
Approximate key and foreign key discovery in relational

databases

by

Charlotte Vilarem

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright c� ���� by Charlotte Vilarem

Abstract

Approximate key and foreign key discovery in relational databases

Charlotte Vilarem

Master of Science

Graduate Department of Computer Science

University of Toronto

����

Organizations have been storing huge amounts of data for years� but over time�

the knowledge about these legacy databases may be lost or corrupted�

In this thesis� we study the problem of discovering �approximate� keys and foreign

keys satis�ed in a relational database� of which we assume no previous knowledge�

The main ideas underlying our method for tackling this problem are not new	

however� we propose two novel optimizations� First� we extract only key
based unary

inclusion dependencies �UINDs� instead of all UINDs� Second� we add a pruning pass

to the foreign key discovery	 performed on a small data sample� it reduces the number

of candidates tested against the database�

We validate our contributions on both real
life and synthetic data� We investigate

the in�uence of input parameters on the performance of the pruning pass� and provide

guidance on how to best set these parameters�

ii

Acknowledgements

I would like to express my gratitude to a number of people without whose advice and

encouragement this thesis would not have been possible�

First� I would like to thank my supervisor� Professor Ren�ee Miller� for her guid

ance� advice� and patience during my research� I would also like to thank my second

reader� Professor Ken Sevcik� for his time and helpful comments�

I would like to thank all my friends in Toronto� especially Travis� Vlad and Tristan�

for the great time I had with you throughout my program at University of Toronto�

Finally� my deepest gratitude goes to my family and boyfriend for their support

and encouragement� and for their involvement in this work� I would never have made

it without them�

iii

Contents

� Introduction �

�
 Motivation �

�� Contributions of the thesis �

�� Scope of the research �

�� Outline of the thesis �

� Integrity constraints in relational databases �

��
 Background �

��
�
 Preliminaries �

��
�� Functional and inclusion dependencies � � � � � � � � � � � � � �

��
�� Dependency inference problem � � � � � � � � � � � � � � � � � �
�

��
�� Approximate dependency inference problem � � � � � � � � � �
�

��
�� Keys and foreign keys �
�

��� Review of literature �
�

����
 Levelwise algorithm �
�

����� Key and functional dependency discovery � � � � � � � � � � � � ��

����� Foreign key and inclusion dependency discovery � � � � � � � � �

� Algorithms and complexity ��

iv

��
 General architecture ��

��� Finding the keys ��

����
 Testing the key candidates ��

����� Generating key candidates ��

��� Finding the foreign keys ��

����
 Generating foreign key candidates � � � � � � � � � � � � � � � � ��

����� Pruning pass over the foreign key candidates � � � � � � � � � � ��

����� Testing the remaining foreign key candidates � � � � � � � � � � ��

����� Discovering the unary inclusion dependencies � � � � � � � � � ��

��� Complexity analysis ��

����
 Complexity of key discovery ��

����� Complexity of foreign key discovery � � � � � � � � � � � � � � � ��

� Experiments ��

��
 Goals of the tests �

��� Experimental setup ��

����
 Metrics used to evaluate the impact of the pruning pass � � � � ��

����� Datasets used in the experiments � � � � � � � � � � � � � � � � ��

����� Setting of the algorithm�s input parameters � � � � � � � � � � ��

��� Key
based unary inclusion dependencies � � � � � � � � � � � � � � � � ��

��� E�ciency of the pruning pass ��

����
 General behavior of the pruning pass in relation to the pruning

parameter ��

����� In�uence of dependency size �

����� In�uence of input approximation thresholds on the bene�t of

the pruning pass ��

v

����� In�uence of data size ��

� Conclusion �	

Bibliography 	�

vi

List of Algorithms

 General extraction of keys and foreign keys � � � � � � � � � � � � � � � ��

� ExtractKeys �

� GenerateNextCand ��

� ExtractForeignKeys ��

� ExtractUINDs ��

vii

List of Figures

��
 Levelwise algorithm ��

��� Unfolding of Tane on the database of Example ����
 � � � � � � � � � � ��

��� Unfolding of Dep
Miner on the database of Example ����
 � � � � � � ��

��� Unfolding of FUN on the database of Example ����
 � � � � � � � � � � ��

��
 Time savings ��

��� E�ciency of the pruning pass for various �fk
values � � � � � � � � � � ��

��� Running time on synthetic data� with �key � ������ �fk � ���
� P gParam �

���
� ��

viii

Chapter �

Introduction

For more than a decade now� organizations have been storing huge amounts of data in

relational databases� During the design phase of the database� a conceptual represen

tation of the data is established �for instance an Entity
Relationship model�� which

describes the organization of the data in the database� This representation allows

one to understand a dataset� and to develop applications using the data�

More precisely� a conceptual representation is used to explain the data� data rela

tionships� data semantics� and data constraints� As an example� consider a university

database� Its representation might specify that students are represented by a student

number� a name and a �rstname	 courses are represented by a course number and

a course title	 and that students take several courses for their program� i�e�� there is

a many
to
many relationship between students and courses� It might also associate

attribute names and their meaning� for instance� SNUM stands for student number�

In the relational data model� data are stored in �at tables� and each row repre

sents an object or relationship in the real world� But the mere de�nition of tables is

not enough to represent accurately the reality� we need to add integrity constraints

Chapter �� Introduction �

to ensure that the data stored in the database re�ects accurately the real
world re

strictions� for instance� that a student number is associated with only one student�

The most important integrity constraints� also called data dependencies� are func

tional and inclusion dependencies �CFP���� Functional dependencies are conditions

stating that for any value of a set of attributes� there is at most one value for a set of

target attributes	 for instance� given a room� a date and a time� there is at most one

talk being held in there� Inclusion dependencies state that values occuring in certain

columns of one relation must also occur in columns of another relation	 for example�

a manager is also an employee� In practice� most of the time� only specializations

of these two types of dependencies are used� keys� and foreign keys� Keys identify

uniquely objects �or tuples� in a table� e�g�� a student number identi�es uniquely a

student� Foreign keys are inclusion dependencies that refer to a key	 they express

relationships between objects in the database� As an example� the column �student

number� of a table �enrolled
in� is a foreign key of the key column �student number�

in the table �student��

But over time� the conceptual representation may be lost� due to multiple updates�

extensions� loss of documentation� or turnover of domain experts� Hence� these legacy

databases may no longer be usable� and the knowledge they contain is wasted� Such

a situation calls for a database reverse engineering process� in order to build a new

model which re�ects accurately the current state of the database� But because the

data in legacy databases is likely to be noisy or corrupted� the true data semantics

may not hold exactly in the database� Indeed� an exact model would incorporate

the noise in its representation of the dataset� while what we really want is a model

that re�ects the data independent of the inconsistencies introduced with the time�

Therefore� we may want to accomodate the noise with error thresholds� so that the

Chapter �� Introduction �

model found �almost holds� in the database and �ts the data without the noise�

However� determining dynamically the best error thresholds for a database is a

di�cult problem� so in this thesis� we focus on a simpler one� the discovery of approx

imate keys and foreign keys holding in a database instance for given approximation

thresholds�

��� Motivation

Reverse engineering is the process of identifying a system�s components and their re

lationships� and creating representations of the system in another form or at a higher

level of abstraction �CI���� Its aim is to redocument� convert� restructure� maintain�

or extend legacy systems �Hai�
�� In the case of database reverse engineering� this

process can be divided into two distinct steps �PTBK���� �
� eliciting the data se

mantics from the system� and ��� expressing the extracted semantics with a high level

data model� Many approaches to database reverse engineering overlook the �rst step

by assuming that some of the data semantics is known� but such assumptions may

not hold for legacy databases� �For a classi�cation of database reverse engineering

methods according to their input requirements� see �dJS����� Indeed� old versions

of database management systems do not support the de�nition of foreign keys �e�g��

foreign key de�nition was introduced in Oracle v�� released in
����� Therefore� iden

tifying the keys and foreign keys holding in a database instance can be part of the

�rst step of a database reverse engineering process�

Integrity constraints� especially keys and foreign keys� can play an important role

in query optimization� The role of query optimization is to �nd an e�cient way

Chapter �� Introduction �

of processing a query� using all sorts of information about the data stored in the

database� such as statistics and integrity constraints �keys and foreign keys�� It is a

three
stage process �Dat���� First� the query optimizer rewrites the query into a more

e�cient form� so that the performance of the query does not depend on how the user

chose to write it� Then� the optimizer generates possible execution plans for the new

representation of the query� And then� it computes cost estimations for each of these

execution plans and chooses the most e�cient of them�

Keys and foreign keys are used both in the query rewrite phase� and to predict cost

estimations� For example� if dept number is a key of relation department� then the

query �select distinct dept num from department� is equivalent to the more e�cient

�select dept num from department�� Keys and foreign keys help in predicting the

result size of joins� which is used in cost estimations�

Semantic query optimization� i�e�� query optimization using a broader range of

integrity constraints� has long been a subject of research� but most of the proposed

techniques have not been implemented in commercial optimizers �CGK����� Cheng

et al� and Godfrey et al� address this issue �CGK���� GGXZ�
� investigating how

some semantic query optimizations using keys� foreign keys and other types of in

tegrity constraints can be integrated in traditional query optimizers�

Integrity constraints can also be useful in schema mapping �MHH���� The goal

in schema mapping is to map a source �legacy� database into a �xed target schema

through a set of queries on the source database� These mapping queries are derived

from the correspondences between a target value and a set of source values� But when

the value correspondences involve several relations of the source database� one needs

a way of joining the tuples of these relations� The joins are determined from foreign

key paths� So� these joins require knowledge of the integrity constraints �keys and

Chapter �� Introduction �

foreign keys� holding in the source database�

��� Contributions of the thesis

The contributions of this thesis are the following�

� We propose a method for �approximate� key and foreign key discovery in rela

tional databases� Even though the underlying ideas are not new� this is the �rst

proposal of a concrete algorithm for extracting foreign keys from a database of

which we assume no previous knowledge�

� We implemented two novel optimizations for foreign key discovery� The more

important is a pruning pass over the foreign key candidates� performed on a

small data sample� which can reduce dramatically the number of accesses to

the database� The other optimization consists of extracting solely key
based

unary inclusion dependencies rather than all unary inclusion dependencies as is

usually done� since only these are used in the foreign key candidate generation�

This has a great impact in practice on the running time of the algorithm�

� We evaluate the performance of our algorithm on both publicly available real

life and synthetic datasets� This allows us to study the dataset characteristics

that a�ect the algorithm�

��� Scope of the research

We provide in this thesis a general framework for the discovery of keys and foreign

keys �FKs�� We chose for simplicity to keep the data inside the DBMS and process it

through SQL queries� But our architecture could easily be adapted to more e�cient

Chapter �� Introduction �

treatments of the data�

The attributes whose types are large �such as long strings� e�g�� varchar�������

were not considered for key or FK because they cannot appear in SQL statements of

the form SELECT DISTINCT ��� which are needed to test keys and FKs� In DB�� the

limit is reached for data types larger than ��� bytes� and in Oracle� � Kbytes� This

limitation should not be too restrictive though� because attributes with large types

are generally not intended as keys or FKs� Indeed� large values in keys or FKs mean

slower searches and useless replication of data� resulting in poor performance�

��� Outline of the thesis

In Chapter �� we give some background and survey the literature about integrity

constraints and their discovery�

InChapter �� we present our general architecture for approximate key and foreign

key discovery� and analyze the complexity of our approach�

In Chapter �� we describe the testing of our algorithm on both real
life and

synthetic data� and study how input parameters and data characteristics in�uence

the performance of our application�

Finally� we conclude in Chapter ��

Chapter �

Integrity constraints in relational

databases

��� Background

����� Preliminaries

First of all� we de�ne the relational database concepts used throughout this thesis�

For more details� see the books by Levene and Loizou �LL��� or Date �Dat����

De
nition ����� �Basic relational database concepts
� In the following� upper

case letters �which may be subscripted� from the end of the alphabet� such as X�Y�Z�

will be used to denote sets of attributes� while those from the beginning of the alpha

bet� such as A�B�C will be used to denote single attributes�

A relation schema R is a �nite set of attributes� The domain of an attribute A�

denoted by Dom�A�� is the set of all possible values of A� A tuple over a relation

schema R � fA�� ���� Amg is a member of the Cartesian product Dom�A�� � ��� �
Dom�Am�� A relation r over R is a �nite set of tuples over R� The cardinality of a

�

Chapter �� Integrity constraints in relational databases �

set X is denoted by jXj�

If X � R is an attribute set� and t a tuple over R� we denote by t�X� the restriction

of t to X� The projection of a relation r over R onto X is de�ned by �X�r� �

ft�X� j t � rg�

A database schema R is a �nite set of relation schemas Ri� A database d over R

is a set of relations ri over each Ri � R�

Informally� relations are represented by tables� attributes by columns� and tuples

by rows� The cardinality of a relation jrj is the number of rows of the table	 we will

commonly denote it by p throughout this thesis�

We now de�ne a running example used in the rest of this chapter�

Example ������ Consider the following database� called MovieDB� representing in

formation about movies and the theater in which they are showing�

Table Movies

Title Length Genre

The mummy �� min Action

In the bedroom �� min Drama

Life of Brian �� min Comedy

Atanarjuat
�� min Drama

Monster�s ball
�� min Drama

Chapter �� Integrity constraints in relational databases �

Table Theaters

Name Location

ByTowne Rideau Street

South Keys Bank Street

Mayfair Bank Street

Table Schedule

Theater Movie Time

ByTowne In the bedroom �pm

ByTowne Monster�s ball �pm

South Keys In the bedroom �pm

South Keys The mummy �pm

South Keys Monster�s ball �pm

Mayfair Life of Brian �pm

The database MovieDB is composed of three relations� Movies� with schema fTitle�

Length� Genreg� Theaters� with schema fName� Locationg� and Schedule� with schema

fTheater� Movie� Timeg� The database schema is the set fMovies� Theaters� Sched

uleg�

����� Functional and inclusion dependencies

The schemas alone are not su�cient to describe a database� Data semantics in a

relational database are expressed by integrity constraints� and the most important

of these constraints are functional and inclusion dependencies �CFP��� LL���� Thus�

Chapter �� Integrity constraints in relational databases
�

integrity constraints de�ne the set of allowable states of a database�

Functional dependencies �FDs� have long been studied in the context of database

normalization �LV���� Database normalization is the process of designing a database

satisfying a set of integrity constraints� e�ciently and in order to avoid inconsistencies

when manipulating the database �LL���� In the presence of only functional depen

dencies� the problems that may arise are update anomalies �after an update� the

data is no longer consistent with the functional dependencies� and redundency prob

lems �parts of the data are unnecessarily duplicated�	 to prevent them� the database

schema should be in Boyce
Codd Normal Form �BCNF� �Cod���� A database schema

is in BCNF if� in each relation of the database� all FD left
hand sides are keys or

superset of keys of the relation� In the presence of both functional and inclusion

dependencies �INDs�� Levene and Vincent �LV��� identify additional problems and

propose an inclusion dependency normal form �IDNF� to prevent them� A database

is in IDNF if� it is in BCNF with respect to the functional dependencies	 all inclusion

dependencies are really foreign keys	 and the set of inclusion dependencies is acyclic��

This normal form implies no interaction between the FDs and the INDs� prevents the

problem of attribute redundancy� and satis�es a generalised form of entity integrity�

These normal forms are the goal in database design� As a result� most FDs and

INDs occuring in practice are based on keys and foreign keys�

De
nition ����� �Functional dependency
� A functional dependency �FD� over

a relation schema R is a statement of the form R � X � Y � where X�Y � R are sets

of attributes�

An FD R � X � Y is satis�ed in a relation r over R if whenever two tuples have

�The authors employ di�erent terms� they state that a database is in IDNF if it is in BCNF
w�r�t� the FDs� and if the set of inclusion dependencies is non�circular and key�based�

Chapter �� Integrity constraints in relational databases

equal X
values� they also have equal Y
values� Formally� a functional dependency

R � X � Y is satis�ed �or holds� in a relation r over R� denoted by r j� R � X � Y �

if �t�� t� � r� t��X� � t��X� � t��Y � � t��Y ��

An FD R � X � Y is minimal in r if Y is not functionally dependent on any

proper subset of X� i�e�� if Z � Y does not hold in r for any Z � X�

In Example ��
�
 �page ��� Schedule� Theater Movie 	� Time� This means that� in

the theaters described in the MovieDB database� a movie is shown once a day� always

at the same time�

De
nition ����� �Inclusion dependency
� An inclusion dependency �IND� over

a database schema R is a statement of the form R��X� � R��Y �� where R�� R� � R

and X�Y are sequences of attributes such that X � R�� Y � R�� and jXj � jY j� A

unary inclusion dependency �UIND� is an IND such that jXj � jY j �
� An IND

R��X� � R��Y � is of size i if jXj � jY j � i�

Let d be a database over a database schema R� where r�� r� � d are relations over

relation schemas R�� R� � R� An inclusion dependency R��X� � R��Y � is satis�ed

�or holds� in a database d over R� denoted by d j� R��X� � R��Y �� if �t� � r��
t� �
r� such that t��X� � t��Y �� �Equivalently� d j� R��X� � R��Y � whenever �r��X� �
�r��Y ���

Note that X and Y are sequences of attributes� the ordering of the attributes

within the sets X and Y matters� Indeed� the two following INDs are not equivalent�

Manager�Firstname� Lastname� � Employee�Firstname� Lastname� is di�erent from

Manager�Lastname� Firstname� � Employee�Firstname� Lastname��

In Example ��
�
� Schedule�Theater�� Theaters�Name� and Schedule�Movie��Movies�Title��

The �rst inclusion dependency describes the fact that all theaters that show movies

Chapter �� Integrity constraints in relational databases
�

�i�e�� the theaters in Table Schedule� appear in the list of the town�s theaters �i�e�� are

listed in Table Theaters�� The second IND describes the fact that information such

as length and genre �i�e�� information displayed in Table Movies� is available for all

movies currently playing �i�e�� the movies in Table Schedule��

����� Dependency inference problem

Much work has been done on the implication problem of functional and inclusion

dependencies �CFP��� LL�
�� but this is not our focus in this thesis� The implication

problem for functional and inclusion dependencies is the problem of deciding� for a

given set S of FDs and INDs� whether S logically implies �� where � is an FD or an

IND�

Rather� we are interested in the inference problem of data dependencies� given

a database d� �nd a small cover of all data dependencies satis�ed in d� where the

data dependencies can be functional dependencies �KM���� or inclusion dependencies

�MLP���� A cover for a set F of dependencies is a set G of dependencies such that F

and G are equivalent� i�e�� any database that satis�es all the dependencies of F also

satis�es all the dependencies of G and vice versa �KM���� A cover F is minimum if

there is no cover G of F such that G is a subset of F and G has fewer dependencies

than F � In the inference problem� the goal is to �nd a small but not necessarily

minimum cover� Deducing a minimum cover out of a small cover could be added as

a �nal step� independent of the data�

Most of the work on this research area has been devoted to only functional de

pendencies� both exact �HKPT��� NC�
� LPL��� BMT��� BB��� Bel��� FS��� and

approximate �HKPT��� KM��� Bou���� while inclusion dependencies have raised little

Chapter �� Integrity constraints in relational databases
�

interest �MLP��� KMRS��� PT��� LPT��� BB��� Bou����

Extracting functional or inclusion dependencies from a database instance has been

shown to be hard in the worst case �MR��� KMRS��� MR����

� Mannila and R�aih�a proved that there are small relations where the number of

functional dependencies is exponential with respect to the number of attributes

of the relations �MR���� The theorem is expressed as �For each n� there exists a

relation r over R such that n � jRj� jrj � O�n� and each cover of all functional

dependencies has ���n��� dependencies�� Therefore� the inference problem for

FDs is inherently exponential with respect to the number of attributes�

� Assuming two n
attribute relations r�� r�� there are more than n possible nonequiv

alent inclusion dependencies from r� to r� �KMRS���� The factorial comes from

the fact that sequences and not sets of attributes are considered in INDs�

� Kantola et al� proved that what they call FULLINDEXISTENCE is an NP

complete problem in the size of the schema �KMRS���� They de�ne FULLINDEX

ISTENCE as follows� �Let R and S be relation schemas� and X a sequence

consisting of the attributes of R in some order� Given relations r and s over

R and S respectively� decide whether there exists a sequence Y consisting of

disjoint attributes of S in some order such that the dependency R�X� � S�Y �

holds in the database �r� s��� Therefore� it is not always possible to check the

existence of long INDs quickly�

Although our work is not about the implication problem� we can use inference rules

for dependency implication in the inference problem� in order to speed up dependency

discovery� We now give inference rules for FDs and INDs�

Chapter �� Integrity constraints in relational databases
�

The following inference rules for the FD implication problem� known as Arm

strong�s axiom system �Arm���� form a sound and complete axiomatization of FDs�

� �re�exivity�� if Y � X � R� then X � Y �

�� �augmentation�� if X � Y and W � R� then XW � YW �

�� �transitivity�� if X � Y and Y � Z� then X � Z�

If X is a key for R� then the functional dependency X � R holds� So� by rule �� the

FDs XW � R also hold for all W � R� and thus there is no need to check these FDs

against the database�

Casanova et al� give a sound and complete axiomatization of INDs� composed of

the following inference rules �CFP����

� �re�exivity�� R�X� � R�X�� if X is a sequence of distinct attributes of the

relation schema R�

�� �projection and permutation�� if R�A����Am� � S�B����Bm�� then

R�Ai����Aik� � S�Bi����Bik� for each sequence i�� ���� ik of distinct integers from

f
� ����mg�

�� �transitivity�� if R�X� � S�Y � and S�Y � � T �Z�� then R�X� � T �Z��

Thus� if the IND Manager�Firstname� Lastname� � Employee�Firstname� Lastname�

holds� then there is no need to test Manager�Lastname� Firstname�� Employee�Lastname�

Firstname� since we know from Rule � that it also holds� Again� if S�Y � � T �Z� and

R�X� �� T �Z�� then by Rule �� R�X� �� S�Y �� We can also use the contrapositive of

Rule � to avoid some tests� if R�X� � S�Y � and R�X� �� T �Z�� then S�Y � �� T �Z��

Chapter �� Integrity constraints in relational databases
�

����� Approximate dependency inference problem

The approximate dependency inference problem is de�ned as the dependency inference

problem in which the results do not need to be completely accurate� the dependencies

found hold exactly or almost hold in the database �KM���� We allow some false posi

tives in the result� but no false negative� This means that some dependencies that do

not hold exactly but almost hold are included in the result� and no dependency that

holds exactly is missing from the result�

Kivinen and Mannila �KM��� concentrate on functional dependencies� To de�ne

formally a functional dependency that �almost holds�� they present three measures

to compute the error of an FD� The error measure retained by subsequent work on

approximate functional dependency inference �HKPT��� Bou��� is the so
called g�

measure� which is de�ned below�

The error measure g� of an FD X � Y in a relation r is the minimal fraction of

tuples to remove from r for X � Y to hold �KM����

g��X � Y� r� �
 	 maxf jsj j s � r and s j� X � Y g
jrj

De
nition ����� �Approximate functional dependency
� �KM���

An approximate FD X � Y holds in a relation r with respect to an error threshold

� if and only if g��X � Y� r� � ��

When the dependency holds exactly� the error g� is equal to �� and when the depen

dency is violated in many tuples� the error tends to
�

Computing the error for a given FD can be done in O�jrj� time by using special

data structures such as hash tables �HKPT���� or in O�jrj log r� time by sorting the

data� But the computation is not always necessary since the error can be estimated

Chapter �� Integrity constraints in relational databases
�

through upper and lower bounds�

Note that the error measure g� is a parameter of this de�nition of approximate

FD� hence the de�nition remains the same even if we change the error measure�

The error measure g� de�ned for FDs has been adapted to the case of INDs in

two di�erent ways�

� g� becomes the proportion of rows to remove from the left
hand
side relation

for the IND to hold in a database d �Bou��� PT����

g��Ri�X� � Rj�Y �� d� �
 	 maxf jsj j s � ri and �d n ri�
 s j� Ri�X� � Rj �Y �g
jrij

�� Lopes et al� �LPT��� point out that this de�nition does not respect a natural

property of INDs� namely that for an IND holding in a database� the number

of distinct values of the left hand side is smaller than the number of distinct

values of the right hand side� This is due to the fact that the de�nition of

INDs is based on distinct tuples� while the error measure g� is not� Thus� they

propose a new error measure for INDs� g��� which is the proportion of tuples

with distinct X
values �independently of their occurrences� to remove from the

left
hand
side relation for the IND to hold�

g���Ri�X� � Rj�Y �� d�

�
	 maxf j�X�s�j j s � ri and �d n ri�
 s j� Ri�X� � Rj�Y �g � j�X�ri�j
�
	 j�X�ri� ��X�Y �Y �rj�j � j�X�ri�j

This error measure is also used by Shen et al� in the form of a �tness criterion

equal to
 	 g�� �SZWA����

Chapter �� Integrity constraints in relational databases
�

We adopt in this thesis the second error measure g��� which better conveys the seman

tics of inclusion dependencies�

De
nition ����� �Approximate inclusion dependency
� An approximate IND

Ri�X� � Rj �Y � holds in database d� with respect to an error threshold �� if and only

if g���Ri�X� � Rj�Y �� d� � ��

Here again� we could replace the error measure g�� by any other measure�

����� Keys and foreign keys

In this thesis� we concentrate on keys and foreign keys� which are specializations of

FDs and INDs respectively�

A superkey is a set of attributes that determines all the attributes in a relation

schema� and a key is a superkey whose set of attributes is minimal�

De
nition ����� �Key and approximate key
� A set of attributes K � R is a

superkey for R if K functionally determines all other attributes of the relation� i�e��

R � K � R� A key �or minimal key� is a superkey such that no subset of it is a

superkey�

K is a superkey in a relation r if no two tuples in r agree on K� thus K identi�es

uniquely each tuple in the relation�

Because a key is a special case of FD� the error measure for keys is the same as

for FDs� the minimal fraction of tuples to remove for the dependency to hold in r�

This simpli�es into the fraction of tuples with duplicate K
values�

g��K� r� �
 	 j�K�r�j
jrj

where j�K�r�j is the number of distinct K
values in r�

Chapter �� Integrity constraints in relational databases
�

An approximate key K for r w�r�t� error threshold � is a key such that g��K� r� � ��

At the schema level� a key is a constraint� but at the relation level� a key is

a property derived from the relation� This corresponds to the distinction between

a functional dependency �constraint� and the satisfaction of an FD in a relation

�property��

For the speci�c database of Example ��
�
 �page ��� that is� at the relation level� Title

is a key for Movies� Name is a key for theaters� and fTheater� Movieg is a key for

Schedule� Movie is an approximate key for Schedule w�r�t� error threshold
!�	 and

Time is an approximate key for Schedule w�r�t� error threshold
!��

The number of keys in a relation can be exponential in the size of the schema�

Theorem ������ �LL��� The number of keys for a schema R such that jRj � n is at

most �
n

bn��c
�

� O

�
�np
n

�

and there exists a relation r over R such that there exists
�

n
bn��c

�
keys that are satis�ed

in r�

De
nition ����� �Foreign key and approximate foreign key
� LetR be a database

schema� R�� R� be relation schemas over R� and let K be a key of R�� In addition�

let d � fr�� r�� ���� rng be a database over R�

A foreign key constraint is a speci�cation of a set of attributes X � R� and a key

K of R�� The set of attributes X is called a foreign key �FK� of R� and it is said

to reference the key K of R�� The foreign key constraint that X references K is

satis�ed in d if the following condition holds� for all tuples t� � r�� there exists t� � r�

Chapter �� Integrity constraints in relational databases
�

such that t��X� � t��K�� A foreign key is an IND whose right
hand side is a key� It

is also called referential integrity constraint� or key
based inclusion dependency�

The error measure for foreign keys is thus the same as for INDs� g��� An approxi�

mate foreign key R��X� � R��K� is satis�ed �or holds� in d w�r�t� error threshold � if

g���R��X� � R��K�� d� � ��

In Example ��
�
 �page ��� the following foreign keys hold� Schedule�Movie� �
Movies�Title�� Theaters�Name� � Schedule�Theater�� and Schedule�Theater� � The

aters�Name��

��� Review of literature

First of all� we present the levelwise algorithm used in a wide variety of data mining

applications� from association rules to functional and inclusion dependencies� Then�

we review the methods used in functional dependency or key discovery� and �nally�

the approaches for inclusion dependency or foreign key discovery�

����� Levelwise algorithm

One of the basic problems in knowledge discovery in databases �KDD� is to �nd all

potentially interesting sentences from a dataset� Then� a user can select the really

interesting ones� For example� these interesting sentences can be association rules�

functional or inclusion dependencies� Mannila and Toivonen �MT��� study thoroughly

a breadth
�rst or levelwise algorithm� also called generic data mining algorithm� for

�nding all potentially interesting sentences� Their paper includes a complexity anal

ysis� as well as some applications� including functional and inclusion dependency dis

covery� Algorithms for discovering functional and inclusion dependencies within this

Chapter �� Integrity constraints in relational databases ��

framework are also described elsewhere �Bou���� The levelwise algorithm has been

used� among other applications� for discovering association rules �AS��� MTV���� for

discovering functional dependencies �HKPT��� LPL��� NC�
�� and for discovering

inclusion dependencies �MLP���� In this thesis� we use it to extract keys�

We de�ne now more precisely the KDD framework of Mannila and Toivonen�

Given a database d� de�ne a language L for expressing properties of the data and a

selection predicate q� The selection predicate q evaluates whether a sentence 	 � L
de�nes a potentially interesting property of d� The task is to �nd a theory of d with

respect to L and q� i�e�� the set T h�L� d� q� � f	 � L j q�d� 	� is trueg� Consider the

example of inclusion dependency discovery� The language L consists of all inclusion

dependencies� and the predicate q is simply the satisfaction predicate�

To apply the levelwise algorithm� we need to de�ne a specialization relation �
between sentences �i�e�� a partial order�� which is also monotonic w�r�t q� That is� if

	 �
 �i�e��
 is more speci�c than 	� and q�
� d� is true� then q�	� d� is also true�

This means that if a sentence
 is potentially interesting w�r�t q� then all more general

sentences 	 are also potentially interesting w�r�t q�

In our example of IND discovery� the specialization relation � is de�ned as follows�

if 	 � R�X� � S�Y � and
 � R��X �� � S��Y ��� we have 	 �
 if R � R�� S � S�

and the sequences X and Y are contained in X � and Y � respectively� For instance�

R�A� � S�D� � R�ABC� � S�DEF ��

Then� the idea in the levelwise algorithm is to start from the most general sen

tences and try to generate and evaluate more and more speci�c sentences� but without

evaluating sentences that we know from previous stages will not be interesting� This

corresponds to pruning the search space� In the case of IND discovery� we are inter

ested in INDs with the longest attribute sequences� so we start from INDs with small

Chapter �� Integrity constraints in relational databases �

sequences� and step by step� we add attributes until the longest ones are found� But

when for instance R�A� � S�D� is not satis�ed� we know that R�ABC� � S�DEF �

cannot be satis�ed� so we do not evaluate it� For some languages� such as functional

and inclusion dependencies� it is possible to compute the interesting sentence can

didates at one level uniquely from the candidates and interesting sentences at the

previous level� thus saving memory�

This framework� when applied as such to key discovery� searches for superkeys

starting from the large ones and moving towards small ones� �nding eventually the

keys� But as keys tend to be of small size� this algorithm is highly ine�cient� An

other algorithm� also based on the principles of exploring a search space level by

level� reusing the results of previous levels� and pruning the search space as soon as

possible� has been proposed by Huhtala et al� �HKPT���� But unlike the framework

described above� this algorithm does not rely on a specialization relation to direct

the search� It is more suitable for FD!key discovery since it searches for FDs from

small to large� Therefore we applied this algorithm to key discovery in this thesis�

We describe informally in Figure ��
 the levelwise algorithm alongside the algorithm

applied to key discovery�

Note that this algorithm also works for approximate inference� It su�ces that the

selection predicate q evaluates to true when a sentence 	 almost holds�

To summarize� the main advantages of this algorithm are twofold� reducing the

computation at each level by reusing the results of previous levels� and e�ciently

pruning the search space�

Chapter �� Integrity constraints in relational databases ��

Levelwise algorithm for �nding all potentially interesting sentences�

Input� a database d �consisting of only one relation r over R for the key discovery

example�� a language L with specialization relation �� and a selection predicate q�

Output� T h�L� d� q��
Method�

Key discovery example

level ��

C�
� �� most general candidates in L w�r�t �� C�
� �� fA j A � Rg
while C�level� �� � do

F �level� �� f 	 � C�level� j q�d� 	�g Keys�level� �� fX � C�level� j
j�X�r�j � jrjg

C�level"
� �� C�level"
� �� fX j
genNextCand�C�level�� F �level�� jXj � level"
�

!! �	 � C�level��
 � C�level"
�� 	 �
 X is not a superset of a key

in Keys�level�g
level �� level "

done

output
each levelF �level� output
each levelKeys�level�

Figure ��
� Levelwise algorithm

Chapter �� Integrity constraints in relational databases ��

����� Key and functional dependency discovery

The most e�cient methods to determine �approximate� minimal functional depen

dencies� TANE �HKPT���� Dep
Miner �LPL���� FUN �NC�
�� each use an instance

of the levelwise algorithm� All of these approaches work with a much smaller repre

sentation of a relation called a stripped partition database� from which the FDs can

be derived e�ciently� A partition of a relation r under an attribute set X is a set

of equivalence classes� where an equivalence class is the set of tuples in r sharing the

same value for the attributes in X� A stripped partition is a partition in which the

equivalence classes of size one have been removed� The idea underlying this removal

is that� when an equivalence class consists of a unique tuple� this tuple does not share

the value of the considered attributes with any other tuple� and therefore� this tuple

cannot break any functional dependency� The new representation of r� the stripped

partition database br� is the union of the stripped partitions for all attributes in the

relation schema� Processing the data by using stripped partitions allows them to

perform linearly w�r�t� the number of tuples in the relation� However� constructing

the partitions in the �rst place requires special data structures such as hash tables in

order to be done linearly w�r�t� the number of tuples jrj� or it can be performed by

sorting the database� which is in O�jrj log jrj��

The three methods cited above di�er in their characterization of FDs� i�e�� in how

they generate FD candidates and evaluate them� We now describe in more detail

each of these methods� using the database of Example ����
�

Example ������ Consider the database composed of the following relation r only

�taken from �LPL����� The attribute names have been assigned a single letter for

briefness� and will be designated by this letter in the rest of this section�

Chapter �� Integrity constraints in relational databases ��

empnum depnum year depname mgr

Tuple No� A B C D E

��� Biochemistry �

�
 �
��� Admission
�

� � �
��� Computer Science �

� � �
��� Computer Science �

� � �
��� Geophysics �

� �

��� Biochemistry �

� � �
��� Admission
�

From now on� we represent a tuple by its tuple number �the value in the column

Tuple No���

The partition of r under A is �A � ff
� �g� f�g� f�g� f�g� f�g� f�gg� The stripped

partition of r under A is c�A � ff
� �gg� Similarly� we obtain c�B � ff
� �g� f�� �g� f�� �gg�
c�C � ff�� �gg� c�D � ff
� �g� f�� �g� f�� �gg� and c�E � ff
� �g� f�� �g� f�� �� �gg� The

stripped partition database is br � ff
� �g� f
� �g� f�� �g� f�� �g� f�� �� �gg�

Tane

The goal in Tane �HKPT��� is to �nd all minimal �approximate� FDs holding in a

relation� The algorithm searches for FDs of the form X n fAg � A by examining

attribute sets X of increasing sizes� �rst� sets of size
� then of size �� and so on�

using an instance of the levelwise algorithm� For each attribute set X considered� it

constructs a collection of potential right
hand sides� C�X�� An attribute A is in C�X�

provided that A is not determined by any proper subset of X which does not contain

A	 this enforces the minimality of the FD�� The set C�X� can be computed from the

�The algorithm actually uses a more powerful version of these sets C�X�� with more pruning�
but to give the idea of the algorithm� we limit ourselves to the simple version�

Chapter �� Integrity constraints in relational databases ��

candidate sets of X�s subsets� as the intersection of the sets C�X nfAg� for all A � X�

Then� the algorithm tests the potential FDs X n fAg � A for all A � X � C�X��

When the FD is satis�ed� it prunes A from the set C�X� to preserve the minimality

of future FDs� When all attribute sets X of size s have been processed� the algorithm

generates the attribute sets of size s "
 to be considered�

In Tane� testing FDs is based on partition re�nement� the dependency X nfAg �
A holds if the partition �XnfAg re�nes �fAg� i�e�� if every equivalence class in �XnfAg is

a subset of some equivalence class in �fAg� Practically� the authors use the equation

e�X n fAg� � e�X� to test whether the FD is satis�ed� where e�X� is the di�erence

between the sum of the sizes of the equivalence classes in the stripped partition c�X
and the number of such equivalence classes� This equation allows them to deal with

stripped partitions� and to limit the amount of memory used by the algorithm since

they exploit results from the previous level only�

On the database of Example ����
� the algorithm would unfold as shown in Figure

����

Dep�Miner

In Dep
Miner �LPL���� the underlying idea is based on the concept of agree set�

which groups all attributes having the same value for a given pair of tuples� From

these sets� the authors derive maximal sets� The maximal sets for some attribute

A are the largest possible sets of attributes not determining A� Then� from the

complements of these maximal sets� they derive the left
hand sides of FDs using a

levelwise algorithm� for each attribute A� it searches for left
hand sides X such that

r j� X � A by increasing the size of X� The only step that requires accessing the

database �or rather� the stripped partition database� is the computation of agree sets�

The authors avoid computing agree sets for all pairs of tuples by limiting them

Chapter �� Integrity constraints in relational databases ��

X C�X� c�X e�X� X n fAg �� A

� fA�B�C�D�Eg � �

A fA�B�C�D�Eg ff
� �gg
 � �� A

B fA�B�C�D�Eg ff
� �g� f�� �g� f�� �gg � � �� B

C fA�B�C�D�Eg ff�� �gg
 � �� C

D fA�B�C�D�Eg ff
� �g� f�� �g� f�� �gg � � �� D

E fA�B�C�D�Eg ff
� �g� f�� �g� f�� �� �gg � � �� E

AB fA�B�C�D�Eg � � A �� B� B �� A

AC fA�B�C�D�Eg � � A �� C� C �� A

���

BD fA�B�C�D�Eg ff
� �g� f�� �g� f�� �gg � B � D� D � B

���

ABC fA�B�C�D�Eg � � AB � C� AC � B�

BC � A

���

Figure ���� Unfolding of Tane on the database of Example ����

Chapter �� Integrity constraints in relational databases ��

selves to the tuples within MC� the set of maximal equivalence classes of the stripped

partition database� MC � max�fc � b� j b� � brg	 MC � ff
� �g� f
� �g� f�� �g� f�� �� �gg
in our example� An attribute A is included in the agree set of tuples �t�� t�� if t� and

t� belong to the same equivalence class in the stripped partition c�A� In our exam

ple� the agree set for the pair of tuples �
��� is ag�
� �� � fAg� Similarly� we have

ag�
� �� � ag��� �� � ag��� �� � fB�D�Eg� ag��� �� � fEg� ag��� �� � fC�Eg� so the

agree sets of r are ag�r� � fA�BDE�E�CEg�

The authors derive the maximal sets from the agree sets as follows� for an attribute

A� the maximal set max�A� r� � max�fX � ag�r� j A �� X�X �� �g� In our example�

we have max�A� r� � fBDE�CEg and the complement of the maximal set of A is

cmax�A� r� � fAC�ABDg�

Finally� they derive the left
hand sides of FDs from these complements of maximal

sets� The algorithm is based on the characterization of left
hand sides of FDs of

the form LHS � A as the set of minimal transversals of the simple hypergraph

cmax�A� r��� For instance� we have cmax�A� r� � fAC�ABDg	 the set fB�Cg is a

transversal of cmax�A� r� since fB�Cg�fA�Cg �� �� and fB�Cg�fA�B�Dg �� �� In a

levelwise manner� the algorithm proceeds by increasing sizes of candidate transversals�

If a candidate T of size s is a transversal� then no superset of T is allowed among the

candidates of size s "
� The candidates of size
 are the attributes in cmax�A� r��

The authors found their approach to outperform Tane in all data con�gurations

tested in the experiments�

On the example� the algorithm unfolds as shown in Figure ����

�A collection H of subsets of R is a simple hypergraph if
�X � H� X �	 � and �X�Y � H and X � Y � X 	 Y ��
A transversal T of H is a subset of R such that �E � H� T �E �	 ��

Chapter �� Integrity constraints in relational databases ��

Size
 Size �

Transversals Transversals

RHS cmax�RHS� r� Candidates �LHS� Candidates �LHS�

A fAC�ABDg A�B�C�D A BC�BD�CD BC�CD

B fBCDE�ABD� A�B�C�D�E B�D AC�AE�CE AC�AE

ABCDg
C fBCDE�AC� A�B�C�D�E C AB�AD�AE� AB�AD�

ABCDg BD�BE�DE AE

D fBCDE�ABD� A�B�C�D�E B�D AC�AE�CE AC�AE

ABCDg
E fBCDEg B�C�D�E B�C�D�E �

Figure ���� Unfolding of Dep
Miner on the database of Example ����

So the non
trivial FDs satis�ed in r are the following�

BC � A� CD � A� D � B� AC � B� AE � B� AB � C� AD � C� AE � C�

B � D� AC � D� AE � D� B � E� C � E� D � E�

FUN

In FUN �NC�
�� the authors describe their approach at a general level only� without

detailing the optimizations due to the stripped partition database representation�

even though they use this representation in their implementation�

Their characterization of FDs is based on the concept of free sets� A free set X is

a set of attributes such that removing an attribute from X decreases the number of

X�s distinct values�� Free sets correspond to left
hand sides of FDs� To characterize

�Formally� X is a free set if � 	Y
 X such that j�Y �r�j 	 j�X�r�j�

Chapter �� Integrity constraints in relational databases ��

right
hand sides of FDs� they de�ne the closure and quasi
closure of an attribute set

X� The closure of X� denoted by X�� is the union of the attributes in X and the

additional attributes which can be added to X without increasing the number of X�s

distinct values� X� � X
fA � RnX j j�X�r�j � j�X�A�r�jg� The quasi
closure of X�

X�� is the union of X and the closures of X�s maximal subsets� While all attributes

in X� are determined by X� only those not in X�s quasi
closure yield minimal FDs�

In summary� the minimal FDs satis�ed in r are the FDs of the form X � A where X

is a free set and A � X� nX�� This approach relies heavily on counting the number

of distinct values of attribute sets� which requires either a sort of the data� or special

data structures	 but while the latter solution is used by the authors� they do not

detail how they perform the counting operation e�ciently�

In a levelwise manner� the algorithm searches for free sets of increasing sizes� At

the level corresponding to FDs with a left
hand side of size s� the algorithm knows

from the previou s level the free sets of size s and their quasi
closure� as well as the

collection of candidate free sets of size s"
� It �rst computes the closure of the free

sets of size s� and displays the FDs of the form X � A where X is a free set of size s

and A � X� nX�� Then� it computes the quasi
closure of the candidate free sets of

size s"
� using the closure of the free sets of size s� Then� it prunes the candidate free

sets X of size s"
 that are not free sets� based on the number of distinct values of X

and of its maximal subsets that are free sets�� Finally� it generates the candidate free

sets of size s "
 from the free sets of size s� The authors found that their approach

outperforms Tane in all con�gurations investigated� which they explain by the fact

that the number of FDs tested in their approach is less than in Tane�

�These two steps� computing quasi�closures and pruning candidate free sets� are presented in this
order in the paper� However� it seems more e
cient to perform them in the reverse order in order
to avoid computing the quasi�closures of candidate free sets that are not free sets�

Chapter �� Integrity constraints in relational databases ��

On the example� the algorithm would unfold as shown in Figure ����

X j�X�r�j X� X� X � A

A � A A

B � B B�D�E B � D�E

C � C C�E C � E

D � D D�B�E D � B�E

E � E E

AB � �key� A�B�D�E A�B�C�D�E AB � C

AC � �key� A�C�E A�B�C�D�E AC � D�E

AD � �key� A�B�D�E A�B�C�D�E AD� C

AE � �key� A�E A�B�C�D�E AE � B�C�D

BC � �key� B�C�D�E A�B�C�D�E BC � A

BD � �not a free set�

BE � �not a free set�

CD ��key� B�C�D�E A�B�C�D�E CD� A

CE � �not a free set�

DE � �not a free set�

Figure ���� Unfolding of FUN on the database of Example ����

Key discovery

The approaches focusing only on key discovery �KA��� SZWA��� also use the levelwise

algorithm� Shen et al� �SZWA��� implemented an algorithm with the data being

stored in a DBMS� thus querying the database to test the validity of key candidates�

Chapter �� Integrity constraints in relational databases �

However� they do not provide the details of the algorithm they implemented� Knobbe

and Adriaans �KA��� search for keys of increasing sizes� An attribute set X is a key

if the number of distinct values of X is equal to the number of tuples in the relation�

When X is not a key� they record the set Black�r�X� of tuples having duplicate

X
values� Then� when they test whether XA is key� they only need to sort the tuples

in Black�r�X� w�r�t� XA and check that they all have di�erent XA
values� In such

a case� XA is key� otherwise� they record Black�r�XA� and proceed to the next level

of the algorithm� As the sets Black�r�X� can have a size in O�jrj�� the amount

of memory required for these structures makes their method impractical for large

databases�

Our approach for key discovery is adapted from Tane� We dropped the right
hand

side candidate sets� and perform key testing via database queries instead of using the

stripped partition database� But the rest is similar to Tane� we search for keys in a

levelwise manner� by increasing size� At each level of the algorithm� we test the key

candidates� then prune the search space� and then generate the candidates for the

next level�

In this thesis� we do not need elaborate data structures since we keep the data

inside the DBMS� Thus� even though our algorithms may not be as e�cient w�r�t� the

number of tuples as those of FD discovery presented above� the amount of memory

used by the algorithm is kept very low�

����� Foreign key and inclusion dependency discovery

Unlike functional dependencies� extracting inclusion dependencies �or foreign keys�

has raised little interest in the database community� De Marchi et al� �MLP���

Chapter �� Integrity constraints in relational databases ��

explain this disregard by the complexity of the problem �see Section ����� and a lack

of popularity�

Due to the huge number of possible INDs �PT���� it is impractical to enumerate

all inclusion dependency candidates and try to evaluate them on a database� Exist

ing work focuses on how to prune the number of inclusion dependency candidates

considered�

One approach �LPT��� PT��� consists of selecting a much reduced initial set of in

clusion dependency candidates by considering only the attributes appearing together

in equi
joins from a workload of query statements� Thus� this approach requires such a

workload of queries to the database� The authors also claim that this criterion allows

them to �nd out only �interesting� dependencies� since they were used in practice�

But their method is not complete� they determine only a subset of all dependencies�

which depends on some past queries to the database�

Another approach is to start with unary inclusion dependencies� Indeed� there

are only a polynomial number of them �n� in a database with n attributes�� So the

complexity of extracting the unary INDs for a database with n attributes and p tuples

is polynomial with respect to both parameters� it is O�n�p log p� �MR��� KMRS����

Moreover� unary INDs are a necessary condition for non
unary �or composite� INDs�

for R�AB� � S�CD� to hold� we must have R�A� � S�C� and R�B� � S�D�� We chose

this approach because it does not rely on any prior knowledge on the database�

The problem of e�ciently extracting unary inclusion dependencies has been stud

ied in two di�erent contexts�

� all data processing is done via database queries �BB���� or

�� a new representation of the data is generated� and the extracting step deals only

Chapter �� Integrity constraints in relational databases ��

with this new representation �MLP����

In the �rst context� Bell and Brockhausen �BB��� optimize their algorithms to min

imize the number of accesses to the database� They distinguish two generic types�

number and string� and determine UINDs for attributes of each type independently�

To restrict the number of UIND candidates� they use value restrictions� i�e�� upper

and lower bounds on the attribute domains� as follows� the bounds of a left
hand side

must lie in the interval made by the bounds of the right hand side� When testing

the UIND candidates against the database� they exploit the transitivity of UINDs to

reduce the number of queries� using the two following rules�

� Ai � Aj and Ak �� Aj �� Ak �� Ai

�� Ai � Aj and Ai �� Ak �� Aj �� Ak

Depending on the ordering of the attributes� the transitivity properties can save more

or fewer accesses to the database� but as long as there is at least one valid UIND in

the database� their algorithm saves at least one database query�

In the second context� De Marchi et al� �MLP��� also determine UINDs for each

data type independently� For a given data type t� they build a binary relation asso

ciating� for each value of type t appearing in the database� the attributes in which

it appears� Thus the amount of memory required is proportional to the number of

distinct values in the database� Note that all these binary relations can be generated

in one pass over the database� Then� they deduce the UINDs from a binary relation

B as follows� if A is included in C� then each value taken by A must be associated

in the binary relation with C� Therefore� the right
hand sides of A are given by the

intersection� for each value v of A� of the attribute sets associated in B with v� Here

again� computing the intersections for all attributes with type t can be achieved in

one pass over the binary relation for the type t�

Chapter �� Integrity constraints in relational databases ��

De Marchi et al� compared both approaches on six synthetic databases� having

small or medium size so the binary relations �t in main memory� Their approach was

found to outperform Bell and Brockhausen�s� However� the binary relations may not

always �t in memory�

We now consider how the knowledge of UINDs can be used to �nd foreign keys or

general inclusion dependencies�

Knobbe and Adriaans �KA��� propose to use UINDs to identify foreign keys� They

�rst extract the keys� then the UINDs� then form the FK candidates� and then� test

these candidates against the database� They use key
based UINDs to form the foreign

key candidates F � F����Fk for a given key K � K����Kk by taking each Fi in the

left
hand sides of the UINDs having Ki as a right
hand side� When there are several

FK candidates� they suggest the use of heuristics to choose among them�

After having extracted UINDs by using binary relations �as explained above�

instead of database queries� De Marchi et al� �MLP��� use an instance of the lev

elwise algorithm to determine the INDs in which the testing of INDs is performed

via database queries� This instance of the levelwise algorithm devoted to INDs was

described by Mannila and Toivonen �MT��� and Boulicaut �Bou���� but De Marchi

et al� detail in their paper �MLP��� how to generate the IND candidates of size i"

from the INDs of size i�

Chapter �

Algorithms and complexity

We present in this chapter a framework for discovering �approximate� keys and for

eign keys holding in a database instance� of which we assume no previous knowledge�

The problem tackled can be divided in two main modules� �
� identifying the �ap

proximate� keys� and ��� using the keys found to extract the �approximate� foreign

keys�

We also analyze the complexities of the algorithms proposed�

For simplicity reasons� we implemented the algorithms on top of a DBMS� but

our framework could easily be adapted to use direct processing of the data�

��� General architecture

Our general architecture for discovering the approximate keys and foreign keys from

a database� of which we assume no prior knowledge� is outlined in Algorithm
�

The inputs of the algorithm are a database d and the approximation thresholds

for keys and foreign keys� The algorithm outputs the keys and foreign keys which

��

Chapter �� Algorithms and complexity ��

Algorithm �� General extraction of keys and foreign keys
Input � a database d	 the maximum approximation degrees for keys and

foreign keys� �key and �fk respectively	 and the pruning parameter

PgParam �i�e�� the fraction of tuples involved in the pruning pass�

Output� the �most interesting� keys and their associated foreign keys holding

in d

Preliminary step�

Extract statistics about the database

foreach table tab in the database do

size �

����� while StoppingCriterion�tab�size� � false do

Find all the keys of size size�

Key�size� � ExtractKeys�tab�size��key�

foreach key � Key�size� do

Find the foreign keys and their degree of approximation�

key�ForeignKeys� ExtractForeignKeys�key��fk� P gParam�

end

����� Sort Key�size� by interestingness and merge it with the sorted key list

of tab�

size � size "

end

Output the key list of tab� including for each key its foreign keys�

end

Chapter �� Algorithms and complexity ��

almost hold in d w�r�t� the approximation thresholds�

As a preliminary step� we extract the following statistics about the database� the

number of tuples of each table� and the type and number of distinct values of each

attribute� These statistics will be used to optimize the di�erent steps of the general

algorithm�

Then� we process each table in the database in turn� For a given table� we de

termine the integrity constraints by increasing size� �rst� the keys and foreign keys

�FKs� of size
� then the keys and FKs of size �� working towards larger sizes� To

identify the integrity constraints of a given size s� we �rst extract the keys of size s

�as detailed in Algorithm �� see page �
�� and then� process them in turn to �nd their

FKs �as detailed in Algorithm �� see page ����

A complete algorithm� �nding all the keys and foreign keys holding in the database�

would process each table until all its keys and respective FKs are found� In such a

case� the processing of a table would only stop when the maximal key size
the number

of attributes of the relation
 has been reached� or when there are no more candidates�

So the stopping criterion �
�
� of the general algorithm �Algorithm
� evaluates to

true if and only if size is equal to the number of attributes of tab� or there is no key

candidate�

But in most cases� we are only interested in a small subset of all integrity con

straints �ICs�� Typically� the most useful keys are referenced by many FKs� have

small size and approximation degree� and their FKs also have a small approximation

degree� Depending on the application for which keys and foreign keys are discovered�

we may want to take into account the number of di�erent relations containing foreign

keys referencing a given key rather than just the number of foreign keys� Indeed� we

Chapter �� Algorithms and complexity ��

may prefer a key with two foreign keys in di�erent relations to a key with foreign keys

in the same relation� This criterion would favor integrity constraints that connect the

di�erent relations of a database� which would be useful in schema mapping �MHH����

These di�erent criteria de�ning the interestingness of ICs are not independent�

For example� there is a tradeo� between the number of FKs and the size� so we may

prefer a key of size � with � FKs to a key of size � with � FKs� Similarly� we may

prefer a key of size � holding exactly in the dataset to an approximate key of size

�� Thus� in order to achieve the best ordering of the ICs� we need to extract them

all� and only then can we order them by degree of interestingness� But �nding them

all when we only want a small subset of them is highly ine�cient� In addition� the

best ordering is very subjective and is hard to de�ne accurately independently of the

set of elements we want to order� So we decided to implement a heuristic algorithm

that would �nd a good enough subset with a reasonable amount of work� We chose

to mimic the complete algorithm on a smaller scale� we extract all keys and FKs

of size bounded by a constant� This constraint re�ects the fact that in practice� for

e�ciency reasons� referenced keys tend to be small� Indeed� otherwise� large parts of

the data are duplicated� Then� because there may be many ICs within the bound

chosen� we want to highlight the best of these� So we propose an order relation on

integrity constraints� which re�ects the general usefulness of such constraints as keys

and foreign keys� This ordering was used by Shen et al� �SZWA����

De
nition ����� �Integrity constraint ordering by interestingness
� The ele

ments for the ordering are pairs formed of an approximate key K and the set FKset

�possibly empty� of approximate foreign keys referencing it� We denote by approx�K�

�resp� approx�F �� the approximation degree of a key K �resp� foreign key F �� To

compare two sets of FKs� we de�ne the average approximation degree of a FK set

Chapter �� Algorithms and complexity ��

FKset� denoted by average approx�FKset�� as the average of the approximation de

grees of all FKs included in FKset� average approx�FKset� � avgf approx�F � j
F � FKsetg�

Consider � elements e
 � �K
� FKset
� and e� � �K�� FKset��� We de�ne the

ordering between them according to� �
� the number of FKs attached to the keys� ���

the sizes of the keys� ��� the approximation degrees of the keys� and ��� the average

approximation degrees of the foreign keys� as follows�

e
 � e� if jFKset
j � jFKset�j
else if jFKset
j � jFKset�j and size�K
� � size�K��

else if jFKset
j � jFKset�j and size�K
� � size�K�� and

approx�K
� � approx�K��

else if jFKset
j � jFKset�j and size�K
� � size�K�� and

approx�K
� � approx�K�� and

average approx�FKset
� � average approx�FKset��

For the tests� the upper bound on the size was �xed to � by Shen et al� �SZWA���	

we chose the upper bound on the size to be equal to � arbitrarily� because our test

databases have a smaller schema than theirs�

To adapt the general architecture so that we only determine the most interesting

�in the sense of De�nition ��
� integrity constraints of bounded size� we only have

to change the stopping criterion �
�
� and add a possible pruning step after step

�
���� This pruning step would be used to limit the number of integrity constraints

discovered at each stage of the algorithm by removing the least interesting of them�

For example� if we want to determine primary keys� as did Shen et al� �SZWA���� we

can prune all ICs but one� the best� at each step �when there are several �best�� we

Chapter �� Algorithms and complexity ��

can choose one randomly�� Finally� the stopping criterion evaluates to true when the

number and quality of the integrity constraints discovered up to that point match

the speci�cations of the user� or when the size of the keys!FKs mined has reached an

upper bound �in our experiments� the upper bound is �xed to ���

��� Finding the keys

We want to extract the approximate keys of a given size holding in the database� The

inputs of the algorithm are a relation r� the key size� and the approximation threshold

�key� The algorithm outputs all approximate keys having the speci�ed size that hold

in r w�r�t� approximation threshold �key �

In the general algorithm �Algorithm
� see ���� we search for keys by increasing

sizes� starting with keys of size
 and going towards larger sizes� Identifying the keys

of a given size is done via a call to the function ExtractKeys �Algorithm ��� As soon

as a key is found� we prune the search space so that we do not extract superkeys� if

X is a key� then we discard from the search space all supersets of X�

Since keys are just a special case of functional dependencies� we adapted Tane�s

architecture �HKPT��� to our problem of �nding the minimal keys� and to the fact

that� unlike in Tane� we keep the data inside the database management system� which

limits how we can process it� The resulting method is shown in Algorithm ��

For each size� the key candidates are stored in CandKey�size�� We test them

against the database� and insert the candidates that were found to be keys in Key�size��

The rest of the candidates are inserted in CandNotKey�size�� We then compute from

CandNotKey	size
 the set CandKey	size��
 of key candidates for the next level of

Chapter �� Algorithms and complexity �

Algorithm �� ExtractKeys

Input � a relation r with n attributes A�� ���� An

size � n� the number of attributes of the keys to extract

�key� the approximation thresholds for keys

Output� the set Keys�size� containing all the keys with size attributes of r

if size � � then

Initialization

CandKey�
� � fA�� ���� Ang
Key�
� � fA � CandKey�
� j jAj � jrjg
Keys�r� � Key�
�

CandNotKey�
� � CandKey�
�	Key�
�

CandKey��� � GenerateNextCand �CandNotKey�
��

end

else

# CandKey�size� has been computed by ExtractKeys�r� size	
� �key�

foreach X in CandKey�size�
 X � X����Xsize do

card�X� has been initialized when generating the candidate X

����� if card	X
 � �
	 �key��jrj then
card�X� � SELECT COUNT���

FROM �SELECT DISTINCT X�� ����Xp FROM r�

����� if card�X� � �
	 �key��jrj then
X is an �approximate� key

Key�size� � Key�size�
X

end
end

end

CandNotKey�size� � CandKey�size�	Key�size�

CandKey�size"
� � GenerateNextCand �CandNotKey�size��

end

Output Keys�size�

Chapter �� Algorithms and complexity ��

the algorithm� at size���

The initial key candidates� of size
� are the attributes of the relation� We treat

size
 as a special case because we do not need to query the database to determine

the keys� we use the statistics gathered in the preliminary step�

����� Testing the key candidates

An attribute set X is an �approximate� key if it has no more than �key�jrj duplicate

values� where �key is the approximation threshold and jrj the number of rows of the

relation� or equivalently� if it has at least �
 	 �key��jrj distinct values �������� So

to test this inequality� we query the database to retrieve X�s number of distinct

values� stored in card�X� �for cardinality�� In some cases� we are able to determine

that X cannot be a key without querying the database� when an upper bound on

X�s cardinality does not pass the test ����
��� This upper bound is computed when

generating the candidate X �see next section�� and is used as the initial value of

card�X�� When X does not pass the test� card�X� keeps its initial value� i�e�� the

upper bound on X�s cardinality� but when X does pass the test� card�X� becomes

X�s real cardinality� The upper bound is based on the cardinalities of X�s maximal

subsets� maxfjAj�card�X n fAg� j A � Xg�
In Tane �HKPT���� the use of bounds to avoid accessing the data is limited to

potential FDs because these are the focus�

����� Generating key candidates

First of all� we show that we can compute the key candidates at iteration size "

only from CandNotKey�size�� the set of key candidates that were found not to be

keys at iteration size�

Chapter �� Algorithms and complexity ��

De
nition ������ An attribute set X is a key candidate if no proper subset of X is

a key� otherwise X would not be a key but a superkey�

CandKey�s� � fX s�t� jXj � s and �Y � X� Y is not a keyg

This de�nition is the basis for the following proposition�

Proposition �� An attribute set X of size s "
 is a key candidate if all its subsets

of size s belong to CandNotKey�s��

We adapted the function which generates the functional dependency candidates

for the next level from Tane �HKPT��� to our particular case of keys�

In the function GenerateNextCand we generate the key candidates of size s "

in two steps� �
� we construct attribute sets of size s "
� which is done at ���
�

and detailed below� and ��� we check that all their subsets of size s are included in

CandNotKey�s�� which is done at ������

In the �rst step� rather than generating all possible sets of size s "
� we start

from attribute sets in CandNotKey�s�� and combine them to form sets of size s"
�

Thus� part of the subset tests are already veri�ed� therefore it is more likely that the

generated attribute sets will be key candidates� To combine two sets Y�Z of size s in

order to form a set X of size s "
� it is necessary that Y and Z share exactly s 	

attributes� Consider X � X����Xs��� where each Xi is a single attribute� to be sorted

in increasing order� i�e� X� � ��� � Xs�� for some ordering �say the position of the

attributes in the database table corresponding to r� i�e�� Xi � Xj if Xi is o the left of

Xj�� The set X is a key candidate if all its subsets of size s belong to CandNotKey�s��

and in particular the subsets X����Xs��Xs and X����Xs��Xs��� Therefore� we chose to

construct a set X by combining two sets Y�Z of CandNotKey�s� that share a pre�x

of size s 	
� such that X is the union of Y and Z and X�s attributes are ordered�

This is done at ���
�� given that Y � X����Xs��Ys and Z � X����Xs��Zs are ordered

Chapter �� Algorithms and complexity ��

Algorithm �� GenerateNextCand

For simplicity� we denote here by s the size of keys �s corresponds to

size in Algorithm ��

CandKey�s"
� � �
foreach PrefSet in PrefixCands�CandNotKey�s�� do

foreach Y � X����Xs��Ys� Z � X����Xs��Zs � PrefSet
 Ys � Zs do

����� X � X����Xs��YsZs

card�X� � max� jZsj�card�Y �� jYsj�card�Z� �

foreach A � X� A �� Ys� Zs do

����� if X n fAg � CandNotKey�s� then

����� card�X� � max� card�X�� jAj�card�X n fAg� �

else

card�X� � �

exit the for loop

end
end

if card	X
 �� � then

CandKey�s"
� � CandKey�s"
�
X

end
end

end

Chapter �� Algorithms and complexity ��

�i�e�� X� � ��� � Xs�� � Ys� Zs�� and given that Ys � Zs� then X � X����Xs��YsZs

is ordered as well by construction� Since attribute sets of size
 are ordered� by

induction� all constructed key candidates are ordered� This property is used in the

function PrefixCands� which partitions CandNotKey�s� into sets of attribute sets

sharing a same pre�x of size s	
� Since the key candidates in CandNotKey�s� are

ordered sets of attributes� we can sort CandNotKey�s� in lexicographic order� for

X�Y � CandNotKey�s�� X � X����Xs� Y � Y����Ys� we have X � Y if and only if

Xi � Yi for
 � i � s� Then� we group the key candidates by pre�x of length s 	

in one pass over the sorted set CandNotKey�s�� The function PrefixCands is also

adapted from Tane �HKPT����

When generating a key candidate X� we also compute an upper bound on its

number of distinct values� stored in card�X�� which is used when testing whether X

is a key �see Section ����
�� This upper bound is based on the results of the previous

level� it is the maximum among all jAj�card�X n fAg� for A � X ������

��� Finding the foreign keys

We extract the foreign keys referencing a given key Key � K����Kk in three steps� �
�

we generate foreign key candidates� ��� we make a pruning pass over these candidates

on a small set of sample rows from the database� and ��� we �nally test the remaining

candidates against the database�

In all the literature we are aware of� Step � follows directly Step
 without any

pruning�

We now describe in more detail the three steps� The steps are summarized in

Algorithm ��

Chapter �� Algorithms and complexity ��

Algorithm �� ExtractForeignKeys

Input � a database d�

the key Key � K����Kk for which we want to extract foreign keys�

�fk� the approximation threshold for foreign keys

Output� the foreign keys of Key

FKset� �
foreach relation rF in d do

Step
� generate the foreign key candidates

CollectionUINDs � ExtractUINDs�Key
 rF
 �fk�

FKCands�Key� � GenerateFKCands�Key
 CollectionUINDs�

foreach F � F����Fk � FKCands	Key
 do

Select the number of distinct values of F

card�F � � SELECT COUNT�DISTINCT F�� ���� Fk� FROM rF

Step �� pruning pass on a sample of the database�

����� if passedSampleTest� F�Key� then

Step �� real test�

card�F �� Key� � SELECT COUNT��� FROM

�SELECT DISTINCT F�� ���� Fk

FROM rK� rF

WHERE rK�K�� � rF �F�� AND ��� AND rK�Kk� � rF �Fk��

if card	F
 	 card	F �� Key
 � �fk�card	F
 then

FKset� FKset
 fF � Keyg
end

end
end

end

Output FKset

Chapter �� Algorithms and complexity ��

����� Generating foreign key candidates

It is impractical to enumerate all sets of size k as potential foreign keys� since there

can be
�
n
k

�
of them� where n is the number of attributes� A commonly used approach

to form foreign key candidates is based on previously extracted unary inclusion depen

dencies �KA��� KMRS���� Another approach is described by Petit et al� �PTBK���

who tackle the more general problem of discovering inclusion dependencies� The

inclusion right and left
hand side candidates are generated from sets of attributes

appearing together in equijoins� within a workload of SQL queries over the database

considered� Therefore this approach requires the prior knowledge of SQL queries over

the database� Because we assume no prior knowledge over the database� we apply

the former method� using unary inclusion dependencies� While Knobbe and Adriaans

�KA��� propose determining all unary inclusion dependencies� making this a prelimi

nary step of the general algorithm �together with the gathering of statistics�� we limit

ourselves to key
based UINDs� Therefore� we have to identify the keys �rst� so we

incorporate the discovery of UINDs into the algorithm for extracting the foreign keys�

We describe the discovery of UINDs in Section ������

Using unary inclusion dependencies to form foreign key candidates

Let�s start with an intuitive example�

Example ������ Consider a database with two relations r��A�B� and r��C�D�E��

Assume that AB is key of r�� and that the following UINDs hold�

C � A�D � A� and E � B� Then the foreign key candidates for AB are CE and

DE� But if the inclusion E � B does not hold anymore� then AB has no foreign

key candidate� Or if E belongs to another relation r�� then AB has no foreign key

Chapter �� Algorithms and complexity ��

candidates�

De
nition ������ A foreign key candidate of key K � K����Kk is composed of k

attributes F����Fk such that

� all Fi belong to the same relation�

�� each of them is included in the corresponding attribute of the key� �i� Fi � Ki�

�� the foreign key candidate is not equal to the key� F����Fk �� K����Kk �even

though some of the Fi may be equal to some Kj�

To address the �rst condition� we process one relation at a time� we extract key

based UINDs from relation r� then use them to generate FK candidates� and then

proceed to the next relation� Generating FK candidates is straightforward from the

de�nition� we create all possible combinations of k attributes F����Fk where Fi � Ki

and F����Fk �� K����Kk� If there exists an attribute Ki such that no attribute in r

references Ki� then the key has no foreign key candidate within the relation r�

����� Pruning pass over the foreign key candidates

This step is intended to eliminate quickly the candidates that are the farthest from

being foreign keys� The underlying idea is that a unary inclusion dependency may

hold accidentally� and only very few values of the combined left
hand side attributes

are included in the values of the key�

Example ������ Let K � K�K�K� be a key� and F � F�F�F� a foreign key candi

date� with the following values�

Chapter �� Algorithms and complexity ��

K� K� K� F� F� F�

a b c aa b c

a bb c aa bb c

aa b cc aa bb cc

a b cc

a bb cc

In this example� none of F �s values are included in the set of K�s values� So we can

exclude F from the foreign key candidates just by looking at one of its values�

Proposition �� In database d
 an FK candidate F is an approximate foreign key

referencing key K w�r�t� error threshold �fk if the number of distinct values of F that

are not included in K�s values is at most �fk�card�F �
 where card	F
 is the number

of distinct values of F �

This is straightforward from the de�nitions of an approximate foreign key and of

the error measure for FKs �see Chapter ���

The pruning pass over foreign key candidate F is done in the function

passedSampleTest�F�Key� ����
� in Algorithm ��� It is based upon Proposition

�� We extract at random a small fraction of F �s distinct values� SampleV alues�

We call this fraction the pruning parameter� PgParam� Then� for each value v in

SampleV alues� we check whether v also appears in the set of Key�s values� which we

denote by KeyV alues� This can be implemented with an SQL query�

SELECT COUNT��� FROM �SELECT � FROM rKey WHERE Key � v�

or by querying an inverted index built on the whole database� We keep a counter of

the number of F �s distinct values processed so far that are not included in Key�s val

ues	 let�s call this counter numMisses� Whenever v is not included in KeyV alues� we

Chapter �� Algorithms and complexity ��

increment numMisses� As soon as numMisses exceeds �fk�card�F �� we know from

Proposition � that F is not an approximate FK� so the function passedSampleTest�F�Key�

returns false� For exact foreign key discovery� only one value v that is not in KeyV alues

is enough to prune a candidate� If the bound �fk�card�F � is not reached during the

processing of the values in SampleV alues� then we cannot conclude whether the de

pendency F � Key is satis�ed in d based solely on the data sample� so the function

returns true� and the candidate will be tested against the database�

Remark� As an important side e�ect� allowing approximation requires PgParam to

be at least equal to �fk�

����� Testing the remaining foreign key candidates

We test the foreign key candidates that passed the pruning step based upon Propo

sition �� The number of distinct values of F that are not included in K�s values

is equal to the di�erence between the number of distinct values of F and the num

ber of distinct values of F that are also values of Key� The former is card�F �� and

the latter can be computed by joining the two relations on F � Key� We store in

card�F �� Key� the number of distinct values of the join on F � Key between rF

and rKey� Then� we check whether the di�erence card�F �	card�F �� Key� is smaller

than �fk�card�F �	 if it is� then F is an approximate FK for key Key in database d�

����� Discovering the unary inclusion dependencies

Discovering the unary inclusion dependencies is described in Algorithm ��

In the following� we represent a unary inclusion dependency as a pair �LHS�RHS�

where the left
hand side �LHS� is included in the right
hand side �RHS��

Chapter �� Algorithms and complexity �

We are interested here in �nding the left
hand sides� belonging to a relation r of

the database� of all unary inclusion dependencies having a �xed right
hand side K�

The brute force algorithm solving this problem consists of testing against the database

all pairs �L�K� where L is an attribute of r di�erent from K and such that L and K

have the same type �e�g�� text and text� or numeric and numeric�� We improved on

it with a simple optimization based on the statistics gathered by the �rst step of the

general algorithm� if the number of distinct values of L is strictly greater than the

number of distinct values of K� then the UIND �L�K� cannot hold� With this simple

optimization� we prune the left
hand side candidates for right
hand side K�

Instead of using the attribute cardinalities� Bell and Brockhausen �BB��� ex

tract value restrictions� which are upper and lower bounds on the attribute do

mains� They use these value restrictions to prune the candidate UINDs as follows� if

upp�L�� upp�K�� low�L�� low�K� are the upper and lower bounds on the domains of

attributes L�K� then �L�K� is a possible UIND if and only if upp�L� � upp�K� and

low�L� � low�K�� Value restrictions generate a more e�cient pruning than simply

cardinality restrictions� We only use the latter because the attribute cardinalities

are available in the DBMS catalogs� while the former necessitate processing the data�

The authors also exploit the transitivity of UINDs to minimize the number of accesses

to the database� We found out that in practice� however� this is not a very useful

optimization when extracting key
based UINDs�

Unlike Bell and Brockhausen �BB���� whose goal is to extract all unary inclusion

dependencies� we are really interested in only key
based UINDs �whose right
hand

sides belong to a key�� since only these will be used in generating foreign key can

didates� Therefore� our search space is reduced� so we did not implement all the

optimizations they propose�

Moreover� our goal is to provide a general framework for key and foreign key

Chapter �� Algorithms and complexity ��

discovery� so we did not concentrate on all possible optimizations� However� it would

be easy to integrate the ideas of Bell and Brockhausen into our algorithms� in the

�rst step� we could include value restrictions on the statistics we gather� and then use

these to prune the left
hand side candidates	 and we could add after step ����� the

following statements to exploit the UIND transitivity�

Aj � Ki and Ak �� Ki �� Ak �� Aj

Aj � Ki and Aj �� Ak �� Ki �� Ak

De Marchi et al� �MLP��� proposed an e�cient way to discover all UINDs which

does not use SQL queries� they generate a compact representation of the data� and

from this new representation� they extract the UINDs� With their method� the restric

tion to key
based UINDs does not save computation� Here again� we could integrate

their method into ours� but� because we concentrate on providing a general framework

for key and foreign key discovery� we implemented all algorithms using SQL queries

for the sake of uniformity and simplicity�

To test the inclusion of left
hand side candidate A into K� we use the same method

as for foreign keys� we generate left
hand side candidates� then we perform a prun

ing pass over these candidates� and �nally we test the remaining ones against the

database� The pruning pass ���
� is exactly the one described in Section ����� with

F � Aj and Key � Ki� which corresponds to the case where the size is equal to one�

And at last� to test the inclusion of remaining left
hand side candidate A into K� we

compute the number of distinct values that A has in common with K� by joining the

two relations on A and K� and counting the number of distinct values of the result�

The number of distinct values of the join is always less than the cardinality of A� but

if the di�erence is smaller than �fk�card�A�� meaning that the fraction of erroneous

values is below the approximation threshold �fk� then the inclusion holds�

Chapter �� Algorithms and complexity ��

Algorithm �� ExtractUINDs
Input � a relation r with n attributes A�� ���� An	

the number of distinct values of each attribute� card�Ai�� i �
���n	

the key Key � K����Kk for which we want to extract unary inclusion de

pendencies	

�fk� the approximation threshold for inclusions

Output� collectionUIND� the set of unary inclusion dependencies whose right
hand

side belong to Key and left
hand side belongs to r

collectionUIND � �
for i � � ��� k
 when the UINDs having Ki as a right�hand side are not known do

Extract the UINDs having Ki as a right
hand side

CandLHS�Ki� � fAj j
 � j � n� Aj �� Ki� jAjj � jKij�
Dom�Aj� � Dom�Ki� g

foreach Aj � CandLHS	Ki
 do

Pruning pass on a sample of the database�

����� if passedSampleTest�Aj�Ki� then

Real test�

card�Aj �� Ki� � SELECT COUNT�DISTINCT r�Aj�

FROM r� rKi
WHERE r�Aj � rKi

�Ki

If r�Aj� � rKi
�Ki� �almost� holds

if card�Aj�	 card�Aj �� Ki� � �fk�card�Aj� then

����� collectionUIND � collectionUIND
fr�Aj� � rKi
�Ki�g

end
end

end
end

Chapter �� Algorithms and complexity ��

��� Complexity analysis

Since all the data is kept in a DBMS� the space complexity is not an issue� Therefore�

we concentrate in this section on the time complexity� which is measured in terms of

database accesses�

We �rst examine the complexities of the database operations used in our algo

rithms�

� We use projection in a SELECT DISTINCT ��� FROM r type of query� This oper

ation requires a sort of the tuples on the attributes selected� and then a scan

over all tuples� so its complexity is O�jrj log jrj�� The size of the resulting set of

tuples ranges from
 �all equal� to jrj �all distinct��

� We use selection in a SELECT � FROM r WHERE ��� type of query� This operation

just requires a scan over all tuples� so its complexity is O�jrj��

� We use counting in a SELECT COUNT��� FROM r type of query� This operation

also is just a scan over all tuples� so its complexity is O�jrj��

� We use equi
joins �joins whose join conditions are equalities� in a SELECT �

FROM r��r� WHERE r��X� � r��Y� AND ��� AND r��Xk � r��Yk type of query�

The complexity of this operation depends on how it is executed� when exe

cuted via a nested loop� it is O�jr�j�jr�j�	 when r� and r� are sorted �rst� it is

O�jrj log jrj� where jrj � max�jr�j� jr�j�	 when an index on X or Y exists� the

complexity is O�jrj log jrj� if the index is a B
tree� or O�jrj� if the index is a

hash table� For the rest of the complexity analysis� we assume that no index

exists� The size of the resulting set of tuples ranges from � to min�jr�j� jr�j��

The algorithms often use compositions of these operations� so we adapt the com

plexities accordingly� As the join and projection operations are the most expensive

Chapter �� Algorithms and complexity ��

among the four� the complexity of compositions will be dominated by their complex

ities� When both operations occur� the total complexity is generally dominated by

the complexity of the join operation�

Example ������ In Algorithm �� the following query combines the three operations

presented above�

SELECT COUNT��� FROM

�SELECT DISTINCT F�� ���� Fk FROM rK� rF

WHERE rK�K�� � rF �F�� AND ��� AND rK�Kk� � rF �Fk���

Let m � jrKj� and n � jrF j� and assume m � n� The complexity of the equi
join

ranges from O�n log n� to O�m�n�� Because the size of the set of tuples returned by the

equi
join is at most m� the complexity of the projection is O�m logm�� Similarly� the

complexity of the counting is O�m�� Therefore� the overall complexity is dominated

by the equi
join� and is O�n log n� when the relations are sorted� or O�m�n� when

they are not�

We de�ne in Table ��
 the notation used in the rest of this section� We denote by

p the maximum number of tuples over all tables� and consider that all tables have p

tuples to simplify the analysis� We denote by join�p� the complexity of the equi
join

of two relations	 join�p� � O�p log p� or O�p�� depending on the implementation of

the join operation�

We now study the complexity of the key discovery module and then that of the

foreign key discovery module separately�

Chapter �� Algorithms and complexity ��

nAtts $attributes in the database

p $tuples

join�p� complexity of a join operation for two relations

with at most p tuples

PgParam fraction of rows involved in the pruning pass

nKeys $ keys found

nKeyCands $key candidates

nUINDs $key
based unary inclusion dependencies

nUindCands $key
based UIND candidates before pruning pass

nUindCandsPruned $key
based UIND candidates after pruning pass

nFKs $ foreign keys found

nFKCands $foreign key candidates before pruning pass

nFKCandsPruned $foreign key candidates after pruning pass

Table ��
� De�nition of the notations used

Chapter �� Algorithms and complexity ��

����� Complexity of key discovery

In the key discovery module �see Algorithm ��� we access the database to retrieve the

number of distinct values for each key candidate� This corresponds to the counting

operation applied to the result of a projection operation� The complexity is dominated

by the projection� O�p log p� for one key candidate� and O�nKeyCands � p log p�

overall�

Complexity�ExtractKeys� � O�nKeyCands� p log p�

The number of key candidates is smaller in our approach than in the approaches

for functional dependency discovery because of an extra pruning mechanism �line ���
�

in Algorithm ��� This mechanism� based on an estimate of the number of distinct

values of a candidate� allows us to avoid some tests against the database�

����� Complexity of foreign key discovery

The main tasks of FK discovery are the following� generating FK candidates� making

a pruning pass over the candidates� and testing the remaining candidates�

In the pruning pass over a FK candidate F � we �rst extract the number of F �s

distinct values� which takes O�p log p�� Then� for a fraction PgParam of F �s distinct

values� we check that they also appear in the key �i�e�� the number of F �s distinct

values used in the pruning pass is PgParam � p�� The check can be done either

linearly by a scan of the key values� or in log p by probing an index� We consider it

to be in O�p�� So� the complexity of the pruning pass is quadratic in the number of

tuples�

Complexity�Pruning� � O�nFKCands� PgParam� p��

Chapter �� Algorithms and complexity ��

We investigated experimentally the interaction between the e�ciency of the pruning

and the pruning parameter PgParam �see next chapter��

Testing the remaining candidates is done through the query of Example ����
 �see

page ���� whose complexity is O�join�p���

Complexity�TestFKCands� � O�nFKCandsPruned� join�p��

Finally� generating foreign key candidates requires determining key
based unary

inclusion dependencies �see Algorithm ��� The process for UINDs is similar to that

for general FKs� and so is the complexity�

Complexity�ExtractUINDs� � O�nUindsCands � PgParam� p�

" nUindsCandPruned� join�p��

The overall complexity is the sum of the three equations above�

In�uence of data characteristics on the complexity

The data characteristics in�uencing the complexities vary greatly from one database

to another� The complexities also depend on input parameters� error thresholds and

number of values involved in the pruning pass� which we discuss in next section�

We saw in Section ��
�� that the numbers of keys and key candidates� nKeys and

nKeyCands� can be exponential in the number of attributes� In addition to the fact

that interesting keys tend to be small in practice� we chose to limit the maximal key

size also to avoid this exponential explosion�

The key
based unary inclusion dependencies depend on the number of attributes

included in keys since these are the right
hand sides of the UINDs� While in practice

the right
hand sides form a small subset of all attributes� in the worst case� the

union of the keys covers all attributes in the database� so that there are nAtts right

hand sides� Also� even though generally domains are of di�erent types �e�g�� integers�

Chapter �� Algorithms and complexity ��

strings� dates�� and therefore are disjoint� it may occur that all of them are of the

same type� and that they are all included in the domains of key attributes� Then�

there are nAtts left
hand sides per right
hand side� So� in the worst case� nUinds �

nUindCands � nUindCandsPruned � nAtts��

The FK candidates are generated from key
based UINDs� so they depend on the

number of keys and key
based UINDs� We saw that in the worst case� there can be

a great number of them�

In�uence of input parameters on the complexity

The pruning pass over the foreign key candidates is useful only when the di�erence

between the number of candidates before and after pruning justi�es the additional

cost of the pruning step�

Without the pruning pass� the complexity of testing the foreign key candidates is�

O� �nUindCands " nFKCands�� join�p� �

With it� the complexity becomes�

O� �nUindCandsPruned " nFKCandsPruned�� join�p�

" �nUindsCands " nFKCands�� PgParam� p� �

So the pruning step is worthwhile only when�

�nUindsCands " nFKCands� � PgParam � p� �

�nUindCands 	 nUindCandsPruned "

nFKCands	 nFKCandsPruned� � join�p�

When the fraction PgParam of tuples involved in the pruning pass is small� the

pruning step should be less e�cient than when PgParam is large� On the other

hand� as PgParam increases� the cost of the pruning pass grows� so the number of

Chapter �� Algorithms and complexity ��

candidates after pruning has to be signi�cantly smaller than the number of initial

candidates for the pruning step to be worthwhile�

The intuitive idea is that the pruning step should only be used to discard the

candidates that are very far from being foreign keys� e�g�� which have just a couple

of tuples in common with the key� These candidates do not require testing on many

rows� so a small PgParam is enough to eliminate them� and the pruning step is in

expensive� For the remaining candidates� we use the full test� Indeed� if we wanted

to discard them during the pruning pass� we would have to process many tuples be

cause they share many values with the key� so we would need a large PgParam and

the pruning step might become too costly relative to its e�cacy� Unfortunately� the

tradeo� between the cost of the pruning step and its performance depends on the

dataset�

The other input parameters �other than PgParam� are the error thresholds for

approximate keys and FKs� Non
zero thresholds increase the number of key
based

UINDs� keys� FKs and all candidates�

When the approximation threshold �fk for the foreign keys increases� the fraction

PgParam of tuples involved in the pruning pass has to increase as well since we must

have PgParam � �fk �see Section ������� Hence� for high thresholds� the pruning

step may be too expensive relative to its bene�t� and may have to be skipped� But

such high thresholds would probably give coarse� not very interesting results�

We investigate in the next chapter the e�ect of the input parameters on the

performance of the algorithm through experimentation�

Chapter �

Experiments

��� Goals of the tests

� We evaluate the gain in terms of database accesses of extracting only key
based

UINDs versus all UINDs�

� We evaluate the e�ciency of the pruning pass� both on synthetic and real
life

datasets with various amount of noise�

We examine the general behavior of the pruning pass e�ciency in relation to

the pruning parameter PgParam� In particular� we study how to set PgParam

to minimize the running time of the algorithm�

We then analyze the in�uence of the dependency size on the pruning pass�

that is� whether the pruning pass behaves di�erently on unary and composite

dependencies� In addition� we investigate the in�uence of the approximation

threshold for FKs� �fk�

Finally� we verify experimentally that the pruning time is quadratically depen

dent on the data size �i�e�� the number of tuples��

�

Chapter �� Experiments ��

��� Experimental setup

All the datasets used in the experiments were stored in IBM DB� universal database

Version ��
� for Solaris� We implemented the algorithms described in Chapter � in

C� with embedded SQL to access the databases� Because of the randomness in our

algorithm �within the pruning pass�� we ran it � times on the whole set of databases�

and we took the average over the � runs for each dataset�

First of all� we de�ne the metrics used to evaluate the e�ectiveness of the pruning

pass� Then� we present the datasets used in the experiments� Finally� we describe the

setting of the input parameters of the algorithm �such as the approximation thresholds

for keys and FKs��

����� Metrics used to evaluate the impact of the pruning pass

Recall that our approach for identifying the foreign keys of a given key consists of

three steps�

� generating FK candidates

� for FKs of size
� these are the key
based UIND candidates	

� for FKs of size �
� these are generated from key
based UINDs�

�� pruning the FK candidates

�� testing the remaining FK candidates�

The pruning pass �Step �� aims at minimizing the number of FK candidates in

volved in Step �� because this last step is the most expensive� Thus� there is a tradeo�

between the extra cost of the pruning pass and the savings it provides� The pruning

Chapter �� Experiments ��

pass is useful only when the savings exceed the cost�

We present now the metrics used to evaluate whether the pruning pass is worth

while� and how e�cient it is� These metrics are based upon the following statistics�

recorded during the execution of the algorithm for each arity �i�e�� number of at

tributes of the key!FK��

� nFKCands� the number of FK candidates� In each pass� this is recorded after

Step
� Note that FK candidates of size
 are far more numerous than for other

sizes because the generating process is di�erent�

� nFKCandsPd� the number of FK candidates after the pruning of Step ��

� nFKs� the number of FKs� This is the number of candidates that passed the

test of Step ��

In addition� we gather statistics about the whole set of key
based UINDs �not only

those associated with keys of size
��

Degree of pruning� We measure how e�ective the pruning pass is in reducing the

number of FK candidates involved in the full test of Step � to the set of actual FKs�

For instance� assume that there are �� FKs holding in a database instance� and that

our algorithm �nds �� candidates �i�e�� nFKs � �� and nFKCands � ���� Then

the pruning pass is most e�ective when it prunes all the �� candidates that are not

actual FKs �i�e�� when nFKCandsPd � ����

We de�ne the degree of pruning as follows�

DegPg �
nFKCands	 nFKCandsPd

nFKCands	 nFKs

Chapter �� Experiments ��

When nFKCands � nFKs� the pruning pass is useless� and does not result in

any improvement over the algorithm without the pruning pass� therefore we chose to

de�ne DegPg � � in this case� The degree of pruning lies in the interval ���
�� where

 corresponds to a perfectly e�ective pruning� and � to a totally ine�ective pruning�

We chose to use this measure rather than the number of candidates pruned over

the number of candidates�

DegPg� �
nFKCands	 nFKCandsPd

nFKCands

because DegPg� re�ects only the quantity of pruning done� without taking into ac

count its quality �i�e�� how close the candidates after pruning are of the �nal FKs��

Indeed� in our previous example� the pruning is most e�ective� but DegPg� is only

���� while DegPg �
 expresses the intuitive idea that the pruning was perfect�

The degree of pruning measures the decrease� due to pruning� of the number of

candidates tested against the database that are not FKs� Consider the case where

nFKCands � ��� nFKs � ��� and nFKCandsPd � ��� The degree of pruning is

low� ����� However� we only test two super�uous candidate� which is rather good�

Thus� we introduce another measure to compute the number of excess tests against

the database�

Pruning ratio and FKcand ratio� We measure how the number of candidates

tested against the database in Step � compares to the number of actual FKs� To

evaluate the usefulness of the pruning pass� we record this ratio both when there is

a pruning pass �we call it pruning ratio�� and when there is not �we call it FKcand

Chapter �� Experiments ��

ratio�� i�e�� with and without Step � of the algorithm�

PgRatio �
nFKs

nFKCandsPd

FKcandRatio �
nFKs

nFKCands

Here again� both ratios lie in the interval ���
�� where
 corresponds to no excess

test against the database� while � corresponds to the case where there are no FKs�

but some candidates are tested�

While these measures express how good the results after pruning are� they do not

account for the cost necessary to obtain them� the extra time needed to execute the

pruning pass� Thus� to know whether the pruning pass was worthwhile� we introduce

a last measure� called time ratio�

Time ratio� We measure the running time of the algorithm without the pruning

pass� T imeNoPg� and with it� T imeWithPg� Then

T imeRatio �
T imeWithPg

T imeNoPg

When T imeRatio �
� the pruning pass was worth it� otherwise� it is faster to use

the version without pruning�

All the measures de�ned above depend on the fraction PgParam of distinct tu

ples involved in the pruning pass� the larger PgParam is� the more e�ective the

pruning will be� but the more expensive the pruning pass is� Therefore� there is a

tradeo� between the gains and the cost� In the next section� we study the in�uence

of PgParam on the di�erent measures� and discuss what value is the best choice for

PgParam�

Chapter �� Experiments ��

����� Datasets used in the experiments

The goal of the algorithm presented in this thesis is to determine the data model

�keys and FKs� which best �ts the database considered� More precisely� we can view

a database as the sum of a clean database and some noise� and the model to discover

corresponds to that of the clean database� In our experiments� we used a few real

life nearly noiseless databases whose data models are known� and we added various

amounts of noise to them to simulate noisy databases� We used the given data models

to check whether those output by our algorithm are correct�

So our noisy databases are all synthetically generated� But as there is no general

model of noise in databases �i�e�� the characteristics of the noise in two databases

can be totally di�erent�� we consider that our synthetic noisy data are as appropriate

for the experiments as real
life noisy data would be� Moreover� using synthetic noisy

data allows us to control the amount of noise in our experiments�

Our real
life clean databases are of medium size w�r�t� both their schema and

their number of tuples� They were all carefully designed� thus most of the foreign

keys are of size
 or �� which is the case of most databases in practice� We generated

synthetic data with di�erent characteristics �i�e�� di�erent key and foreign key sizes��

to test our algorithm on other con�gurations�

Real�life datasets� These databases are all publicly available on the Internet�

� Amalgam is a bibliographic database� with
�
 attributes distributed in
�

tables� and up to
���� tuples per table� We used Schema
 de�ned by Miller

et al� �MFH��
��

� Genex �Gen� is a repository of gene expression data� with ��� attributes dis

tributed in �� tables� and up to
����� tuples per table�

Chapter �� Experiments ��

� Janus Core Log �which we call simply Janus in the following� �Oce� is part of

the Janus database� containing ��� tables of Ocean Drilling Program�s marine

geoscience data� The Core Log subset of the Janus database is composed of

�� attributes distributed in �� tables� and the sample we used contained up to

���� tuples per table�

� Mondial �May��� is a geographical database� with
�� attributes in �� tables�

and up to ���� tuples per table�

Synthetic data� The
� synthetic datasets are small w�r�t� both their schema and

their number of rows� around �� attributes in � tables� and ���� rows� They were

generated to test worst cases of the algorithms� the domains all have the same type

and many common values� thus overlapping much more than in the real
life datasets

we used� Besides� the synthetic datasets present di�erent characteristics �i�e�� di�erent

key and foreign key sizes��

We used constraint programming �Lab� to generate data respecting conditions on

the number of keys� their sizes� their number of FKs with the size of these FKs� The

classical synthetic data generators �e�g�� those for classi�cation� association rules� are

not suitable for our purpose� The best tool we are aware of is Toxgene �BMKL���	

but we did not use it because it requires knowing the data model in advance� while

our tool constructs one which �ts our conditions� However� unlike Toxgene� our tool

is not scalable� which explains why our synthetic datasets have small schemas� This is

due to the fact that the problem of generating a database satisfying a set of integrity

constraints speci�ed by a user is a very di�cult one� Bry et al� explain that the

set of integrity constraints can be expressed by a set of �rst
order logical formulas�

and the goal is to �nd a �nite model �because a database is �nite� for this set of

�rst
order logical formulas �BEST���� But the question of whether a set of �rst
order

Chapter �� Experiments ��

logical formulas is �nitely satis�able is semi
decidable�� and the question of whether

a set of �rst
order logical formulas is unsatis�able is semi
decidable� so the question

whether a set of �rst
order logical formulas is satis�able though not �nitely is not

even semi
decidable�

Noisy data� We describe here how we generated approximate data from our clean

datasets� Given approximation �or noise� degree noiseDeg as a percentage� we pro

ceed as follows�

� for each table� we select at random noiseDeg percent of the tuples t�� ���� tk	

� for each ti � �v�� ���� vn�� either duplicate ti with probability ��#� or modify

some values in ti with probability ��#� When modifying ti� each value is re

placed with probability ��# by a random value having the same type� and with

probability
�# by a NULL value �so a value is not modi�ed in ��# of cases��

Duplicating tuples adds noise to keys only� not to FKs� while modifying some

values in tuples adds noise to both keys and FKs�

We created various noisy versions of our datasets� we used noiseDeg � ��� and

#�

����� Setting of the algorithm�s input parameters

We study which values of �key and �fk� the input approximation thresholds for keys

and FKs respectively� give a good enough model for all our datasets� Of course� the

threshold between good enough and unacceptable models is subjective� and can vary

according to the applications� In this thesis� we consider that a model is good enough

�A language L is semi�decidable if there exists a Turing machine M that accepts every string in
L and does not accept any string not in L� �M either rejects or goes in an in�nite loop��

Chapter �� Experiments ��

when few dependencies are missing� and if possible� when those missing dependencies

are of minor importance in the original model� For instance� we consider that it is

acceptable to miss the key of a small table which is not referenced	 however� depen

dencies expressing relationships between tables� such as FKs and referenced keys� are

of major importance� Because we do not know in advance how noisy the database is�

we want to �nd a pair ��key� �fk� that works well on most databases� clean as well as

noisy� and then we will use these values as input parameters for our experiments�

For this experiment� we chose two of our real
life datasets� Mondial because its

data model has the characteristics of most well
designed databases� with keys of size

 and �	 and Janus because its data model has large composite keys� of size �� � and

�� However� the large composite keys in Janus� data model are actually superkeys in

Janus� data� so we replaced them in Janus� data model by their smallest subset that

is key in the data �if there are several such subsets� we choose one at random�� For

instance� the primary key of the table �Core� in Janus� original data model is fLeg�

Site� Hole� Core� Core typeg� but fSite� Core� Core typeg is key in Janus� data� so we

used the latter in Janus� updated data model� We summarize in Table ��
 the keys

and foreign keys of both Mondial and Janus data models�

Number of keys Number of FKs

Database total for size
!�!�!� total for size
!�!�!�

Mondial ��
�!
�!�!� �� ��!
�!�!�

Janus ��
�!�!
!� �� ��!�!�!�

Table ��
� Summary of keys and foreign keys in Mondial and Janus data models

Finding �key� We tested our algorithm on each original dataset �corresponding to

noiseDeg � ��� as well as on the noisy versions of it� We �xed the input parameter

Chapter �� Experiments ��

�fk to � since FKs are of no concern in this particular study� and we experimented

with various values for �key� Then we compared the keys output by our algorithm to

those of the data model describing the real
life dataset� We recorded in Table ��� the

number of keys present in the data model that are missed by our algorithm�

$ missing keys for

noiseDeg �key Mondial Janus

� � � �

����� � � �

����� � �

���
 � �

���
 � � �

����� � �

���
 � �

Table ���� Number of keys present in the model but not found by our algorithm

We can see in Table ��� that as �key increases� the number of keys missed by our

algorithm decreases� We found that �key � ����� is a good choice� the number of

missing keys decreases to � for all noise degrees but noiseDeg � ���
 on the Mondial

database� and in this case� the two missing keys are of minor importance in the original

model �they are not referenced�� Moreover� as we consider datasets with small noise

degrees �up to
#�� this value should cover most of the noise on keys�

Finding �fk� We repeat the previous experiment� except that this time� the param

eter varied is �fk� and �key is �xed to the value we just chose� ������ We construct

Table ��� similarly to Table ���� the table for �nding �key�

Our original Janus data is not perfectly clean� one FK is missing when noiseDeg �

Chapter �� Experiments �

$ missing FKs for

noiseDeg �fk Mondial Janus

� � �
 �
!�!�!��

��
 �
 �
!�!�!��

����� � �� �

!�!�!��
� �
�!�!
!��

���

� �
�!�!�!��
� ��!�!
!��

���� � ��!�!�!��
� ��!�!
!��

���� � ��!
!�!��
� ��!�!
!��

��
 � �� !
!�!��
� ��!�!
!��

���
 � �� ��
!
�!�!��
� �
�!�!
!��

���
 �� �
�!
�!�!��
� �
�!�!
!��

����
� �
�!�!�!��
� �
�!�!
!��

���� � ��!
!�!��
� ��!�!
!��

��
 � ��!
!�!��
� ��!�!
!��

Table ���� Number of FKs present in the model but not found by our algorithm� with

�key � ������ The details per size are inside the parentheses�

Chapter �� Experiments ��

� and �fk � �� This FK has only a few distinct values� including a noisy one� so a

large �fk �larger than ��
� is needed to recover the FK� No value for �fk allows us to

recover all missing FKs� We chose �fk � ���� because it is a small value for which

the number of missing FKs has decreased signi�cantly�

We found that �key � ����� and �fk � ���� did work reasonably well on all of our

datasets� clean as well as noisy� so we use these values as input parameters in the

rest of our experiments� Even though these values allow us to recover most of the

data models for our real
life datasets whatever the noise degree� there may be other

databases for which these values are not suitable� We feel that in general� they should

allow us to discover most of the keys and foreign keys of the data model� provided

that the data is not very noisy� For very dirty data� no technique is capable of �nding

the right dependencies�

Finally� the last input parameter of our algorithm is the pruning parameter� the

fraction PgParam of tuples involved in the pruning pass� We will study how to best

set PgParam in Section ����

��� Key�based unary inclusion dependencies

We evaluate in this section the gain� in terms of database accesses� of extracting only

key
based UINDs instead of all UINDs�

For each of our real
life databases �with no noise added�� we record in Table ���

the number of UIND candidates both when we extract all UINDs and when we extract

only key
based UINDs� and the percentage of attributes that are included in a key�

We also express the number of key
based UIND candidates as a percentage of all

Chapter �� Experiments ��

UIND candidates� For this experiment� the stopping criterion used in the algorithm

is the limited size criterion �i�e�� we search all integrity constraints up to size ���

$KeyBasedUINDCands Percentage of attributes

Database $UINDCands �as # of UINDCands� included in a key

Amalgam ����
��� �i�e�� ��#� ��#

Genex
���� ��
� �i�e�� ��#� ��#

Mondial �
�� ���� �i�e�� �
#� ��#

Janus ���� ���� �i�e�� ��#� ��#

Table ���� Extracting all UINDs versus only key
based UINDs

We found that� on these four datasets� ��# to �
of UIND candidates are key

based� Hence� limiting ourselves to key
based UINDs saves between one third and one

half in database queries� The raw numbers show that these savings are signi�cant�

there are
���� to ����� fewer key
based UIND candidates than UIND candidates� As

each candidate requires a database query in order to check whether the UIND actually

holds in the database� we avoid about
���� to ����� queries� The percentage of

attributes included in keys is slightly smaller than the percentage of UIND candidates

that are key
based� due to our candidate generation process� Indeed� an attribute L

is a left
hand side candidate for a given attribute R provided that L and R have

the same type� and that jLj � jRj� where jLj is the number of distinct values of L�

Because attributes in keys have more distinct values than attributes not in keys� there

are more UIND candidates with a key attribute as the right
hand side�

Chapter �� Experiments ��

��� E�ciency of the pruning pass

First of all� we show in Table ��� that the pruning pass can be very e�ective in some

cases� We recorded the running time of our algorithm both with and without the

pruning pass� on our four real
life datasets �without noise added�� We computed the

fraction of running time without pruning that we avoided by performing a pruning

pass	 this fraction measures the bene�t of the pruning pass� For this experiment� we

used the limited size stopping criterion� �key � �fk � �� and various values for the

fraction PgParam of distinct values involved in the pruning pass �the best value for

each dataset��

Gain due to the

pruning pass

Database PgParam Running time Running time �in # of running

without pruning with pruning time without pruning�

Amalgam ���
�min�
s �min
�s
�#

Mondial ��
�min��s
min�s ��#

Genex ��
�
min��s
�min�s ��#

Janus
��min��s
�min�
s ��#

Table ���� Running times of our algorithm with and without pruning pass on original

data� with �key � �fk � ��

From Table ���� we see that the pruning pass allows us to save
� to ��# in

running time� so it can be very e�ective� This justi�es the more detailed study that

follows� where we examine the e�ectiveness of the pruning pass� and which parameters

in�uence it�

Chapter �� Experiments ��

����� General behavior of the pruning pass in relation to the

pruning parameter

We study in this section the general behavior of the pruning pass� and how this

behavior depends on the pruning parameter PgParam�

For a general analysis� we experimented on most of the datasets described in Sec

tion ������ We ran our algorithm on our real
life datasets �Mondial� Genex� Janus�

and synthetic data� as well as on noisy versions of Mondial and Janus� We used the

input approximation thresholds of Section ������ �key � ����� and �fk � �����

First of all� we examine whether the pruning pass is worthwhile� and for which

value of the pruning parameter the pruning is most e�ective� As the pruning pass

requires that PgParam � �fk and �fk is set to ����� we experimented with PgParam

values ranging from ����� to ��
�� Figure ��
 shows the ratio between the running

time with pruning and without pruning� versus the pruning parameter� All these

graphs have the same shape� the time ratio increases as the pruning parameter grows�

However� their positions with respect to the line of equation y �
 di�er according

to the data� on synthetic data� the time ratio is bigger than
 for all tested values

of PgParam� while on Janus� the time ratio is smaller than
 for these same values�

Finally on Mondial� the time ratio crosses the line y �
 around PgParam � �����

So� the pruning pass �PP� is most e�ective for smaller value of the pruning param

eter ������ in our experiments�� But this optimal value of PgParam can correspond

to a worthwhile or detrimental pruning pass� depending on the dataset� �Note that a

detrimental PP is such that T imeWithPg � TimeNoPg��

We now investigate why the time ratio increases with PgParam� and why the

Chapter �� Experiments ��

��

��

��

�

��

���

���

����� ���� ����� ���� ����� ����

T imeWithPg
T imeNoPg

Synthetic data with noiseDeg 	 �� �key � ������ �fk � ����

Synthetic data

����

����

����

���

����

����

����

���� ���� ���� ���� ���� ���� ���� ���� ��

T imeWithPg
T imeNoPg

Janus� with �key � ������ �fk � ����

noiseDeg � �
noiseDeg � ���#

���

���

�

��

��

��

��

��

���� ���� ���� ���� ���� ���� ���� ��

T imeWithPg
T imeNoPg

pruning parameter

Mondial� with �key � ������ �fk � ����

noiseDeg � �
noiseDeg � ���#
noiseDeg �
#

Figure ��
� Time savings

Chapter �� Experiments ��

position of the curve w�r�t� the line of equation y �
 changes according to the

data� We measure the performance of the pruning over all FK candidates with the

metrics described in Section ����
� namely� �
� the FK candidate and pruning ratios�

FKcandRatio and PgRatio� which measure the number of super�uous candidate

tests against the database� without and with pruning respectively �the closer to
�

the fewer super�uous tests there are�	 and ��� the degree of pruning� DegPg� which

measures how many candidates have been discarded by the pruning pass� For concise

ness� we limited our investigation to one version of each real
life database� Mondial

and Janus with noiseDeg � ���#� and Genex with noiseDeg � �� but the results are

similar for other noise degrees� We present the results in Table ����

Without pruning pass� the algorithm performs many unnecessary database queries�

as shown by very low FK candidate ratios� from ���� for Janus to ��
� for synthetic

data� Recall that FKcandRatio � 	FKs
	candidates

� and that each candidate is tested

against the database via a query� In the ideal case� the algorithm tests only the can

didates for which the inclusion holds� which corresponds to the number of candidates

being equal to the number of FKs and FKcandRatio �
� When there are more

candidates than FKs �i�e�� when FKcandRatio �
�� super�uous database queries

are performed�

Introducing a small amount of pruning �PgParam � ���#� reduces greatly this

number of unnecessary database queries on Mondial� Janus and Genex� the pruning

ratios are more than � times bigger than the FK candidate ratios� Hence� the pruning

is very e�ective on these datasets� as shown by degrees of pruning greater than �����

But increasing the pruning parameter brings little improvement to the e�ectiveness

of the pruning pass� as demonstrated by slowly increasing degrees of pruning and

pruning ratios on Mondial� Janus� Genex� Even when the performance of the PP

remains relatively steady while PgParam grows� the cost of performing the pruning

Chapter �� Experiments ��

E�ciency Pruning parameter �in #�

Database measure ��� � � �
�

Mondial FKcandRatio ����

�noiseDeg � ���#� PgRatio ���� ���� ���� ���� ����

DegPg ���� ���� ���� ���� ����

Genex FKcandRatio ����

�noiseDeg � �� PgRatio ���� ���� ����

DegPg ���� ���� ����

Janus FKcandRatio ����

�noiseDeg � ���#� PgRatio ���� ���
 ���
 ���
 ����

DegPg ���� ���� ���� ���� ����

Synthetic FKcandRatio ��
�

data PgRatio ��
� ��
� ���� ���� ����

�noiseDeg � �� DegPg ��
� ��
� ���� ���� ���

Table ���� E�ciency of the pruning pass on all candidates� with input parameters

�key � ����� and �fk � ����

Chapter �� Experiments ��

still increases� so the cost of the PP increases faster than the bene�ts it generates�

This explains why the gain from pruning decreases with PgParam�

The behavior of the PP is slightly di�erent on synthetic data� Indeed� the pruning

pass is not as e�ective for small PgParam� the pruning ratio is nearly equal to the

FK candidate ratio for PgParam � ���#� and the degree of pruning is small� at only

��
� as opposed to more than ���� on real
life data�

Overall� the best compromise bene�t!cost is reached for the smallest PgParam�

���#� and from there� the e�ectiveness of the PP decreases on all datasets because

the cost of pruning grows faster than its bene�ts� For real
life datasets� pruning with

PgParam � ���# is relatively inexpensive� and it greatly reduces the number of su

per�uous database queries� so the optimal value of the pruning parameter corresponds

to a worthwhile PP� On synthetic data however� the optimal value PgParam � ���#

corresponds to a detrimental PP� where the cost always surpasses the bene�ts�

We now study why� on real
life data� the PP is so e�ective for a small PgParam�

and why its performance increases very little for larger PgParam
values� The can

didates can be classi�ed in two groups� the �accidental candidates�� that have very

few values in common with the right
hand side� and the �expected candidates�� that

share more than a few values with the right
hand side� To discard an accidental

candidate� we have to process only a couple more tuples than required by �fk �i�e��

a very small pruning parameter su�ces�� On the other hand� to be able to discard

some of the expected candidates� we need to examine many more tuples� that is� we

need a large PgParam�

We investigated how many values are shared by the accidental and expected can

didates and their right
hand side �RHS�� We chose only one real
life dataset� Mondial�

and one synthetic dataset for this experiment� Mondial is representative of real
life

Chapter �� Experiments ��

datasets� and the synthetic database corresponds to a special case� where all attributes

share several values� We computed the average percentage of common values between

candidates and RHSs� for two PgParam
values� the smallest value used in previous

tests� ���#� and a larger one� �#� The candidates that are discarded in the PP corre

spond to the accidental candidates� and the others are the expected candidates� We

present the results in Table ����

Pruning Avg percent� of common values

parameter between rhs and

Database �in #� pruned cand� lhs not pruned cand� lhs

Mondial ���
��� �����

� ���� �����

Synthetic ��� ����� �����

data � ���
� �����

Table ���� Average percentage of common values between the candidate left
hand

sides and their right
hand sides� on databases with noiseDeg � �

On Mondial� when PgParam � ���#� the accidental candidates share only
���#

of their values with their RHSs	 while the expected candidates share as much as

�����# with their RHSs�

Recall that candidates are either accidental or expected� As accidental and ex

pected candidates are de�ned in relation to the PP� these two sets vary with the

pruning parameter� When PgParam increases� some of the candidates that were

before expected candidates become accidental� thus the average percentage of com

mon values between accidental candidates and their RHSs increases� as can be seen

in Table ����

The high average of common values between accidental keys and their RHSs

Chapter �� Experiments �

on synthetic data explains why the performance of the PP is so poor with small

PgParam� and why it increases slowly with PgParam� The percentage of common

values between accidental keys and their RHSs are much larger for synthetic data

than for Mondial� ��# vs� �#� This explains why the performance of the PP is

lower on synthetic data than on real
life data� the pruning ratio is at most ���� on

synthetic data while it reaches ���
 on Janus� and ���� on Mondial �see Table �����

These results con�rm the observations made in Section ��� �Complexity section��

namely that the PP is heavily in�uenced by the degree of overlap in the di�erent

domains� We generated synthetic data to test our algorithm on worst case data� so if

the number of common values between candidates and RHS is high on synthetic data�

it is on purpose� The experiments corroborate that overlapping domains represent

indeed a bad case for our algorithm� Indeed� the time ratio is always smaller than

for synthetic data� so it is better not to perform a PP on these data�

Overall� we saw that the best value for the pruning parameter is very close to

the FK approximation threshold �fk� for instance PgParam � ���# � ����� when

�fk � ����� But even for the best value of the pruning parameter� the PP may be

detrimental� and one should avoid performing it in some cases� This happens in

particular when the di�erent attribute domains are overlapping too much�

����� In�uence of dependency size

We study in this section the in�uence of dependency size on the e�ectiveness of the

pruning pass� We used the same set of experiments as in Section ����
� except that

here� we detail the performance results per dependency size� We found that the prun

ing pass has the same e�ects for each of the sizes larger than one� hence we distinguish

Chapter �� Experiments ��

only between unary and composite dependencies in this section� The results are pre

sented in Table ��� for key
based UINDs� and Table ��� for composite dependencies�

E�ciency Pruning parameter �in #�

Database measure ��� � � �
�

Mondial FKcandRatio ����

�noiseDeg � ���#� PgRatio ���� ���
 ���� ���� ����

DegPg ���� ���� ���� ���� ����

Genex FKcandRatio ����

�noiseDeg � �� PgRatio ���� ���� ����

DegPg ���� ���� ����

Janus FKcandRatio ����

�noiseDeg � ���#� PgRatio ���� ���� ���� ���� ����

DegPg ���� ���� ���� ���� ����

Synthetic FKcandRatio ��

data PgRatio ��
� ��
� ��
� ��
� ����

�noiseDeg � �� DegPg ��

 ��
� ���
 ���� ����

Table ���� E�ciency of the pruning pass on key
based UINDs� with input parameters

�key � ����� and �fk � ����

First of all� notice that the �gures in Table ��� are nearly the same as in Table ����

so the general behavior of the pruning pass is actually shaped by its behavior on unary

candidates� Because there are far more unary candidates than composite candidates�

the e�ectiveness of the PP is dominated by how it fares on unary candidates�

For most unary candidates� the inclusion dependency does not hold in the database�

as shown by the very low values of the FK candidate ratio� from ���� for Janus to

Chapter �� Experiments ��

E�ciency Pruning parameter �in #�

Database measure ��� � � �
�

Mondial FKcandRatio

�noiseDeg � ���#� PgRatio

DegPg � � � � �

Genex FKcandRatio ����

�noiseDeg � �� PgRatio ���� ���� ����

DegPg ���� ���� ����

Janus FKcandRatio ����

�noiseDeg � ���#� PgRatio ���� ���� ���� ���� ����

DegPg ���� ���� ���� ���� ����

Synthetic FKcandRatio ����

data PgRatio ���� ���
 ���� ���� ����

�noiseDeg � �� DegPg ���� ��
� ���� ��� ����

Table ���� E�ciency of the pruning pass on composite FK candidates� with input

parameters �key � ����� and �fk � ����

Chapter �� Experiments ��

���� for Mondial �see Table ����� This is due to the fact that our candidate generating

process is not very constraining� an attribute L is a left
hand side candidate for a

RHS K provided that L and K have the same type� and L has fewer distinct values

than K� Thus� an attribute L can be a candidate even if it has no value in common

with the right
hand side K� So� there is a huge number of left
hand side candidates

for each right
hand side� and most of them are accidental candidates�

The pruning pass is very e�ective on unary candidates� the degree of pruning

is above ���� for Mondial� Genex and Janus� so a large portion of the candidates

are discarded during the pruning pass� However� there still remain candidates for

which the inclusion dependency does not hold in the database� the pruning ratio lies

between ���� and ���� for Mondial� Genex and Janus�

Unlike for key
based UINDs� the pruning pass discards few composite candidates�

for Mondial and Genex� the pruning ratio is equal or nearly equal to the FKcand ratio�

and for Janus� PgRatio �
�� � FKcandRatio �see Table ����� And the FKcand

ratio is high� from ���� for Janus to
 for Mondial� so even without pruning pass�

there are not many super�uous tests against the database� These di�erences between

the composite and unary cases come from the fact that most unary candidates are

accidental� while most composite candidates are expected� Indeed� a composite FK

candidate F����Fk for key K����Kk is such that Fi � Ki for all
 � i � k� so the

candidate is likely to share many values with the key� Therefore� the probability

of pruning a composite candidate is very low� We compute this probability on an

example taken from Janus� a composite candidate of size � has �
� distinct values�

including ��� values shared with its key �i�e�� ��# of the candidate�s distinct values are

shared with its key�� To discard this candidate� we need to pick at least d�fk��
�e � �

values that are not common with the key during the pruning pass� Assume that

PgParam �
�#� We can use up to dPgParam��
�e � �
 values in the pruning

Chapter �� Experiments ��

pass� So the probability of discarding the candidate is�

ProbaPg � Pfpick at least � values not common with the key among �
 valuesg
�

��P
k�

�
��

k

�
����k �������k

�
��� �
���

Note that this probability increases up to ���� when �fk � �� so the pruning pass

can be e�ective on composite candidate when �fk is very small� The composite can

didates discarded during the pruning pass are accidental candidates� which share

few values with their key� These accidental candidates often belong to the same

table as the key� and also have some attributes in common with the key� For

instance� F � Firstname�Gender� Lastname can be a FK candidate for the key

K � Firstname�Mid	 init�� Lastname� but F and K have probably very few com

mon values�

The e�ectiveness of the pruning pass on composite candidates remains constant

when the pruning parameter increases �see Table ����� Indeed� the few accidental

candidates are discarded with a very small PgParam� but the expected candidates

share so many values with their keys that a very large PgParam is required to prune

them� Therefore� if the pruning pass is to be performed on composite candidates� it

is best to use very small PgParam
values because the cost of pruning is minimized

without a loss of performance� However� as the bene�t due to pruning is low� per

forming a PP may be more costly than its gains�

We saw that the general e�ectiveness of the PP� as studied earlier� is actually

shaped by the e�ectiveness on key
based unary candidates� because a large part of the

total number of candidates are unary� So for unary candidates� it is most e�ective to

use a small PgParam value� close to �fk� because it brings a good pruning e�ectiveness

Chapter �� Experiments ��

at low cost� For instance when �fk � ����� PgParam � ����� is the optimal value in

our experiments�

We saw that the PP is not very e�ective on composite candidates� so it may be

too costly to perform relative to its bene�ts on most databses �e�g�� on Mondial��

����� In�uence of input approximation thresholds on the ben	

e
t of the pruning pass

We study in this section how the FK approximation threshold �fk a�ects the e�ciency

of the PP� We try our algorithm on Mondial and Janus with several �fk
values ���

���
� ������ and compare the corresponding shapes of the curve representing the time

ratio versus PgParam� The curves are displayed in Figure ����

The curves associated with di�erent �fk have the same shape� Smaller values

of �fk allow us to process fewer tuples during the pruning pass� so that it is even

faster and less costly to discard the accidental candidates� For �key � ������ the time

ratio associated with the optimal value of the pruning parameter �PgParam � �fk�

gets smaller when �fk decreases� We cannot compare the curves corresponding to

di�erent values of �key for Janus because the number of keys is signi�cantly larger

when �key � ����� than when �key � ��

We can see on Mondial that as �fk grows� the left part of the curve is more and

more truncated� Then when �fk reaches the value ����� the only part that will remain

is the part for which the PP is detrimental�

So the FK approximation threshold in�uences the e�ectiveness of the pruning pass

insofar as it provides a lower bound for the pruning parameter� We saw that the PP

is most e�ective for small values of PgParam� therefore when a large �fk
value is

Chapter �� Experiments ��

���

���

���

�

��

��

��

��

���
 ���� ���� ���� ���� ���� ���� ���� ���� ��

T imeWithPg
T imeNoPg

pruning parameter

Mondial with noiseDeg	�
� �key � �����

�fk � ����
�fk � ���

�key � �fk � �

���

����

����

����

����

���

����

����

����

���
 ���� ���� ���� ���� ���� ���� ���� ���� ��

T imeWithPg
T imeNoPg

pruning parameter

Janus with noiseDeg	�
� �key � �����

�fk � ����
�fk � ���

�key � �fk � �

Figure ���� E�ciency of the pruning pass for various �fk
values

Chapter �� Experiments ��

input to our algorithm� it may be more e�ective not to perform the PP�

����� In�uence of data size

We found in Section ��� that the cost of the pruning pass is in O�PgParam�p��� where

p is the maximal number of tuples per table in the database� We now attempt to

verify experimentally that the pruning pass is indeed quadratic w�r�t� the data size�

We chose one of the synthetic datasets for this experiment� because it was easy to

increase the size of the data without altering the characteristics of the dependencies�

We draw in Figure ��� the running time of the algorithm versus the number of tuples

in a table�

�

��

��

��

���

���

���

���

���

����
����
���� ����� ����� ����� ����� ����� ����� �����

running
time �min�

number of tuples

Synthetic data

� �
�

�

Figure ���� Running time on synthetic data� with �key � ������ �fk �

���
� P gParam � ���
�

The graph in Figure ��� is consistent with the shape of a polynomial of degree ��

Chapter �

Conclusion

In this thesis� we studied the problem of discovering �approximate� keys and foreign

keys holding in a relational database� of which we assume no previous knowledge�

The key discovery part of our topic bene�ts from a large body of work on func

tional dependencies� e�cient algorithms �e�g�� Tane �HKPT���� have been designed

for extracting FDs from a database� On the other hand� identifying foreign keys �or

more generally inclusion dependencies� is a relatively new data mining area�

We proposed an integrated architecture for determining the �approximate� keys

and foreign keys holding in a database� To the best of our knowledge� this is the �rst

concrete proposal of an algorithm for this the problem� even though the underlying

ideas are not new� Our algorithm is designed to work with the data stored in a DBMS�

but it could be easily adapted to be memory resident�

We presented two optimizations to this integrated architecture�

� extracting only key
based unary inclusion dependencies instead of all unary

INDs� as is usually done	

��

Chapter �� Conclusion ��

� adding a pruning pass to the foreign key discovery� The goal of this extra

step� performed on a small data sample� is to reduce the number of foreign key

candidates tested against the database�

The pruning pass �PP� is useful for discarding accidental candidates� i�e�� can

didates that share very few values with their right
hand side� Indeed� processing

a few tuples is enough to make the decision to prune the candidate� so the PP is

very e�ective at low cost on this type of candidate� For instance� the pruning pass

is worthwhile when extracting key
based UINDs� because the candidate generating

process is not very constraining and creates many accidental candidates� However�

when the candidates share more than a few values with their right
hand side� the cost

of pruning is too high in regard to the savings in database queries it generates� thus

the PP is disadvantageous� This happens for composite FKs� or when the attribute

domains overlap too much�

Two input parameters of our algorithm have a major in�uence on the e�ectiveness

of the pruning pass� the approximation threshold �fk for foreign keys� which controls

the degree of approximation allowed in the FKs discovered� and the pruning parameter

PgParam� which de�nes the fraction of tuples involved in the pruning pass� These

two parameters are constrained by the inequality PgParam � �fk� which must be

satis�ed for the PP to function� The PP is most e�ective for small PgParam
values�

and becomes unfavorable when PgParam grows� so when �fk is too large� the PP

can be detrimental�

In summary� the pruning parameter should be set to a value slightly greater than

�fk� and the pruning should occur only on unary candidates� Besides� if the attribute

domains overlap too much� or if �fk is large� it is often faster to avoid the PP alto

gether�

Chapter �� Conclusion �

The work presented in this thesis can be extended in several ways� One could

investigate heuristic optimizations for the pruning pass� A possible improvement

would be to dynamically decide whether a pruning pass should be used for a given

foreign key candidate� depending on its domain and the domain of the key� When

the domains are of type string� because there are so many possible values� it is very

unlikely to �nd the same strings in both the key and the FK candidate� unless the

candidate is really a FK� When the domains are of type number on the other hand� it

would not be surprising to �nd the same values in both key and FK candidate even

in cases where they are not linked at all�

Bibliography

�Arm��� William Armstrong� Dependency structures of database relationships� In

Proc� of the IFIP Congress� pages ���%���� Geneva� Switzerland�
����

�AS��� Rakesh Agrawal and Ramakrishnan Srikant� Fast algorithms for min

ing association rules� In Proc� ��th Int� Conf� Very Large Data Bases

	VLDB
� pages ���%���� Morgan Kaufmann�
����

�BB��� Siegfried Bell and Peter Brockhausen� Discovery of constraints

and data dependencies in databases �extended abstract�� In Eu�

ropean Conference on Machine Learning� volume �
� of Lecture

Notes in Arti�cial Intelligence� pages ���%���� Springer Verlag�
����

Full version appeared as technical report ftp�!!ftp
ai�informatik�uni

dortmund�de!pub!Reports!report
��ps�Z�

�Bel��� Siegfried Bell� Discovery and maintenance of functional dependencies by

independencies� In Knowledge Discovery and Data Mining� pages ��%���

����

�BEST��� Francois Bry� Norbert Eisinger� Heribert Schutz� and Sunna Torge� SIC�

Satis�ability checking for integrity constraints� In DDLP� pages ��%���

����

��

Bibliography ��

�BMKL��� Denilson Barbosa� Alberto O� Mendelzon� John Keenleyside� and Kelly A�

Lyons� Toxgene� An extensible template
based data generator for xml� In

SIGMOD Conference� �����

�BMT��� Dina Bitton� Je�rey Millman� and Solveig Torgersen� A feasibility and per

formance study of dependency inference� In Proceedings of the Fifth Inter�

national Conference on Data Engineering� pages ���%��
� IEEE Computer

Society�
����

�Bou��� Jean
Francois Boulicaut� A KDD framework for database audit� Interna�

tional Journal of Information Technology and Management�
����
��%����

����� Special issue on Information Technologies in Support of Business

Processes�

�CFP��� Marco A� Casanova� Ronald Fagin� and Christos H� Papadimitriou� In

clusion dependencies and their interaction with functional dependencies�

Journal of Computer and System Sciences� ���
����%��� February
����

�CGK���� Qi Cheng� Jarek Gryz� Fred Koo� T� Y� Cli� Leung� Linqi Liu� Xiaoyan

Qian� and Berni Schiefer� Implementation of two semantic query opti

mization techniques in DB� universal database� In The VLDB Journal�

pages ���%����
����

�CI��� Elliot J� Chikofsky and James H� Cross II� Reverse engineering and design

recovery� A taxonomy� IEEE Software� ��
��
�%
��
����

�Cod��� E� F� Codd� Recent investigations in relational database systems� In

Proceedings of the IFIP Congress�
����

�Dat��� An Introduction to Database Systems� Addison
Wesley� � edition�
����

Bibliography ��

�dJS��� Lurdes Pedro de Jesus and Pedro Sousa� Selection of reverse engineer

ing methods for relational databases� In �rd International Conference

on Software Maintenace and Reengineering� pages
��%
��� Amsterdam�

����

�FS��� Peter A� Flach and Iztok Savnik� Database dependency discovery� A

machine learning approach� AI Communications�
�����
��%
���
����

�Gen� Genex project� http�!!www�ncgr�org!genex!index�html�

�GGXZ�
� Parke Godfrey� Jarek Gryz� Haoping Xu� and Calisto Zuzarte� Exploiting

constraint
like data characterizations in query optimization� In SIGMOD

Record� ���
�

�Hai�
� Jean
Luc Hainaut� Database reverse engineering� In Proceedings of the

��th Conf� on ER Approach� San Mateo �CA��
��
�

�HKPT��� Yk�a Huhtala� Juha K�arkk�ainen� Pasi Porkka� and Hannu Toivonen� Ef

�cient discovery of functional and approximate dependencies using parti

tions� In Proceedings of the Fourteenth International Conference on Data

Engineering� pages ���%��
� IEEE Computer Society�
����

�KA��� A� J� Knobbe and P� W� Adriaans� Discovering foreign key relations in

relational databases� In The Thirteenth European Meeting on Cybernetics

and Systems Research� volume II of Cybernetics and Systems� pages ��
%

����
����

�KM��� Jyrki Kivinen and Heikki Mannila� Approximate dependency inference

from relations� In �th International Conference on Database Theory �

Bibliography ��

ICDT���� volume ��� of Lecture Notes in Computer Science� pages ��%

��� Springer�
����

�KMRS��� M� Kantola� H� Mannila� K�
J� Raiha� and H� Siirtola� Discovering func

tional and inclusion dependencies in relational databases� Journal of In�

telligent Systems� ����
%����
����

�Lab� F� Laburthe� Choco� an object oriented constraint propagation kernel over

�nite domains� http�!!www�choco
constraints�net!index�html�

�LL��� M� Levene and G� Loizou� A Guided Tour of Relational Databases and

Beyond� Springer
Verlag�
����

�LL�
� Mark Levene and George Loizou� Guaranteeing no interaction between

functional dependencies and tree
like inclusion dependencies� Theoretical

Computer Science� ����

������%���� ���
�

�LPL��� St�ephane Lopes� Jean
Marc Petit� and Lot� Lakhal� E�cient discov

ery of functional dependencies and Armstrong relations� In Advances in

Database Technology � EDBT ����
 �th International Conference on Ex�

tending Database Technology� volume
��� of Lecture Notes in Computer

Science� pages ���%���� Springer� �����

�LPT��� S� Lopes� J�
M� Petit� and F� Toumani� Discovery of interesting data

dependencies from a workload of SQL statements� In Principles of Data

Mining and Knowledge Discovery
 Third European Conference� volume

��� of Lecture Notes in Computer Science� Springer�
����

Bibliography ��

�LPT��� St�ephane Lopes� Jean
Marc Petit� and Farouk Toumani� Discovering in

teresting inclusion dependencies� application to logical database tuning�

Information Systems� ���
��
%
�� �����

�LV��� Mark Levene and Millist W� Vincent� Justi�cation for inclusion depen

dency normal form� Knowledge and Data Engineering�
�������
%��
�

�����

�May��� Wolfgang May� Information extraction and integration with Florid� The

Mondial case study� Technical Report
�
� Universit�at Freiburg� In

stitut f�ur Informatik�
���� Available from http�!!www�informatik�uni

freiburg�de!&may!Mondial!�

�MFH��
� Ren�ee J� Miller� Daniel Fisla� Mary Huang� David Kalmuk� Fei Ku�

and Vivian Lee� The Amalgam schema and data integration test suite�

http�!!www�cs�toronto�edu!&miller!amalgam� ���
�

�MHH��� Ren�ee J� Miller� Laura M� Haas� and Mauricio A� Hern�andez� Schema

mapping as query discovery� In Proceedings of ��th International Confer�

ence on Very Large Data Bases 	VLDB
� pages ��%��� Morgan Kaufmann�

�����

�MLP��� Fabien De Marchi� St�ephane Lopes� and Jean
Marc Petit� E�cient algo

rithms for mining inclusion dependencies� In �th International Conference

on Extending Database Technology 	EDBT ����
� volume ���� of Lecture

Notes in Computer Science� pages ���%���� Springer� �����

�MR��� H� Mannila and K�
J� Raiha� Dependency inference� In Proceedings

of the Thirteenth International Conference on Very Large Data Bases

	VLDB���
� pages
��%
��� Morgan Kaufmann�
����

Bibliography ��

�MR��� H� Mannila and K� Raiha� The Design of Relational Databases� Addison

Wesley�
����

�MT��� Heikki Mannila and Hannu Toivonen� Levelwise search and borders of

theories in knowledge discovery� Data Mining and Knowledge Discovery�

������
%����
����

�MTV��� Heikki Mannila� Hannu Toivonen� and A� Inkeri Verkamo� E�cient algo

rithms for discovering association rules� In AAAI Workshop on Knowledge

Discovery in Databases 	KDD���
� pages
�
%
��� Seattle� Washington�

����

�NC�
� Noel Novelli and Rosine Cicchetti� FUN� An e�cient algorithm for min

ing functional and embedded dependencies� In Proceedings of �th Inter�

national Conference on Database Theory � ICDT ����� volume
��� of

Lecture Notes in Computer Science� pages
��%���� Springer� ���
�

�Oce� Ocean Drilling Program� Janus database� http�!!www

odp�tamu�edu!database�

�PT��� Jean
Marc Petit and Farouk Toumani� Discovering inclusion and approxi

mate dependencies in relational databases� In Proc� ��mes Journes Bases

de Donnes Avances� pages ���%����
����

�PTBK��� Jean
Marc Petit� Farouk Toumani� Jean
Francois Boulicaut� and Jacques

Kouloumdjian� Towards the reverse engineering of denormalized relational

databases� In Proceedings of the Twelfth International Conference on Data

Engineering� pages �
�%���� IEEE Computer Society�
����

Bibliography ��

�SZWA��� WM� Shen� W� Zhang� X� Wang� and Y� Arens� Model construction with

key identi�cation� In Proceedings of SPIE Symposium on Data Mining

and Knowledge Discovery� Theory
 Tools
 and Technology� volume ����

of SPIE�
����

