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This thesis introduces Gaussian process dynamical models (GPDMs) for nonlinear time

series analysis. A GPDM comprises a low-dimensional latent space with associated dy-

namics, and a map from the latent space to an observation space. We marginalize out

the model parameters in closed-form, which leads to modeling both dynamics and ob-

servation mappings as Gaussian processes. This results in a nonparametric model for

dynamical systems that accounts for uncertainty in the model. We train the model on

human motion capture data in which each pose is 62-dimensional, and synthesize new

motions by sampling from the posterior distribution. A comparison of forecasting results

between different covariance functions and sampling methods is provided, and we demon-

strate a simple application of GPDM on filling in missing data. Finally, to account for

latent space uncertainty, we explore different priors settings on hyperparameters and show

some preliminary GPDM learning results using a Monte Carlo expectation-maximization

algorithm.
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Chapter 1

Introduction

Good statistical models for human motion are important for many applications in vision

and graphics, namely visual tracking, activity recognition, and computer animation. In

computer vision, the highly ambiguous estimation of 3D human pose and motion from

monocular video can be improved greatly by incorporating strong prior knowledge of

likely states. Specific activities could be classified and recognized by evaluating the

likelihood of the observation given the prior model. In computer animation, instead of

having animators specify all degrees of freedom in a human-like character, the task of

posing characters in animation can be simplified by finding the most likely pose given

relatively sparse constraints.

While these models could be designed by hand, it is often impractical for all but

the simplest problems. Since many factors interact with each other to generate the

observed motion, such as body type, mood, and style, the designer of the model must

either account for an enormous amount of complexity or design separate models for many

different subjects and motions. For example, a good walking model for a male is unlikely

to be a good walking model for a female. Likewise, a good running model is unlikely to

be a good jumping model.

The model designing task can be greatly simplified if the designer is only required to

1
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specify a small set of abstract parameters that describe the data generation process (i.e.,

dependencies between factors), and allow specific parameters to be extracted automati-

cally from data. In other words, we seek to build generative models of human motion and

acquire estimations of model parameters directly from training data. As described here,

the problem can be viewed as one of machine learning — creating computer programs

by the analysis of data sets.

A useful generative model of motion needs to assign a probability distribution over

the space of all possible motions. In particular, higher probabilities should be assigned

to motions “closer to” the training data. The current machine learning literature offers

a number of generative models for time series data, but each has its own advantages

and disadvantages for modeling human motion. Simple models such as hidden Markov

models (HMMs) and linear dynamical systems (LDS) are efficient and exact for learning

purposes, but are limited in their expressiveness for complex motions. On the other hand,

more powerful models such as switching linear dynamical systems (SLDS) and nonlinear

dynamical systems (NLDS) require many parameters that need to be hand-tuned.

In this thesis, we investigate a Bayesian approach to learning NLDS, averaging over

model parameters rather than estimating them.1 Inspired by the fact that averaging over

nonlinear regression models leads to a Gaussian process (GP) model, we show that inte-

grating over NLDS parameters can also be performed in closed-form. The resulting Gaus-

sian process dynamical model (GPDM) is fully defined by a set of low-dimensional rep-

resentations of the training data, with both observation and dynamics mappings learned

from GP regression. As a natural consequence of GP regression, the GPDM removes the

need to select many parameters associated with function approximators while retaining

the full power of nonlinear dynamics and observation.

Supervised learning with GP regression has been used to model dynamics for a variety

1A version of this work (with David J. Fleet and Aaron Hertzmann) has been accepted for publication
in the 2005 Neural Information Processing Systems (NIPS) conference.
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of applications [17, 29, 40]. Our approach is most directly inspired by the unsupervised

Gaussian process latent variable model (GPLVM) [25, 26], which models the joint distri-

bution of the observed data and their corresponding representation in a low dimensional

latent space. This distribution can then be used as a prior for inference from new mea-

surements. However, the GPLVM is not a dynamical model; it assumes that data are

generated independently. Accordingly it does not respect temporal continuity of the data,

nor does it model the dynamics in the latent space. Here we augment the GPLVM with

a latent dynamical model. The result is a Bayesian generalization of subspace dynamical

models to nonlinear latent mappings and dynamics.

We show that, given proper initialization, the maximum a posteriori (MAP) esti-

mation of latent variable locations with GP dynamics prior results in smoother latent

coordinates than learning the latent space and dynamics separately. For motion synthe-

sis, we generate fair samples from the posterior distribution using hybrid Monte Carlo

(HMC) [33], and two approximations to the posterior mean: mean-prediction and op-

timization. A comparison of forecasting results between different covariance functions

and sampling methods is provided, and we demonstrate a simple application of GPDM

on filling in missing data. Finally, we experiment with priors and sampling methods for

hyperparameter estimation to better account for the uncertainty in latent coordinates.



Chapter 2

Related Work

Dimensionality reduction and dynamical model estimation are two essential tools for

modeling high-dimensional motion data. The former is often necessary before density

estimation methods can be applied to learn a probability model over the data, whereas

the latter models the time dependence. Closely-related to both are latent variable models,

which often can be used for dimensionality reduction and density estimation at the same

time. In this chapter, we review work from both areas along with previous applications

of human prior models in vision and graphics.

2.1 Dimensionality reduction

Many typical tasks in statistics and machine learning suffer from the “curse of dimension-

ality.” More specifically, the number of samples required to adequately cover a hyper-

volume increases exponentially as a function of dimensionality. Performance in various

algorithms, both in terms of speed and accuracy, can often by improved by first obtaining

a lower-dimensional representation of the data via dimensionality reduction techniques.

One important problem that often benefits from dimensionality reduction is density es-

timation: the problem of estimating an underlying probability density function based

on observed data. Solutions addressing the two problems are not disjoint, however, as

4
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dimensionality reduction methods based on latent variable models provide density esti-

mations at the same time. We will use R
D to denote the observation space and R

d for the

lower dimensional space, where D > d. In the most general formulation, let g : R
d → R

D,

be the data generation process

y = g(x;B) + n, (2.1)

where y ∈ R
D, x ∈ R

d, n is a random noise vector, B are parameters of g.

2.1.1 Linear methods

A natural way of approaching the dimensionality reduction problem is to represent the

data in a linear subspace of the original observation space. The main question is then

selecting an appropriate basis for the subspace. Principal component analysis (PCA) is

perhaps the most well-known linear dimensionality reduction technique. It finds a basis

for the projected subspace such that the variance of the projected data is maximized.

However, the basic form of PCA does not provide any probabilistic information about

the data. Probabilistic PCA (PPCA), introduced by Roweis [42] and Tipping and Bishop

[51], shows finding the basis by maximizing variance is equivalent to maximum-likelihood

(ML) estimation of parameters. PPCA is a latent variable model which assumes the

observed data (y) is generated by lower-dimensional data (x). The prior on x is assumed

to be a spherical Gaussian centred around the origin.

PPCA is a special case of a more general class of latent variable models known as

factor analyzers, where y is related to x via a linear mapping with Gaussian process

noise:

y = Ax + b + n, (2.2)

where x ∼ N (0;R) and n ∼ N (0;Q). In PPCA, R = I and Q = σ2I.

Linear methods are generally easy to implement and are very efficient, but are not

ideal for many data sets. The “Swiss roll” data set (Figure 2.1) is a popular test ex-

ample for nonlinear dimensional reduction algorithms, where we can easily identify a 2D
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coordinate frame by unrolling the data on a plane. A linear map which only allows for

rotation, scaling, and translation is clearly insufficient to map data points on a plane

back to a Swiss roll. Typically, when restricted to linear mappings, a subspace with

larger number of dimensions than the intrinsic dimensionality of the data is needed to

adequately represent variations in the data.

From a density estimation point of view, another problem is the assumption of Gaus-

sian prior distributions. Consider a walking data set, which usually maps to a curve that

circumnavigates the origin in latent space under PPCA. The probability model assumes

that the latent coordinates are samples from a Gaussian distribution centred at the ori-

gin, consequently points near the origin are assigned higher probability. Such a model

of walking assigns the mean pose (mapped to the origin in latent space), which is never

observed in the data set, the highest probability.

2.1.2 Geometrically-motivated manifold learning

In applications such as data visualization, it is often sufficient to recover an embedding

of the data without a mapping back into observation space. Recent advances in nonlin-

ear dimensional reduction (NLDR) model the structure of the data generating manifold

without providing mappings between observation and embedding spaces. Depending on

the way geometric information is used, these algorithms can be broadly divided into two

groups: local and global. Local techniques preserve geometric structure around neigh-

bourhoods of samples, without global information. On the other hand, global techniques

attempt to preserve geometry on all scales [9].

Locally linear embedding (LLE) [41] is a well-known local NLDR technique that is

geometrically-motivated. The crucial observation is that all smooth manifolds are locally

linear with respect to sufficiently small neighbourhoods on the manifold. In particular,

given a well-sampled manifold M ⊂ R
n, and let yi denote samples from M, the local

linearity assumption implies that there exists wij ∈ R such that yi =
∑

j wijyj, where
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yj are samples in the locally linear neighbourhood of yi. The total reconstruction error

of a given set of weights w = {wij} is then given by

ε(w) =
∑

i

‖yi −
∑

j

wijyj‖2 (2.3)

which is then minimized in closed-form with respect to w, subject to the constraints that

wij = 0 for yj outside the neighbourhood of yi, and that
∑

j wij = 1.

To compute xi, the embedding of yi in a lower dimensional subspace, it is assumed

that the optimal reconstruction weights in observation space are preserved. In other

words, xi =
∑

j wijxj, for wij minimizing (2.3). The assumption effectively says that

the mapping from high-dimensional observation space to the low-dimensional embedding

space that we seek is locally linear, which is true for any continuous mapping with a

sufficiently small local neighbourhood. Consequently, the embedding cost function is

defined by

φ(x) =
∑

i

‖xi −
∑

j

wijxj‖2, (2.4)

where x = {xi}. The above optimization problem can be formulated as a sparse eigen-

value problem and solved in closed-form [41].

Another local technique similar in spirit to LLE is the Laplacian eigenmap algorithm

[2]. Consider a function ψ : M → R, if ‖∇ψ‖ is small, points near each other in

M will be mapped to points near each other in R. In particular, finding ψ such that
∫

M
‖∇ψ(x)‖2 is minimized produces an embedding that best preserves the average local-

ity. The minimization problem has been shown to be equivalent to finding eigenfunctions

of the Laplace-Beltrami operator, defined on differentiable functions on a manifold.

The Laplace-Beltrami operator for functions on continuous manifolds have a par-

allel in graph theory called the Laplacian matrix. The Laplacian eigenmap algorithm

constructs a graph of data points in observation space, using weighted edges to encode

proximity information. The graph serves as a discrete approximation of a continuous

manifold. The embedding is obtained by solving for the eigenvectors of the Laplacian
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matrix, which has the property of preserving locality as indicated by the continuous case.

The Isomap algorithm [49] and its variants C-Isomap, L-Isomap [9], and ST-Isomap

[21] are global techniques which extend multidimensional scaling (MDS). In MDS, a

measure of “dissimilarity” between pairs of data is given in matrix form, and the goal is to

recover a lower dimensional representation of the data such that the separations between

pairs of projected data in latent space is related to their dissimilarity in observation

space. In classical MDS, which can be shown to be equivalent to PCA, the separations in

latent space is set to be equal to the dissimilarities. By setting different measurements for

dissimilarity, embeddings that reflect different properties of the data can be recovered.

Particularly, the measurement of dissimilarity can be set to account for the structure of

a underlying manifold that generated the data.

Geodesic distance on the manifold is used as the measurement of dissimilarity in

Isomap. The distance between points on the recovered embedding reflects their separation

on the manifold, not the distance in observation space (See Figure 2.1). The approximate

geodesic distance is obtained by first constructing a weighted graph, using edge weights

to indicate distances between points in observation space, then computing the shortest

path distances between all pairs of points. The final embedding is recovered by applying

classical MDS to the dissimilarity matrix formed by the shortest path distances.

Geometrically-motivated NLDR methods discussed in this section never explicitly

model the function g or g−1 (2.1) in the process of finding an embedding for the data.

Consequently, there are no simple methods of mapping data outside of the training set

to the lower-dimensional space or back. One solution is to use nonlinear regression

algorithms such as neural networks, RBF networks, or Gaussian processes to learn g as a

post-process. However, modeling g−1 using nonlinear regression is more difficult, as the

domain of g−1 typically has a much higher dimensionality. Alternatively, geometrically-

motivated generalizations to new data have recently been investigated [3], and are capable

of recovering embeddings of new data in observation space without explicitly modeling
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(a) (b)

Figure 2.1: Visualization of NLDR on the “Swiss roll” data set, taken from [49]. (a)

Illustrating the difference between geodesic distance (solid line) and Euclidean distance

(dotted line) in observation space. (b) The recovered embedding using Isomap, red line

indicates the approximate geodesic distance.

g−1.

While NLDR methods can be augmented with mappings, they do not provide a prob-

ability distribution over data. Typical density estimation techniques such as mixtures-of-

Gaussians (MoG) can be used to learn a probability model [19] in the lower dimensional

space, which can be used as a probability model for data as long as new data in obser-

vation space can be mapped to the lower dimensional space. However, as observed in

[18] with human pose data, MoG density estimation is prone to overfitting and requires

tuning a large number of parameters in practice. For LLE and Isomap, an additional

problem is that they assume the observed data is generated from a densely sampled

manifold, which is typically not true for human motion data.

2.1.3 Nonlinear latent variable models

Nonlinear latent variable models (NLVM) are latent variable models that remove the

linearity assumption on g, and are capable of modeling data generated from a nonlinear
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manifold. NLVM methods treat the embedding and mapping as parameters in a gener-

ative model. The parameters are typically estimated using optimization or Monte Carlo

simulation when needed. In this section, we discuss three representative algorithms: den-

sity networks [32], generative topographic mappings (GTM) [4] , and Gaussian process

latent variable models (GPLVM) [25, 26].

The density network model [32] is an extension of Bayesian supervised neural networks

to the unsupervised problem of density estimation. The function g(x;B) is modeled using

a neural network with B as weights in [32], but the model allows for general parametric

function approximators. The distribution p(yi|xi,B) is defined by the noise model in

observation space, which is typically Gaussian. The probability of all observed data

Y = {yi} is given by

p(Y|B) =
N
∏

i=1

p(yi|B), (2.5)

where the probability of yi is

p(yi|B) =

∫

p(yi|xi,B)p(xi)dxi. (2.6)

For the typical spherical Gaussian prior on x, the integral over x can be evaluated

by Monte Carlo sampling. The value of B is estimated by performing gradient based

minimization of the negative log of (2.5).

Once B is learned, inference can be performed on the posterior distribution of xi

p(xi|yi,B) =
p(yi|xi,B)p(xi)

p(yi|B)
. (2.7)

Specific values of xi can be estimated by averaging Monte Carlo simulation results on the

posterior (posterior mean), which is useful for visualization [32]. Monte Carlo simulations

can also be used to compute (2.6), which gives a density estimate in observation space

given a particular set of mapping parameters B.

While the density network model is very general, it is also computationally expensive.

Moreover, the optimization of (2.5) with respect to B is nondeterministic due to the use

of Monte Carlo integration.
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The GTM algorithm [4] can be viewed as a special instance of the density network

framework, with a regularly sampled discrete prior on xi and g(xi;B) approximated by

a RBF network. Particularly, the prior on xi along with a Gaussian noise model induce

a mixture of Gaussians density in observation space:

p(xi) =
1

K

K
∑

j=1

δ(xi − cj) (2.8)

p(yi|B) =
1

K

K
∑

j=1

p(yi|xi = cj,B), (2.9)

where the cj terms are regularly sampled, fixed locations in latent space.

The estimation of model parameters in a mixture model (2.9) is a well-known problem

in machine learning, and can be solved efficiently using the expectation-maximization

(EM) algorithm [10]. In the context of mixture models, the posterior probabilities, or

responsibilities, of each Gaussian component j can be evaluated by applying Bayes’

theorem in the E-step

p(xi = cj|yi,B) =
p(yi|xi = cj,B)

∑K

k=1 p(yi|xi = ck,B)
, (2.10)

where B is assumed to be fixed from the previous iteration. In the M-step, solving for

B reduces to solving for a set of linear equations. The details of the GTM learning

algorithm can be found in [4].

The posterior mean can be used if we wish to find a single xi to represent yi. Unlike in

the density networks model, Monte Carlo simulation is not necessary. Taking advantage

of the regularly sampled prior on xi, we get

< xi >p(xi|yi,B) =

∫

p(xi|yi,B)xidxi =
K
∑

j=1

p(xj = cj|yi,B)cj. (2.11)

Both density networks and GTMs provide a density estimate over observation space

and explicitly models g : R
d → R

N . Model parameter estimation in density networks

require Monte Carlo techniques for integrating over hidden variables, which is inefficient
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and might be impractical depending on the dimensionality of the latent space. The GTM

has a nice property that model parameters can be estimated with the EM algorithm, but

regular sampling in latent space creates undesirable discrete visualization artefacts [25].

The GPLVM [25, 26] takes a different approach to density estimation by marginalizing

over parameters instead of latent variables. If we assume g takes the form of a linear

combination of basis functions

g(xi;B) =
∑

j

bj ψj(xi), (2.12)

where B = [b1,b2, ...]. We can see that while g is nonlinear in xi, it is linear in B. Even

though we cannot analytically evaluate (2.6) by marginalizing over xi, we can analytically

marginalize over B with an isotropic prior on the columns of B. Suppose we use RBFs

for ψ, and take the number of basis functions to infinity, the marginalization results in

p(Y|X, β̄) =
1

√

(2π)ND|K|D
exp

(

−1

2
tr
(

K−1YYT
)

)

, (2.13)

where K is a kernel matrix with hyperparameters β̄ = {β1, β2, β3}. The elements of the

kernel matrix are defined by a RBF kernel function, (K)i,j = k(xi,xj).

k(x,x′) = β1 exp

(

−β2

2
||x− x′||2

)

+ β−1
3 δx,x′. (2.14)

See Chapter 3 for more on the RBF kernel hyperparameters. It should be noted that

the RBF kernel function only represents a subset of all possible GPLVMs, any function

that results in a nonnegative definite kernel matrix for all possible X can be used as

the kernel function [33]. Intuitively, different kernel functions correspond to different

representations of g, and their selection should depend on the application.

The GPLVM estimates the joint density of the data points (Y) and their latent space

representations (X). The MAP estimates of X are used to represent a learned model, and

can be directly used for data visualization [25, 26]. GPLVM has the attractive property of

generalizing reasonably well from small data sets in high dimensional observation spaces

[18], and a fast learning algorithm based on active sets is available. A drawback of this
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approach is that the likelihood of a new data point given a learned model cannot be

evaluated in closed-form, as a latent space position for the new data point is needed to

evaluate (2.13).

Except for ST-Isomap, neither geometrically-motivated NLDR nor nonlinear latent

variable methods discussed in this section are designed to model data with temporal

coherence. For applications such as activity manifold learning [12], the training data are

typically video and motion capture sequences, where temporal information is significant.

For example, if we try to learn a manifold for a particular person walking using several

walk trajectories, the sampling rate along each trajectory will typically be much greater

than between trajectories. The result is a sparsely and nonuniformly sampled manifold,

which creates problems for manifold learning algorithms. Incorporating temporal infor-

mation also allows more information to be extracted from the data; Namely, we could

compute the likelihood of motion trajectories, and perform forecasting: calculating the

probability distribution over the next pose given the last few poses.

2.2 Dynamical systems

The analysis of time series data has been studied extensively in various fields such as

control engineering, finance, and economics. We are particularly interested in modeling

processes that are not directly observable, corresponding to the graphical model in Figure

3.1(a). The xt terms represent hidden states of the system at time t, while yt terms

represent the observed outputs of the system at time t. We also assume that there exists

a dynamical process that governs the evolution of xt with respect to time, and a separate

observation process that maps xt to yt. The former is usually assumed to be a Markov

process. In engineering literatures, parameter estimation in such models is referred to

as system identification. Note that dynamical systems can also have input signals ut

at each time step, which is useful for modeling control systems. We focus on the fully
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unsupervised case in this thesis, where there are no inputs to the system.

Although the observations could be simply a noisy version of the hidden states, the

main motivation of analyzing the dynamical process in a hidden state space instead of

the observation space is the dimensionality of typical observations. Consider a video

of a rotating cube as an example, the observation space could be a 512 by 512 image,

while the rotation itself could be described by a quaternion. Suppose we are interested in

predicting the next frame of the video given the current one, learning a mapping between

consecutive frames directly means solving a 262144-dimensional regression problem. On

the other hand, if we could estimate the quaternion which describes the rotation from

the image, we could simply predict the next quaternion from the current one, which is a

four dimensional regression problem. The idea also applies to analysing human motion

capture data, where the observation space consist of all the joint angles in a skeleton.

There are three distributions of interest for our applications in this type of dynamical

systems. Let x1:t = {x1, · · · ,xt}. The Markov assumption states,

p(xt|x1:t−1) = p(xt|xt−1), (2.15)

which is given by the stochastic dynamical process. This distribution predicts the next

state of the system given the current one. It is entirely dependent on the noise distribution

for the dynamical process, which is typically Gaussian.

The second distribution of interest is p(yt|xt), which is given by the observation

process. This is also typically Gaussian. Moreover, since the yt terms are independent

given the xt terms, we have

p(y1:t|x1:t) =
t
∏

i=1

p(yi|xi), (2.16)

where y1:t = {y1, · · · ,yt}. We could think of this distribution as the result of density

estimation in observation space in a latent variable model, such as the GPLVM.

Finally, we are interested in p(xt|y1:t) in order to estimate the hidden state at time

t. In a Markov process, this distribution can be propagated through time in a recur-
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sive manner. Using Bayes’ rule, the first-order Markov assumption, and the conditional

independence of observations, it can be shown that

p(xt|y1:t) = kp(yt|xt)p(xt|y1:t−1), (2.17)

where

p(xt|y1:t−1) =

∫

xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2.18)

For a detailed discussion, see [14]. Note that for certain applications, it is feasible to

estimate the value of xt using information from both the past and the future. The

operations are called filtering and smoothing respectively, and Equations (2.17) and (2.18)

are referred to as the filtering equations.

Suppose both the dynamical and observation processes (model parameters) are known,

then the first two distributions are defined. We then need obtain a state estimation given

an observation sequence. On the other hand, if the hidden trajectory corresponding to an

observation sequence is known (i.e., the third distribution is known with certainty), we

have a function fitting problem. In the general case, both model parameters and hidden

state trajectories are unknown.

2.2.1 Linear dynamical systems

The simplest, and most studied type of dynamical system is the linear dynamical system

(LDS). Various solutions for LDS can be found in both the engineering and statistics

literature. Mathematically, a LDS can be expressed by

xt = Mxt−1 + nx,t (2.19)

yt = Nxt + ny,t, (2.20)

where M and N are matrix operations corresponding to linear dynamical and observation

mappings respectively, nx,t and ny,t are zero mean, general Gaussian noise processes.
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Using a combination of Kalman smoothing and gradient based optimization, the

problem can be formulated as maximum-likelihood learning (2.21) [11], and solved using

the EM algorithm [44, 15]. Closed-form solutions to the problem do exist in the system

identification theory literature. The N4SID algorithm, introduced by Van Overschee and

De Moor [54] is available as a Matlab toolbox.

The key observation for linear systems is that the linear transformation of a Gaussian

is still Gaussian. If p(x1|y1) is Gaussian, it can be shown that the filtering equations

are also Gaussian for all t. The distributions can then be fully represented by first-

and second-order statistics, which can be estimated using the Kalman smoothing algo-

rithm. These distributions are used to compute the expected log likelihood required in

the E-step of the algorithm. The linear mappings allow the likelihood function to be

integrated analytically. Model parameters M, N, along with covariance matrices of the

noise processes can then be found by optimization in the M-step.

While computations in LDS are efficient and are relatively easy to analyze, the model

is not suitable for a large class of problems. By definition, nonlinear variations in the

state space are treated as noise in an LDS model, resulting in overly smoothed motion

during simulation. The linear observation function suffers from the same shortcomings

as linear latent variable models, which are discussed in Section 2.1.1.

2.2.2 Nonlinear dynamical systems — state estimation

A natural way of increasing the expressiveness of the model is to remove the linearity

assumption on the mappings, but learning such general nonlinear models is difficult. The

main difficulty arises from the fact that the filtering equations are now generally non-

Gaussian. So even if we assume the model parameters are known, the state estimation

problem alone is nontrivial. Various methods have been proposed for this type of state

estimation, most of which centers around approximating the filtering distribution with a

Gaussian.
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Extended Kalman filtering (EKF) approximates the nonlinear dynamics and obser-

vations mapping with locally linear mappings around the current state. The effect is

that filtering equations in this linearized system are Gaussian, assuming the initial state

distribution is Gaussian. EKF performs well for systems with smooth mappings that

are local linear. However, for motions with sudden acceleration, such as the middle of

a golf or baseball swing, local linearization could produce highly inaccurate estimation.

Moreover, local linearization requires computing the Jacobian of the mapping, which can

be expensive in practice.

The unscented Kalman filter (UKF) [22] is an alternative method that attempts to

approximate the arbitrary state distribution with a Gaussian, but makes no simplifying

assumptions about the nonlinear mapping. A deterministically-chosen set of points (so

that their mean and covariance is equal to the current state approximation) is sent

through a nonlinear mapping. The mean and covariance of the outputs, are then used

to approximate the output distribution as a Gaussian. While [22] reported improved

estimation results compared to EKF, it does not address problems where the true state

distribution is highly non-Gaussian, or multi-modal.

A number of Monte Carlo sampling methods have also been proposed for the state

estimation problem [7, 31, 20, 53, 8]. The basic idea is to represent the filtering dis-

tribution p(xt−1|y1:t−1) at any given time with a number of weighted discrete samples.

At each time step, the samples are propagated through the dynamics process p(xt|xt−1)

and are reweighed through the observation likelihood p(yt|xt), which then becomes a

weighted discrete representation of p(xt|y1:t). These methods are theoretically capable

of representing arbitrary state distributions, but are highly sensitive to dimensionality

and are expensive to compute.
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2.2.3 Nonlinear dynamical systems — model estimation

Complementary to state estimation is the model estimation problem, which defines the

distributions in (2.15) and (2.16). Suppose we have point estimates of the xt terms (i.e.,

assume the hidden states are fully observed), then the problem reduces to nonlinear

regression. Methods such as artificial neural networks (ANN), radial basis function net-

works (RBFN), or Gaussian processes (GP) can then be used to learn both the dynamics

mapping and the observation mapping.

However, ideal estimates of the posterior distribution should not be point estimates.

Since the state values are never observed, our uncertainty about them should be reflected

during estimation. As discussed previously, results from EKF and UKF are Gaussians,

whereas Monte Carlo methods give discrete representations of arbitrary distributions.

Fitting functions to uncertain inputs (and outputs of the dynamics function) can no

longer be viewed as a simple regression problem.

Another way of viewing model estimation is as to find a set of parameters θ such

that the likelihood p(y1:t|θ) is maximized. Using point estimates of x1:t for nonlinear

regression is equivalent to maximizing the complete likelihood p(y1:t,x1:t|θ). On the other

hand, keeping the uncertainty in x1:t, we should maximize the incomplete likelihood

p(y1:t|θ) =

∫

x1:t

p(y1:t,x1:t|θ)dx1:t, (2.21)

integrating out x1:t.

The above integral is generally intractable, and suggests that model estimation should

not be treated separately from state estimation when the states are truly hidden. While

Monte Carlo approximations can be used, they are expensive and induce a difficult

stochastic optimization problem. The EM algorithm maximizes a lower bound of the

incomplete likelihood, and can be applied in a straightforward fashion to linear systems

as discussed previously. We discuss the EM algorithm in more detail in Chapter 5.

Ghahramani and Roweis [16] showed that nonlinear systems can also be learned using



Chapter 2. Related Work 19

the EM algorithm, by combining EKF and RBF regression. Alternatively, linear dynam-

ical systems can be augmented with switching states to approximate a nonlinear system,

which has been applied to model human motion [38]. Both approaches require sufficient

amounts of training data that one can learn the parameters of the switching or basis

functions. Determining the appropriate number of basis functions is also difficult.

To summarize, a central difficulty in modeling time series data is in determining

a model that can capture the nonlinearities of the data without overfitting. Linear

autoregressive models require relatively few parameters and allow closed-form analysis,

but can only model a limited range of systems. In contrast, existing nonlinear models

can model complex dynamics, but may require many training data points to accurately

learn MAP models.

2.3 Applications

Our work is motivated by modeling human motion for video-based people tracking and

data-driven animation. An individual human pose is typically parameterized with more

than 60 parameters. Despite the large state space, the space of activity-specific human

poses and motions has a much smaller intrinsic dimensionality; in our experiments with

walking and golf swings, 3 dimensions often suffice. Bayesian people tracking requires

dynamical models in the form of transition densities in order to specify prediction dis-

tributions over new poses at each time instant (e.g., [38, 45, 37, 46, 12, 52]); similarly,

data-driven computer animation requires prior distributions over poses and motion (e.g.,

[5, 24, 39, 30, 27, 18]).

2.3.1 Monocular human tracking

Despite the difficulties with linear subspace models mentioned above, PCA has been

applied to visual tracking of humans and other vision applications [55, 37, 45, 52]. The
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typical data representation in this approach is to concatenate the entire trajectory of a

walk cycle or a golf swing as one vector in the data space. The lower dimensional PCA

space is then used as the state space. Nonlinearity of the data distribution is no longer

a problem here, since the training data lie in trajectory space instead of pose space. In

addition, there is no need to learn dynamics from the locations of data points. The

introduction of a phase parameter which propagates forward in time can serve as an

index to the prior distribution of poses. While the results of tracking are reasonable, this

prior model is highly specific to the activity being captured. It is not clear how it can

be extended to transition between multiple activities due to the explicit dependence on

phase.

Nonlinear dimensionality reduction techniques such as LLE have also been used in the

context of human pose analysis. Elgammal and Lee [12] use LLE to learn activity based

manifolds from silhouette data. They then use nonlinear regression methods to learn

mappings from manifolds back to silhouette space and to 3D data. Jenkins and Matarić

[21] use ST-Isomap to learn embeddings of multi-activity human motion data and robot

teleoperation data. Sminchisescu and Jepson [46] used spectral embedding techniques

to learn an embedding of 3D motion capture data. They also learn a mapping back to

pose space separately, and a large amount of training data is needed. None of the above

approaches learn a dynamics function explicitly, and no density model in the embedding

space is learned in [21]. In general, the need to learn an embedding, mappings, and a

density function separately is undesirable.

2.3.2 Computer animation

The applications of prior models for animation include style-content separation [5], mo-

tion synthesis subject to sparse user constraints [24, 39, 30, 18], and interactive avatar

control [27].

Brand and Hertzmann [5] model human motion by augmenting an HMM with stylis-
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tic parameters. They applied the model to the problem of style-content separation in

human motion and were able to achieve effects such as replacing poorly performed dance

sequences from a novice actor by ones performed by an expert actor. However, the dis-

crete latent space of an HMM is not suited to model continuous human motion, and

artefacts such as feet sliding are often observed in the results.

A number of authors have constructed prior models by combining large motion

databases with simple probabilistic models based on distance between poses in both

position and velocity [24, 39, 30, 27]. This approach is designed for real time control and

synthesis of animation, but a large amount of data is needed and the ability to generalize

is minimal. Although the quality of synthesis is relatively high, the model is only capable

of synthesizing poses in or near poses the database.

The Gaussian process latent variable model (GPLVM), recently developed by Lawrence

[25, 26], learns a lower dimensional representation of the data as well as a probabilistic

mapping from latent space back to data space. A scaled version of GPLVM (SGPLVM)

was applied to human pose data in computer animation by Grochow et al. [18], where

the density function given by the probabilistic mapping was used to determine the most

likely pose given kinematics constraints. The function prefers poses close to the train-

ing data and falls off smoothly as distance increases. However, the SGPLVM did not

explicitly model dynamics in the pose data.

On the other hand, the GPLVM initializes an embedding by PCA. A likelihood of

the data is then defined by GP regression, treating PCA coordinates as inputs and pose

as outputs. As a result, both a mapping to pose space and a density function over latent

space is obtained. The input coordinates can be moved to locations given by maximum

likelihood estimation. We introduce an additional prior on the locations in latent space

with dynamics.
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Gaussian Process Dynamics

The Gaussian process dynamical model (GPDM) comprises a mapping from a latent

space to the data space, and a dynamical model in the latent space (Figure 1). These

mappings are typically nonlinear. The GPDM is obtained by marginalizing out the

parameters of the two mappings, and optimizing the latent coordinates of training data.

More precisely, our goal is to model the probability density of a sequence of vector-

valued states y1...,yt, ...,yN , with discrete-time index t and yt ∈ R
D. As a basic model,

consider a latent-variable mapping with first-order Markov dynamics:

xt = f(xt−1;A) + nx,t (3.1)

yt = g(xt;B) + ny,t (3.2)

Here, xt ∈ R
d denotes the d-dimensional latent coordinates at time t, nx,t and ny,t are

zero-mean, white Gaussian noise processes, f and g are (nonlinear) mappings parame-

terized by A and B, respectively. Figure 3.1(a) depicts the graphical model.

While linear mappings have been used extensively in autoregressive models, here we

consider the nonlinear case for which f and g are linear combinations of basis functions:

f(x;A) =
∑

i

ai φi(x) (3.3)

g(x;B) =
∑

j

bj ψj(x) (3.4)

22
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Figure 3.1: Time series graphical models. (a) Nonlinear latent-variable model for time

series. (Hyperparameters ᾱ and β̄ are not shown.) (b) GPDM model. Because the

mapping parameters A and B have been marginalized over, all latent coordinates X =

[x1, ...,xN ]T are jointly correlated, as are all poses Y = [y1, ...,yN ]T .

for weights A = [a1, a2, ...] and B = [b1,b2, ...], and basis functions φi and ψj. In

order to fit the parameters of this model to training data, one must select an appropriate

number of basis functions, and one must ensure that there is enough data to constrain

the shape of each basis function. Ensuring both of these conditions can be very difficult

in practice.

However, from a Bayesian perspective, the specific forms of f and g — including the

numbers of basis functions — are incidental, and should therefore be marginalized out.

With an isotropic Gaussian prior on the columns of B, marginalizing over g can be done

in closed form [33, 35] to yield

p(Y |X, β̄) =
|W|N

√

(2π)ND|KY |D
exp

(

−1

2
tr
(

K−1
Y YW2YT

)

)

, (3.5)

where Y = [y1, ...,yN ]T , KY is a kernel matrix, and β̄ = {β1, β2, ...,W} comprises the

kernel hyperparameters. The elements of kernel matrix are defined by a kernel function,

(KY )i,j = kY (xi,xj). For the latent mapping, X → Y, we currently use the RBF kernel

kY (x,x′) = β1 exp

(

−β2

2
||x − x′||2

)

+ β−1
3 δx,x′ . (3.6)

As in the SGPLVM [18], we use a scaling matrix W ≡ diag(w1, ..., wD) to account for

differing variances in the different data dimensions. This is equivalent to a GP with

kernel function k(x,x′)/w2
m for dimension m, or a warped GP [47] with warping YW.
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The form of the kernel function, which represents entries in the covariance matrix

of p(Y |X, β̄), is closely related to the function approximator used for (3.4). In this

case, the RBF kernel corresponds to using an infinite number of RBFs to represent f

[33]. Hyperparameter β1 represents the overall scale of the output function, while β2

corresponds to the inverse width of the RBFs. The variance of the process noise term

ny,t is given by β−1
3 .

The dynamic mapping on the latent coordinates X is conceptually similar, but more

subtle. Conceptually, we would like to model each pair (xt,xt+1) as a training pair for

regression with g. However, we cannot simply substitute them directly into the GP model

of (3.5) as this leads to the nonsensical expression p(x2, ...,xN |x1, ...,xN−1).

As above, we form the joint probability density over the latent coordinates and the

dynamics weights A in (3.3). We then marginalize over the weights A, i.e.,

p(X | ᾱ) =

∫

p(X,A | ᾱ) dA =

∫

p(X |A, ᾱ) p(A | ᾱ) dA . (3.7)

Incorporating the Markov property (3.1) gives:

p(X | ᾱ) = p(x1)

∫ N
∏

t=2

p(xt |xt−1,A, ᾱ) p(A | ᾱ) dA , (3.8)

where ᾱ is a vector of kernel hyperparameters. Assuming an isotropic Gaussian prior on

the columns of A, it can be shown that this expression simplifies to:

p(X | ᾱ) = p(x1)
1

√

(2π)(N−1)d|KX|d
exp

(

−1

2
tr
(

K−1
X XoutX

T
out

)

)

, (3.9)

where Xout = [x2, ...,xN ]T , KX is the (N−1) × (N−1) kernel matrix constructed from

{x1, ...,xN−1}, and x1 is assumed to be have an isotropic Gaussian prior. For a derivation,

see Appendix A.

We model dynamics using both the RBF kernel of the form of (3.6), as well as the

following “linear + RBF” kernel:

kX(x,x′) = α1 exp
(

−α2

2
||x − x′||2

)

+ α3x
Tx′ + α−1

4 δx,x′ . (3.10)
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The kernel corresponds to representing g as the sum of a linear term and RBF terms.

The inclusion of the linear term is motivated by the fact that linear dynamical models,

such as first and second-order autoregressive models, are useful for many systems. Hy-

perparameters α1, α2 represent the output scale and the inverse width of the RBF terms,

and α3 represents the output scale of the linear term. Together, they control the relative

weighting between the terms, while α−1
4 represents the variance of the noise term nx,t.

It should be noted that, due to the nonlinear dynamical mapping in (3.3), the joint

distribution of the latent coordinates is not Gaussian. Moreover, while the density over

the initial state may be Gaussian, it will not remain Gaussian once propagated through

the nonlinear dynamics. One can also see this in (3.9) since xt terms occur inside the

kernel matrix, as well as outside of it. The log likelihood is therefore not quadratic in xt.

Finally, we also place simple priors on the hyperparameters, i.e., p(ᾱ) ∝ ∏

i α
−1
i ,

and p(β̄) ∝ ∏

i β
−1
i . Note that the priors prefer small output scale (small α1, α3, β1),

large width for the RBFs (small α2, β2), and large noise variance (small α4, β3) to dis-

courage overfitting. Together, the priors, the latent mapping, and the dynamics define a

generative model for time series observations:

p(X,Y, ᾱ, β̄) = p(Y|X, β̄) p(X|ᾱ) p(ᾱ) p(β̄) . (3.11)

The corresponding graphical model is shown in Figure 3.1(b).

3.1 Multiple sequences

This model extends naturally to multiple sequences Y1, ...,YM . Each sequence has asso-

ciated latent coordinates X1, ...,XM within a shared latent space. For the latent mapping

g we can conceptually concatenate all sequences within the GP likelihood (3.5). A simi-

lar concatenation applies for the dynamics, but omitting the first frame of each sequence

from Xout , and omitting the final frame of each sequence from the kernel matrix KX .

The same structure applies whether we are learning from multiple sequences, or learning
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from one sequence and inferring another. That is, if we learn from a sequence Y1, and

then infer the latent coordinates for a new sequence Y2, then the joint likelihood entails

full kernel matrices KX and KY formed from both sequences.

3.2 Higher-order features

The GPDM can be extended to model higher-order Markov chains, and to model velocity

and acceleration in inputs and outputs. For example, a second-order dynamical model,

xt = f(xt−1,xt−2;A) + nx,t (3.12)

may be used to explicitly model the dependence of the prediction on two past frames (or

on velocity). In the GPDM framework, the equivalent model entails defining the kernel

function as a function of the current and previous time step:

kX( [xt,xt−1], [xτ ,xτ−1] ) = α1 exp
(

−α2

2
||xt − xτ ||2 −

α3

2
||xt−1 − xτ−1||2

)

+α4 xT
t xτ + α5 xT

t−1xτ−1 + α−1
6 δt,τ (3.13)

Similarly, the dynamics can be formulated to predict velocity:

vt−1 = f(xt−1;A) + nx,t (3.14)

Velocity prediction may be more appropriate for modeling smoothly motion trajectories.

Using Euler integration with time step ∆t, we have xt = xt−1 + vt−1∆t. The dynamics

likelihood p(X | ᾱ) can then be written by redefining Xout = [x2−x1, ...,xN −xN−1]
T/∆t

in (3.9). In this thesis, we use a fixed time step of ∆t = 1. This is analogous to using

xt−1 as a “mean function.”

Higher-order features can also be fused together with position information to reduce

the Gaussian process prediction variance [48, 34].
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3.3 In relation to GP regression and GPLVM

We have motivated the development of GPDM through the marginalization of model

parameters in a subspace dynamical system. Equivalently, the model can be thought

of as using one set of state estimations to define both the observation and dynamics

mapping.

In Gaussian process regression [33], the learned nonlinear function is not represented

by a set of specific parameters, but by the training data (input/output pairs) itself and

a few hyperparameters. Suppose the states X are given in addition to Y, then the

observation mapping is fully defined by inputs X = {x1, · · · ,xt, · · · ,xN} and outputs

Y = {y1, · · · ,yt, · · · ,yN}. The kth order dynamics mapping is defined by inputs Xin =

{x1, · · · ,xt, · · · ,xN−k} and outputs Xout = {xk+1, · · · ,xt, · · · ,xN}. It can be shown that

both prediction distributions p(ỹ|x̃,X,Y, β̄) and p(x̃t+1|x̃t,Xin,Xout, ᾱ) are Gaussian,

and can be computed analytically (4.4), (4.5). Our model corresponds to describing

both mappings using Gaussian processes, where the state estimation X is obtained by

maximizing the joint likelihood (3.11).

As we alluded to earlier, the GPDM is closely related to the GPLVM [25]. In the

GPLVM, a unit Gaussian prior is used on X during estimation, which is sensible when

the data is assumed to be generated independently. The GPDM can be thought of

as replacing the Gaussian prior on X with (3.9), which reflects our prior belief that

the observed data is generated by an autoregressive dynamical process. The general

nonlinear dynamics mapping we use gives rise to a relatively loose preference for smooth

trajectories (i.e., nearby points in latent space should map to nearby points). Stronger

domain knowledge can be incorporated by modifying the kernel function. Namely, the

linear kernel leads to a prior that discourages nonlinearities in general. Using multiple

sequences and higher order models simply correspond to changing the expression for

p(X|ᾱ).

From a practical point of view, our goal is to augment GPLVM with latent space
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dynamics. The state estimation process in GPLVM has the tendency to place data

points that are far apart in observation space, far apart in latent space (even more so

than PCA). While this property is useful for data visualization, it leads to trajectories

with large jumps when applied to human motion data. The obvious solution of learning

dynamics on such trajectories typically leads to underfitting, as large jumps are treated

as outliers. Furthermore, we can see from the graphical model that the hidden states

are constrained by the data as well as the dynamics function. This is not the case if

dynamics is learned after learning GPLVM, where state estimates are not influenced by

the dynamics function at all.
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Properties of the GPDM and

Algorithms

Learning the GPDM from measurements Y entails minimizing the negative log-posterior:

L = − ln p(X, ᾱ, β̄ |Y) (4.1)

=
d

2
ln |KX | +

1

2
tr
(

K−1
X XoutX

T
out

)

+
∑

j

lnαj (4.2)

−N ln |W| +
D

2
ln |KY | +

1

2
tr
(

K−1
Y YW2YT

)

+
∑

j

ln βj

up to an additive constant. We minimize L with respect to X, ᾱ, and β̄ numerically. Our

implementation is based on Neil Lawrence’s GPLVM code 1. Optimization is performed

with the scaled conjugate gradient (SCG) implementation in NETLAB. Minimization

with respect to W is done in closed-form, setting

wk ⇐
√

N(yT
:,kK

−1
Y y:,k)

−1
, (4.3)

once every ten iterations. Gradients are given in Appendix B.

1http://www.dcs.shef.ac.uk/∼neil/gplvm/
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4.1 Visualizations

Figures 4.1 and 4.2 show a GPDM 3D latent space learned from a human motion cap-

ture data comprising three walk cycles. The human motion capture sequences were ob-

tained from the CMU motion capture database (http://mocap.cs.cmu.edu). Each pose

comprised 56 Euler angles for joints, three global (torso) pose angles, and three global

(torso) translational velocities. For learning, the data was mean-subtracted, and the la-

tent coordinates were initialized with PCA. The GPDMs were learned by minimizing L

in (4.2).

Figure 4.1(b) shows a 3D SGPLVM learned from the walking pose data. Notice that

the sequence of latent coordinates is not particularly smooth; there are numerous cases

where consecutive poses in the walking sequence are relatively far apart in the latent

space. By contrast, Figure 4.1(a) shows that the GPDM produces a much smoother

configuration of latent positions. Here the GPDM arranges the latent positions roughly

in the shape of a saddle.

In order to further visualize properties of the GPDM, Figure 4.2(a) shows 25 fair sam-

ples from the latent dynamics of the GPDM. All samples are conditioned on the same

initial state, x0, and each has a length of 60 time steps.2 As noted above, because we

marginalize over the weights of the dynamic mapping, A, the dynamical model is some-

what complex; that is, the joint distribution over a sequence of poses cannot be factored

according to the underlying Markov model (Figure 3.1(a)) into a sequence of low-order

Markov transitions. As a consequence, one cannot properly draw samples from the model

in a causal fashion, one state at a time from the effective transition density, p(xt |xt−1).

Instead, here the fair samples, {X̃(j)
1:60}25

j=1, with X̃
(j)
1:60 ∼ p(X̃1:60 |x0,X,Y, ᾱ), were gen-

erated with hybrid Monte Carlo [33] (HMC). The resulting trajectories shown in Figure

4.2(a) are smooth and generally follow the path of the training motions. Figure 4.4 shows

2The length was chosen to be just less than a full gait cycle for ease of visualization.
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example animations from HMC samples.

Another visualization of the GPDM is given in Figure 4.2(b). Following [25], this is a

volume visualization of the inverse reconstruction variance, i.e., − ln σ2
y|x,X,Y,β̄

. In effect

this shows the confidence with which the model reconstructs the pose from the latent

position; in effect, the GPDM models a high probability “tube” around the data.

Figure 4.6 shows 2D models. In theory, a walk cycle can be represented as a single

closed curve in 2D. However, notice that the 2D GPDM produces large “jumps” in the

latent trajectories. As a result, the dynamics are over-smoothed and simulation is unreli-

able (e.g., see Figure 4.7). These “jumps” appear when the 2D trajectories initialized by

PCA intersect. While the 2D PCA projections are similar, the reconstructions and dy-

namics at intersections are often different. The learning typically leads to a local minima

which breaks the curves to establish latent coordinates that yield better reconstruction,

but without removing the discontinuities. Many of these problems disappear in 3D where

intersections are not common, resulting in smoother models (see Figure 4.1b).

Figure 4.8 shows GPLVM models learned from human motion capture data of golf

swings, which show a 3D GPDM learned from three swings of a golf club. The plots show

the same latent space from two viewpoints looking parallel to two of the coordinate axes.

The learning aligns the sequences and nicely accounts for variations in speed during the

club trajectory.

4.2 Mean prediction sequences

For both 3D people tracking and computer animation, it is desirable to generate new

motions efficiently. Here we consider a simple online method for generating a new motion,

called mean-prediction, which avoids the relatively expensive Monte Carlo sampling used

above. In mean-prediction, we consider the next timestep x̃t conditioned on x̃t−1 from
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the Gaussian prediction [33]:

x̃t ∼ N (µX(x̃t−1); σ
2
X(x̃t−1)I) (4.4)

µX(x) = XT
out

K−1
X kX(x) , σ2

X(x) = kX(x,x) − kX(x)TK−1
X kX(x) (4.5)

where kX(x) is a vector containing kX(x,xi) in the i-th entry and xi is the ith training

vector. In particular, we set the latent position at each timestep to be the most likely

(mean) point given the previous step: xt = µX(xt−1). In this way we ignore the process

noise that one might normally add. Compared to including the random process noise

at each time step, we find that this mean-prediction often generates motions that are

more like the fair samples shown in Figure 4.1(a). Similarly, new poses are given by

yt = µY (xt).

Depending on the dataset and the choice of kernels, long sequences generated by mean-

prediction can diverge from the data. On our data sets, mean-prediction trajectories from

the GPDM with an RBF or linear+RBF kernel for dynamics usually produce sequences

that roughly follow the training data (e.g., see the red curves in Figures 4.5 and 4.8b,c).

This usually means producing closed limit cycles with walking data. We also found

that mean-prediction motions are often very close to the mean obtained from the HMC

sampler; by initializing HMC with mean-prediction, we find that the sampler reaches

equilibrium in a small number of interactions. Compared to the RBF kernels, mean-

prediction motions generated from GPDMs with the linear kernel often deviate from the

original data (e.g., see Figs 4.5b, 4.6b, and 4.7b), and lead to over-smoothed animation.

4.3 Optimization

While mean-prediction is efficient, there is nothing in the algorithm that prevents trajec-

tories from drifting away from the training data. It is sometimes desirable to optimize

a particular motion under the GPDM, which often reduce drift of the mean-prediction
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motions. To optimize a new sequence, we first select a starting point x̃1 and a number of

time steps. The likelihood p(X̃ |X, ᾱ) of the new sequence X̃ is then optimized directly

(holding the latent positions of the previously learned latent positions, X, and hyperpa-

rameters, ᾱ, fixed). To see why optimization generates motion close to the training data,

note that the variance of pose xt+1 is determined by σ2
X(xt), which will be lower when

xt is nearer the training data. Consequently, the likelihood of xt+1 can be increased by

moving xt closer to the training data. This generalizes the preference of the SGPLVM

for poses similar to the examples [18], and is a natural consequence of the Bayesian ap-

proach. As an example, Figure 4.3 shows an optimized walk sequence initialized from

the mean-prediction.

4.4 Forecasting

We performed a simple experiment to compare the predictive power of the GPDM to a

linear dynamical system, implemented as a GPDM with linear kernel in the latent space

and RBF latent mapping. We trained each model on the first 130 frames of the 60Hz

walking sequence (corresponding to 2 cycles), and tested on the remaining 23 frames.

From each test frame mean-prediction was used to predict the pose 8 frames ahead, and

then the RMS pose error was computed against ground truth. The test was repeated using

mean-prediction and optimization for three kernels and first-order Markov dynamics:

Linear RBF Linear+RBF

mean-prediction 59.69 48.72 36.74

optimization 58.32 45.89 31.97

Due to the nonlinear nature of the walking dynamics in latent space, the RBF and

Linear+RBF kernels outperform the linear kernel. Moreover, optimization (initialized

by mean-prediction) improves the result in all cases, for reasons explained above.
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4.5 Missing data

The GPDM model can also handle incomplete data (a common problem with human

motion capture sequences). The GPDM is learned by minimizing L (4.2), but with the

reconstruction terms corresponding to missing frames removed. The latent coordinates

for missing data are initialized by cubic spline interpolation from the 3D PCA initializa-

tion of the observed points.

While this produces good results for short missing segments (e.g., 10–15 frames of

the 157 frame walk sequence used in Figure 4.1), it fails on long missing segments. The

problem lies with the difficulty in initializing the missing latent positions sufficiently

close to the training data. To solve the problem we first learn a model with a sub-

sampled data sequence. Reducing sampling density effectively increases uncertainty in

the reconstruction process so that the probability density over the latent space falls off

more smoothly from the data. We then restart the learning with the entire data set, but

with the kernel hyperparameters fixed. In doing so, the dynamics terms in the objective

function exert more influence over the latent coordinates of the training data, and a

smooth model is learned.

With 50 missing frames of the 157 walk sequence, this optimization produces models

(Figure 4.9) that are much smoother than those in Figure 4.1. The linear kernel is able

to pull the latent coordinates onto a cylinder (Figure 4.9b), and thereby provides an

accurate a dynamical model. Both models shown in Figure 4.9 produce estimates of the

missing poses that are visually indistinguishable from the ground truth.

4.6 Multiple subjects

The GPDMs discussed so far have all been trained with one single subject doing one

activity in one particular style. However, for practical applications, the prior motion

model must be general enough to make sensible predictions on motion data from different
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subjects. We find that GPDMs learned from the training sets described so far tend to be

overly specific to the observed motion and subject. For example, a human walker tracking

application may forecast future poses by first estimating the most likely latent space

position for the current pose. One can only expect the predictions to be accurate if the

estimated position is near the training data in latent space, which does not consistently

happen if the new pose is not from the same subject performing the same walking style.

One potential solution to the above problem is to use richer sets of training data. In

the ideal case, the model should learn a high-probability tube region in the latent space,

representing all likely poses of a particular activity regardless of the subject and style.

Figure 4.10 shows results from learning with six walk cycles, each from a different person.

The inverse reconstruction variance plot shows regions with high reconstruction certainty

separated into small clusters. In constrast with Figure 4.10(a), Figure 4.2(b) shows a

tube-shaped region of high reconstruction certainty from the GPDM with a single walker.

The simulation results from the latter tend to generate points within the tube, which

leads to good reconstruction. Not surprisingly, animation results corresponding to the

red curve in Figure 4.10(b) look awkward and unsmooth. Notice that the simulation

trajectory contain points outside of regions with high reconstruction certainty in latent

space. These points do not have enough neighbours around them for good reconstruction,

and are typically reconstructed to the mean pose in observation space.

We would like to see a GPDM trained with multiple subjects performing the same

activity to have a inverse reconstruction variance plot similar to Figure 4.2(b). Unfor-

tunately, the learning algorithm proposed in this section does not produce the desired

result.
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(a)

  

(b)

  

Figure 4.1: Models learned from a walking sequence comprising 2.5 gait cycles. The

latent coordinates learned with a GPDM (a) and GPLVM (b) are shown in blue. Vectors

depict the temporal sequence.
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(a)

(b)

Figure 4.2: Visualizations of GPDM learned from a walking sequence. (a) Random

trajectories drawn from the model using hybrid Monte Carlo are green. (b) negative log

variance for reconstruction shows positions in latent space that are reconstructed with

high confidence.
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Figure 4.3: A GPDM of walk data at 120Hz learned with RBF+linear kernel dynam-

ics. The simulation (red) was started far from the training data, and then optimized

(green). The poses depicted were reconstructed from latent points along the optimized

(simulation) trajectory.
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Figure 4.4: Animation of samples from hybrid Monte Carlo. The trajectory length is 200

frames, four selected frames of each sample are shown here.
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Figure 4.5: Two GPDMs and mean predictions. The first is that from the previous figure.

The second was learned with a linear kernel.
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(a)

(b)

Figure 4.6: GPDM models of walking in a 2D latent space. As above, latent coordinates

of data are shown in blue, and mean-prediction simulations are red. (a) GPDM with a

linear+RBF kernel. The nonlinear kernel produces a closed limit cycle. (b) GPDM with

a linear kernel does not produce a limit cycle for long simulations.
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(a)

(b)

Figure 4.7: GPDM models of walking in a 2D latent space, with double the number of

data points compared to Figure 4.6. (a) GPDM with a linear+RBF kernel. (b) GPDM

with a linear kernel.
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(a)

 

(b)

 

Figure 4.8: The GPDM model was learned from three swings of a golf club, using a 2nd

order RBF kernel for dynamics. The two plots show 2D orthogonal projections of the

3D latent space.
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Figure 4.9: GPDM from walk sequence with missing data learned with (a) a RBF+linear

kernel for dynamics, and (b) a linear kernel for dynamics. Blue curves depict original

data. Green curves are the reconstructed, missing data.
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(a)

(b)

Figure 4.10: A GPDM learned with six walkers, one cycle each. (a) Inverse reconstruction

variance plot, notice the regions with high reconstruction certainty are separated into

small clusters. (b) Simulation results.



Chapter 5

Accounting for Latent Space

Uncertainty

The shape of the regions with high reconstruction certainty (warm-coloured regions in

the volume visualizations) discussed in Section 4.6 is completely determined by the place-

ment of training poses in latent space and the hyperparameters for reconstruction. For

example, the clumpy warm-coloured regions in Figure 4.10(a) is partially a consequence

of the unsmooth arrangement of training data in latent space. On the other hand, smooth

latent space trajectories tend to define a tube-shaped warm-coloured region around the

training data, as seen in Figure 4.2(b). As discussed previously, having a tube-shaped re-

gion with high reconstruction certainty leads to dynamic simulations that generate poses

within the tube, which is good for reconstruction.

One of the motivations for GPDM is to augment GPLVM with temporal information

so that smooth latent space trajectories can be recovered from smooth motion data. To

this end, we have seen the effectiveness of GPDM on walk cycles from a single subject

projected into 3D (Figure 4.1). In 2D, or 3D with multiple walkers, neither GPLVM nor

GPDM produce particularly smooth trajectories (Figure 4.6, Figure 4.10). We discuss

methods to produce smoother trajectory estimates in this chapter.

46
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5.1 Priors on hyperparameters

The MAP learning algorithm introduced in the previous chapter relies on point estimates

of the latent coordinates to estimate the hyperparameters and vice versa. The loss of

uncertainty in latent space likely results in overfitted hyperparameters in both recon-

struction and dynamics. The estimation of X depends on the sum of − ln p(Y|X, β̄)

and − ln p(X|ᾱ). Since there are no explicit scaling factors between the terms, the influ-

ence each term has on the value of X depends on hyperparameters ᾱ and β̄. Moreover,

large jumps in the trajectory estimation are typically caused by the reconstruction term

exerting more influence than the dynamics term, as the latter penalizes large jumps in

X.

Using the RBF kernel for reconstruction as an example, the hyperparameter setting

with large RBF width, small output scale, and large noise variance corresponds to small

values of β1, β2, and β3. Such a setting is “conservative”, or more uncertain, in the

sense that the GP predictions have higher variance, and prefers to underfit the data

instead of overfitting it. Intuitively, when the hyperparameters are set conservatively

(Figure 5.1a), the likelihood function is smoother and less sensitive to changes in data

points. In the extreme case, if the hyperparameters consider the entire data set to

be noise, then the likelihood is independent of the data set. On the other hand, if

the hyperparameters are set more aggressively and overfit the data (Figure 5.1b), small

changes to the input data could have a significant impact on the likelihood function. In

our learning algorithm, the reconstruction hyperparameters (β̄), typically overfit the data

more than the hyperparameters for dynamics (ᾱ), resulting in unsmooth trajectories. It is

not clear at this moment why the algorithm seems to favour reducing reconstruction error

over dynamics prediction error. The difference in dimensionality between the observation

space and the latent space is one possible explanation, and the solution may depend on

finding a sensible way of adjusting distance measurements based on dimensionality.

It is tempting to set values of the hyperparameters by hand, keeping them fixed
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so that only X is learned in the model. Although we can trade off the smoothness of

the trajectories with reconstruction error on the training data this way, it is difficult in

practice. The scales of hyperparameters are closely intertwined with each other [18], and

are highly dependent on the data set.

A more principled way of influencing values of parameters is by attaching a prior

distribution on them so that certain values are preferred to others before any data is seen.

Following the GPLVM, the priors on hyperparameters in the GPDM used in Chapter 3

are simply p(ᾱ) ∝ ∏

i α
−1
i , and p(β̄) ∝ ∏

i β
−1
i . As discussed in previous chapters,

these priors assign high probabilities to small values of ᾱ and β̄, which encourages the

hyperparameters to be conservative.

To incorporate a stronger preference for smooth trajectories, we could employ a prior

belief that there is more uncertainty (small β1, β2, β3) in the reconstruction mapping

than the dynamics mapping by increasing the strength of the prior on β̄. In particular,

p(β̄) ∝∏i β
−M
i , where M > 1. Recall that we optimize the negative log posterior:

L = − ln p(X, ᾱ, β̄ |Y) (5.1)

=
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up to an additive constant. Note that M becomes a scaling factor for the reconstruction

prior.

Figure 5.2 illustrates the effects of M on the latent space trajectories. With M = 1,

the optimized X depends largely on the reconstruction term, which pulls points apart to

reduce reconstruction error. A much smoother trajectory is obtained with M = 1000,

where the dynamics term dominates.

Since the motivation for introducing M is to influence the optimized values of ᾱ and

β̄, we want to examine their values more closely. Both mappings use RBF kernels here, so

both sets of hyperparameters consist of output scale (α1, β1), inverse width (α2, β2), and
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Table 5.1: Hyperparameter Values for 60Hz Walking Data

M = 1 M = 10 M = 500 M = 1000 MCEM

rec. RBF width β−1
2 0.379 0.380 0.66 6.36 0.0034

rec. output scale β1 0.00175 0.00155 0.000547 0.000371 0.00127

rec. noise variance β−1
3 0.00000351 0.00000324 0.00000554 0.0000162 0.00000435

∑

j ln βj 7.18 7.14 5.25 1.28 11.4

training rec. error 2.45 2.45 2.74 4.82 2.73

dyn. RBF width α−1
2 2.99 3.06 1.17 10.04 14.9

dyn. output scale α1 0.799 0.7501 1.17 16.1 2.98

dyn. noise variance α−1
3 0.0142 0.0142 0.0419 0.0000528 0.0000152

∑

j lnαj 2.94 2.91 1.67 10.32 9.49

inverse noise variance (α3, β3). One way to get an idea of the certainty of the mapping

represented by a particular set of hyperparameters is to consider
∑

j lnαj and
∑

j ln βj.

The higher these values are, the more certain the mapping is, and the more influence

it has on latent coordinates. The hyperparameter values after 500 iterations versus M

values are shown in Table 5.1. Notice that for low values of M ,
∑

j lnαj is much less

than
∑

j lnβj. Examining the latent space coordinates in these models, we find large

jumps as in Figure 5.2(a). On the other hand, the smooth trajectory in Figure 5.2(b)

corresponds to a model with
∑

j lnαj much greater than
∑

j ln βj, as indicated in the

M = 1000 column. The decrease in reconstruction certainty can also be seen from the

increase in training reconstruction error as M increases. Figure 5.6 shows learning results

on the golf swing data set, which consists of 174 data points in total, setting M = 1500

results in reasonably smooth trajectories.

It would be ideal if the effect of M on hyperparameters is independent from the
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Table 5.2: Hyperparameter Values for 120Hz Walking Data

M = 500 M = 1000 M = 3000

rec. RBF width β−1
2 0.195 0.285 1.74

rec. output scale β1 0.000886 0.000395 0.000399

rec. noise variance β−1
3 0.00000143 0.00000196 0.000047

∑

j ln βj 8.07 6.56 1.59

training rec. error 1.35 1.87 5.56

dyn. RBF width α−1
2 2.02 2.08 1.53

dyn. output scale α1 0.7534 0.7563 1.25

dyn. noise variance α−1
3 0.0193 0.0222 0.00000313

∑

j lnαj 3.06 2.93 12.5

data set. Unfortunately, this is not the case, as seen in Figure 5.3 with a more densely

sampled walking data. We see that the model learned with M = 1000 still produce large

jumps and uneven prediction variances. To obtain comparable smooth trajectories with

the previous data set, the model needed to be learned with M = 3000. The general

behaviour of hyperparameters with respect to M remains similar to the smaller data

set from before, as indicated in Table 5.2. However, the trade-off between
∑

j lnαj and

∑

j ln βj occurs more slowly with respect to M .

Despite the dependency on the data set, one could try different settings of M until a

smooth trajectory is learned. A heuristic that seems to work well in practice is picking M

to be approximately 10 times the number of data points and adjust its value up or down

by observing the hyperparameter values. Note that when M is too large, the algorithm

gives up on trying to identify patterns in the data and treats the entire data set as noise.

In this case, the RBF width of the reconstruction function tend to grow very quickly,

which is noticeable even in the first few iterations.
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The temporal sampling rate does not seem to influence the choice ofM for our walking

data set. In Figure 5.4, the first 157 frames from a 120Hz walking data set are used to

learn a model. Setting M = 1000 results in a smooth latent trajectory, whereas the

learning algorithm fails to recover any meaningful reconstruction function for M = 3000.

Figure 5.5 shows simulations from the walking data set with both M = 1 and

M = 1000. In both cases, the simulation stays reasonably close to the training data.

The animation corresponding to the Figure 5.5(a) contains noticeable jerkiness at the

character’s right foot upon ground contact, whereas the animation corresponding to Fig-

ure 5.5(b) look visually identical to simulations from 3D GPDMs.

We have focused our discussion on generating smooth trajectories so far, but it is

not clear that this would be the top priority in all applications. In fact, judging from

the
∑

j lnαj and
∑

j lnβj values for models with smooth trajectories, we are essentially

trading-off uncertainty in the two mappings by incorporating a strong prior preference for

uncertainty in reconstruction. Naturally, other types of prior beliefs can be incorporated

into the learning process in a similar fashion. For example, if we assume that ᾱ and β̄

are not independent, the priors

p(β̄) ∝
∏

i

β−1
i (5.3)

p(ᾱ|β̄) ∝ (
∏

i

βi −
∏

i

αi)
−M (5.4)

encourage the two mappings to be similarly uncertain, and therefore exert a similar

amount of influence on X.

5.2 Learning hyperparameters with uncertainty

The heuristics discussed in the previous section demonstrates the need for strong

priors in the GPDM to learn smooth trajectories in 2D, but it is not clear why a smooth

2D representation of the smooth human motion data cannot be learned purely from the
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Algorithm 1 Learning GPDM with MCEM

Require: A number of iterations, T , A number of samples R.

Initialize X through PCA.

for t = 1 to T do

Xopt ⇐ optimize ln p(X|Y, ᾱt−1, β̄t−1) with respect to X using SCG.

Initialize HMC with Xopt.

{X(r)}R
r=1 ⇐ generate R samples from p(X|Y, ᾱt−1, β̄t−1) using HMC.

{ᾱt, β̄t} ⇐ optimize (5.11) with respect to {ᾱ, β̄} using SCG.

for k = 1 to d do

wk ⇐
√

N(yT
:,k(

1
R

∑R

r=1 K−1
Y )y:,k)

−1

end for

end for

data set itself. Since our heuristics revolve around influencing hyperparameter values, it

is worthwhile revisiting the way these values are estimated in the GPDM. In particular,

our MAP learning algorithm ignores latent space uncertainty. Our current estimates for

ᾱ, β̄ are obtained by maximizing the log complete likelihood — ln p(Y,X|ᾱ, β̄), which

assumes both Y and X are observed. Although the values of X are updated at each

iteration with MAP estimates of X, the hyperparameters are still estimated with respect

to only one set of values for the hidden states at a time. Instead of learning all of

X, ᾱ, β̄ simultaneously, one might consider marginalizing over X in the same fashion as

algorithms for NLDS discussed in Section 2.2.3 to account for the uncertainty in X.

An objective function for parameter estimation with missing data (treating the hidden

states as missing data) is the log incomplete likelihood

ln p(Y|ᾱ, β̄) = ln

∫

X

p(Y,X|ᾱ, β̄)dX, (5.5)

where uncertainties in X are marginalized out.

The integral above is intractable and has to be approximated numerically. If we



Chapter 5. Accounting for Latent Space Uncertainty 53

generate fair samples {X(r)}R
r=1 from the distribution p(X|ᾱ), the integral in (5.5) can

be approximated by:

ln

∫

X

p(Y,X|ᾱ, β̄)dX = ln

∫

X

p(Y|X|β̄)p(X|ᾱ)dX

≈ ln
1

R

R
∑

r=1

p(Y|X(r), β̄), (5.6)

where p(Y|X|β̄) and p(X|ᾱ) are defined in Chapter 3. We could sample from p(X|ᾱ)

using HMC, and it is easy to show that

∂

∂β̄
ln p(Y|ᾱ, β̄) ≈ 1

∑R

r=1 p(Y|X(r), β̄)

R
∑

r=1

∂

∂β̄
p(Y|X(r), β̄). (5.7)

However, we need to evaluate the exponential function in (5.7), which tends to create

numerical issues. An additional problem is that we cannot find the derivative with

respect to ᾱ analytically, since the samples depends on ᾱ. Moreover, the HMC sampling

procedure is expensive and makes finite-difference approximations impractical.

5.2.1 A Monte Carlo EM algorithm for GPDM

As discussed in Chapter 2, the EM algorithm is a well-known solution to the problem of

parameter estimation with latent space uncertainty. The basic idea of EM is to maximize

a lower bound of the log incomplete likelihood instead of the quantity itself. More

precisely, we seek to maximize the free energy [36]

F (q, {ᾱ, β̄}) =

∫

X

q(X|Y) ln p(Y,X|ᾱ, β̄)dX−
∫

X

q(X|Y) ln q(X|Y)dX, (5.8)

which is a lower bound of the log incomplete likelihood for any distribution q over X.

The first term on the right hand side is the expected complete log likelihood, while the

second term is called the entropy.

In the E-step of the ith iteration, we compute the distribution qi+1(X|Y) that maxi-

mizes F given {ᾱi, β̄i}. It can be shown that the optimal solution is given by

qi+1(X|Y) = p(X|Y, ᾱi, β̄i), (5.9)
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the posterior distribution given the current estimation of hyperparameters.

In the M-step, we seek a set of parameters {ᾱi+1, β̄i+1}, that maximizes F given

qi+1(X|Y). Since the entropy term is independent of parameters, we only need to maxi-

mize the expected complete log likelihood

LE =

∫

X

q(X|Y) ln p(Y,X|ᾱ, β̄)dX

=

∫

X

p(X|Y, ᾱi, β̄i) ln p(Y,X|ᾱ, β̄)dX. (5.10)

For our problem, we can sample from the required posterior in the E-step using (3.11)

with HMC and use the samples to approximate the integral

∫

X

p(X|Y, ᾱi, β̄i) ln p(Y,X|ᾱ, β̄)dX ≈ 1

R

R
∑

r=1

ln p(Y,X(r)|ᾱ, β̄), (5.11)

where {X(r)}R
r=1 are samples from p(X|Y, ᾱi, β̄i). The derivative with respect to the

hyperparameters is given by

∂LE

∂β̄
≈ ∂

∂β̄

1

R

R
∑

r=1

ln p(Y,X(r)|ᾱ, β̄)

=
1

R

R
∑

r=1

∂

∂β̄
ln p(Y,X(r)|ᾱ, β̄) (5.12)

∂LE

∂ᾱ
≈ 1

R

R
∑

r=1

∂

∂ᾱ
ln p(Y,X(r)|ᾱ, β̄). (5.13)

The approximations are simply sums of the derivatives of the complete log likelihood,

which we used for optimizing (3.11).

It should be noted that the samples {X(r)}R
r=1 are drawn from the posterior given the

hyperparameters in the previous iteration. Since we only seek to maximize the expected

complete log likelihood in the M-step, the samples do not need to be altered as we

evaluate different values of ᾱ and β̄. This is a significant difference between maximizing

the free energy and maximizing the incomplete log likelihood (5.5), as we cannot easily

approximate the gradients of the latter. Algorithm 1 describes GPDM learning with

uncertain X in pseudocode.
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The variation of EM algorithm used in this section is generally referred to as Monte

Carlo EM (MCEM). Since the expected complete log likelihood is not computed exactly

in the M-step, MCEM does not guarantee an increase in the incomplete log likelihood

in every iteration. On the other hand, it is still an improvement over not accounting

for uncertainties in X at all, and should give us an idea of what GPDM hyperparameter

estimations look like when optimized against an approximation of the correct objective

function.

5.2.2 Preliminary results

The HMC sampling step required in each iteration of MCEM is computationally very

expensive. The dimensionality of the sampling space is the number of training data

times the number of latent space dimensions, typically over 1000. Furthermore, the HMC

parameters such as the number of leapfrog steps and the step size, need to be set for each

EM iteration, as the posterior distribution changes according to the hyperparameters.

We leave a proper implementation of MCEM for GPDM as future work, but examine

some preliminary results obtained from very crude sampling procedures in the rest of the

section. It should be noted that the reliability of observations from results in this section

depends on having samples that approximate the posterior distribution well, which we

make no effort to ensure here.

Figure 5.7(a) shows a GPDM of walking learned with MCEM. We run the algorithm

for 50 iterations, with 10 HMC samples per iteration. We initialize the HMC sampler with

an optimal trajectory with no burn-in samples, and adjust the parameters so that the

rejection rate is around 20% for the initial posterior distribution. The hyperparameters

are initialized all to ones. The inverse variance plot is very similar to the one learned

from maximizing (5.2) with M = 1000. In both cases, the region with low prediction

variance is ring-shaped, as the variance smoothly increases away from the data points.

Moreover, we can see from the grey scale plots that the prediction variance in the model
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learned from MCEM falls off more quickly as one moves further from the data.

The dynamic simulation in Figure 5.7(b) learned using the MCEM algorithm look

surprisingly similar to Figures 4.6(b) and 4.7(b), where linear kernels are used. Although

the simulation results in a circular spiral towards the origin in both cases, the cause is

very different. In the case with linear kernels, the placements of latent space coordinates

are fairly noisy, which would describe a relatively complex dynamics mapping. However,

the expressive power of the linear kernel is limited and underfits the data as a result.

We can see that Figures 4.6(a) and 4.7(a) shows similar latent space placements, but

with more complex dynamic mappings learned from nonlinear kernels. On the other

hand, the latent space coordinates learned using MCEM do resemble parts of a smooth

spiral pointing towards the centre of the ring. The dynamics simulation is not a result

of underfitting, but an accurate reflection of the data itself. Despite the lack of a limit

cycle, the first 200 frames of animation generated from this model look smooth and are

comparable to animations corresponding to Figure 5.5(b).

The estimated hyperparameter values are listed in Table 5.1. Unlike the model learned

with M = 1000, the MCEM model learns both the reconstruction and dynamics mapping

with high certainty. Moreover, the values
∑

j lnαj and
∑

j ln βj are similar, which means

the optimization of latent space coordinates does not heavily favour one mapping over

another.

Applying Algorithm 1 to the golf data set results in a curious latent space trajectory

(Figure 5.8). The poses at the beginning of the swing and at the end of the swing are

separated into two groups in latent space. The simulated dynamics (Figure 5.8b) consists

of a large jump in the middle of the swing. Although poses during the swing differs from

each other more than the rest of the poses due to rapid movement, it seems that points

should increase their separation more gradually than what is observed in the result.

However, the simulation does not contain poses that are far away from the training data.

The animation of the golf swing corresponding to the simulation looks visually identical
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to the simulations obtained from the 3D GPDM golf models.

One possible explanation for the latent space trajectory is our crude approximation

to the posterior distribution. A closer examination reveals that the set of parameters

for HMC that results in 20% rejection rate for the first few iterations generates nothing

but rejections later on in the learning process. As a result, for a significant number of

iterations (last 20 or so), the algorithm reduces to coordinate descent on our original

objective function in Chapter 4.

The only way to ensure a reasonable number of samples are generated at every it-

eration is to adapt the HMC parameters according to the posterior at every iteration.

Figure 5.9 shows the evolution of the posterior distribution during Algorithm 1. To

obtain a slightly better approximation for the posterior (but still with 10 samples per

iteration), we use a down-sampled version of the golf data to shorten the computation

time, the HMC sampler is hand-tuned at each iteration to achieve a rejection rate of

approximately 20%. We see that the samples deviate less and less from the mean as the

number of iteration increases, and that the mean trajectory is not separated into two

groups at the 50th iteration.

Although the idea of marginalizing out X while estimating ᾱ, β̄ is conceptually ap-

pealing, the computational overhead becomes unbearable for large data sets. The models

described in this section, which only use 10 HMC samples per iteration, take over 24 hours

to learn. The fact that our preliminary results seem to give balanced values of
∑

j lnαj

and
∑

j lnβj suggest (5.3) and (5.4) could be sensible priors to use if we have to estimate

both X and the hyperparameters. However, the M value would still be dependent on

the data set, and could be troublesome to set.
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Figure 5.1: Effect of hyperparameter settings in GP regression (a) A conservative hyper-

parameter setting leads to large uncertainty in prediction. (b) The same data set with a

more aggressive hyperparameter setting, which shows overfitting.
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Figure 5.2: Inverse reconstruction variance plot of walk data in 2D with RBF kernel (a)

Latent space trajectory given by M = 1, notice large discontinuities and variations on

reconstruction variance. (b) Latent space trajectory given by M = 1000.
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Figure 5.3: Inverse reconstruction variance plot of 120Hz walk data in 2D with RBF

kernel (a) Setting M = 1000 does not remove discontinuities in data. (b) Latent space

trajectory given by M = 3000.
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Figure 5.4: Inverse reconstruction variance plot of the first 157 frames of the 120Hz walk

data (316 frames in total). (a) Latent space trajectories given by M = 1. (b) Latent

space trajectory given by M = 1000.
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(a)

(b)

Figure 5.5: Simulations from walker models. (a) Latent space trajectories given by

M = 1. (b) Latent space trajectory given by M = 1000, the simulations follows training

data very closely.
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Figure 5.6: Inverse reconstruction variance plot of three golf swing data in 2D with RBF

kernel. (a) Latent space trajectories given by M = 1. (b) Latent space trajectory given

by M = 1500.
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(b)

Figure 5.7: 2D GPDM walking model with RBF dynamics learned using MCEM. (a)

Inverse variance plot with a smooth trajectory. (b) Simulation of dynamics, note that

the simulation does not lead to a limit cycle.
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(b)

Figure 5.8: 2D GPDM golf model with RBF dynamics learned using MCEM. (a) Inverse

variance plot. (b) Simulation of dynamics.
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(a) t = 1 (b) t = 25

(c) t = 40 (d) t = 50

Figure 5.9: Samples (green trajectories) from the posterior of a 2D GPDM golf model

during the tth iteration of Algorithm 1. The red trajectories represents the posterior

mean.



Chapter 6

Discussion and extensions

One of the main strengths of the GPDM model is the ability to generalize well from

small datasets. Conversely, performance is a major issue in applying GP methods to

larger datasets. Previous approaches prune uninformative vectors from the training data

[25]. This is not straightforward when learning a GPDM, however, because each timestep

is highly correlated with the steps before and after it. For example, if we hold xt fixed

during optimization, then it is unlikely that the optimizer will make much adjustment to

xt+1 or xt−1. The use of higher-order features [48, 34] provides a possible solution to this

problem. Specifically, consider a dynamical model of the form vt = f(xt−1,vt−1). Since

adjacent time-steps are related only by the velocity vt ≈ (xt − xt−1)/∆t, we can handle

irregularly-sampled data points by adjusting the timestep ∆t, possibly using a different

∆t at each step. Another intriguing approach for using GPDM with large datasets is by

incorporating a hierarchical mixture of GPs [43].

A number of further extensions to the GPDM model are possible. It would be straight-

forward to model dynamics f(xt,ut) by including a control signal ut in the kernel func-

tion. The kernels would have to be augmented with an extra hyperparameter that weighs

the contribution of the control signal. The prior distribution over latent variables (3.9) is

then conditioned on the ut terms. The dynamics function then defines a mapping from

67
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{xt,ut} to xt+1, which could potentially be incorporated into existing frameworks for

GPs in reinforcement learning [40, 13].

In physical simulations, one typically uses dynamics to generate accelerations (forces).

State is represented by position and velocity, and updated by numerical integration. One

question is whether this numerical integration should be made explicit in the model (i.e.,

using velocity instead of position as outputs of the dynamics function), or whether it

should be learned as part of the model. While an explicit representation might help the

model and prevent perverse physical models, it might also prevent more expressive repre-

sentations, particularly when the dynamics model is inaccurate. Learning the integration

might help improve numerical accuracy in simulation, avoiding unlikely sequences that

would normally arise due to numerical drift.

It would also be interesting to explore other means of integrating out X for hyper-

parameter estimation. The MCEM algorithm currently used is slow and impractical for

large data sets, more sophisticated methods that makes use of the importance sampling

theory can potentially speed up the computation [23].

For applications in animation, animator constraints could be specified in pose space

to synthesize entire motion sequences by constrained optimization. It would be a gener-

alization of the interactive posing application presented by Grochow et al. [18]. However,

speed would certainly be an issue due to the size of the search space. In human tracking,

GPDM could be used to predict future poses, but care must be taken to avoid overfitting.

Possible solutions include accounting for latent space uncertainty, model annealing [18]

or learning with a large data set. Naturally, the latter hinges on overcoming the efficiency

issues mentioned earlier.



Appendix A

Prior Distribution of Latent

Variables

To define GPDM, we need an expression for the prior distribution over latent variables

p(X|ᾱ). We first show that the joint distribution of X can be written as a product

of Gaussians by the Markov assumption, the integration is then a special case of the

marginalization in the GPLVM. Equation (3.9) can then be derived by appropriate sub-

stitution of variables.

Since each output dimension is assumed to be independent, we can write

p(X|ᾱ) = p(x1)p(X̂|ᾱ)

=

d
∏

q=1

p(x1,q)p(x̂:,q|ᾱ), (A.1)

where X̂ = Xout.

Applying rules of probability for each dimension, we have

p(x̂:,q|ᾱ) = p(x2,q · · ·xN,q|ᾱ)

=

∫

aq

p(x2,q · · ·xN,q, aq|ᾱ)daq

=

∫

aq

p(x2,q · · ·xN,q|aq, ᾱ)p(aq)daq. (A.2)
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By the Markov assumption,

p(x̂:,q|ᾱ) =

∫

aq

N−1
∏

t=1

p(xt+1,q|xt,:, aq, ᾱ)p(aq)daq

=

∫

aq

(

N−1
∏

t=1

1

σX

√
2π

exp

(−‖xt+1,q − xt,:aq‖2

2σ2
X

)

)

1
√

2π
d

exp

(−‖aq‖2

2

)

daq,

where σX is the variance of the noise term in the dynamics mapping.

The above integral is a special case of the integral for parameter marginalization in

the GPLVM [25, 26]:

p(y:,q|X, β̄) =

∫

bq

N
∏

t=1

p(yt,q|xt,:,bq, β̄)p(bq)dbq

=

∫

bq

(

N
∏

t=1

1

σY

√
2π

exp

(−‖yt,q − xt,:bq‖2

2σ2
Y

)

)

1
√

2π
d

exp

(−‖bq‖2

2

)

dbq

=
1

√

(2π)N |K|
exp

(

−1

2
y:,qK

−1yT
:,q

)

, (A.3)

where K = XXT + σY I.

Substituting Y,X with Xout,Xin in (A.3) does not change the integration operator,

therefore

p(x̂:,q|ᾱ) =

∫

aq

(

N−1
∏

t=1

1

σX

√
2π

exp

(−‖xt+1,q − xt,:aq‖2

2σ2
X

)

)

1
√

2π
d

exp

(−‖aq‖2

2

)

daq,

=
1

√

(2π)N−1|KX |
exp

(

−1

2
x̂:,qK

−1
X x̂T

:,q

)

, (A.4)

where KX = XinX
T
in + σXI.

Combining (A.1) and (A.4) we get

p(X | ᾱ) = p(x1)
1

√

(2π)(N−1)d|KX|d
exp

(

−1

2
tr
(

K−1
X XoutX

T
out

)

)

. (A.5)

Finally, following [25, 26], we introduce nonlinearity to the dynamics mapping by

replacing KX with RBF or linear+RBF kernels.
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Gradients

∂L
∂X

=
∂L
∂KY

◦ ∂KY

∂X
+

∂L
∂KX

◦ ∂KX

∂X
− K−1

X Xout ◦
∂Xout

∂X
(B.1)

∂L
∂KY

=
1

2
K−1

Y WYYTWTK−1
Y − D

2
K−1

Y (B.2)

∂L
∂KX

=
1

2
K−1

X XoutX
T
outK

−1
X − d

2
K−1

X (B.3)

∂kY (x,x′)

∂x
= −β2(x − x′)kY (x,x′) (B.4)

∂kY (x,x′)

∂β1
= exp

(

−β2

2
||x− x′||2

)

(B.5)

∂kY (x,x′)

∂β2

= −β1

2
‖x − x′‖2 exp

(

−β2

2
||x− x′||2

)

(B.6)

∂kY (x,x′)

∂β3

= −δx,x′

β2
3

(B.7)

∂kX(x,x′)

∂x
= −α1α2(x − x′) exp

(

−α2

2
||x − x′||2

)

+ α3x
′ (B.8)

∂kX(x,x′)

∂α1
= exp

(

−α2

2
||x − x′||2

)

(B.9)

∂kX(x,x′)

∂α2
= −α1

2
‖x − x′‖2 exp

(

−α2

2
||x − x′||2

)

(B.10)

∂kX(x,x′)

∂α3

= xTx′ (B.11)

∂kX(x,x′)

∂α4
= −δx,x′

α2
4

(B.12)
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