end of a branch being the one more likely

to bend under the force of the wind� Note that the branch e in question does not move

during this transformation� The rotation might change the cluster distance between Tu

and Tv� but it is less likely to do so using this scheme than if we allowed the branch to

rotate as well
by using vertex u as the centre of rotation instead of v�� or if we rotated

the larger component Tu instead of Tu�

In our experiments� parameter b is always ��� and d is �� That is� we shake the ��

longest branches in some MST for the seed instance� and the rotation angles are drawn

from a normal distribution with mean of � and a standard deviation of �����

Figure ��� shows instance clusnorm���������
a ���� node instance from Bentley
s

clusnorm distribution using seed ���� and one of the instances generated by mst�shake

using these parameters� Part
a� shows instance clusnorm��������� itself� part
b�

shows the minimum spanning tree of clusnorm��������� used by mst�shake� part
c�

shows an instance generated from the MST in part
b�� for comparison� part
d� shows

a MST of the generated instance in part
c�� The length of the minimum spanning trees

di�er by ���)� In fact� the generated instance is di�erent enough from the seed instance

that its MST exhibits an abrupt di�erence� the cluster in the bottom left originally

joined the rest of the instance via a long edge to the bottom�most cluster� but in the

generated instance it joins via the upper set of clusters� More subtlely� the upper set of

clusters moves toward a more horseshoe�shaped arrangement from the original circle�like

arrangement�

In general� if d is not too large and b is small relative to the number of vertices in the

seed instance� then the generated instances have much of the same cluster structure as

the seed instance� In fact� the 	ne�grain detail is often locally identical� it can only be

corrupted if one cluster gets rotated into the same space as an existing cluster� which is

rare� Because of these clustering similarities between seed and generated instances� algo�

rithm mst�shake is useful for testing whether cluster compensation behaves as advertised

on similarly clustered instances�

The results produced by mst�shake can vary a great deal� There are two reasons for

this� First� there may be many choices for the heaviest b edges in a particular MST�

Second� there may be many MSTs for the seed instance� with widely varying topological

Chapter �� Instance generators ���

�c� �d�

�a� �b�

Figure ����
a� Seed instance clusnorm����������
b� a minimum spanning tree
MST�

for clusnorm����������
c� an instance generated from the MST by mst�shake�
d� a

MST for the generated instance in part
c��

Chapter �� Instance generators ���

structures� This e�ect is more pronounced for instances where there are many equal�

length edges that compete to become branches in a minimum spanning tree� The next

section describes an algorithm that overcomes this dependence on which MST is chosen�

but at the expense of throwing away a great deal of structural information about the

instance�

���� MST explode and construct

The previous algorithms required a geometric seed instance� Algorithm jitter applies

perturbations in a rectilinear coordinate space� and algorithm mst�shake can be viewed

as applying perturbations in a polar coordinate space� Furthermore� the action of mst�

shake can be highly dependent upon which particular minimum spanning tree we choose

to shake� Algorithm mst�explode�construct has neither of these traits� but its output is

often radically di�erent from its input� It takes an arbitrary instance for a seed� and

produces a two�dimensional instance as output�

In fact� the characterization of an instance G is only the multiset of edge lengths of a

minimum spanning tree for G� all other information is thrown away before generating the

new instance� The new instance G� is constructed so that it has the same characterization

as G� if T and T � are minimum spanning trees for G and G� respectively� then we have

the unordered list equality ��
e� j e � T � � L
T � � L
T �� � ��
e� j e � T � �� An

inductive argument shows that multiset L
T � depends only on the graph G and not on

the particular minimum spanning tree T �
Prove the result for minimum spanning forests�

using strong induction on maximum edge length�� We may therefore unambiguously write

L
G� in place of L
T �� In summary� algorithm mst�explode�construct takes any instance

G and produces a Euclidean instance G� so that L
G�� � L
G��

Algorithm mst�explode�construct takes a seed instance G on n vertices� and computes

the list L
G�� This is the explode part� The construct part makes Euclidean instance G�

from L
G�� We use a snowballing process� gluing vertices and components together until

only one component remains�

The construct process is similar to Kruskal
s minimum spanning tree algorithm� It

begins with pre�determined edge lengths and unknown coordinates
and therefore un�

known overall cost function�� and over time 	xes coordinates so that the edge lengths are

edge lengths for a minimum spanning tree for those coordinates� In contrast� Kruskal
s

algorithm begins with a known overall cost function but unknown edge lengths� and over

Chapter �� Instance generators ���

time 	xes edge lengths in a minimum spanning tree for the cost function�

The construction process begins with a pool of n isolated vertices� each vertex has

undetermined coordinates and makes up a component by itself� We proceed in n � �
steps� After i steps there are n � i components and only the n � � � i largest lengths

remain in L
G�� During step i
counting from �� we withdraw the smallest remaining

length l from L
G�� draw two components a and b at random� and form a new component

c by joining a point ah on the convex hull of a to a point bh on the convex hull of b by

an edge of length l� The new component c is put back into the pool of components�

There may be a range of ways to join the two hull points with an edge of length l� we

choose some way in which all the points of component a are at least l units away from all

the points of b� with equality for at least one pair� See Figure ���� We also have freedom

in deciding which hull vertices ah and bh to join"any corner vertex will do�

The joining of components a and b to form c does not 	x the 	nal positions of the

vertices in a and b� but it does 	x the positions of the points in c relative to each other�

After n� � steps� the list of edge lengths is exhausted� and there is only one component
c left in the pool� The positions of all the vertices are 	xed relative to each other� All

the coordinates are determined once we place an arbitrary vertex at the origin� and

we form Euclidean instance G� from the set of coordinates� Algorithm � summarizes

mst�explode�construct in pseudo�code�

Why does this algorithm perform as promised� namely that L
G�� � L
G�� Con�

sider the spanning tree T � for G� formed by the edges added during gluing in step � of

Algorithm �� One can see that T � is in fact a minimum spanning tree for G� Recall

that in a minimum spanning tree T � each branch
u� v� � T can be seen as dividing T

into two components Tu and Tv� containing u and v� respectively� The key property of

a minimum spanning tree is that branch
u� v� is no heavier than any edge in G having

one endpoint in Tu and the other endpoint in Tv� Since we join components only on their

convex hulls� and by lengths l that do not decrease� tree T � has this property for G�� It

therefore follows that L
G� � L
G���

There is no conceptual di�culty in extending these ideas to higher dimensions� We

would maintain convex hulls in higher dimensions� but the gluing process would remain

the same� The coordinates and rotations would also be in higher dimensions�

Instances generated by mst�explode�construct can vary a great deal� The output can

be rather sparse if all choices are resolved randomly from uniform distributions� i�e�� if

hull vertices ah and bh are chosen uniformly and the join angles are chosen uniformly over

Chapter �� Instance generators ���

�c�

a

ah
b

bh
l

�b�

a ah

b

bhl

�a�

a
ah bbh

l

Figure ���� There may be a range of ways to join the hull points ah and bh by an edge

of length l� We choose some way in which all the vertices of a are at least l units from

all the vertices of b� Part
a� shows a typical join� Parts
b� and
c� show components a

and b rotated to extremes before joining�

Chapter �� Instance generators ���

Algorithm � mst�explode�construct

Require
 G is a graph with edge cost function ��

Ensure
 G� is a Euclidean instance with L
G�� � L
G��

� Let T be a minimum spanning tree for G�

�� Let L � ��
e�je � T �

�� C �� a set of jLj �� points with undetermined coordinates
%% C is the current set of components�

�� for l � L from smallest to largest do

� Choose a and b at random from C�

�� Choose vertices ah and bh on the convex hulls of a and b� respectively�

�� Form component c by joining ah to bh by an edge of length l� use the packing factor

to bias the join angles� Ensure that �
ai� bj� � l for all vertices ai in a and bj in b�

�� C �� C n fa� bg 	 fcg
�� end for

�� Only one component c remains in C� Place one vertex at the origin� thus 	xing all

the coordinates�

� Form ��d Euclidean instance graph G from the coordinates of points in c�

the allowable range� We can bias the choices to make more compact instances� when

joining two components� try to line up long edges of the convex hulls so that they face

each other� We use two parameters to specify the bias� A join length bias ranging from

� through � can be used to specify which face on each component is lined up against the

other component� with � being the shortest face and � being the longest face�
A random

uniform face choice is speci	ed with a negative join length bias�� A positive packing

factor is used to weight our choice of join angle� large values make the chosen face run

parallel to the other component� while low values make the chosen face turn as far away

from the other component as allowable� In the extreme "a join length bias of � and

a packing factor of around ���" the algorithm chooses hull vertices ah and bh and the

join angles so that the longest edges on the convex hulls run parallel l units apart� See

Figure ����

Figure ��� shows some possible outputs for a single seed instance� dsj���� from

TSPLIB� Part
a� shows dsj���� itself�

Parts
b� through
f� show 	ve instances generated by mst�explode�construct from

dsj����� Part
b� was generated without any bias in choosing hull vertices or join angles�

Chapter �� Instance generators ���

a b

ah
bh

l

Figure ���� More compact instances are often formed if the longest edges of hulls a and

b are made to run parallel in the new component�

Its sparseness is typical of such instances� as noted above� Parts
c� through
e� were

generated using the same seed
and hence the same sequence of choices for components a

and b�� but with bias parameters chosen to make progressively more compact instances�

Part
f� uses the same bias parameters as part
e�� but uses a di�erent random number

seed and therefore shows some of the variability we can get given 	xed bias parameters�

Table ��� records the parameter values for each of the 	gures�

���� MST dangle and construct

Generally� the outputs of mst�explode�construct are rather �clumpy�� There are many

small clusters of similar size separated by increasingly large gaps� This is caused in large

part by the way components are chosen for gluing� step � of Algorithm � chooses two

components a and b at random from the remaining pool of components� In the early

stages it is unlikely that many of the components in the pool will have many vertices"

the random withdrawals would have been favouring the now�large components at the

expense of the smaller components� So all the small edges are dispersed among a great

number of components that then get separated by the larger edges� We are building

random trees� changing only the lengths of the branches�

We would like to take an arbitrary minimum spanning tree and from it build a geo�

metric instance that retains as much as possible of the tree structure of the original� If

we are lucky� the whole MST structure is preserved� and therefore the cluster distance

function is the same on the generated instance as it is on the seed instance� modulo node

renaming� This is the goal of algorithmmst�dangle�construct� It uses the same bottom�up

Chapter �� Instance generators ���

�e� �f�

�c� �d�

�a� �b�

Figure ���� Seed instance dsj����
part
a��� and 	ve instances generated from it by
mst�explode�construct� See also Table ����

Chapter �� Instance generators ���

Figure Seed Join length bias Packing factor

���
b� ���� ��
uniform� �

���
c� ���� � ���

���
d� ���� ���� ��

���
e� ���� � ���

���
f� ���� � ���

Figure ���� Parameters used by mst�explode�construct to generate parts
b� through
f�

of Figure ��� from instance dsj����� A negative join length bias indicates a hull vertex

and face chosen at random from a uniform distribution�

gluing idea that is the essence of mst�explode�construct� but it is more careful about how

components are chosen and glued�

Algorithm mst�dangle�construct retains the entire minimum spanning tree T of the

seed instance and tries to build an isomorphic copy of it� T �� The idea of saving the

structure of the minimum spanning tree is re�ected in the mental picture of picking up

the MST skeletal structure of the original instance� dangling it to shake o� the residual

geometry� and then trying to build a new instance around the mostly intact skeleton�

In the beginning� the isolated vertices that become the vertices of T � are given identi�

ties matching them with vertices in T � In mst
explode
construct we examined the

lengths of edges in T and from them formed edges in T � having those lengths� In

mst
dangle
construct we examine each edge
u� v� from T from shortest to longest�

and build new edges in T �� keeping the identities of vertices u and v and retaining the

length �
u� v� of the edge as well� The two components Cu and Cv containing u and v

are withdrawn from the pool and joined by an edge of length �
u� v�� the new component

is returned to the pool� If possible� u and v themselves are chosen as the vertices to be

joined� thus recreating the edge
u� v� as a branch in the new minimum spanning tree

T �� For this to happen� however� both u and v must appear on the convex hull of their

respective components� This is not always possible� as we will see below� If u or v is not

on its component
s convex hull� then in the new tree u will be more than �
u� v� units

away from v� We try to minimize this deviation in some sense by choosing a hull join

point and face for that component according to the maximum join length bias
value ���

That way the component
s longest face is adjacent to the joining edge and the hull join

point is 	xed� In other respects mst�dangle�construct proceeds as mst�explode�construct

Chapter �� Instance generators ���

does� Algorithm � is the pseudo�code for mst�dangle�construct�

Vertices u and v will not always be on the convex hulls of their respective components�

We call such an occurrence a �force failure� because the algorithm failed to force the new

tree to be isomorphic to the seed tree� There is an in	nite supply of minimum spanning

trees that cause force failures� We can use our knowledge of sphere close�packings to

create such a family� noting that the output of mst�dangle�construct is always a geometric

instance� In a given dimension d� there is a bound s
d� on the number of spheres of a 	xed

radius which can be made to touch a central sphere of equal radius without overlapping

either the central sphere or each other� For example� a honeycomb�like packing shows

that � circles may touch a central circle� and so s
�� � �� one can show that � circles is
too many� and therefore s
�� � �� There is simply �not enough space� in d dimensions

to pack more than s
d� spheres around a central sphere� We can always force failures

in mst�dangle�construct by feeding it a seed tree with its shortest s
�� � � edges being

of equal length� each connecting one of s
�� � � vertices to a central hub vertex� Given

this kind of input� mst�dangle�construct will inevitably place the hub in the interior of its

component before all the edges incident upon the hub are consumed� Even if we extend

mst�dangle�construct to d dimensions� we could always use s
d� � � equal length edges�

The output of mst�dangle�construct is disappointing� On typical geometric seed in�

stances� we get a force failure rate of �� to �� percent� Sometimes the force failure

rate is as high as �� percent for regular grid�like instances� regular grids are e�cient

packings� concurring with our intuition about sphere packings being di�cult for mst�

dangle�construct� On the bright side� for strung�out thread�like seed instances such as

Bentley
s arith� cubediam� or spokes classes� the force failure rate is very low at �

percent or less�

However� visual inspection is the most damning� the instances just don
t look right�

No matter the seed instance� the outputs are dominated by spiral�like structures� One

is reminded of the rough traces ions leave in cloud chambers� of fractal s�sets ����� or of

visuals from Tim Burton
s The Nightmare Before Christmas� Figure ��� shows several

seed instances and a corresponding output for each�

Chapter �� Instance generators ���

Algorithm � mst�dangle�construct
Require
 G is a graph with edge cost function ��

Ensure
 G� is a Euclidean instance with L
G�� � L
G�� Try to make G� have a MST T �

with as much of the structure as T as possible�

Let T �
V�ET � be a minimum spanning tree for G�

C �� a copy of V � each vertex having undetermined coordinates� C is the current set

of components�

force failures �� �

for
u� v� � ET from smallest weight to largest weight do

Choose Cu and Cv from C� containing u and v respectively�

if u is on the convex hull of Cu then

ah �� u

else

Choose ah adjacent to a longest edge on the hull of Cu

force failures � � �

end if

if v is on the convex hull of Cv then

bh �� v

else

Choose bh adjacent to a longest edge on the hull of Cv

force failures � � �

end if

Form component c by joining ah to bh by an edge of length �
u� v�� use the packing

factor to bias the join angles� Ensure that �
ai� bj� � �
u� v� for all vertices ai in

Cu and bj in Cv�

C �� C n fCu� Cvg 	 fcg
end for

Only one component c remains in C� Place one vertex at the origin� thus 	xing all the

coordinates�

Form ��d Euclidean instance graph G from the coordinates of points in c�

Chapter �� Instance generators ���

�e� �f�

�c� �d�

�a� �b�

Figure ���� Output of mst�dangle�construct�
a� TSPLIB seed instance pla
��
�
b� out�
put of mst�dangle�construct on pla
��
�
c� TSPLIB seed instance dsj�����
d� output
of mst�dangle�construct on dsj�����
e� Bentley instance grid��	�������
f� output of
mst�dangle�construct on grid��	�������

Chapter �� Instance generators ���

���� Cluster and noise

The algorithms described so far generate only two�dimensional Euclidean instances�

There may be a need to generate non�geometric instances� Algorithm cluster�noise is

one possibility� Its output is a symmetric distance matrix�

We are trying to preserve the essential clustering of the seed instance� One way to do

so is to just output the cluster function as the distance matrix� To add variety� we add

noise to each edge weight� Speci	cally we set�

�G�
u� v� � cG
u� v� �
� � x
u� v��

where x is drawn uniformly from ��� ��� The triangle equality is not necessarily preserved

by this transformation�

Unfortunately� we cannot depict non�geometric instances as we did with the geometric

instances� However� we can imagine that this transformation collapses much of the

structure of the seed instance� between two vertices u and v� all that matters is the

longest hop between them� their cluster distance� Long chains of vertices are jumbled

together� separated only by the white noise of the x function�

�� Corrupting cluster structure

The previous sections describe instance generating algorithms that hope to preserve the

essential cluster structure of the seed instance� They vary from the very conservative

jitter to the very radical mst�explode�construct and cluster�noise� If our intuition about

the behaviour of Lin�Kernighan is correct� then given a seed instance G� Lin�Kernighan

will behave similarly on the instances generated by those algorithms from G as it does

on G itself� That would prove that our intuition about clustering and the heuristic is

�right��

But we would also like to know that our intuition is �not wrong�� We would like

to tweak an instance G to produce another instance G� having less severe clustering�

One would hope that if G is sharply clustered then the baseline Lin�Kernighan heuristic

would perform better on G� than it does on G� Furthermore� we would hope that any

performance advantage given by cluster compensation would be reduced on instance G�

when compared with the advantage it gives on instance G�

Chapter �� Instance generators ���

���� Cluster discount

A natural way to produce a less�clustered instance G� from G is to make G� identical to G

except that we discount its edge weight function� Weight function �G� is weight function

�G discounted by the cluster distance function cG� That is� we set

�G�
u� v� � �G
u� v�� cG
u� v�

for all vertices u and v� We call this transformation cluster�discount� It takes any instance

as input and produces a non�geometric instance as output� It e�ectively eliminates the

largest cluster gap from G� and reduces the impact of many of the others� Note that a

minimum spanning tree for G will almost certainly not be a minimum spanning tree for

G��

Unfortunately� this transformation forces some edges to have zero weight� These

boundary cases may be unrealistic for many applications� and may break many assump�

tions implicit in an application� To mitigate these problems� we can soften the discount

by rede	ning the transformation to

�G�
u� v� � �G
u� v�� � � cG
u� v�

where � is some value between � and �� For variety� we can choose a new � randomly in

��� �� for each edge
u� v��

Another drawback of this transformation is that even if its input is a geometric

instance� its output is not� It may therefore be di�cult to compare the running time

performance of the heuristic on G and its associated output G� because the preprocessing

algorithms
e�g�� minimum spanning tree and candidate set generation� di�er for the

two classes of instances� However� the Lin�Kernighan optimization phase should be

comparable between the di�erent executions�

���� Cluster in
ll

In	lling is a less dramatic way to produce a less clustered instance G� from a seed instance

G� In	lling puts new vertices into the largest inter�cluster gaps� Let T be a minimum

spanning tree for G� Algorithm in�ll produces G� from G by placing a new vertex uv

�somewhere between� vertices u and v� for each edge
u� v� in T �

If G is a geometric instance� then �somewhere between� has several obvious inter�

pretations� one of which is �exactly halfway between�� Bisecting each MST edge cuts

Chapter �� Instance generators ���

existing cluster gaps in half� Unless G is very sharply clustered� a minimum spanning

tree for the new instance will not resemble T �

If G is not geometric� then we must be more creative in interpreting �somewhere

between�� The di�culty of course lies in the fact that vertices do not have coordinates�

yet we still must de	ne edge weights appropriately so that cluster distances are in fact

smaller in the new instance� For example� we can set the distances from new vertex uv

to other vertices as follows� We can set

�G�
w� uv� �
�

�
�G
u� v� �

��
�
min
�G�
w� u�� �G�
w� v�� if w is a new vertex

min
�G
w� u�� �G
w� v�� otherwise

and further declare that �G� is symmetric�
This de	nition recurses one level deep when

w is a new vertex� and does not recurse otherwise�� If the original weight function �G

satis	es the triangle inequality� then the new function �G� does as well�

If G has n vertices� then its minimum spanning trees each have n � � edges� and so
the base in�ll algorithm creates a new instance with �n � � vertices� It may be di�cult
to judge the relative performance of an optimization heuristic on such widely di�ering

instance sizes� Of course� we can generate instances with only n� k vertices by inserting

new vertices only for the longest k edges in a MST for G� We 	ll in the longest edges

because they bridge the largest cluster gaps�

�� Variations

All the instance generating algorithms described so far produce instances with the same

number as or not many more vertices than the seed instances given to them� To test the

scalability of optimization algorithms� we would like to automatically generate ever�larger

instances� This is straightforward for randomly generated instances such as the random

distance matrices and Bentley
s geometric classes of instances� In those cases� one can

simply specify that more vertices be generated� But again� we would like to generate

instances with clustering characteristics similar to a seed instance�

���� Distill� expand� and generate

One way to generate larger instances is to leverage the two�phase distill and generate

nature of the algorithms given earlier� We can add a middle phase� expansion� Given an

instance G� we produce as usual a distillation Distill
G� of the essential cluster structure

Chapter �� Instance generators ���

of G� We can then expand Distill
G� into Expand
Distill
G�� producing a distillation

of a larger instance� We can then feed Expand
Distill
G�� to the generating phase to

produce an instance G� with more vertices than G has� The trick of course is in de	ning

an appropriate expansion function Expand� In many ways this just renames the problem�

We must 	nd a way to expand a distillation� instead of 	nding a way to expand the graph

itself� However� this approach does represent a savings in conceptual work�

Some of the distill and generate algorithms may be more amenable to expansion than

others� Those with a less structured characterization of an instance are perhaps the most

amenable since expansion is then simpli	ed� Algorithm mst�explode�construct is one of

the easier algorithms to extend� Its characterization of graph G is the unordered list

L
G� of edge lengths used in a minimum spanning tree T for G� We can view L
G�

itself as having been drawn from a probability distribution �L
G�� If we can model �L
G�

appropriately� then we can draw other lists of any desired size from it� These lists can

then be passed on to the generating phase ofmst�explode�construct to create new instances

of any size�

For example� Figure ��� shows the edge lengths in minimum spanning trees for in�

stances dsj����� pr���	� and uni��	������
a uniform geometric instance with ����

vertices and using seed ����� For any plot l
e� of this kind� we can de	ne a probability

distribution function as follows� Find a smooth curve f
t� through the discrete plot l
e�

and rescale the domain of f to ��� ��� We can then generate a new set L� of n edge lengths

by taking uniform samples xi from ��� �� and using the values f
xi�� i�e��

L� � ff
xi� j xi sampled uniformly from ��� ��� i � �� � � � � ng�

Note that the largest cluster gaps are generated by the longest edges� There may be only

a few relatively long edges� in which case they can easily be overlooked by the random

draw� To ensure that the large�scale cluster gaps are retained in the new instance� we

may want to force a small number of long edges to be present in any list generated from

the distribution�

The distill�expand�generate paradigm is quite general� with many ways to implement

any of the three phases� We have described only one way of applying it to mst�explode�

construct� which itself is only one algorithm in the distill�generate paradigm� We leave

further examination of the expansion paradigm to future work�

Chapter �� Instance generators ���

����������������������������
��
��

��
���

���
��

���
��

���
���������������������������������
�������������
�������

� ��� ��� ��� ���
���

�

��

��
��
��
��
��
��

�
��

Edge number from shortest to longest

Instance uni���
�	

MST
edge
length

���
���

��������������������������������������
�����������������

�

�

� ��� ��� ��� ���
���

�

��

���

��

����

Edge number from shortest to longest

Instance pr	

�

MST
edge
length

���
��

������������
���

�

� ��� ��� ��� ���
���

�

��

��
��

��
��

Edge number from shortest to longest

Instance dsj	

MST
edge
length

Figure ���� MST edge lengths in dsj����� pr���	� and uni��	������� plotted from

shortest to longest�

Chapter �� Instance generators ���

�� Summary

This chapter motivates the use of algorithms for producing new instances from old� The

main reason for doing so is to allow us to circumvent the methodological limitations of

working with only a small number of test cases�

A secondary reason is that instance generating algorithms let us test our intuition

about the behaviour of heuristics� We can tailor the generating algorithms to emphasize

or diminish those features of the input that we believe cause bad behaviour on the part

of the optimization heuristic�

There are endless possibilities for instance generation algorithms� This chapter de�

scribes seven of them� They di�er in how radically they transform seed instances� and

on the restrictions they place on the form of the input� The algorithms fall into two cat�

egories� Algorithms of the 	rst kind try to mimic in the new instances the basic cluster

structure of the seed instance� Those of the second kind try to generate new instances

with less severe cluster structure than the seed instance�

There are of course motivations for generating synthetic instances other than just

testing how cluster structure a�ects a heuristic and its modi	cations� There are certainly

other suitable data generation algorithms for those purposes as well�

The next chapter presents the results of experiments on instances generated by the

seven generating algorithms�

Chapter �

Testing the instance generators

The previous chapter describes seven instance generation algorithms� many of which allow

almost unlimited variation through random number seeds and in some cases continuous

parameters� It is of course impossible to test all of the possibilities� We instead perform

a small number of experiments for a few variations on a small number of seed instances�

The following sections describe the seed instances and the instances generated from

them� and the results of experiments on the generated data with the Lin�Kernighan

heuristic for both the Traveling Salesman and the minimum weight perfect matching

problems�

��� Selected seed instances

We want to see the e�ect of cluster structure on the behaviour of Lin�Kernighan on data

generated by the di�erent generation algorithms� so we choose seed instances representing

a variety of clustering characteristics� Instances uni��	������ and dsjr�������� are

representatives for uniform instances� instance pr���	 is a mildly clustered instance�

and instances dsj���� and corners��	
����� are sharply clustered instances� Instance

dsjr�������� is a random distance matrix� so some of the generation algorithms are not

applicable� All the others are two�dimensional geometric instances�

Except for in�ll� all the algorithms are randomized� Each randomized generation

algorithm was used to produce two new instances from each seed instance� Algorithm

in�ll was used to create one new instance
with ��� � n vertices� from each seed instance�

For the TSP� both versions of Lin�Kernighan were run twice on each generated instance�

The percentage excess over an approximate Held�Karp bound and the running times are

���

Chapter �� Testing the instance generators ���

presented as arithmetic means over all experiments for each seed instance� For matching�

both versions of the heuristic were run three times� and the percentage excess over optimal

and the running times are presented as arithmetic means over all experiments for each

seed instance� All other parameters were set as for the experiments reported in Chapters �

and ��

��� Results for the TSP

This section summarizes the results of running both variants of the Lin�Kernighan heuris�

tic for the TSP on the seed instances and on the instances produced from those seeds by

the seven instance generating algorithms�

The quality of output is always measured as percentage excess over an approximated

Held�Karp bound computed using the iterative ascent method described in Section ����

For the sake of comparison� the TSP results for the seed instances are collected

in Tables ��� and ���� The results for TSP runs on Bentley
s instance distributions�

Tables ��� and ���� did not include results for n iteration runs� The results given here

for instance corners��	
����� are the averages over � runs�

The rows in Tables ��� and ��� are arranged in order from least to greatest time

advantage given by cluster compensation� That is� later rows have larger ratios of LK

running time to LKcc running time� The instance ordering also correlates with the

severity of clustering� more sharply clustered instances come later� Uniform distance

matrix instances and uniform geometric instances are not at all sharply clustered� so we

order them solely by the running time advantage cluster compensation provides�

����� Jitter

Tables ��� and ��� show the results for the instances generated by jitter on the geometric

seed instances� The results are quite consistent with the results for the seed instances

themselves� The percentage excesses over Held�Karp are quite similar� as are the absolute

running times and their ratios� In particular� the absolute runtimes rarely di�er by more

than ��) from those on the seed instances�

We should not be surprised by these results because jitter is a very minor perturbation

in rectangular coordinate space� At least we have the satisfaction that the behaviour of

the Lin�Kernighan heuristic in general and our results in particular do not appear to be

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr�
������ ���� ���� ����� ���	 ���
 ���	 ���� ���� �����

uni��������� ��	
 ��	� ���� ���� ���� ���� ���� ���� ����

pr���� ���� ���� ���� ��	� ��	� ���� ���� ���	 ����

dsj���� ���	 ���� ���� ���� ���� ����� ���
 ���� �����

corners���	����� ���� ���� ����� ���� ���� ���� ��
� ���� ����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on seed instances�

Running time

� iteration n��� iterations n iterations

Instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr�
������
��� ���� ���� �	��� ����	 ���� ������ ������ ���

uni��������� ���� ���� ��
� 	��	
��� ���� ���
� ����� ����

pr����
��� ��
� ���� ����� ���� ���� ������
���� ��	

dsj���� ����� ��	� ���� ������ ����
 	��� �����	� ������ ����

corners���	����� ���	� ����
���� ����	� ����� �����
�
���	 �����

��	�

Table ���� Time taken on seed instances by the Lin�Kernighan heuristic for the TSP�

Percentage excess

� iteration n��� iterations n iterations

Input to jitter LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ���� ���� ���
 ���� ���� ���� ��	� ���� ����

pr���� ���� ��	� ���� ���� ��	� ����� ���� ���	 ���

dsj���� ���� ���� ���� ���� ���	 ���	 ���� ���� �����

corners����� ��

 ���� ���� ���� ���� ���� ��
� ��
� ����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on jitter instances�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to jitter LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ��	
 ���� 	��� ���� ���
 ����� ����� ����

pr����
��� ��	� ��
� ����� 	��
 ���� ������ ����� ��		

dsj���� ����	 ��
� 	��� ������ �	��� ����� �	����� ������ �����

corners����� �
�	� ���� ����� ������ �����
����
������ ��
��� �	���

Table ���� Time taken on jitter instances by the Lin�Kernighan heuristic for the TSP�

very sensitive to small perturbations in the input�

����� MST shake

Tables ��� and ��� show the TSP results for instances generated by mst�shake�

Percentage excess

� iteration n��� iterations n iterations

Input to

mst�shake
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ���� ���� ���
 ���� ���� ���	 ���� ���	 �����

pr���� ���� ��	� ���� ���� ���� ����� ���� ���� ����

dsj���� ���� ���	 ����� ���� ��
� ���	 ��	� ��	� ����

corners����� ���� ���� ����
 ���� ���� ���� ���� ���� �����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on mst�shake

instances�

The quality of the tours produced by mst�shake is close to that produced by the

heuristics on the seed instances� The running times are similar for those based on

uni��	������� and are longer for those based on the other seeds� In comparison to

jitter� the mst�shake transformation introduces much more variance in the running times�

Even so� the advantage given by cluster compensation on mst�shake instances is for the

most part consistent with the advantage given on the seed instances themselves�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to

mst�shake
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ��	� ���
 	��� ���
 ���� ����� ����� ����

pr����
��� ���� ���� ���	� ����� ���� ������ ���	� ����

dsj���� ����
 ��	� ��

 ������
���� ���� ������� ����

 ����

corners����� ����	
��	 ���	
�����
���� ���� �	���
� �	���� �����

Table ���� Time taken on mst�shake instances by the Lin�Kernighan heuristic for the

TSP�

����� MST explode and construct

Tables ��� and ��� show the TSP results for instances generated by mst�explode�construct�

Three sets of experiments were performed� corresponding to three pairs of choices for the

join length bias and the packing factors� The tables show the results of the experiments

with all three pairs of settings� Join length bias of ��
random hull point� was paired

with a packing factor of �
pre	x j
��p��� join length bias of ���� was paired with packing

factor ��
pre	x j��
��p���� and join length bias of �
the maximum� was paired with

packing factor ���
pre	x j��p�����

The percentage excesses after a single iteration are higher for the generated instances

as compared with the seed instances� The pattern continues for all the instances generated

with join length bias �� and packing factor �� The pattern also appears for all the
instances generated from the corners��	
����� seed instance� For the other instances

and other join length bias and packing factors the excesses are similar to the excesses on

the respective seed instances�

On these instances the percentage excess di�erence between the variations of Lin�

Kernighan is usually less than ���)�
There are a couple of outlier cases where Lin�

Kernighan with cluster compensation produces answers more than �) closer to the Held�

Karp lower bound��

As for running times� the three pairings of join length bias and packing factors fare

quite di�erently� The 	rst pair have join length bias �� and packing factor �� Recall
that they create rather strung�out instances� no matter the structure of the seed instance�

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to mst�

explode�construct
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

j���p��dsjr����� ���� ���� ���

 ��
� ���� ��
� ���	 ���	 ����

j���p��uni����� ���� ���
 ����� ���� ���� ���� ���� ���� �����

j���p��pr���� ��	� 	�
� ����� ��		
��� ����� ��		
�
� �����

j���p��dsj���� ���
 ��
� ����� ��
� ���� ���� ���� ���� ����

j���p��corners����� ����� ���� ���	� 	��� 	��� ���� ��		 	��� ��
�

j��	��p���dsjr����� ���� ���� ��
� ���� ���� ���� ���� ���� ����

j��	��p���uni�����
��� ��	� ����� ���� ��

 ���	� ���� ���� ����

j��	��p���pr���� ���� ���	 ����� ���� ���� ���� ���� ���� �����

j��	��p���dsj����
�
�
��	 ���
� ���� ���� ����	 ���� ���� �����

j��	��p���corners����� ���� ���� ���� ���� ���� ����� ���� ���� ����

j��p����dsjr����� ���� ���� ���� ���� ���� ���	 ���� ���
 ����

j��p����uni����� ���� ���� ��
� ��
� ��
� ���� ���
 ���
 ����

j��p����pr���� ��	� ���
 ���� ��
� ��	� ���� ���� ���	 ����

j��p����dsj���� ���� ���
 ���� ���� ���� ����� ���� ���� ����

j��p����corners�����
���
��� ���� ��	� ���� ���� ���� ���� ����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on

mst
explode
construct instances� Join length biases are ��
random choice�� �����

and �� and corresponding packing factors are �� ��� and ����

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to mst�

explode�construct
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

j���p��dsjr����� �����

��� ����
�	��� �����	 ���� ��	����

�	��� ����

j���p��uni����� �����
���� ��		
�����
�	��� ���� ���	��� �����	� ���	

j���p��pr���� �����
���
 ��	� ��	�
� ��	��	 ��	� �������
�����
 ��	

j���p��dsj���� ����	
��
� ���� �����	
�
��� ���� �����
�
��
��� ����

j���p��corners����� �����
���� ���	 ����
� ������ ���� ��	���� ������� ��	�

j��	��p���dsjr����� �	��� ����� ���� ������ ������ ���� ��	
��� 	����� ����

j��	��p���uni����� ����
 ���� ���� �����	 	��
	 ���� ����
	 ������ ����

j��	��p���pr���� ����� ���� ��	� �����
 ����� ���� ������
 �����	 ����

j��	��p���dsj���� ����� ����� ���
 �
��	� 	���� ���� ������� ��
��� ���	

j��	��p���corners�����
���� ����� ��	�
�
�
� 	���� ���� �	�	��� ������ 	���

j��p����dsjr����� �
��� ���� ���� ����
� ����� ��
� 	����� ����	� ����

j��p����uni����� ���� ���� ��
� ����� ����	 ���
 �����	 ����� ����

j��p����pr���� ����� 	��� ���� 	���� ����� ���
 �����	 ������ ����

j��p����dsj���� ����
 ���� ���� �
����
���� ���� ������� ����
� ����

j��p����corners����� ����	 ���	� ���� ������ ����� ��
� ������� 		���� ����

Table ���� Time taken on mst
explode
construct instances by the Lin�Kernighan

heuristic for the TSP� Join length biases are ��
random choice�� ����� and �� and corre�
sponding packing factors are �� ��� and ����

Chapter �� Testing the instance generators ���

The running times on those instances are nearly uniform and quite long� The uniformity

comes despite the highly varied behaviour of the Lin�Kernighan heuristic on the seed

instances�

Interestingly� cluster compensation forces n�iteration Lin�Kernighan to run �� percent

longer on the instances generated from pr���	 with join length bias �� and packing
factor �� This is an average� one of the instances ran forced Lin�Kernighan with cluster

compensation to run four times longer than base Lin�Kernighan� This is by far the worst

slowdown produced by cluster compensation that we have seen so far� and we have no

explanation for it�

With the second pair of parameters� join length bias ���� and packing factor ���

there is still uniformity in the running times after n iterations� However� there is more

di�erentiation with fewer iterations� Still� the absolute running times are signi	cantly

greater than for the seed instances themselves�

The last pair of parameters� join length bias � and packing factor ���� is the most

faithful to the results on the seed instances� Run times are often signi	cantly longer on

the generated instances than they were on the seed instances� But the relative ratios of

run times among the di�erent distributions are similar for the generated data as they

were for the seed data� Except for the data generated from the quite uniform seed

instance uni��	������� the ratios of run times still show a signi	cant advantage is given

by cluster compensation� The ratios themselves do not venture above � for the generated

data� yet they were as high as �� on the seed data�

����� MST dangle and construct

Tables ��� and ���� show the TSP results for instances generated bymst�explode�construct�

The pairs of settings for the join length bias and packing factor were the same as for

algorithm mst
explode
construct�

The excess over the approximate Held Harp bounds are quite high� often �) or more�

We suspect the iterative ascent method is partly to blame� However� given the same

standard to measure against� the two variations of the Lin�Kernighan heuristic produced

similar quality answers� The di�erences in quality diminish with more iterations executed�

eventually settling to less than ���) in most cases�

The running times are all much longer than for the seed instances� No consis�

tent pattern emerges when comparing the results from di�erent seed instances� dif�

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to mst�

dangle�construct
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

p��dsjr����� �
��� �
��� ���� �
��
 �
��
 ���� �
��� �
��� ����

p��uni����� ���
	 ����� ����� ���� ���	 ���� ���� ���� ����

p��pr���� 	��� 	��� ����� ���� ��

 ��
�
���
��� ����

p��dsj���� ���� 	��� ���	� ����
��� ����

��

��
 ����

p��corners����� ����	 ����� ���� ���� ���� ����� 	��� 	��� �����

p���dsjr����� ��	� ���� ���� ���� ��
� ���� ���� ���� ����

p���uni����� ��
� ���� ���� 	��� 	��� ����
 	��� 	�

 ����

p���pr���� ��	� ���� ���	 ��
� ���� ���� ���� ��
� ����

p���dsj���� ����
��	 ���		
��� ���� ����� ���	 ��		 �����

p���corners����� ���� 	��
 ����� ���� ���� �����
���
��� ����

p����dsjr����� ���� ���
 ����� ���� ��	� ����� ���� ���� ����

p����uni����� 	��� 	��	 ���� ��
	 ���� ���� ���� ���� �����

p����pr���� ���� 	��� ����� ���	 ���� ����� ��	� ��	� ����

p����dsj���� ��	�
��� ���� ���� ���� ����� ���� ���� ����

p����corners����� ���� ��	� ����
���
��� �����
��� ���� �����

Table ���� Quality of output produced by Lin�Kernighan for the TSP on

mst
dangle
construct instances� Packing factors of �� ��� and ��� were used�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to mst�

dangle�construct
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

p��dsjr����� ����� ����
 ���� ��	���
�
��
 ���
 �
�
��� ��
��	� ����

p��pr���� �
��� ����� ���� �	����
����� ����
	����

������ ����

p��uni�����
���� ����� ���� ��	��� ������ ���� ������� ��
��
� ����

p��dsj����
���� ����� ���� ����	� ������ ���� ���	��� ������� ���

p��corners�����
���� ����� ���� ����
� 	����� ���� ������� �	���
� ����

p���dsjr����� �	��� �	�	� ���� �����
 ������ ����
������
������ ����

p���uni����� ����� ����	 ���� ��
�
� ������ ���� ���
��� �����	� ����

p���pr����

���
���� ���� ������ ������ ���� ��
��	�
��	��
 ����

p���dsj����
���	
���� ���
 �	
��
 ������ ����
�
���� �	�	�
� ���

p���corners�����
���

���	 ���� ������
����� ���� ������� ���	��	 ����

p����dsjr����� ����� ����� ���� ������
�	�
� ����
����

 �����
� ���	

p����uni����� ����
 ����� ���� �
���� ��
��� ���� ������� �	����� ����

p����dsj����
����
���� ���

�����
����
 ���� �	����� ������� ����

p����pr���� ����� ����� ����
����

����� ����
������
��
��� ����

p����corners����� ���
� ����� ���� ������
����� ���
 	����	� ��	��
� ���

Table ����� Time taken on mst
dangle
construct instances by the Lin�Kernighan

heuristic for the TSP� Packing factors of �� ��� and ��� were used�

Chapter �� Testing the instance generators ���

ferent distributions take turns being the most di�cult for the heuristics� Algorithm

mst
dangle
construct therefore is unsuitable for preserving or predicting the behaviour

of Lin�Kernighan on classes of similarly�structured seed instances� This is consistent

with our visual intuition that the instances generated by mst�dangle�construct �don
t

look right��

When viewed as instances in their own right� we see that cluster compensation slows

down the heuristic as often as it speeds it up� The slowdowns are usually by less than

��)� The speedups are usually by less than ��)�

����� Cluster noise

Tables ���� and ���� show the results for instances generated by algorithm cluster�noise�

Percentage excess

� iteration n��� iterations n iterations

Input to

cluster�noise
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr����� ���� ���� ����� ���
 ���� ����� ��	
 ��		 ����

uni����� ���� ���� ���	 ���� ���� ���� ���� ���� ���

pr���� ��
� ��	� ���	 ���� ��
� ���� ���� ���� ����

dsj���� ���� ���� ���� ���� ���	 ���
 ��	
 ���� ���

corners����� ��	� ���� ���� ���� ��	� ���� ���	 ���� ���

Table ����� Quality of output produced by Lin�Kernighan for the TSP on cluster�noise

instances�

The percent excess over approximate Held�Karp is always less than �)� Lin�Kernighan

with cluster compensation produces slightly worse tours than the base heuristic� The

di�erences between tours produced by the two variants diminish with more iterations�

ending up less than ����) apart after n iterations� These results are consistent with the

results on the seed instances�

The story told by the running times is quite dramatic� Lin�Kernighan with cluster

compensation runs very quickly on these instances� always faster than it does on the

seed instances themselves� However� base Lin�Kernighan runs slower
up to � times�

on instances generated from uni��	������� pr���	 than it does on the seed instances

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to

cluster�noise
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ����	� ���� �����	 ������
��� ����
� ������� ����� �
����

uni����� 	��� ��
� ����
���� ���� �
�	� �
���
 ����� ����

pr���� ���� ���� ���	
���	 ���� ����� ������ ���	 �
���

dsj���� ����� ��
� ����� �	���� ���� �
�
� ������� ����	 �����

corners����� �	��� ��
� ����� �����
 ���� ����� ������� ����� �
����

Table ����� Time taken on cluster�noise instances by the Lin�Kernighan heuristic for the

TSP�

themselves� It usually runs slightly faster on the instance generated from dsj����

and corners����� than it does on dsj���� and corners����� themselves� The big

surprise is that base Lin�Kernighan runs much slower on the instance produced from

dsjr�������� than it does on dsjr�������� itself� Putting together the results for

both variants of the heuristic "LK the same or slower and LKcc faster" we get some

spectacular results� cluster compensation makes Lin�Kernighan between �� and ��� times

faster�

But these results should not be so surprising� and in fact con	rms our intuition about

the behaviour of the heuristic� Algorithm cluster�noise is designed to throw away all

structure except the cluster separation pattern itself� So� according to our intuition� base

Lin�Kernighan is faced with all the �hard parts� of the instance
the cluster separation

structure� while Lin�Kernighan with cluster compensation just ignores them�

����� Cluster discount

Tables ���� and ���� summarize the results for the cluster�discount instances� After

one iteration� the percentage excess over Held�Karp is in the �) range� signi	cantly

higher than for the seed instances� By n iterations the quality of the tours is more in

line with those produced on the seed instances� usually less than �) above Held�Karp�

The di�erences between the two variants of the heuristic are larger for these instances as

compared with the seed instances� with Lin�Kernighan with cluster compensation usually

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to

cluster�discount
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr�����
��
 ���� ���� ��	� ��	
 ����� ���� ���� ����

uni����� ���	 ���
 ���� ���� ���� ���� ���	 ��	� ����

pr����
���
��	 ����� ���� ���� ���
 ���� ���� ����

dsj���� ��
	
��� ���� ���� ���� ���� ���� ���� ���

corners����� ��
� ��	� ���� ���� ���� ����� ���� ���� ����

Table ����� Quality of output produced by Lin�Kernighan for the TSP on cluster�discount

instances�

Running time

� iteration n��� iterations n iterations

Input to

cluster�discount
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ���
 ���� ���� ����
 ���	� ���� ����
� ������ ���	

uni����� ��
� ���� ���

��
 ���� ���� �	��� ����� ���	

pr���� ���� ��
� ���� ���� ���� ���� ����� ����� ����

dsj���� ���	 ���� ��	� �
��� ����� ���	 ������ ����� ��	�

corners����� ��

 ���� ���
 ��	� ���� ����
���� ����� ����

Table ����� Time taken on cluster�discount instances by the Lin�Kernighan heuristic for

the TSP�

Chapter �� Testing the instance generators ���

lagging by less than ���) after n��� or more iterations�

For the most part� running times on cluster�discount instances are shorter than on

the corresponding seed instances� For Lin�Kernighan with cluster compensation� the

speedups are by factors in the �+� range at n��� iterations and more� Only the instances

generated from dsjr�������� are exceptions� with running times for n��� and n iteration

runs being roughly the same as for dsjr�������� itself� For base Lin�Kernighan the

speedups are more dramatic� with some n iteration runs being nearly ��� times faster

than those on the seed instances�

It is interesting to compare the results for the most sharply clustered seed instance

corners��	
������ The n iteration base Lin�Kernighan runs on the instances produced

by cluster�discount from corners��	
����� take �� seconds on average� This is even

shorter than the runs of either Lin�Kernighan variant on any of the seed instances�

including the highly uniform uni��	�������

Even with such time reductions for both variants� cluster compensation makes the

heuristic run faster on most runs� By n iterations� the speedup factor is in the ��� to

���� range� The worst slowdown is by ��) after one iteration on the instances produced

from dsj����� but by n iterations those instances display the greatest speedup for cluster

compensation� a ���� times reduction in running time�

Our intuition is con	rmed by these running time trends� That is� the large gaps

between clusters is a primary cause of long running times for the Lin�Kernighan heuristic�

When those gaps are factored out� being largely removed by cluster�discount� even the

base Lin�Kernighan heuristic runs much faster� The bonus is that Lin�Kernighan with

cluster compensation retains a running time advantage on those instances�

����	 Cluster in
ll

Tables ���� and ���� show the results for instances generated by algorithm in�ll�

The quality of output produced on these instances is similar to the quality produced

on the seed instances� By n iterations� both variants produce answers within �) of

the Held�Karp bound� Also� the quality of answers does not vary much between the two

variants of Lin�Kernighan� The excess above Held�Karp usually di�ers by less than ���)�

When considering running times� recall that the instances examined here each have

��) more vertices than their corresponding seed instances� Even with the larger in�

stance sizes� base Lin�Kernighan runs much faster on the instances generated by in�ll

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to in�ll LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr����� ���� ���
 ����� ���� ���	 ���� ��
� ��	� ���	

uni����� ���	 ��		 ���� ���	 ���� ���� ���� ���� �����

pr���� ���	 ���� ���� ���� ���� ���� ��
� ���
 ����

dsj���� ���� ���
 ����	 ���� ���� ���� ���� ���� �����

corners����� ��
� ���	 ����� ��
� ��
� ���� ���� ���� ����

Table ����� Quality of output produced by Lin�Kernighan for the TSP on in�ll instances�

Running time

� iteration n��� iterations n iterations

Input to in�ll LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ���	 ���� ���	 ����� ���� ��
� ���

 ����� ����

uni����� ���� ���� ���� 	���
��	 ����
���
 ���

 ����

pr����
��
 ��
� ���� ����� ����� ��	
 �
���� ������ ����

dsj���� ����� �
��� ���� ����	
 ������ ��
� ��
���� �����	 ����

corners����� ����� ��	� ���� ������ �����
��� ������� �����

���

Table ����� Time taken on in�ll instances by the Lin�Kernighan heuristic for the TSP�

Chapter �� Testing the instance generators ���

from the sharply clustered dsj���� and corners��	
������ This con	rms our suspicion

that 	lling in the largest gaps between clusters should speed up base Lin�Kernighan�

Both variants of Lin�Kernighan run much faster on the instance generated by in�ll from

dsjr�������� than they did on the dsjr�������� itself� Interestingly� Lin�Kernighan

with cluster compensation often runs much longer� up to 	ve times longer� for the ge�

ometric in�ll instances than on their corresponding seed instances� Even with such a

handicap� cluster compensation still provides a running time advantage on the instances

generated by in�ll from any given seed instance� This too con	rms our intuition that

the time advantage given by cluster compensation should be diminished on instances

generated by in�ll�

��� Results for minimum weight perfect matching

This section presents the results for minimum weight perfect matching experiments on

the instances produced by the seven generation algorithms� Tables ���� and ���� collect

the results on the 	ve seed instances� and on an extra instance corners���������

Percentage excess

� iteration n��� iterations n iterations

Seed instance LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr�
������
��� ���� ����� ��
� ��	� ����
 ��
� ��	� ����	

uni��������� ���� ��	� ��
	 ���� ���	 ��
� ���� ���� ��
�

pr���� ���� ���� ���� ���� ��
� ���� ���� ���� �����

dsj���� ��	� ���� ����
 ���� ���� ����� ���� ���� �����

corners���	����� ���� ���
 ���� ���� ���� ���� ���	 ���� ����

corners�������� ���
 ���� ���� ���� ���� ���� ���� ��
� ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on the seed instances� and on corners���������

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Seed instance LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr�
������ ���� ���� ���� ���� ���� ���� ����
�
� ����

uni��������� ���� ���� ���� ���� ���� ���� ���� ���
 ����

pr���� ���� ���� ���� ���	 ��	� ��	� ���� ���
 ����

dsj���� ���� ���� ����
�	� ���� ���� ����	 ���� 	���

corners���	����� ���� ���� ���
 ���� ���� ���� ���� ���	 ����

corners��������
��
 ���� ��
� ����	 ���� ����� ����� ���	 �����

Table ����� Time taken by the Lin�Kernighan heuristic for weighted perfect matching�

on the seed instances and on instance corners���������

����� An anomaly with corners

Tables ���� and ���� display an anomaly with the corners distribution� The rows are

ordered in the same way as they were in the previous section about the TSP� They are

ordered according to increasing speedup provided by cluster compensation for the TSP�

For weighted perfect matching the pattern is the same "increasing speedup provided

by cluster compensation" until broken by corners��	
����� where the speedup is

only ���� even after n iterations� It is the most sharply clustered instance and therefore

should have the greatest speedup for cluster compensation� However� the speedup for the

matching heuristic on the corners class of inputs is highly dependent upon the number

of vertices in the input�

The tables also show the average results from 	ve runs on a ��� vertex instance from

the same corners distribution� The running times for base Lin�Kernighan are much

longer� while Lin�Kernighan with cluster compensation runs are similar to the corners

instance with ���� vertices� The speedup on the ��� vertex instance is quite high� and

more in keeping with what we might expect for so sharply clustered an instance�

What is going on� Recall that the corners distribution produces instances with four

widely separated clumps� each containing n�� vertices� A ���� vertex instance therefore

has four clusters of ��� vertices each� It is overwhelmingly likely that optimal and near�

optimal perfect matchings will not contain any edges with endpoints in two distinct

Chapter �� Testing the instance generators ���

super�clusters� The same is likely true for even the greedy matchings with which our

implementation begins� But a ��� vertex instance will have ��� vertices in each of the

clumps� forcing at least two edges in any perfect matching on that instance to span the

gaps between the super�clusters� Always having a long edge in a perfect matching forces

the base Lin�Kernighan heuristic for matching to spend a lot of time on long fruitless

searches� just as base Lin�Kernighan for the TSP does on corners instances� The running

times on corners��	
����� are low in comparison mainly because the number of cities

in the super�clusters has even parity�

We should expect both kinds of behaviours "very long and very short runs for base

Lin�Kernighan" on the instances generated from corners��	
������ The following

sections show that the heuristic in fact does exhibit both extreme behaviours on those

instances� The generating algorithms are thus performing the important service of high�

lighting the sensitivity of the Lin�Kernighan heuristic to seemingly minor details of the

input�

����� Jitter

Tables ���� and ���� show the results for the instances produced by the jitter algorithm�

Percentage excess

� iteration n��� iterations n iterations

Input to jitter LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ���� ���� ����� ���� ���� ����� ���� ���� ����	

pr���� ���� ��
	 ���� ���� ��
	 ���� ���� ���� �����

dsj���� ���	 ���� ����� ���� ���� ����� ��	� ��	� �����

corners����� ��
� ���� ���� ��
� ���� ��
� ��
� ���� ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on jitter instances�

The results here are to be expected� just as they were for the TSP� Both variants

produce very good matchings� often within �) of optimal� Cluster compensation often

helps the heuristic to 	nd better matchings than it would otherwise�

The running times on the jitter instances are similar to the running times on the seed

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to jitter LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ��
� ���� ���� ���� ���� ���� ���� ���

pr���� ���� ��	� ���� ��
� ���� ���� ���� ���� ����

dsj���� ���� ���	 ���� ���� ���� ���� �	��� ���
 	��	

corners����� ���� ���� ���
 ��	
 ���� ���� ���� ���
 ��
�

Table ����� Time taken on jitter instances by the Lin�Kernighan heuristic for weighted

perfect matching�

instances� with cluster compensation providing a speedup of between roughly ��� and �

after n iterations�

Again� jitter
s conservative nature leads to results on generated instances di�ering

little from the results on the seed instances�

����� MST shake

Tables ���� and ���� show the results for the instances produced by the mst�shake algo�

rithm�

Percentage excess

� iteration n��� iterations n iterations

Input to

mst�shake
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

uni����� ���� ���� ���� ���� ���� ���
 ��	� ���� ����

pr���� ���� ��		 ���
� ���	 ��	� ����� ���� ��	� �����

dsj���� ���� ���� ����� ���� ���� ���
� ���� ��
� ����	

corners����� ���� ���� ����� ��	� ���� ���� ���� ��	
 ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on mst�shake instances�

Both variants produce good matchings� with the percentage excess above optimal

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to

mst�shake
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

uni����� ���� ���� ���	 ���� ���� ���
 ��	� ���� ��
�

pr���� ���� ���� ���	 ���� ���� ���

��� ���	 ����

dsj���� ���� ���� ���� ���
 ����
��� �	��� ��
	 ����

corners����� ���� ���
 ���� ���� ���	 ���	 ��		 ���� ����

Table ����� Time taken on mst�shake instances by the Lin�Kernighan heuristic for

weighted perfect matching�

always being less than ���)� Neither variant always produces better matchings� with

the advantage being data�dependent though not apparently correlated to the severity of

clustering� These results are consistent with the results on the seed instances�

The running times on these instances are also similar to those for the seed instances�

staying within roughly ��) of the original timings� The speedup provided by cluster

compensation is also similar� at n iterations they range from ��� to �� compared with ���

to ��� on the seed instances�

����� MST explode and construct

Tables ���� and ���� show the weighted perfect matching results for the instances pro�

duced by mst�explode�construct� Again� join length bias ��
random choice� was paired

with packing factor �� join length bias ���� with packing factor ��� and join length bias

� with packing factor ����

By n iterations� both variants of Lin�Kernighan produce matchings with weight within

�) of optimal� Each one takes turn producing better matchings than the other� with

signi	cant di�erences on both sides� For example� for three distributions Lin�Kernighan

produces a matching after n iterations more than ���) closer to optimal than produced by

Lin�Kernighan with cluster compensation� Going the other way� there is one case where

cluster compensation helps the heuristic 	nd matchings ����) above optimal instead of

����) above optimal�

The only instances that prove too di�cult to get good answers in few iterations are the

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to mst�

explode�construct
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

j���p��dsjr����� ���
 ���� ����� ���� ���� ����� ��	� ���
 �����

j���p��uni����� ���� ���� ���
 ���� ���� ���
 ���� ���� ���

j���p��pr���� ��
� ���� ���� ��
� ���� ���� ��
� ���� ����

j���p��dsj���� ���� ���� ���
 ���� ���� ���
 ���� ���� ����

j���p��corners�����
��

��� ����� ���� ��
� ����� ���� ���
 �����

j��	��p���dsjr����� ���� ���� ���� ���� ���� ���
 ��	� ���� ����

j��	��p���uni����� ���� ���	 ���� ���� ���	 ���� ���� ���� ����

j��	��p���pr���� ���� ��	� ����	 ���� ��	� ����	 ��	� ���� �����

j��	��p���dsj���� ���� ���� ���� ���� ���� ���� ���� ���� ����

j��	��p���corners����� ���� ���� ���� ���� ���� ����� ���� ���� ����

j��p����dsjr����� ���� ���
 ���
 ���
 ���	 ���� ���
 ���� ����

j��p����uni����� ��
� ���� ��
� ��
� ���
 ��
� ���� ���� ����

j��p����pr���� ���� ��
� ����� ���� ���� ����� ���� ���� ���	

j��p����dsj���� ��	
 ���	 ���� ��	� ���� ��
� ���	 ���� ����

j��p����corners����� ���� ���� ���� ���� ���
 ���� ���� ���� �����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on mst
explode
construct instances� Join length biases are ��
random choice�� �����
and �� and corresponding packing factors are �� ��� and ����

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to mst�

explode�construct
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

j���p��dsjr����� ���� ���� ���� ����
��
 ��
� ����� ����� ����

j���p��uni����� ���� ���� ���� ���� ���� ���� ���� ���� ����

j���p��pr���� ���� ���� ���
 ��
� ���� ���� ��	�
��� ����

j���p��dsj���� ���� ��
� ���� ���
 ��	� ���� ����
 	��� ����

j���p��corners����� ���� ���� ���	 	��� ���� ��
� ����� �
�	� ����

j��	��p���dsjr����� ��

 ���� ��	� ���� ���� ���	 �����
�
� ����

j��	��p���uni����� ���� ���� ���
 ���� ���� ����
��� ���� ����

j��	��p���pr���� ���� ���� ���
 ���� ���	 ��

 ���� ���� ���	

j��	��p���dsj���� ���� ���� ��
	 ���
 ���� ��	
 ����
 ���� ��
�

j��	��p���corners�����
�	� ����
�	� ����� ���� ���� ����	 	��	 	���

j��p����dsjr����� ���
 ���
 ���� ���� ���	 ���� ����	 ���� ��	�

j��p����uni����� ���� ���� ���� ��
� ���� ���� ����
��� ����

j��p����pr���� ���� ���� ���� ���� ���� ��
� ���	

��� ��	�

j��p����dsj���� ���
 ���� ���� ���� ��	� ���� ����� ���	 ����

j��p����corners����� ��	� ���� ��	� ���	 ���� ����
���� ���� ����

Table ����� Time taken on mst
explode
construct instances by the Lin�Kernighan

heuristic for weighted perfect matching� Join length biases are ��
random choice�� �����
and �� and corresponding packing factors are �� ��� and ����

Chapter �� Testing the instance generators ���

ones produced from seed corners��	
����� using join length bias �� and packing factor
�� After a single iteration� both variants produce matchings almost �) above optimal�

The excess drops to between � and �) after n��� iterations� But after n iterations the

excess is in the normal range of less than �) above optimal�

There are three main trends in the absolute running times given in Table �����

First� the running times for the instances generated from the random distance matrix

dsjr��������
��� ��� and �� seconds� are signi	cantly higher after n iterations than

they were after n iterations on djsr�������� itself
� seconds�� Second� n iteration run�

ning times are signi	cantly higher for Lin�Kernighan with cluster compensation� often

� times higher� Base Lin�Kernighan often runs longer� but not on instances generated

from dsj����� Third� the instances generated from corners��	
����� force quite high

running times� Running times for base Lin�Kernighan on those instances are signi	cantly

higher than for other instances and are more in line with what one might have predicted

by looking at its running times on corners��������� It appears that on the instances

generated from corners��	
������ we have not only the wide separation of the clusters

inherent in the construction but also those clusters have sizes with odd parity�

The ratios of running times still consistently favour cluster compensation� The small�

est speedup is roughly ���� and the largest is more than �� Nowhere do we see a repeat

of the dramatic �� times speedup that Table ���� shows on corners��������� How�

ever� without the instances generated from dsjr�������� the speedups increase with

the sharpness of clustering� i�e�� with successive rows�

Overall� mst
explode
construct produces instances with weighted perfect matching

heuristic results comfortably close to the results for its seed instances that are geometric

in nature� It is most consistent in predicting the speedup o�ered by cluster compensation�

Surprisingly� these trends do not appear to depend heavily on the join length bias nor on

the packing factor used to generate the new instances�

����� MST dangle and construct

Tables ���� and ���� show the weighted perfect matching results for the instances pro�

duced by mst�dangle�construct� Packing factors �� ��� and ��� were used�
Join length

bias is not signi	cant in algorithm mst�dangle�construct��

Table ���� has several striking features� First� the quality of the matchings produced

varies a great deal from one row instance to another� In particular� the instances gen�

Chapter �� Testing the instance generators ���

Percentage excess

� iteration n��� iterations n iterations

Input to mst�

dangle�construct
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

p��dsjr����� ���� ���� ���� ���� ���� ���� ���� ���� ����

p��uni����� ��	� ���� ����� ���� ���� ���� ���� ���� �����

p��pr���� ��	� ���� ����� ���� ���� ����
 ���� ���� ����

p��dsj���� ���� ���� ����� ���� ���� ����� ���� ���
 �����

p��corners����� ���� ���	 ����� ���� ���	 ����� ���� ���	 �����

p���dsjr����� ���� ���� ���� ���� ���� ���� ���� ���� ����

p���uni����� ���	 ���
 ����� ��	� ���� ����� ���� ��	� ����

p���pr���� ���� ���	 ����� ���� ���	 ����� ���� ���	 ����

p���dsj���� ���� ���� ���	 ���� ���� ���
 ���� ���� ����

p���corners����� ���� ���� ���� ���� ���� ���� ���� ���� ����

p����dsjr����� ���� ���� ���� ���� ���� ���� ���� ���� ����

p����uni����� ��	� ���� ����� ��	� ���� ����� ���� ��
� �����

p����pr���� ���� ���	 ���
 ���� ���	 ���
 ���� ���
 ����

p����dsj���� ���� ���� ����� ���� ���� ����� ���� ���� ����

p����corners����� ���� ���� ���� ���� ���� ���� ���� ���� ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on mst
dangle
construct instances� Packing factors of �� ��� and ��� were used�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to mst�

dangle�construct
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

p��dsjr����� ���� ��		 ���	 ���� ���� ���	 ���� ���� ��
�

p��uni����� ���� ���� ���� ��
� ���� ���� ����
��� ���	

p��pr���� ���
 ��	� ���� ���� ���	 ����
��� ���� ��	�

p��dsj���� ���	 ���� ���� ���� ���� ��
� �
��
 ����� ����

p��corners����� ��	� ��	� ���
 ���� ���	 ����
�	� ���� ����

p���dsjr����� ���� ���� ���� ��
� ���	 ���	 ���� ��	� ��
�

p���uni����� ���� ���� ���� ���� ���� ���	 ��
� ���� ����

p���pr���� ��	� ���� ���� ���� ���� ���� ��	� ���� ��
�

p���dsj���� ���
 ���� ���� ���	 ���� ���� ���	� ����� ���	

p���corners����� ���� ���� ���� ���� ��	� ���� ���� ���� ����

p����dsjr����� ���� ���� ���� ���
 ���� ����
��� ��
� ����

p����uni����� ���� ���� ��
	 ���� ���� ��
	 ����
 ���� ����

p����pr���� ���� ��
� ���� ���� ��

 ��

�
� ���� ��	�

p����dsj���� ���� ��	� ���� ��	
 ��	� ����
���� ����� ���

p����corners����� ���� ���� ���� ��	� ���� ���� �	��� ��		 ����

Table ����� Time taken on mst
dangle
construct instances by the Lin�Kernighan

heuristic for weighted perfect matching� Packing factors of �� ��� and ��� were used�

Chapter �� Testing the instance generators ���

erated with packing factor � from random distance matrix dsjr�������� are very easy

to optimize� both variants of the heuristic 	nd matchings ����) above optimal� The

impressive ������ 	gure is not a result of rounding� Checking the output logs reveals

that both Lin�Kernighan variants found perfect matchings with exactly optimal weight

after the 	rst iteration on all three runs on each of the two instances generated from

dsjr���������
The initial randomized greedy matchings were not optimal in any case��

The instances generated from dsjr�������� with packing factors �� and ��� are almost

as easy� with percentage excesses over optimal falling to ����) or less by n��� iterations�

Second� some instance distributions were quite di�cult to optimize� especially those

generated from dsj����� For the instance generated with packing factor ���� base Lin�

Kernighan fails to 	nd a matching with weight less than �) above optimal� even after

n iterations� Lin�Kernighan with cluster compensation fares much better in that case�

achieving an average excess of only ���)� A similar story holds for instances generated

from corners��	
����� with packing factor ���� base Lin�Kernighan does no better

than ���) above optimal while Lin�Kernighan with cluster compensation gets down to

���) above optimal� Still� both variants do equally �poorly�� producing answers with

excesses in the ����) range for instances generated from dsj���� with packing factor ��

Running times are generally longer for the mst�dangle�construct instances than for the

seeds from which they were generated� For both variants� the blowup factor is often �

times or greater� The main statistic in common between Table ���� and Table ���� is

that the longest running time for a seed instance is for base Lin�Kernighan on dsj�����

and the longest running time on generated data is for base Lin�Kernighan on instances

generated from dsj�����
We are not counting the running times for corners��������

because we did not generate data from it��

Cluster compensation usually reduces running times� but there is no consistent speedup

trend across the rows� Certainly� the speedup trends across the rows could not be pre�

dicted from the trends displayed in Table ���� for the seed instances themselves�

Given the outcomes on the data it generates� algorithm mst�dangle�construct gives

only a very broad indication of how the two Lin�Kernighan variants performed on the

seed instances� It is less faithful to the original outcomes than algorithm mst�explode�

construct�

Chapter �� Testing the instance generators ���

����� Cluster and noise

Tables ���� and ���� show the weighted perfect matching results for the instances gener�

ated by algorithm cluster
noise�

Percentage excess

� iteration n��� iterations n iterations

Input to

cluster�noise
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr����� ���� ���� ����� ���� ���� ����� ���
 ���
 �����

uni����� ���
 ��

 ���� ���� ���� ���� ���
 ���� ���

pr���� ���� ���� ���	 ���
 ���� ���� ���
 ��
� ���	

dsj����y ���� ��	� ���	 ���� ���
 ���� ���
 ���� ���

corners�����y ���� ���� ���� ���	 ���	 ���� ���� ���� ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on cluster�noise instances�

Of the ten instances generated by cluster�noise� three of them posed serious di�culty

for the Blossom IV code�
Blossom IV was itself built upon the preliminary version of the

Concorde software dated ����%��%��� the latest available as of this writing�� For both

instances generated from dsj���� and one of the two generated from corners��	
������

the Blossom IV code failed to 	nd a perfect matching at all� let alone an optimal perfect

matching� In place of getting an optimal perfect matching from Blossom IV� for each

instance we substituted the lightest perfect matching found during �� n iteration runs of

base Lin�Kernighan and �� n�iteration runs of Lin�Kernighan with cluster compensation�

We have therefore marked those rows with a dagger
y�� Fortunately� the percentage
excesses are not out of place in comparison with the other rows in the table� nor with

the excesses for those seed instances using other generation heuristics�

Both variants of Lin�Kernighan 	nd good matchings� always less than ���) on average

above optimal after a single iteration� and always less than �) above optimal on average

after n iterations� Cluster compensation usually forced the heuristic to 	nd slightly worse

answers� but the di�erences in percentage excess after n iterations were small� less than

����) extra excess� These results are even more uniform than the percent excess results

for the seed instances�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to

cluster�noise
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ���	 ���� 	��� ����
 ��
� ����� ��	�

 ���� �����

uni����� ���� ���� ���� ���� ���� ����
�
� ���� ��
�

pr���� ��	� ���� ��
� ���� ���� ���� ���
 ��		
���

dsj����y ���
 ���� ���� ���� ���� 	���

��� ���� �����

corners�����y ���� ���	 ���� ���
 ���� ��
� ��
� ���
 ����

Table ����� Time taken on cluster�noise instances by the Lin�Kernighan heuristic for

weighted perfect matching�

The big surprise in Table ���� is the base Lin�Kernighan running time for the instances

generated by cluster�noise from dsjr��������� After n iterations� the time exceeds ���

seconds� by far the longest running time recorded in the perfect matching results in

this chapter�
The closest runner�up is the �� seconds recorded by n iteration base

Lin�Kernighan on corners����������

Lin�Kernighan with cluster compensation runs longer on the instances generated from

dsjr�������� than on dsjr�������� itself� Otherwise� the running times for LKcc are

surprisingly uniform across all numbers of iterations� At n iterations the other four times

range from ���� to ���� seconds�

In contrast� the trend in running times for base Lin�Kernighan on those four instance

classes mimics the trend for base Lin�Kernighan on the seed instances� The main di�er�

ence is that running times are signi	cantly longer� by factors of between roughly ��� and

��

Combining the trends for both kinds of heuristics� the speedup due to cluster com�

pensation is more exaggerated on the generated data in comparison to the results on

the seed instances� The speedup for the generated data ranges up to �� and �� times�

whereas for the seed data it was limited to less than � times�

Algorithm cluster�noise strips away all signi	cant structure except the cluster struc�

ture� so we should not be surprised by these results for absolute running times and for

the speedups provided by cluster compensation� These results help con	rm our intuition

that sharply clustered structure forces long running times� and that cluster compensation

Chapter �� Testing the instance generators ���

is an appropriate remedy�

����	 Cluster in
ll

Tables ���� and ���� show the weighted perfect matching results for the instances gener�

ated by algorithm in�ll�

Percentage excess

� iteration n��� iterations n iterations

Input to in�ll LK LKcc
LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr����� ���
 ���	 ����	 ���� ��	� ���
� ���� ���� ����

uni����� ���� ���� ��
� ���� ���
 ��
� ���� ��
� ��

pr���� ���� ��

 ���

 ���� ��
� ���
	 ���� ���� ��
�

dsj���� ���
 ���	 ����	 ���� ���	 ����
 ���� ���� ����	

corners����� ���	 ���� ���
 ���� ���� ����� ���� ��	� �����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on in�ll instances�

Running time

� iteration n��� iterations n iterations

Input to in�ll LK LKcc
LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ���� ��	� ���� ���� ���� ����
��	 ���� ����

uni����� ���	 ���� ���
 ���� ��	� ���
 ���� ���
 ��
�

pr���� ���� ��	� ���
 ���� ���� ��	� ��	� ���� ����

dsj���� ���� ���� ��
� ���� ��	� ����
��� ���� ����

corners�����
��� ��

 ���� ��	� ���	 ��
� ����� ��
� ����

Table ����� Time taken on in�ll instances by the Lin�Kernighan heuristic for weighted

perfect matching�

Both variants produce very good perfect matchings for these instances� with excesses

never exceeding ���) above optimal after n iterations� Even after only a single iteration�

Chapter �� Testing the instance generators ���

the excesses never exceed ���)� Neither variant of Lin�Kernighan produces consistently

better answers than the other�

Running times for instances generated from dsjr��������� uni��	������ and pr���	

are quite similar to the running times on those seed instances themselves� The biggest

di�erences come for the instances generated from dsj���� and corners��	
������ Base

Lin�Kernighan is � times faster
��� seconds� on the instances generated from dsj����

than on dsj���� itself
�� seconds�� Base Lin�Kernighan on the instances generated from

corners��	
����� after n iterations takes �� seconds� somewhere between its running

time on corners��	
����� and corners���������

Cluster compensation consistently reduces running times� with speedup factors rang�

ing from just over � to just under � times� The speedup factors are generally smaller here

than they were on the seed instances themselves� This is expected because algorithm

infill is designed to corrupt the cluster structure by bisecting the longest edges� Our

intuition about cluster structure and the Lin�Kernighan heuristic and cluster compensa�

tion is therefore further con	rmed by these results�

����
 Cluster discount

Tables ���� and ���� show the weighted perfect matching results for the instances gener�

ated by algorithm cluster
discount�

Percentage excess

� iteration n��� iterations n iterations

Input to

cluster�discount
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK
LK LKcc

LKcc

�LK

dsjr����� ���
 ���� ���

 ����
��� ����� ���� ��	� ����

uni����� ���� ���� ���
 ���� ��	� ���� ���� ��	� ���

pr���� ���� ���� ����
 ���� ��	
 ���� ���� ��
� ���	

dsj���� ���� ��
� ��
	 ��	� ��
� ��	� ���� ���� ����

corners����� ���� ���� ���� ��		 ���� ���� ���� ��	� ����

Table ����� Quality of output produced by Lin�Kernighan for weighted perfect matching

on cluster�discount instances�

Overall� both variants of Lin�Kernighan have di�culty 	nding very good matchings�

Chapter �� Testing the instance generators ���

Running time

� iteration n��� iterations n iterations

Input to

cluster�discount
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc
LK LKcc

LK�

LKcc

dsjr����� ���� ��
� ���� ��
� ���� ���� ��
� ���� ����

uni����� ���
 ���� ���� ���� ���� ���� ���� ���� ����

pr���� ���� ���� ���� ���� ���� ���� ���� ��	� ���	

dsj���� ���� ���� ���� ���� ��
� ���� ���� ���� ����

corners����� ���� ���	 ���� ���� ���� ���� ��	� ���� ����

Table ����� Time taken on cluster�discount instances by the Lin�Kernighan heuristic for

weighted perfect matching�

The percentage excesses are higher on these instances than they were on the correspond�

ing seed instances� For example� base Lin�Kernighan fails to 	nd matchings closer than

�) above optimal after n iterations for the instances generated from cluster�discount� Lin�

Kernighan with cluster compensation 	nds better matchings on those instances� but base

Lin�Kernighan 	nds marginally better matchings for the other instance distributions�

The running times are both uniform and short� Cluster compensation always slows

down the heuristic� by between � and �� percent� However� the di�erences in absolute

running times are very small� often by less than ���� seconds� That is roughly the

time taken by the extra preprocessing steps� such as building a minimum spanning tree�

required by e�cient cluster compensation� As described in Section ������ the disadvantage

is compounded by the fact that the optimization phase for weighted perfect matching

runs so quickly and that the general matrix form of the input forces us to use a slower

minimum spanning tree algorithm such as Prim
s O
n�� time method�

We should not be surprised by these running time results since cluster discount is

supposed to remove the features of the instance that slow down base Lin�Kernighan� So

Lin�Kernighan with cluster compensation is left with no structure to take advantage of�

and yet must try to make up for its extra preprocessing time�

Chapter �� Testing the instance generators ���

��� Summary

The experiments reported in this chapter support our experimental 	ndings from previous

chapters� In general Lin�Kernighan usually 	nds very good tours and perfect matchings�

The answers are routinely within �) of lower bounds for those instances�

Quality�wise� the most di�cult classes of instances were those generated by algorithm

mst�dangle�construct� For the weighted perfect matching problem� a couple of the seed

instances produced data that base Lin�Kernighan failed to 	nd an answer with an excess

of less than �) above optimal� and in one case less than �) above optimal�

Furthermore� sharply clustered data usually forces base Lin�Kernighan to take signi	�

cantly more time� Cluster compensation usually helps to reduce the performance penalty

incurred on clustered data�

The algorithms designed to preserve cluster structure "jitter� mst�shake� mst�explode�

construct� mst�dangle�construct� and cluster�noise" generally maintained the running time

advantage given by cluster compensation� and in particular the distinctions made between

the speedups given the varying severity of clustering in the inputs� Algorithmmst�dangle�

construct had the least success in doing so� especially for the TSP� Algorithms jitter and

mst�shake were the most successful at producing instances that make the Lin�Kernighan

heuristic behave similarly to the way it behaves on the seed instances�

The algorithms designed to damage the gross cluster structure "in�ll and cluster�

discount"made running times more uniform and diminished the running time advantage

given by using cluster compensation� For weighted perfect matching� cluster�discount pro�

duced instances that always made Lin�Kernighan with cluster compensation run longer

than base Lin�Kernighan� It did this even though the reverse was true for the seed

instances� Even so� the slowdowns were not excessive� never more than ��)�

Our intuition about the causes of long running times was con	rmed by these exper�

iments with generated data� Large gaps between clusters are a primary cause of long

running times in the base Lin�Kernighan heuristic� and e�cient cluster compensation

goes a long way toward reducing the running time penalty without signi	cantly damag�

ing the quality of output�

Chapter �

Conclusion

This thesis motivates and describes e�cient cluster compensation� a technique designed

to reduce running times of the Lin�Kernighan heuristic� especially on clustered inputs�

without signi	cantly degrading the quality of the output�

Cluster compensation adjusts the cumulative gain criterion and the greedy selec�

tion criterion� These two criteria serve as the Lin�Kernighan heuristic
s primary means

of pruning the search space and prioritizing avenues within the available search space�

respectively� The adjustment consists of subtracting the cluster distance between two

points from the standard cumulative gain function used by the heuristic� We have shown

online cluster distance queries can be answered in constant time� with only modest pre�

processing cost"e�ectively just the cost of computing a minimum spanning tree for the

underlying instance� The number of extra words of storage required is only linear in the

number of vertices of the graph�

Cluster compensation applies to a wide range of Lin�Kernighan heuristics� We have

focused on two particular problems� the Traveling Salesman Problem and the minimum

weight perfect matching problem� We report the results of experiments comparing our

implementation of the Lin�Kernighan heuristic for both problems� both with and without

e�cient cluster compensation� The test data includes twelve of the standard TSPLIB

instances
the same used by Johnson and McGeoch ������ samples from eleven distribu�

tions Bentley reported as either standard or which stress TSP construction heuristics in

some way ����� and both uniform geometric and uniform distance matrix classes�

Additionally� we introduce seven instance generating algorithms to produce new test

data� Each generator takes a seed instance as input and generates a new instance from it�

trying either to preserve or to destroy aspects of the cluster structure present in the seed

���

Chapter �
� Conclusion ���

instance� The algorithms vary according to their goals� how radically they transform the

input� and the assumptions they place on the input� For example� algorithms jitter and

mst�shake both require their inputs to be geometric� and jitter is primarily intended to test

the sensitivity of the Lin�Kernighan heuristic to small perturbations in the coordinates of

the input vertices� Algorithms mst�explode�construct and mst�dangle�construct take any

complete undirected weighted graph as input and produce a two�dimensional geometric

instance as output� They are radical transformations� and are intended to preserve the

most basic aspects of cluster structure� Algorithm cluster�noise preserves only the gross

cluster structure� together with some noise� Algorithms cluster�discount and in�ll destroy

the main aspects of the cluster structure� by subtracting the cluster distance function

from the base distance function or by inserting new points into the gaps between clusters�

respectively� These last three algorithms help us test our intuition about the causes of

long running times for the Lin�Kernighan heuristic� and whether cluster compensation is

an e�ective means for reducing that performance penalty�

The experiments show that cluster compensation usually reduces running times on a

given instance� often dramatically� A very rough rule is that the reductions are greater

on more sharply clustered instances� For example� on the sharply clustered ���� vertex

instances from the corners distribution� the TSP heuristic has an average speedup of ��

times after ��� iterations� An average speedup of ��� is observed for ��� iteration runs

on the uni����� distribution� random uniform geometric instances with ���� vertices�

For n iteration TSP runs� running times are usually between ��� and � times shorter�

Overall running times for the weighted perfect matching heuristic are much shorter

than for the TSP heuristic� Cluster compensation usually reduces running times for

the matching heuristic as well� But the margins are often thinner� and there are more

instances for which cluster compensation increases running times�

In the few cases for which cluster compensation increases running times� the slowdown

is small� usually less than ��)� In by far the worst case� cluster compensation increased

average running times for an instance by a factor of �� On the �ip side� the greatest

speedup observed due to cluster compensation was by a factor of ��� times�

The experiments on data produced by the instance generators con	rm our intuition

that sharply clustered instances usually force longer running times� and support the claim

that cluster compensation reduces that e�ect�

We also plotted probe and move depths for executions of the heuristic on selected

instances� The probe depth plot correlates with the amount of search work performed

Chapter �
� Conclusion ���

by the heuristic� and the move depth plot can be used to see how much of that searching

results in improvements being made� The probe and move depth plots concur with the

observations for running times and quality of the output� First� cluster compensation does

not signi	cantly change the number and depth at which committed improving moves are

found� Second� the probe depth plots show that the greatest reductions in running time

correspond to the greatest reduction in search work performed� These e�ects are clearest

for the TSP case� and less so for the weighted perfect matching case� Probe and move

depth plots are valuable because� unlike absolute running times� they are independent

of computing platform� programmer skill� and the amount of e�ort put into tuning the

implementation� These plots are therefore the most convincing evidence that our results

should carry over to other implementations of the Lin�Kernighan heuristic�

In the cases where e�cient cluster compensation increases running times� often one

or two factors can be blamed� First� the optimization phase runs very quickly� In these

cases there is little slack� there is not much time that cluster compensation can cut out�

Second� the time for preprocessing might be very high when compared to the time spent

in the optimization phase� This is often the case for the weighted matching problem�

where optimization times are typically very short� It is also true for larger non�geometric

instances for either problem� The preprocessing stage for those inputs uses Prim
s algo�

rithm to 	nd a minimum spanning tree� Prim
s algorithm examines each edge a small

constant number of times� so it is e�cient� But on almost all the instance classes we

tested� we observed subquadratic running time
o
n��� for the optimization phase of the

heuristic� The time spent in the optimization phase is therefore asymptotically domi�

nated by the time to build a minimum spanning tree since a complete graph has �
n��

edges� As instance sizes grow larger� the asymptotics take over and cluster compensation

has no hope of recovering the time it spent in preprocessing� We 	nd it ironic that com�

puting a minimum spanning tree "one of the classic �easy� combinatorial optimization

problems" should take more time than the optimization phase of the Lin�Kernighan

heuristic� a heuristic useful for tackling the TSP "a classic �hard� combinatorial op�

timization problem� On the other hand this might only indicate that even though the

problem is hard� the sample instances are tame�

When should cluster compensation be used� In the 	rst bad case given above� the

running time is short anyway� so we may not care about the small relative slowdown�

The second bad case occurs only when n is large and we must use Prim
s or any !
n��

algorithm to compute a minimum spanning tree� We of course detect that case as soon

Chapter �
� Conclusion ���

as we examine the instance� The experimental evidence suggests that e�cient cluster

compensation should be applied in all other situations� Because it reduces running times

with almost no loss in quality of the output� cluster compensation should be incorporated

as a standard feature of any implementation of the Lin�Kernighan heuristic�

���� Future work

We conclude with some suggestions for further research�

������ Other parameter settings

The Lin�Kernighan heuristic has many tunable parameters� The experiments reported

in this thesis use only a small number of the possible settings� most of which were found

to be good choices by other researchers� It remains to be seen how cluster compensation

a�ects the heuristic when using other settings� and whether cluster compensation makes

other settings more attractive than the standard ones�

For example� in our experiments search sequences are forcibly terminated at �� edge

exchanges beyond the backtracking depth� i�e�� at t�
� or at t�
�� The probe depth

graphs of Sections ��� and ����� show that Lin�Kernighan with cluster compensation

only very rarely runs into that barrier� Cluster compensation may therefore provide

an opportunity to either loosen or completely eliminate that depth bound� This might

not be advisable for a general purpose implementation since the behaviour on the very

worst input distributions� such as e�g�� Bentley
s arith� cubediam and other line�like

con	gurations� remains quite bad with many very deep and fruitless searches�

Another example is how e�cient cluster compensation a�ects the choice of candidate

sets� Cluster compensation makes Lin�Kernighan more selective in the paths it follows�

The practitioner can perhaps a�ord the luxury of specifying a richer candidate set while

remaining within the same time budget� With more search options o�ered by a rich

candidate set� there is a chance of 	nding better tours�

We are unaware of any experimental work using the complementary tabu rule �never

add a deleted edge� in place of �never delete an added edge�� The 	rst is used in

Papadimitriou
s proof that Lin�Kernighan solves a problem that is PLS�complete� the

second is the only tabu rule used in the Johnson et al� implementation and in our

own� Lin and Kernighan
s original implementation used both� We suspect that switching

Chapter �
� Conclusion ���

the tabu rule would not signi	cantly change the performance of the heuristic� since it

appears that the cumulative gain criterion is the primary pruning mechanism in any case�

However� cluster compensation might become more important for good performance with

the new tabu rule�

������ Partial use of cluster compensation

One class of inputs for which e�cient cluster compensation is not a performance win are

extremely uniform instances with little or no clustering� One is tempted to detect those

kinds of instances and turn cluster compensation o� for them� Here
s one way to do it�

when we build a minimum spanning tree� if its longest edge is not much longer than its

shortest edge� then by Lemma ��� the cluster distance is pretty much constant across the

instance� and we can turn cluster compensation o�� But there
s a �y in the ointment�

in performing this test� we have already spent most of the preprocessing time required

for cluster compensation in just trying to detect the highly uniform case� So the cost of

detecting the bad case for cluster compensation is about the same cost of performing the

cluster compensation anyway�

There are several ways of softening cluster compensation� First� we could discount by

� � c
u� v� with �
 � instead of the full cluster distance c
u� v�� I would guess that when

applying these techniques� the running times would increase with decreasing � down to

�� with the initial step being the most dramatic� Second� we could �ip a weighted coin

to determine whether to factor in the cluster distance� Third� we could discount by a

particular cluster distance only if it was larger than some threshhold� say� the median

of weights in a minimum spanning tree for the instance� Note that these solutions add

extra overhead to the inner loop of the heuristic� so any bene	ts they provide would

have to be balanced against extra runtime overhead� Each of these would be interesting

experiments�

The other main situation in which cluster compensation increases running times oc�

curs when computing a minimum spanning tree takes a relatively long time� Perhaps we

can still capture the spirit of cluster compensation by basing our cluster distance com�

putations on only approximately minimum spanning trees� Perhaps there is a tradeo��

with poorer spanning trees translating to less precise cluster distance computations and

therefore less bene	cial results when used by the Lin�Kernighan heuristic� Again� we

	nd it ironic that a quintessentially easy combinatorial optimization problem should be

Chapter �
� Conclusion ���

a barrier to good performance of heuristics for a quintessentially hard problem�

������ Closing the gap

The quality of the answers produced by the Lin�Kernighan heuristic is consistent� For

both minimum weight perfect matching and the TSP� the answers are usually within �)

of optimal� In contrast� its running times can vary greatly depending on the con	guration

of the distance function of the graph� Cluster compensation is designed to speed up the

heuristic in the presence of sharp clustering� But even when cluster compensation is used�

there is still a large di�erence between runs on instances that are sharply clustered and

instances that are not� An obvious goal would be to close that gap� i�e�� reduce running

times for all size n instances to be more in line with the fastest size n runs� In light of

the hardness of approximating the TSP ����� we might never fully achieve this goal� But

we may learn a lot in the attempt�

������ Modeling the behaviour of the heuristic

As a 	rst step in improving the heuristic� it would be useful to more accurately model

its behaviour so that running times could be predicted� An accurate model might go a

long way toward understanding the performance problem and therefore focus algorithmic

tuning e�ort� This is akin to how practitioners already use program execution pro	ling to

	nd where their program spends its time� using that information to tune their algorithms�

Much of Sections ��� and ��� is devoted to describing our own qualitative understanding

of the broad behaviour of the Lin�Kernighan heuristic� The great di�culty in modeling

many heuristics lies in the fact that their important behavioural patterns are emergent�

and therefore cannot be seen by merely aggregating models of their small scale behaviour�

The whole is usually greater than the sum of its parts�

On a more mundane level� a performance model can be useful in its own right� If the

running time for the heuristic could be determined with some accuracy as a function of

the algorithm
s parameters� then one can use the model to pick appropriate parameter

settings for a given situation� We would use the model to 	nd parameter settings to get

the best answers in a given time and space budget� Of course for the model to be useful

in this way� less e�ort must be spent in evaluating and 	nding good settings from the

model than would be spent just running the heuristic with standard settings�

Chapter �
� Conclusion ���

To achieve signi	cant success� modeling should always be closely tied to experimen�

tation and instrumentation� Traditionally� the output of instrumentation has been tables

of numbers and static graphical plots� Algorithm animation also holds promise as an

avenue for qualitative discovery� For example� Bentley ���� describes how the idea for

�don
t�look� bits came out of viewing animations of the ��Opt algorithm in action� Our

own research bene	ted from taking an explicitly visual approach to understanding the

heuristic� In particular� our implementation can automatically produce PostScript 	g�

ures depicting data structures and the progress of the heuristic�� One way to sum up our

attitude is that there is �sight� in �insight��

������ Maximization problems

From a theoretical perspective� maximization problems are the same as minimization

problems� To convert one form into another� one need only choose a constant M 	

maxe�E �
e� and then set �
�
e� �M � �
e��

In practice things are more complicated� especially in the context of the techniques

used for good implementations of the Lin�Kernighan heuristics� For example� in the

minimization form of the heuristic the candidate subgraphs are usually composed of edges

between near neighbours� and are precomputed and stored as neighbour lists� Those edges

are used because they are likely to be present in good solutions� and there are usually

not very many such edges� In a maximization problem� a larger fraction of the edges

may be considered candidates for good solutions� To understand the di�erence� consider

the important case where � obeys the triangle inequality� If �
a� b� and �
b� c� are small�

then �
a� c� is also small� in fact �
a� c� � �
a� b���
b� c�� But if both �
a� b� and �
b� c�

are large relative to most other edges� then the �
a� b� � �
b� c� bound on �
a� c� is not

a tight constraint� �
a� c� is free to be very small or very large in comparison to all the

other edges in the graph�

With this insight we might want to avoid using a 	xed candidate subgraph� We

could instead generate the candidate subgraph dynamically and randomly� That is� each

time we search from vertex t�i we could select candidates for t�i	� at random instead of

scanning a 	xed list of near neighbours of t�i� The qualitative argument above suggests

�Early in the development process� we knew our k�d tree code was buggy� Several days of symbolically�
oriented code scrutiny failed to �nd the problem� We then inserted code to produce PostScript �gures
depicting the data structure� The bug was obvious once the �rst �gure was displayed� and the code was
�xed within minutes�

Chapter �
� Conclusion ���

this would be more fruitful for maximization problems than for minimization problems�

Unfortunately� this random sampling scheme makes termination more fuzzy� We would

likely construct a di�erent set if we resample the space of cities each time a candidate

list is required� In that case� we might take a cue from Iterated Lin�Kernighan and

terminate the search after each city has been examined a small 	xed number of times

without 	nding an improvement anchored at that city�

These ideas take some inspiration from the work of Johnson et al� as reported in �����

They experiment with the use of k�d trees to dynamically generate exact neighbour lists�

This saves space because neighbour lists need not be stored� but increases running time

because the lists are regenerated anew at each search� For a million city uniform random

geometric instance� space usage is reduced from ��� megabytes down to �� megabytes�

but running time is increased by a factor of four�

On a di�erent note� cluster compensation itself has less intuitive appeal in the max�

imization context� Cluster distance would still be an estimate of possible future closing

up costs� though we would want to maximize those costs� Cluster distance would be com�

puted in the same way� i�e�� by least common ancestors in the topology tree constructed

from a minimum spanning tree� The con�icting orientations� using a minimum spanning

tree but wanting to maximize costs� jars our sensibilities�

We suspect that for graphs having a distance function obeying the triangle inequality�

Lin�Kernighan for maximization problems would run much longer and 	nd poorer answers

than Lin�Kernighan for minimization problems� Part of this intuition is based on the

arguments on the structure of the space of good solutions� We believe that light tours

and matchings� are similar to each other in some sense� while heavy tours can di�er

greatly� Lin�Kernighan for these minimization problems is successful because it easily

jumps from one good tour
or matching� to another� This may not be the case for

maximization problems with those distance functions� We are unaware of experimental

work with Lin�Kernighan for maximization problems�

������ Other instance generators

Finally� there is always room for new instance generation algorithms� Each would be

tailored according to the present need� In particular� instance generators are very useful

for testing our intuition about behaviour patterns of the heuristic� This holds for all

heuristic algorithms� and not just the Lin�Kernighan heuristic�

Bibliography

��� E� Aarts and J� K� Lenstra� editors� Local Search in Combinatorial Optimization�

Wiley�Interscience Series in Discrete Mathematics and Optimization� John Wiley (

Sons Ltd�� �����

��� E� H� L� Aarts� J� H� M� Korst� and P� J� M� van Laarhoven� Simulated annealing�

In E� Aarts and J� K� Lenstra� editors� Local Search in Combinatorial Optimization�

Wiley Interscience series in discrete mathematics and optimization� chapter �� pages

��+���� John Wiley (Sons� �����

��� A� V� Aho� J� E� Hopcroft� and J� D� Ullman� Data Structures and Algorithms�

Addison�Wesley� �����

��� D� Applegate� R� Bixby� V� Chv,atal� and W� Cook� Concorde� A code for solving

Traveling Salesman Problems� Published electronically at http���www�caam�rice�edu�

�keck�concorde�html�

��� D� Applegate� R� Bixby� V� Chv,atal� and W� Cook�
certi	cates

of optimality for certain tsp solutions�� Published electronically at

ftp���netlib�att�com�netlib�att�math�applegate�TSP�proofs� August �����

��� D� Applegate� R� Bixby� V� Chv,atal� and W� Cook� Finding cuts

in the TSP
a preliminary report�� Published electronically at

ftp���netlib�att�com�netlib�att�math�applegate�TSP�tsp aug�	�ps�Z� August �����

��� D� Applegate and W� Cook�
proposal for segment tree implementation of oriented

tour data type�� Referenced as a private communication by Fredman et al� �����

�����

��� D� Applegate and W� Cook� Solving large�scale matching problems� In D� S� John�

son and C� C� McGeoch� editors� Network Flows and Matching� First DIMACS

���

Bibliography ���

Implementation Challenge� volume �� of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science� pages ���+���� American Mathematical Society�

�����

��� S� Arora� Nearly Linear Time Approximation Schemes for Euclidean TSP and Other

Geometric Problems� In Proceedings of the Thirty�Eighth Annual Symposium on

Foundations of Computer Science� October �����

���� S� Arora� Polynomial time approximation schemes for Euclidean TSP and

other geometric problems� To appear in the Journal of the ACM� See also

http���www�cs�princeton�edu��arora� �����

���� S� Arora� C� Lund� R� Motwani� M� Sudan� and M� Szegedy� Proof veri	cation

and intractability of of approximation problems� In Proceedings of the Thirty�Third

Annual Symposium on Foundations of Computer Science� pages ��+��� October

�����

���� E� B� Baum� Iterated descent� a better algorithm for local search in combinatorial

optimization problems� ����� Manuscript�

���� E� B� Baum� Towards practical &neural
 computation for combinatorial optimization�

In J� S� Denker� editor� Neural Networks for Computing� Proceedings AIP Conference

�
�� pages ��+��� New York� ����� American Institute of Physics�

���� J� Beardwood� J� H� Halton� and J� M� Hammersley� The shortest path through

many points� In Proceedings of the Cambridge Philosophical Society� volume ���

pages ���+���� �����

���� J� L� Bentley� Experiments on Traveling Salesman Heuristics� In First Annual

ACM�SIAM Symposium on Discrete Algorithms� pages ��+��� January ����� San

Francisco� California�

���� J� L� Bentley� K�d Trees for Semidynamic Point Sets� In Proceedings of the �th

Annual Symposium on Computational Geometry� pages ���+���� June �����

���� J� L� Bentley� Fast algorithms for geometric traveling salesman problems� ORSA

Journal on Computing� �
������+���� Fall �����

Bibliography ���

���� J� L� Bentley and J� H� Friedman� Fast Algorithms for Constructing Minimal Span�

ning Trees in Coordinate Spaces� IEEE Transactions on Computers� C���
�����+����

�����

���� J� L� Bentley and J� B� Saxe� An Analysis of Two Heuristics for the Euclidean Trav�

eling Salesman Problem� In ��th Annual Allerton Conference on Communication�

Control� and Computing� pages ��+��� October �����

���� P� Briggs and L� Torczon� An e�cient representation for sparse sets� ACM Letters

on Programming Languages and Systems� �
�����+��� March �����

���� R� E� Burkard� V� G� Deineko� R� Van Dal� J� A� A� Van Der Veen� and G� J�

Woeginger� Well�solvable special cases of the Traveling Salesman Problem� a survey�

Siam Review� ��
������+���� September �����

���� B� Chandra� H� Karlo�� and C� Tovey� New results on the old k�opt algorithm for the

TSP� In Proceedings of the Fifth ACM�SIAM Symposium on Discrete Algorithms�

pages ���+���� �����

���� M� Chrobak� T� Szymacha� and A� Krawczyk� A data structure useful for 	nding

Hamiltonian cycles� Theoretical Computer Science� ������+���� �����

���� S� A� Cook� The complexity of theorem�proving procedures� In Proceedings of the

Third Annual ACM Symposium on the Theory of Computing� pages ���+���� �����

���� S� A� Cook� An overview of computation complexity
������ In ACM Turing Award

Lectures� The First Twenty Years� ACM Press Anthology Series� ACM Press� New

York� Addison�Wesley� �����

���� W� Cook� The traveling salesman problem� Invited presentation at the Ninth SIAM

Conference on Discrete Mathematics� July ��� �����

���� W� Cook and A� Rohe� Computing minimum�weight perfect matchings� De�

scribes the Blossom IV implementation written by the authors� The de�

scription and the implementation are available from http���www�or�uni�bonn�de�

home�rohe�matching�html�

���� G� A� Croes� A method for solving traveling salesman problems� Operations Re�

search� �����+���� �����

Bibliography ���

���� A� E� Dunlop and B� W� Kernighan� A procedure for placement of standard�cell

VLSI circuits� IEEE Transactions on Computer�Aided Design� ����+��� �����

���� J� Edmonds� Matching and a polyhedron with ��� vertices� Journal of Research of

the National Bureau of Standards� ��B����+���� �����

���� K� J� Falconer� The geometry of fractal sets� Cambridge tracts in mathematics�

Cambridge University Press� Cambridge UK� �����

���� M� M� Flood� The traveling�salesman problem� Operations Research� ����+��� �����

���� M� L� Fredman� D� S� Johnson� L� A� McGeoch� and G� Ostheimer� Data structures

for traveling salesmen� Journal of Algorithms� ������+���� �����

���� H� N� Gabow� An e�cient implementation of Edmonds
 algorithm for maximum

matching on graphs� Journal of the ACM� ��
������+���� April �����

���� M� R� Garey and D� S� Johnson� Computers and Intractabilty� A Guide to the theory

of NP�Completeness� W� H� Freeman and Company� New York� �����

���� P� C� Gilmore� E� L� Lawler� and D� B� Shmoys� Well�solved special cases� In E� L�

Lawler� J� K� Lenstra� A� H� G� Rinnooy Kan� and D� B� Shmoys� editors� The

Traveling Salesman Problem� chapter �� pages ��+���� John Wiley (Sons Ltd��

�����

���� M� X� Goemans and D� J� Bertsimas� Probabilistic analysis of the Held and Karp

lower bound for the Euclidean traveling salesman problem� Mathematics of Opera�

tions Research� ��
�����+��� February �����

���� J� Gu� E�cient local search with search space smoothing� a case study of the travel�

ing salesman problem
TSP�� IEE Transactions on Systems� Man� and Cybernetics�

������+���� �����

���� M� Held and R� Karp� The traveling salesman problem and minimum spanning trees�

Operations Research� �������+����� �����

���� M� Held and R� Karp� The traveling salesman problem and minimum spanning trees�

Part II� Mathematical Programming� ���+��� �����

Bibliography ���

���� J� E� Hopcroft and J� D� Ullman� Set merging algorithms� SIAM Journal on Com�

puting� �
������+���� December �����

���� M� D� Hutton� Characterization and Parameterized Generation of Digital Circuits�

PhD thesis� Department of Computer Science� University of Toronto� ����� Available

electronically at http���www�eecg�toronto�edu��mdhutton�thesis�html�

���� C� Imielinska and B� Kalantari� A generalized hypergreed algorithm for weighted

perfect matching� BIT� ������+���� �����

���� D� S� Johnson� Local optimization and the traveling salesman problem� In ICALP

���� pages ���+���� Springer�Verlag� ����� Proceedings of the ��th Colloquium on

Automata� Languages� and Programming�

���� D� S� Johnson� August ����� Personal communication�

���� D� S� Johnson and L� A� McGeoch� The traveling salesman problem� a case study�

In E� Aarts and J� K� Lenstra� editors� Local Search in Combinatorial Optimization�

Wiley Interscience series in discrete mathematics and optimization� chapter �� pages

���+���� John Wiley (Sons� �����

���� D� S� Johnson� L� A� McGeoch� and E� E� Rothberg� Asymptotic experimental

analysis for the Held�Karp Traveling Salesman bound� Proceedings of the �th Annual

ACM�SIAM Symposium on Discrete Algorithms� January ��+��� ������ �����

���� D� S� Johnson and C� H� Papadimitriou� Computational complexity� In E� L� Lawler�

J� K� Lenstra� A� H� G� Rinnooy Kan� and D� B� Shmoys� editors� The Traveling

Salesman Problem� chapter �� pages ��+��� John Wiley (Sons Ltd�� �����

���� D� S� Johnson� C� H� Papadimitriou� and M� Yannakakis� How easy is local search�

Journal of Computer and System Sciences� �����+���� �����

���� R� M� Karp� Reducibility among combinatorial problems� In Raymond E� Miller and

James W� Thatcher� editors� Complexity of Computer Computations �Proceedings of

a Symposium on the Complexity of Computer Computations� March� ����� Yorktown

Heights� NY�� pages ��+���� Plenum Press� New York� �����

���� R� M� Karp� Probabilistic analysis of partitioning algorithms for the traveling sales�

man problem in the plane� Mathematics of Operations Research� �����+���� �����

Bibliography ���

���� B� W� Kernighan and S� Lin� An e�cient heuristic procedure for partitioning graphs�

Bell Systems Technical Journal� ��
������+���� �����

���� B� W� Kernighan and P� J� Plauger� The Elements of Programming Style� McGraw�

Hill� New York� NY� USA� �����

���� D� E� Knuth� Literate Programming� Stanford Center for the Study of Language

and Information� Stanford� California� ����� CSLI Lecture Notes No� ���

���� D� E� Knuth� The Stanford GraphBase� A Platform for Combinatorial Computing�

Addison�Wesley� �����

���� D� E� Knuth and S� Levy� The CWEB System of Structured Documentaion� ver�

sion ���� Published electronically at ftp���labrea�stanford�edu�pub�cweb�� ����� Also

available in book form from Addison�Wesley� �����

���� M� W� Krentel� On 	nding locally optimal solutions� SIAM Journal on Computing�

������+���� August �����

���� E� L� Lawler� J� K� Lenstra� A� H� G� Rinnooy Kan� and D� B� Shmoys� editors� The

Traveling Salesman Problem� John Wiley (Sons Ltd�� �����

���� T� Lengauer� Combinatorial algorithms for integrated circuit layout� John Wiley

and Sons� Chicester� �����

���� S� Lin� Computer solutions of the traveling salesman problem� Bell System Technical

Journal� �������+����� �����

���� S� Lin and B� W� Kernighan� An e�ective heuristic algorithm for the traveling

salesman problem� Operations Research� ������+���� �����

���� F� Margot� Quick updates for p�opt TSP heuristics� Operations Research Letters�

�����+��� February �����

���� O� C� Martin and S� W� Otto� Combining simulated annealing with local search

heuristics� In I� H� Osman G� Laporte� editor� Metaheuristics in Combinatorial

Optimization� number �� in Annals of Operations Research� pages ��+��� Baltzer�

Amsterdam� �����

Bibliography ���

���� O� C� Martin� S� W� Otto� and E� W� Felten� Large�step Markov chains for the

traveling salesman problem� Complex Systems� �����+���� �����

���� O� C� Martin� S� W� Otto� and E� W� Felten� Large�step Markov chains for the TSP

incorporating local search heuristics� Operations Research Letters� ������+���� �����

���� C� C� McGeoch� Electronically available materials� In David S� Johnson and Cather�

ine C� McGeoch� editors� Network Flows and Matching� First DIMACS Implemen�

tation Challenge� pages ���+���� American Mathematical Society� �����

���� C� H� Papadimitriou� The complexity of the Lin�Kernighan heuristic for the traveling

salesman problem� SIAM Journal on Computing� ��
������+���� June �����

���� C� H� Papadimitriou and K� Steiglitz� Combinatorial optimization� algorithms and

complexity� Prentice�Hall� Inc�� Englewood Cli�s� NJ ������ USA� ����� Republished

in ���� by Dover Publications� Mineola� New York�

���� C� H� Papadimitriou and M� Yannakakis� Optimization� approximation and com�

plexity classes� Journal of Computer and System Sciences� ������+���� �����

���� C� H� Papadimitriou and M� Yannakakis� The traveling salesman problem with

distances one and two� Mathematics of Operations Research� ��
����+��� February

�����

���� D� A� Plaisted� Heuristic matching for graphs satisfying the triangle inequality�

Journal of Algorithms� �
������+���� June �����

���� F� P� Preparata and M� I� Shamos� Computational geometry� An introduction�

Springer�Verlag� New York� �����

���� G� Reinelt� TSPLIB " a traveling salesman problem library� ORSA Jour�

nal on Computing� �
������+���� ����� Updated versions of the library and the

world�best values for tour lengths are available at http���www�iwr�uni�heidelberg�de�

iwr�comopt�soft�TSPLIB
��TSPLIB�html�

���� G� Reinelt� The traveling salesman� Computational solutions for TSP applications�

Springer Verlag� ����� LNCS ����

���� A� Rohe� Parallel lower and upper bounds for large tsps� ZAMM� ��
Supplement

������+���� ����� Also available from http���www�or�uni�bonn�de�home�rohe��

Bibliography ���

���� A� Rohe� Parallele heuristiken f#ur sehr gro-e traveling salesman probleme
parallel

heuristics for very big traveling salesman problems�� ����� Diplomarbeit� in German�

Also available from http���www�or�uni�bonn�de�home�rohe��

���� A� Rohe� Personal communication� april ��� �����

���� E� Rothberg� DIMACS wmatch benchmark computer code and data�

ftp���ftp�dimacs�rutgers�edu�pub�net�ow�benchmarks�

���� S� Sahni and T� Gonzalez� P�complete approximation problems� Journal of the

ACM� ������+���� �����

���� A� A� Sch#a�er and M� Yannakakis� Simple local search problems that are hard to

solve� SIAM Journal on Computing� ��
�����+��� February �����

���� B� Schieber� Parallel lowest common ancestor computation� In John H� Reif� editor�

Synthesis of Parallel Algorithms� chapter �� pages ���+���� Morgan Kaufmann� �����

���� D� D� Sleator and R� E� Tarjan� Self�adjusting binary search trees� Journal of the

ACM� ��
������+���� July �����

���� K� J� Supowit� D� A� Plaisted� and E� M� Reingold� Heuristics for weighted perfect

matching� In Conference Proceedings of the Twelfth Annual ACM Symposium on

Theory of Computing� pages ���+���� Los Angeles� California� ��+�� April �����

���� P� M� Vaidya� Geometry helps in matching� SIAM Journal of Computing� pages

����+����� �����

���� M� Yannakakis� Computational Complexity� In E� Aarts and J� K� Lenstra� editors�

Local Search in Combinatorial Optimization� Wiley Interscience series in discrete

mathematics and optimization� chapter �� pages ��+��� John Wiley (Sons� �����

Appendix A

A completeness result

This thesis is primarily concerned with the experimental e�ect of cluster compensation on

the Lin�Kernighan heuristic� In contrast� this appendix is concerned with the worst�case

behaviour of the heuristic� Papadimitriou ���� proved that a stylized version of the Lin�

Kernighan heuristic for the Traveling Salesman Problem solves a PLS�complete problem�

PLS is a complexity class capturing all reasonable deterministic local search heuristics�

we give more details below� The following sections sketch how to adapt that proof in the

case that the stylized Lin�Kernighan heuristic employs cluster compensation�

A�� Introduction

Papadimitriou showed that a stylized version of the Lin�Kernighan heuristic for the TSP

solves a PLS�complete problem ����� The problem in question� which we call TSP�LK� is

the one naturally associated with the heuristic� 	nd a tour that Lin�Kernighan for the

TSP cannot improve�
Papadimitriou calls the problem LIN�KERNIGHAN� identifying

the problem with the heuristic� we want to emphasize the underlying search problem as

well��

The version of the Lin�Kernighan heuristic considered by Papadimitriou di�ers slightly

from the version used in practice� First� Papadimitriou
s version uses a di�erent set of

tabu rules� The two tabu rules used by Lin and Kernighan are �never delete an added

edge� and �never add a deleted edge�� Most implementations use both tabu rules� and

the recent Johnson et al� implementations use only the 	rst ����� Papadimitriou
s ver�

sion uses only the second tabu rule� �never add a deleted edge�� Second� Papadimitriou
s

version of the heuristic uses the basic cumulative gain criterion� Criterion ���� That is� it

���

Appendix A� A completeness result ���

requires the cumulative gain to be greater than zero� not greater than the best net gain�

Third� it requires backtracking only to t� as opposed to at least t� in the standard version�

However� as a 	rst step it searches for all possible improving ��changes and ��changes�

Fourth� no special candidate sets are used� given t�i� all vertices are considered candi�

dates for t�i	�� Finally� Papadimitriou
s version of the heuristic uses the same feasibility

rules
see Section ����� and the same greedy selection criteria as the standard version�

Cluster compensation was motivated in part by Papadimitriou
s proof that problem

TSP�LK is PLS�complete� One of the main features of the proof is the use of heavy bait

edges to drive up the cumulative gain to very large values� This forces a particular class

of search sequences to explore large portions of the graph before 	nally returning to the

start vertex� The 	nal added edge is always at least as heavy as the 	rst removed
bait�

edge�

Cluster compensation is designed to mitigate the e�ects of bait edges� Does it always

protect the heuristic from bad cases� The answer is �no�� We will describe how Pa�

padimitriou
s proof can be adjusted to show that a cluster compensating version of his

Lin�Kernighan heuristic for the TSP also solves a PLS�complete problem� TSP�LKCC�

As before� this is a problem naturally associated with the heuristic� 	nd a tour that

cluster compensating Lin�Kernighan for the TSP cannot improve�

In the following� the heuristic is the same as described by Papadimitriou� except that

for LK�style searches� cluster compensating versions of the basic cumulative gain and

greedy selection criteria
Criteria ��� and ���� are used in place of their ordinary versions

Criteria ��� and ����� In particular� all ��changes and ��changes are searched without

applying cluster compensation�

Papadimitriou
s construction uses negative edge weights to force certain edges to al�

ways be examined 	rst� or to force them to always end up in the tour� Having negative

edge weights forces some cluster distances to be negative� Cluster compensation is sup�

posed to shorten search sequence lengths by rejecting certain moves that would otherwise

be accepted� But subtracting a negative�valued cluster distance makes more moves ac�

ceptable� We therefore disallow the cluster distance discount from being negative� That

is� we use

cum gain
�i��max
�� c
t�i� t��� 	 �

for the cumulative gain criterion� and

maximize cum gain
�i� ���max
�� c
t�i	�� t���

Appendix A� A completeness result ���

for the greedy selection criterion�

Fortunately� Papadimitriou
s proof translates almost directly to the new setting� We

need make only one very minor adjustment� we halve the weights of two edges in the

constructed TSP instance� The change is small enough that we need not repeat the entire

argument� The following sections introduce PLS and give the outline of Papadimitriou
s

proof� showing how to adjust it to the new setting�

A�� PLS

The class PLS� standing for Polynomial Local Search� is a set of search problems� Each

member of PLS is a pair
A�L�� where A is an ordinary search problem and L is a local

search algorithm for A� We say an algorithm solves
A�L� if it always 	nds local optima

for A with respect to L� Schematically� each member of PLS can be stated as follows�

Problem

A�L�

Input
 Any input x of search problem A�

Output
 A local optimum of x with respect to local search

algorithm L�

Among other restrictions� we require that each neighbourhood search performed by al�

gorithm L take polynomial time�

De�nition A�� �PLS ���� 	
�� Problem
A�L� is in PLS if it is of the form �given

input x to problem A� �nd s � Fx locally optimal with respect to L�� and the following

conditions are satis�ed�

�� For each input x there is a set of feasible solutions Fx�

�� Given x and s� there is a polytime algorithm for deciding whether s is feasible� i�e��

s � Fx�

�� Given x� we can compute some member s
 of Fx in polynomial time	 s
 is an initial

solution�

�� Given x and s � Fx we can compute the cost of s in polynomial time�

� Given x and s � Fx the neighbourhood search of algorithm L either �nds a better

solution s� � Fx� or simply halts without �nding one� If the improvement heuristic

Appendix A� A completeness result ���

halts without �nding a better solution� then we say that s is locally optimal� Each

neighbourhood search takes time bounded by a polynomial in the sizes of x and s�

For example� problem TSP�LK is a pairing of the ordinary TSP search problem

together with the
stylized� Lin�Kernighan heuristic for the TSP� Given a distance matrix

as input� the goal is to 	nd a locally optimal tour with respect to Lin�Kernighan�

Problem
 TSP�LK

Input
 An instance x of the symmetric TSP� i�e�� a complete

undirected weighted graph x � G �
V�E� ���

Output
 A tour for G that cannot be improved by the
stylized�

Lin�Kernighan heuristic for the TSP�

TSP�LK is in PLS because it is of the proper form and it satis	es each of the other

criteria�

�� In the case of the TSP� x is the distance matrix� and the feasible solutions Fx is

the set of tours of the graph�

�� It is easy to determine whether an edge set is a tour�

�� Since our graphs are complete� 	nding a tour is trivial�

�� The cost of a tour is just the sum of its edge weights�

�� A single Lin�Kernighan neighbourhood search takes polynomial time� That is� in

polynomial time it either 	nds a better solution or it gives up�

The natural local search algorithm associated with a PLS problem
A�L� is as follows�

	nd a start solution s
� repeatedly use the neighbourhood search of improvement heuristic

L to try to 	nd a better solution s� from the current solution s� when no better s� is found�

stop and answer s� Each step takes polynomial time� but the algorithm is free to take

exponentially many steps� Note that an algorithm solving a PLS problem need not be a

local search algorithm� and need not use the improvement heuristic at all�

The reader may already be familiar with the idea of reducibilities among decision

problems forming the basis for the theory of NP�completeness ���� ��� ���� A problem

A is NP�complete if
a� A is in NP� and
b� any problem B in NP is reducible to A�

By the transitivity of the reducibility relation� every NP problem reduces to A if some

NP�complete problem C reduces to A�

Appendix A� A completeness result ���

Similarly� the notion of PLS�reduction underlies the theory of PLS�completeness�

Problem
B�LB� in PLS reduces to problem
A�LA� in PLS if problem
B�LB� can be

solved by an algorithm that invokes as a subroutine an algorithm solving problem
A�LA��

More precisely�
B�LB� reduces to
A�LA� if there are two polytime computable functions

f and g so that for any instance x of B� f
x� is an instance of A� and if s is a local optimum

for f
x�
with respect to LA� then g
s� is a local optimum for x
with respect to LB��

To show problem
A�LA� is PLS�complete� we show that
A�LA� is in PLS and that

every PLS problem
B�LB� PLS�reduces to
A�LA�� As before� showing that some PLS�

complete problem
C�LC� reduces to
A�LA� shows that every PLS problem reduces to

A�LA� �����

TSP�LKCC is the problem of 	nding locally optimal tours with respect to the
styl�

ized� Lin�Kernighan heuristic that uses cluster compensation�

Problem
 TSP�LKCC

Input
 An instance of the symmetric TSP� i�e�� a complete

undirected weighted graph� G �
V�E� ���

Output
 A tour for G that cannot be improved by the
stylized�

Lin�Kernighan heuristic for the TSP that uses cluster

compensation�

We show the PLS�completeness of TSP�LKCC in two steps� First� TSP�LKCC is in PLS�

Second� a PLS�complete problem PLS�reduces to TSP�LKCC �

A�� TSP�LKCC is in PLS

It is easy to show that TSP�LKCC is in PLS� It follows for almost exactly the same

reasons that TSP�LK is in PLS�

Lemma A�� TSP�LKCC is in PLS�

Proof
 An algorithm solves TSP�LKCC if whenever it is given a distance matrix as

input� it always 	nds a locally optimal tour with respect to the
stylized� Lin�Kernighan

heuristic using cluster compensation� First� the problem is of the proper form� We satisfy

the other requirements of De	nition A�� one at a time�

�� The input is a complete undirected graph G �
V�E� with symmetric edge weight

function � represented� say� as a matrix of integers� Let us write n �jV j� Feasible
set FG is the set of all tours on G�

Appendix A� A completeness result ���

�� In polynomial time� we can determine whether edge set T is a tour�

�� A start tour T
 can be found in polynomial time� since G is complete� In fact� any

ordering of the vertices will do�

�� The cost of a tour T is just the sum of the weights of its edges� which can be

computed in polynomial time�

�� One iteration of Lin�Kernighan using cluster compensation can be performed in

O
n�� time� See below�

Finally� the problem is of the proper form� given G� 	nd a tour that cluster compensating

Lin�Kernighan cannot improve�

The last point is the most involved� Searching for an improving ��change or ��change

takes O
n�� time� The deep Lin�Kernighan search sequences backtrack over all choices

for t� thorough t�� We have n choices for t�� given t� we have two choices for t�� given

t� and t� we have roughly n choices for t�� given t�� t�� and t� we have one choice for t��

All told� there are O
n�� possibilities for t� through t�� Each search sequence can extend

up to O
n�� moves since we are prohibited only from adding a deleted edge� If we use

a simple array for the tabu list� then lengthening the t sequence from t�i to t�i	� takes

O
i� time� We see that given a start vertex t�� the low level backtracking takes O
n
��

time� Iterating over all n choices for t� therefore takes O
n
�� time� We can reduce this

worst�case bound by using better data structures for the tabu list�

E�cient cluster compensation adds to this total but does not increase the asymp�

totic running time� Online cluster distance queries are performed in constant time and

therefore are absorbed into the other bookkeeping� As for the required preprocessing� we

have shown in Section ��� that it may be done in O
n logn� time plus the time needed

to compute a minimum spanning tree� or at most O
n���

This completes the proof that TSP�LKCC is in PLS�

A�� TSP�LK is PLS	hard

This section outlines Papadimitriou
s proof that problemTSP�LK is PLS�hard� The proof

consists of showing that problem ��SATFLIP PLS�reduces to TSP�LK� Since ��SATFLIP

is PLS�complete ���� ���� this shows every PLS problem PLS�reduces to TSP�LK� This

section summarizes the construction and the argument� For more detail see ����� The

Appendix A� A completeness result ���

next section shows how to modify the construction and the argument to show that ��

SATFLIP PLS�reduces to TSP�LKCC �

The problem ��SATFLIP can be described as follows� We are given a boolean formula

C in conjunctive normal form with clauses C�� � � � � Cm� Each clause Ci has exactly two

literals and has an associated integer weight wi� A literal is either a boolean variable or

the negation of a boolean variable� We think of the weight of a clause as the penalty

incurred for not satisfying that clause� The ��SATFLIP problem is to assign truth values

to the variables so that the total weight of the unsatis	ed clauses cannot be reduced by

�ipping the truth value of a single variable� Schematically� we have�

Problem
 ��SATFLIP

Input
 Boolean formula C in conjunctive normal form� each

clause having exactly two literals� and a weight for each

clause�
Output
 A truth assignment to variables of C so that �ipping

the value of any variable does not reduce the weight of

the unsatis	ed clauses�

A���� Sketch of the construction

To reduce ��SATFLIP to TSP�LK� a set of clauses C � C�� � � � � Cm is transformed into

a complete weighted undirected graph f
C�� Locally optimal tours in f
C� have a

special structure corresponding to locally optimal weighted truth assignments for C�

An assignment � of truth values to variables corresponds to a particular tour T
�� of

f
C�� All such tours are called standard tours�

The edges of graph f
C� can be partitioned by weight into distinct classes� There is

a large positive constant M depending only on the set of clauses C so that the weights

of edges in the classes are� �M�� ��� �� at least M but less than M�� and M j for

j � f�� �� �� �� �� �� �� �g� Each class serves a distinct purpose� and our sketch will detail
all the classes excepting those with edges heavier than M��

Graph f
C� has a sparse skeleton of light edges� depicted schematically in Figure A��

corresponding to Papadimitriou
s Figure � ������ Each logical variable xi in C is asso�

ciated in f
C� with a pair of complex paths� or �ribs�� and with a start edge from S to

Yi� The ribs are depicted as thick grey bars in the 	gure� Each variable has two ribs�

corresponding to the two possible truth values it may be assigned� Rib xi corresponds to

the clauses satis	ed when variable xi is assigned the true value� and rib xi corresponds

Appendix A� A completeness result ���

x� x�

Y�

Z�

x� x�

Y�

Z�

xn xn

Yn

Zn

W

R

S

P Q

a�

b�
a�

b�
a�

b�

am

bm

Figure A��� Skeleton of light edges in the TSP instance constructed for the reduction

from ��SATFLIP to TSP�LK�

to the clauses satis	ed when xi is assigned the false value� The standard tour T
�� of

f
C� traverses exactly one rib for each variable� rib xi is traversed if �
xi� � true and

rib xi is traversed if �
xi� � false�

Each clause Cj �
Lj� � Lj�� is represented by an edge
aj� bj� and by an OR�device

straddling ribs Lj� and Lj�� An OR�device is depicted in Figure A��
a�� it has �� nodes

and �� edges� The weights of the edges are given in Figure A��
b�� The top row of nodes

and edges corresponds to the 	rst literal of the associated clause� and the bottom row

to the second literal of the clause� If the four corner nodes are the only allowable entry

and exit points then there are exactly three ways to traverse the OR�device� shown in

Figures A��
c��
d�� and
e�� The three ways of traversing an OR�device correspond to

the three ways clause
Lj� � Lj�� can be satis	ed� by literal Lj� alone� by literal Lj�

alone� or by both literals simultaneously� In each of these three con	gurations� each of

the diagonals is traversed in a consistent order� We can think of the bottom�left and

top�right nodes as entry nodes� and the top�left and bottom�right nodes as exit nodes�

The rib for literal L strings together all the OR�devices corresponding to clauses in

which L appears� Figure A�� shows a rib corresponding to literal xi appearing in three

clauses� Either the bottom row or the top row from each device is incorporated into L
s

Appendix A� A completeness result ���

�c� �d� �e�

�a�

�M� �M�

�

�

�

�

�

�

�b�

Figure A��� An OR�device� corresponding to a clause with two literals� Parts
c��
d��

and
e� show the three ways of traversing the device� corresponding to the three ways a

two�literal clause can be satis	ed�

�

�

�

�

�

�

�

Yi Zi

Figure A��� A rib corresponding to a literal xi appearing in three clauses�

Appendix A� A completeness result ���

aj bj

Mwj Mwj

MwjMwj

�a�

aj bj

�b�

aj bj

�c�

Figure A���
a� Edge
aj� bj� and penalty edges connecting to the OR�device for clause

Cj�
b� OR�device picked up by top pair of penalty edges�
c� OR�device picked up by

bottom pair of penalty edges�

rib� A zero�weight edge joins the exit node of one OR�device
s row to the entry node of

the next OR�device
s row� Zero weight edges precede the 	rst device and follow the last

one� The entry node of one device is also joined by a jump edge to the entry node of the

next device� and the entry node of the last device is joined by a jump edge to Zj� Jump

edges have weight �� and are used to guide the Lin�Kernighan search�
The OR�device for clause Cj is also joined to edge
aj� bj� by four penalty edges as

shown in Figure A��
a�� Vertex aj is joined by penalty edges to the two exit nodes�

and bj is joined by penalty edges to the two entry nodes� Edge
aj� bj� has weight zero�

and each of the penalty edges have weight Mwj� i�e�� proportional to the cost wj of not

satisfying clause Cj� If Cj �
Lj� � Lj�� is satis	ed by truth assignment �� for example

�
Lj�� � true� then in the standard tour T
�� the OR device for Cj is traversed during

the traversal of the rib for Lj�� and edge
aj� bj� is also in T
��� If Cj is not satis	ed by

� then the OR�device for Cj is not traversed with any rib� Instead� it is picked up by

two of the penalty edges as in Figure A��
b� or Figure A��
c�� and edge
aj� bj� does not

appear in the tour�

All of the start edges have weight M�� and none of them appear in a standard tour�

Figure A�� also contains a series of two�edge paths� counterclockwise� they run from

R to Y�� from Zi to Yi	�� from Zn to bm� from ai to bi��� from a� to S� and from P to

Q� Each of the edges in those paths are assigned a weight of �M�� just like the internal

diagonal edges of the OR devices� Let us call all of these �M��weight edges �crazy glue�

edges� They are so light that all of them appear in every standard tour� We will see that

Appendix A� A completeness result ���

Lin�Kernighan searches on standard tours never break crazy glue edges�

The four diagonal edges in the diamond�shape device in the upper right of Figure A���

namely
R�P ��
R�Q��
P� S�� and
Q� S� are all assigned weight M�� In a standard tour

one of two cases occurs� In the 	rst case� both
R�P � and
Q� S� appear and neither

R�Q� nor
P� S� appear� The second case is complementary� neither
R�P � nor
Q� S�

appear and both
R�Q� and
P� S� appear�

This completes the description of standard tours� including the weights of the edges

involved in them� Graph f
C� is a complete graph� and the weights of all its other edges

are 	xed to very high values� Those heavy weights are polynomially bounded� ranging

from M� through M�� Setting an edge weight to be very large ensures that they never

appear in standard tours� and are only removed and never added during the course of the

execution of the Lin�Kernighan heuristic� They are never added because by construction�

there are always better alternatives�

A���� Proof sketch

The fact that TSP�LK is PLS�hard follows from the following two lemmas�

Lemma A�� �Papadimitriou �	
�� A standard tour T is a local optimum only if g
T �

�the corresponding truth assignment� is optimum�

Lemma A�� �Papadimitriou �	
�� The only locally optimum tours are the standard

tours�

Let us 	rst summarize the argument for Lemma A��� Suppose the truth assignment

� � g
T � is not a local optimum under algorithm ��SATFLIP� Then we can reduce

the weight of the unsatis	ed clauses by �ipping the truth value of some variable� say

xi� Papadimitriou shows how a Lin�Kernighan improvement can be made to tour T �

Essentially� a Lin�Kernighan improvement simulates the �ip of the value of xi�

Figure A�� sketches the main steps taken by a Lin�Kernighan improvement in simu�

lating the �ip of the value assigned to x�� For the sake of clarity� it omits the penalty

edges and the steps required to remove them� and the many steps involved in recon	g�

uring individual OR devices� For all the details� see 	gures � through �� of ����� Part

a� shows a standard tour with variables x� and x� assigned the true value and x� and x�

assigned the false value� Part
b� shows the removal of edge
Q� S�� for a cumulative gain

of M�� Part
c� shows the addition of �start� edge
S� Yi�� for a new cumulative gain of

Appendix A� A completeness result ���

�g�

t�

�h�

t�

�i�

�d�

t�

�e�

x�

t�

�f�

t�

�a�

P Q

R

S

x�

�b�

t�

�c�

t�

Figure A��� Sketch of steps in Lin�Kernighan improvement on a standard tour�

Appendix A� A completeness result ���

M��M�� Part
d� shows the result of the many steps involved in changing the status of

the OR devices along the rib for x�� Any OR devices on that rib that were �satis	ed� by

x� � false are now recon	gured to represent that they are no longer �satis	ed� in that

way� If any of those OR devices are no longer satis	ed by either of their literals� then

penalty edges are added� with the cumulative gain decreasing accordingly� Each penalty

edge is of weight M�j for some j� Let us write o
M
�� for those new penalty terms� no

matter how they sum up� they are always dominated by M�� The cumulative gain at
d�

is therefore M� �M� � o
M��� Part
e� shows the result of processing the OR devices

along the rib for literal x�� That is� those OR devices are recon	gured to represent the

fact the associated clauses are now satis	ed by the assignment x� � true� This may

involve the removal of some penalty edges� which increases the gain by an amount we

represent by o
M��� Since �ipping x� decreases the overall weight of unsatis	ed clauses�

it more than just cancels the previous �o
M�� term� we write the new cumulative gain

as M� �M� � o
M��� Part
f� shows the removal of the start edge� and the cumulative

gain is now M��o
M��� Part
g� shows the addition of edge
S� P �� resulting in the new

cumulative gain of o
M��� a relatively small positive amount� The tabu rule �never add

a deleted edge� prevented us from adding edge
Q� S�� as it was the 	rst edge removed

in this search sequence� But part
g� depicts a non�tour� so we must continue� Part
h�

shows the removal of edge
R�P �� for a new cumulative gain of M� � o
M��� Finally�

part
i� shows the new tour found by adding edge
R�Q�� corresponding to the standard

tour where the truth value of x� was �ipped� i�e�� x�� x�� and x� are true� while x� is false�

The net gain from
a� to
i� is the di�erence between the weights of the penalty edges

removed and the weights of the penalty edges added
if any�� a total in o
M��� This net

gain
the net decrease in the tour length� is proportional to the reduction in the weight

achieved by �ipping the truth value of variable x��

Had edges
R�Q� and
P� S� been in the standard tour then we could have proceeded

with a similar sequence� beginning with the removal of edge
P� S� and ending with the

addition of edge
R�P �� Such Lin�Kernighan improvements merely reverse the orientation

of the traversal of that diamond in the graph�

The process� including the cumulative gains along the way� is summarized in Ta�

ble A��� There are a few key points we should observe� First� the cumulative gain is

always positive� as required by the heuristic� Second� the removal of the 	rst edge� the

�bait� edge� starts the cumulative gain at a value of M�� That value is high enough

to ensure that the heuristic will continue searching through large portions of the graph�

Appendix A� A completeness result ���

Step Figure Cumulative gain

Remove
Q� S� Fig�A��
b� M�

Add start edge
S� Yi� Fig�A��
c� M� �M�

Recon	gure OR devices along rib for literal xi�

removing some penalty edges�
Fig�A��
d� M� �M� � o
M��

Recon	gure OR devices along rib for literal xi�

possibly adding some penalty edges�
Fig�A��
e� M� �M� � o
M��

Remove start edge
Yi� S� Fig�A��
f� M� � o
M��

Add edge
S� P � Fig�A��
g� o
M��

Remove edge
P�R� Fig�A��
h� M� � o
M��

Add edge
R�Q� to form the new tour Fig�A��
i� o
M��

Table A��� Summary of steps in a Lin�Kernighan improvement on a standard tour� In

this example� the value of xi is �ipped from false to true�

Third� the backtracking portion of the search forces the heuristic to consider removing

each of the �start� edges� Each of those weigh only M�� much less than M�� Trying all

the alternative start edges is how the Lin�Kernighan heuristic discovers the appropriate

truth variable to �ip� Fourth� all the edge exchanges involved in recon	guring OR de�

vices and adding and removing penalty edges fall into the o
M�� terms� either positive

or negative� The con	gurations of the OR devices never stray from the three allowable

ones shown in Figure A�� parts
c��
d�� and
e� because the diagonal edges in each OR

device weigh �M�� and removing them would make the cumulative gain negative�
That

is� it is crucial that those edges have negative weight with magnitude much larger than

M��� Finally� the lowest value the cumulative gain attains is the 	nal net gain in step

i�� i�e�� the improvement in the weight of the tour� and two steps earlier at
g�� This last

point becomes critical later on when we consider applying cluster compensation� All the

other intermediate values of the cumulative gain are higher� somewhere in �
M��� even

for the steps we have omitted from our sketch�

In summary� the weights of the edges are engineered so that the bait edges are heavy

enough to force the appropriate long searches
M� 		 M��� but small enough to force

the heuristic to stay within the desired OR device and tour con	gurations
M�

 M���

This completes the sketch proof of Lemma A���

Appendix A� A completeness result ���

Lemma A�� says that the only locally optimum tours are the standard tours� Pa�

padimitriou shows how the stylized variant of Lin�Kernighan improves any non�standard

tour so that it becomes more like a standard tour� Most of the arguments are not of

interest to us� since they involve only ��changes or ��changes�

The main point of interest to us is that only one kind of Lin�Kernighan improvement

is used in the argument� Suppose an exit node of an OR device O� is connected to the

entry node of an OR device O� that does not follow O� in O�
s rib� Those undesirable

edges are given weight M�� Papadimitriou shows how a Lin�Kernighan improvement can

be made� beginning with the removal of such an undesirable edge�

As in the case of Lemma A��� the large M� weight of the undesirable edge drives the

heuristic down the appropriate search path� The cumulative gains are always dominated

by a positive M� term� The improvement is constructed so that the following conditions

hold� First� the exit node of O� is connected by the ��weight edge to the next OR device

in its rib or to the Zi node that ends the rib� That is� the undesirable M
��weight edge is

removed� Second� possibly other M��weight edges are removed� and no edges of weight

M� or higher are added�

This concludes the proof sketch of Lemma A���

Repeatedly applying the argument of Lemma A�� shows that an arbitrary tour in

f
C� is improved by Papadimitriou
s stylized Lin�Kernighan until a standard tour results�

Then� we can repeatedly apply the argument of Lemma A�� to 	nd a standard tour that

is locally optimal for stylized Lin�Kernighan and which represents a truth assignment

that is locally optimal for ��SATFLIP� This concludes the proof sketch that TSP�LK is

PLS�hard�

A�� TSP�LKCC is PLS	hard

This section describes how to adjust the construction given in the previous section to show

that TSP�LKCC is PLS�hard� Our work here is relatively easy because Papadimitriou
s

construction is robust� the margins are comfortably large� First we show why we cannot

just reuse the construction for TSP�LK� and then we describe a small patch to the

construction so that it will work in the new case�

Let us write G for the graph built from the set of clauses by the f function in

Papadimitriou
s construction� i�e�� G � f
C�� To understand how cluster compensation

a�ects the stylized Lin�Kernighan search� we must know the structure of the cluster

Appendix A� A completeness result ���

distance function on G� More precisely� the cluster distance discount is forced to be

non�negative� so we must understand the structure of

cG � max
�� cG��

Fortunately� the weights of the edges of G are such that c has very simple structure�

First� each of the
ai� bi� edges and the edges forming the main arc of every rib have

weight �� Second� the diagonal edges inside each OR device� and the edges joining the

rib pairs in sequence and to R and bm are crazy glue edges� and thus have negative weight�

The two edges going from P to Q through W are also crazy glue edges� We can thus

span G with two trees� neither of which has positive weight edges� The 	rst tree is the

two�edge path from P to Q through W � and the other tree covers all the other vertices

of G� Finally� the shortest edges from the fP�Q�Wg component to the rest of the graph
have weight M�� they are
R�P ��
R�Q��
P� S�� and
Q� S�� We have thus proven the

following lemma�

Lemma A�� Let G � f
C� �
V�E� as in Papadimitriou�s construction� and let cG �

max
�� cG�� Then

cG
u� v� �

�����
����

� if u� v � fP�Q�Wg�
� if u� v � V n fP�Q�Wg�
M� otherwise�

Now consider the Lin�Kernighan search described in the proof of Lemma A��� By

construction� t� � P or t� � Q� and also t� � S� If cluster compensation is used� then

the search sequence is never begun� The 	rst edge to be removed� say
Q� S� has weight

M�� but this is exactly the cluster distance between Q and S�
The other cases are

similar�� So the cumulative gain discounted by the cluster distance would not be strictly

positive after the 	rst step'

The 	x is simple� We adjust f to f � so that G� � f �
C� is identical to f
G� except that

edges
R�P � and
R�Q� are each assigned weight M���� down from M�� We therefore

have

cG�
u� v� �

�����
����

� if u� v � fP�Q�Wg�
� if u� v � V n fP�Q�Wg�
M��� otherwise�

and the search is not stopped before it begins� Recall that the main point about the edge

weights were that the bait edge weights� M�� were much larger than the other weights in

Appendix A� A completeness result ���

Step Figure
Discounted cumula�

tive gain

Remove
Q� S� Fig�A��
b� M���

Add start edge
S� Yi� Fig�A��
c� M����M�

Recon	gure OR devices along rib for literal xi�

removing some penalty edges�
Fig�A��
d� M����M� � o
M��

Recon	gure OR devices along rib for literal xi�

possibly adding some penalty edges�
Fig�A��
e� M����M� � o
M��

Remove start edge
Yi� S� Fig�A��
f� M��� � o
M��

Add edge
S� P � Fig�A��
g� o
M��

Remove edge
P�R� Fig�A��
h� M��� � o
M��

Add edge
R�Q� to form the new tour Fig�A��
i� o
M��

Table A��� Summary of steps in Lin�Kernighan improvement on a standard tour in the

new construction� Cumulative gains shown include the cluster distance discount� See

also Figure A�� and Table A��

the skeleton
at most M��� and much smaller than the non�skeleton edges
at least M���

This arrangement guides the Lin�Kernighan search appropriately� In the new setting� the

M� term is replaced by anM��� term� but it is still in the right range to guide the search

in exactly the same way�
Of course� it helps that the cluster discount computations are

always anchored at t� � Q�� Table A�� shows the cumulative gains for the same search�

but in graph G� instead of G� A search beginning with t� � P would be similar� We have

thus proven the analog of Lemma A�� in the new setting� That is� a standard tour T of

G� � f �
C� is locally optimal only if g
T � is locally optimal�

The analog of Lemma A�� would be� the only locally optimal tours are the standard

tours� We can reuse the arguments from the proof of Lemma A�� itself� The edges

heavier than M� are removed by ��changes and ��changes� In particular� we can assume

the non�standard edges to P � Q� and W have been removed� Cluster compensation

only a�ects the Lin�Kernighan searches� and Lin�Kernighan searches are applied such

that t� is an exit point of an OR device and the 	rst edge removed has weight M
�� In

that case� the dominant and therefore driving term in the cumulative gain is M�� But

the maximum value of cG� is M���� which is completely dominated by the M� term�

These Lin�Kernighan searches therefore proceed as in Papadimitriou
s argument� This

Appendix A� A completeness result ���

completes the proof that the only locally optimal tours of G� are the standard tours�

Combining both lemmas for the TSP�LKCC setting� we have the following theorem�

Theorem A�	 ��SATFLIP reduces to TSP�LKCC�

Corollary A�
 TSP�LKCC is PLS�hard�

That is� stylized Lin�Kernighan employing cluster compensation solves a PLS�hard prob�

lem�

A�� Summary

Since TSP�LKCC is both in PLS and PLS�hard� we conclude that TSP�LKCC is PLS�

complete�

The PLS�completeness of TSP�LKCC is both good news and bad news� The bad

news is that cluster compensation does not eliminate the very worst case behaviour

of the Lin�Kernighan heuristic� In particular� a consequence of the PLS�completeness

of TSP�LKCC is that there is a family of graphs for which stylized Lin�Kernighan with

cluster compensation takes an exponential number of steps� The good news is that cluster

compensation does not fundamentally reduce the power of the Lin�Kernighan heuristic�

at least from a PLS�completeness perspective�

Appendix B

Where to get the code

The software described in this thesis is publicly available from http���www�cs�utoronto�ca�

�neto�research�lk�
The World�Wide Web is always in �ux� in case that web site no

longer exists� search for a web page containing �Efficient Cluster Compensation for

Lin
Kernighan Heuristics���

The main programs use ANSI C together with a small number of BSD Unix extensions

for measuring resource usage
getrusage and friends�� Perl
version � or later� and GNU

make are required in order to run some of the scripts and create some of the graphical

output� To develop the program further� you will need the CWEB literate C programming

toolset� All these tools are freely available and licensed under liberal terms� LK itself

is licensed under the GNU General Public License or the GNU Library General Public

License� as appropriate� Some of the scripts are in the public domain�

Program lk implements the Lin�Kernighan heuristic for both the Traveling Salesman

Problem and minimum weight perfect matching� One chooses at compile�time whether

the program should use cluster compensation� Program lk also implements an iterative

approximation algorithm for the Held�Karp lower bound� speci	ed via a command�line

option�

The instance generators are also included in the package� Program jitter imple�

ments algorithm jitter� Program shake implements the tree shaking algorithm mst�shake�

Algorithms mst�explode�construct and mst�dangle�construct are split� we use program

lk with option
M to produce a minimum spanning tree which is then fed to program

tspgen to generate the geometric instance� By default� tspgen performs algorithm mst�

explode�construct� if given option
i� it performs algorithm mst�dangle�construct� Pro�

gram tspbgen�pl is a Perl script that is able to generate all �� distributions described

���

Appendix B� Where to get the code ���

by Bentley �����

Programs lk� jitter� shake� and tspgen display help when given option
h� Since

they are all written in literate C using the CWEB toolset� full documentation can be

obtained by using CWEB
s cweave to produce a TEX 	le and then typesetting the result

with TEX� For convenience� a copy of cwebmac�tex is included without modi	cation in

LK�

Appendix C

Computing platform details

This appendix describes the computer used for the experiments� It is more speci	c than

the description given in Section ����

The experiments reported in this thesis are compute�bound� so we describe only those

components relevant to compute�bound processes�

C�� Hardware

� Intel Pentium II ���MHz central processing unit� It has a ���KB second�level cache
running at ���MHz�

� Asus P�L�� motherboard� with an Intel ���LX chipset and a separate video bus�
The front�side bus operates at ��MHz�

� ���MB SDRAM main memory with a ��ns cycle time� However� memory access

time is limited by the ��MHz front�side bus�

C�� Software

� Red Hat Linux ���

� Linux Kernel ������

� GNU C Library version �����

� GNU C Compiler version ������� with optimization level
O	�

���

Appendix D

Depictions of geometric instances

Many of the instances used in this thesis are geometric� This appendix depicts many of

them�

Figures D�� and D�� show the TSPLIB instances� Note that instance att��	 uses

the ATT cost function� a modi	ed Euclidean metric� Instance gr��� uses great circle

distances� and we plot the latitude and longitude as ordinary y and x coordinates� All

the other TSPLIB instances use Euclidean distance� rounding to either the nearest integer

or rounding up�

Figures D�� and D�� depict one sample from each of the �� Bentley distributions�

Each has ���� vertices� except instance arith�	� which has only �� in order to show the

structure of the arithmetic di�erences sequence�

���

Appendix D� Depictions of geometric instances ���

�e� �f�

�c� �d�

�a� �b�

Figure D��� TSPLIB instances�
a� lin����
b� pcb��	�
c� att��	�
d� gr����
e�
dsj�����
f� pr���	�

Appendix D� Depictions of geometric instances ���

�e� �f�

�c� �d�

�a� �b�

Figure D��� TSPLIB instances�
a� pcb��
��
b� pr	��	�
c� pcb�����
d� fl�
���
e�
fnl�����
f� pla
��
�

Appendix D� Depictions of geometric instances ���

�e� �f�

�c� �d�

�a� �b�

Figure D��� Sample Bentley instances�
a� uni��	�������
b� annulus��	�������
c�
arith�	��
d� ball��	�������
e� clusnorm��	�������
f� cubediam��	�������

Appendix D� Depictions of geometric instances ���

�e�

�c� �d�

�a� �b�

Figure D��� Sample Bentley instances�
a� cubeedge��	�������
b� corners��	
������

c� grid��	�������
d� normal��	�������
e� spokes��	�������

