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Abstract
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Kiam Choo
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University of Toronto

����

We consider a feedforward neural network model with hyperparameters controlling groups

of weights� Given some training data� the posterior distribution of the weights and the

hyperparameters can be obtained by alternately updating the weights with hybrid Monte

Carlo and sampling from the hyperparameters using Gibbs sampling� However� this

method becomes slow for networks with large hidden layers� We address this problem

by incorporating the hyperparameters into the hybrid Monte Carlo update� However�

the region of state space under the posterior with large hyperparameters is huge and

has low probability density� while the region with small hyperparameters is very small

and very high density� As hybrid Monte Carlo inherently does not move well between

such regions� we reparameterize the weights to make the two regions more compatible�

only to be hampered by the resulting inability to compute good stepsizes� No de�nite

improvement results from our e�orts� but we diagnose the reasons for that� and suggest

future directions of research�
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Chapter �

Introduction

��� Overview

A feedforward neural network is a nonlinear model that maps an input to an output� It

can be viewed as a nonparametric model in the sense that its parameters cannot easily

be interpreted to provide insight into the problem that it is being used for� Nevertheless�

feedforward neural networks are powerful as with su�cient hidden units they can learn to

approximate any nonlinear mapping arbitrarily closely �Cybenko� ������ Partly because

of this �exibility� they have become widespread tools used by many practitioners in

the sciences and engineering� These practitioners typically use well�established learning

techniques like backpropagation �Rumelhart et al�� ����� or its variants� But despite the

multitude of learning methods already in existence� learning for feedforward networks

remains an area of active research�

A recent approach to feedforward neural net learning is Bayesian learning �Buntine

and Weigend� ����� MacKay� ����� ����� Neal� ����� M�uller and Insua� ������ This new

approach can be viewed as a response to the problem of incorporating prior knowledge

into neural networks� However� the computational problems in Bayesian learning are

complex� and none of the existing techniques are perfect� In the interests of computational

�
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tractability� both the works of MacKay ������ ����� and Buntine and Weigend ������

assume Gaussian approximations to the posterior distribution over network weights�

A more general and �exible approach is to sample from the posterior distribution of

the weights� as has been done by Neal ������ and M�uller and Insua ������� Neal obtains

samples by alternating hybrid Monte Carlo updates of the weights with Gibbs sampling

updates of the hyperparameters� M�uller and Insua also alternately update the weights

and Gibbs�sample the hyperparameters� but in addition� they observe that� given all

weights except for the hidden�to�output ones� the posterior distribution of the latter is

simply Gaussian when the data noise is Gaussian� While the other weights still need

to be updated by a more complicated Metropolis step� this does allow them to sample

directly from the Gaussian distribution of the hidden�to�output weights� However� as

will be described later� both methods are expected to become slow for large networks�

possibly to the point where they become unusable�

This thesis addresses the above ine�ciency for large networks� Speci�cally� it is

concerned with improving on the hybrid Monte Carlo technique used by Neal so that

both parameters and hyperparameters are updated using hybrid Monte Carlo�

��� The Neural Network Learning Problem

The rest of this thesis is about feedforward neural networks only� so we drop the �feed�

forward� for simplicity�

In this section� we de�ne the neural network learning problem that underlies this

thesis�

Given a set of inputs X � fxcgNc

c�� and targets Y � fycgNc

c��� a neural network can be

used to model the relationship between them so that�

f�xc�W � � yc �����

where f���W � is the function computed by the neural network with weights W � This
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modeling is achieved by �training� the weights W using the training data consisting of

the inputs X and the targets Y � Once training is complete� the neural net can be used

to predict targets given previously unseen values of inputs�

Conventionally� the learning process is viewed as an optimization problem where the

weights are learned using some kind of gradient descent method on an error function such

as the following�

E�W � �
NcX
c��

�
f�xc�W �� yc

��
�����

The result of this procedure is a single optimal set of weights Wopt that minimizes

the error� This single set of weights is then used for future predictions from a new input�

The conventionally�trained network prediction is thus�

fC�x� � f�x�Wopt� ���	�

��� Bayesian Approach to Neural Net Learning

The Bayesian approach to neural network learning di�ers fundamentally from the con�

ventional optimization approach in that� rather than obtaining a single �best� set of

weights from the training process� a probability distribution over the weights is obtained

instead�

����� Bayesian Inference

Generally speaking� Bayesian inference is a way by which unknown properties of a system

may be inferred from observations� In the Bayesian inference framework� we model the

observations z as being generated by some model with unobserved parameters �� Specif�

ically� we come up with a likelihood function p�zj��� the probability of the observable
state z given a particular setting for the parameter �� Next� we decide on p���� the prior

probability distribution over parameters ��
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With these two functions in hand� we use Bayes� rule to infer the posterior probability

that the parameters have the value � when we observe the state z�

p��jz� � p���p�zj��
p�z�

���
�

Bayesian learning can be applied to neural networks in the following way� We model

the targets as the neural network output f�x�W � plus some noise� which de�nes the

likelihood p�Y jW�X�� and we assume some form for the prior distribution of the weights

p�W �� The posterior distribution of the weights is then�

p�W jX�Y � � p�W �p�Y jW�X�

p�Y jX� �����

where we have set p�W jX� � P �W � since the prior distribution of the weights does not

depend on the inputs� p�W jX�Y � in Eqn� ��� is the probability distribution over weights
that we infer in the Bayesian framework�

����� A Simple Example

As a simple example� assuming that the noise in the output of each unit is Gaussian with

�xed standard deviation �� we get for a net with Ny outputs�

p�Y jW�X� �

�
�p
���

�NcNy

exp

�
� �

���

NcX
c��

��f�xc�W �� yc
���� �����

And assuming a simple prior where all the weights W � fwigNw

i�� have Gaussian

distribution of �xed inverse variance � �

p�W � �

�r
�

��

�Nw

exp

�
��
�

NwX
i��

w�
i

�
���
�

This gives the posterior distribution for W �

p�W jX�Y � � p�W �p�Y jW�X�

� exp

�
��
�

NwX
i��

w�
i �

�

���

NcX
c��

��f�xc�W �� yc
���� �����
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Here� the symbol � denotes proportionality� We have dropped the normalizing con�

stant ��p�Y jX� as well as factors not dependent on the weights� This is because we are
considering the posterior distribution over the weights only in this simple model� with �

and � �xed�

����� Making Predictions

The prediction of the net trained using Bayesian inference is obtained as the expected

output over all possible weight settings� weighted by their posterior probabilities�

fB�x� � E�f�x�W ��W jX�Y �

Z
f�x�W �p�W jX�Y �dW �����

Compared to Eqn� ��	� Bayesian prediction is clearly more complicated�

����� Determining the Hyperparameters From the Data

The inverse variance of the weights � is called a hyperparameter because it is a parameter

that controls the prior distribution of the parameters wi� In practice� it is reasonable to

let the hyperparameters be determined from the data� For instance� the input�to�hidden

weights for one training set might need to be larger than for another training set because

its outputs vary more rapidly� Evidently� it is possible to infer the hyperparameters from

the training data�

But we infer the hyperparameters not just because it is possible� but because it is

desirable as well� This is because it is di�cult for a human operator to guess a good setting

of the hyperparameters� but it is easier to guess a prior distribution for hyperparameters�

e�g�� in terms of its mean and somemeasure of its spread� Moreover� allowing the precision

� to vary in Eqn� ��
 couples the weights in their prior distribution and allows for a richer

prior� whereas all the weights would be independent in their prior if � were �xed� Details

of the incorporation of the hyperparameters into the sampling procedure will be given in

later chapters�
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Once we have the posterior distribution of the weights and the hyperparameters� the

network has been �trained�� Predictions from the net now involve the joint posterior

distribution of the weights and the hyperparameters ��

fB�x� � E�f�x�W����W��jX�Y �

Z
f�x�W �p�W��jX�Y �dWd� ������

The above integral usually cannot be analytically obtained for neural network models�

Note that �� the variance of the data� is often also regarded as a hyperparameter

because the role it plays in controlling the network error is similar to that played by

other hyperparameters in controlling their respective weights�

��� Motivation

The practicality of the Bayesian framework hinges on the existence of computationally

e�cient ways to evaluate or approximate Eqn� ����� The main problem is that the

posterior distribution p�W��jX�Y � is often such that the integral in Eqn� ���� cannot
be performed analytically�

In the interests of computational feasibility� Buntine and Weigend ������ and MacKay

������ ����� approximate the posterior distribution of the weights and hyperparameters

as a Gaussian distribution� Unfortunately� it usually cannot be seen in advance from the

training data if a Gaussian distribution is a reasonable approximation to the posterior

distribution� For instance� for a small network that has just enough hidden units to model

some given data� we would expect that� ignoring multiple modes due to units swapping

roles� the posterior distribution is peaked at a single mode because each unit has a well�

constrained role to play in the mapping� In such a case� one might reasonably expect the

posterior to be approximately Gaussian� However� when there are more hidden units�

units are no longer so constrained� and the posterior distribution will be broader in ways

that do not necessarily retain a Gaussian appearance�
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Neal�s ������ and M�uller and Insua�s ������ approach to the problem is to sample from

the posterior distribution using Markov chain Monte Carlo �MCMC� techniques� MCMC

techniques do not approximate the posterior distribution as a Gaussian� but instead

sample faithfully from its true form� With n samples from the posterior distribution� we

can obtain the expected output of the net as�

fB�x� � �

n

nX
i��

f�x�Wi��i� ������

In order for this method to be e�ective� each sample �Wi��i� must be as independent

of the previous sample as possible� A common problem of MCMC techniques is that

samples can be highly correlated� in which case even though they are drawn from the

correct distribution� they sample the distribution very slowly� and a huge number of

samples might be needed for reliable estimates� In severe cases� the method becomes

infeasible for practical use� The MCMC technique used by Neal faces this problem when

the number of hidden units becomes large� His method alternates between using hybrid

Monte Carlo to update the network parameters� and Gibbs sampling to sample the

hyperparameters� Unfortunately� it is this alternation between updating the parameters

and the hyperparameters that causes high correlations from one sample to the next as

the number of hidden units becomes large�

The root of this ine�ciency is that� during each hybrid Monte Carlo process that

yields one sample of the weights� the hyperparameters are held �xed� This would not

be a problem if� to obtain the next sample of the weights� the hyperparameters can be

shifted to an uncorrelated value� However� because the hyperparameters are updated

using Gibbs sampling given the current values of the weights� they are �pinned� and

unable to move much� The larger the number of hidden units� the greater the pinning

e�ect is�

M�uller and Insua�s method su�ers from the same ine�ciency as it also alternates

Gibbs sampling of the hyperparameters with Markov chain updates of the network pa�

rameters�
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This problem is the motivation for this thesis� In this thesis� we propose and inves�

tigate a modi�cation to the hybrid Monte Carlo technique used by Neal� Speci�cally�

rather than updating the weights by hybrid Monte Carlo and the hyperparameters by

Gibbs sampling� we update both the weights and the hyperparameters using hybrid

Monte Carlo� The idea is that� because both the weights and the hyperparameters are

now changing at the same time� we no longer have the pinning e�ect� and hybrid Monte

Carlo should then be able to produce samples that move much more e�ciently through

the posterior distribution�

Of course one might ask why we would want to use large hidden layers in the �rst

place� There are several reasons for this� Firstly� since a neural network is a nonpara�

metric model� it makes sense when modelling some data to use a lot of hidden units in

order to maximize the network�s power of representation� That is� we want the function

computed by the neural network to not be constrained by there being too few units� and

be determined instead by the data� Secondly� small numbers of hidden units often leads

to local maxima in the posterior distribution of the weights because the few available

hidden units can get trapped into representing suboptimal features in the data� leaving

no spare �unused� units to seek out the important features� Using a larger hidden layer

tends to connect the multiple modes into ridges and thus improves mobility� Finally� in

his book� Neal ������ has shown that the prior distribution of a neural network becomes

tractable for in�nite�sized hidden layers� So� using many hidden units allows for a more

precise speci�cation of a neural network�s prior distribution� Incidentally� over�tting is

not a problem in the �rst justi�cation given above because Neal�s results show how to

assign appropriate priors for increasing network size�

This thesis is organized as follows� As an e�ort to make this a self�contained work�

Chapter � lays down the background material on Markov chains and the hybrid Monte

Carlo method that is necessary and hopefully su�cient to understand the rest of what

follows� Chapter 	 describes the original method of Neal� Chapter 
 presents the new
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method that is the subject of this thesis� Results of the investigations of the new method

are presented in Chapter �� followed by the discussions and conclusions in the �nal

chapter�
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The Hybrid Monte Carlo Method

In this chapter� we introduce the hybrid Monte Carlo method� which is the main method

by which we sample from the posterior distribution of a neural network�

��� Background on Markov chain Monte Carlo Sam�

pling

In this section� we present some necessary background on Markov chains at a level of

technical detail su�cient to explain the rest of this work� More detailed presentations

may be found elsewhere� such as Feller�s ������ book�

De�nition � �Markov chain
 A Markov chain is a series of random variables X�� X��

X�� ���� etc�� such that�

P �XijXi���Xi��� ����X�� � P �XijXi��� �����

That is� given Xi��� Xi is independent of all �earlier� X�s�

A Markov chain is de�ned by the state space S in which the Xi�s live� the distribution

over the initial state P �X��� and the transition probability function P �XijXi����

��
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For us� the utility of Markov chains lies in the fact that� under the right conditions�

they converge to some probability distribution regardless of starting state� In other

words� independent of starting state� in the limit of large n� Xn will become a sample

from a particular distribution Q�x�� This allows us to obtain samples from posterior

distributions that arise in probabilistic inference�

Below� we present a theorem obtained from Rosenthal ������ that tells us the con�

ditions under which a Markov chain converges to a distribution� In this presentation�

probability density functions will be used in two ways� with a state as an argument� or

with a set as an argument� Thus� p�x� will refer to the probability density at x� while

p�A� will mean the total probability mass in the set A� First� we need the following

de�nitions� Let S be the state space of the Markov chain�

De�nition � �Multitransition probability
 For x � S and A � S� we de�ne the

multitransition probability T n�x�A� as the probability of ending up in the set A after n

transitions according to the Markov transition probabilities given that we started at state

x� T n�x�A� is really P �Xn � AjX� � x�� For one transition� we also write T �x�A�

rather than T ��x�A��

De�nition � �Invariant distribution
 ��x� is an invariant distribution of a Markov

chain with transitions T �x�A� if� for all sets A � S�

��A� �

Z
��dy�T �y�A� �����

where dy is a set of in�nitesimal volume at state y� We also say that the Markov chain

leaves ��x� invariant�

Note that a Markov chain may not have an invariant distribution� and if it has one�

it may not be unique�
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De�nition � �Total variation distance
 The total variation distance between two

probability distributions p and q on S is given by�

jp� qj � sup
A�S

jp�A�� q�A�j ���	�

Suppose we start a Markov chain from state x � S� Then� depending on the history

of transitions it takes� it will take varying numbers of steps to enter the set A � S of

nonzero volume� if it does at all� Let �A be the history�dependent random variable that

denotes the �rst time the Markov chain enters A� i�e�� �A � inffn � ��Xn � Ag� Note
that �A could equal in�nity� Then� we have the following important de�nitions about the

mixing properties of a Markov chain�

De�nition � �Irreducibility
 A Markov chain is irreducible if for any set A � S of

nonzero volume� Px��A 	 	� 
 � for all starting points x � S� That is� any starting

point x has some probability of going to any nonzero volume within a �nite number of

steps�

De�nition 	 �Aperiodicity
 A Markov chain is aperiodic if there does not exist a

partition of the state space S � S�
S
S�
S
���
S
Sm for some m � � such that T �x� Si��� �

� for all x � Si with i � � to m� �� and T �x� S�� � � for all x � Sm�

If a Markov chain has an invariant distribution� and it is both irreducible and ape�

riodic� then it converges to that invariant distribution� This theorem� presented below

without proof� is a slightly modi�ed version of the one given by Rosenthal ������� who

also proves it�

Theorem � �Markov Chain Convergence
 Let T �x�A� be the transition probabilities

for an irreducible� aperiodic Markov chain having invariant distribution ��x� on a state

space S� Then� for all x � S such that ��x� 
� ��

lim
n��

jT n�x� ��� ����j � � ���
�
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That is� as the number of transitions goes to in�nity� the total variation distance

between the invariant distribution and the distribution of the Markov chain started from

any state x such that ��x� 
� � goes to 	�

Using the above theorem� we can construct Markov chains that converge to a desired

distribution by ensuring that it is aperiodic� irreducible and has the target distribution as

an invariant distribution� However� while the above theorem guarantees convergence in

theory� it does not say anything about the speed with which convergence is achieved� This

is important as the initial portion of a Markov chain is typically not representative of the

invariant distribution� and needs to be discarded in order not to bias the distribution�

Moreover� a badly�constructed Markov chain can converge far too slowly to be useful

in practice� Nevertheless� having one that converges to the correct distribution� and

knowing that it does� is a good start�

A Markov chain that is constructed to generate samples from some target distribution

is known in the literature as a Markov chain Monte Carlo �MCMC� method� An example

of an MCMC method that is commonly used for multivariate distributions is Gibbs

sampling� Gibbs sampling consists of update steps where each variable is updated in

turn� During each update� a variable is replaced by a sample from its target distribution

conditional on all the other variables having their current values� Note that the new

value of the variable is chosen without reference to the old value it replaces� This leaves

the desired distribution invariant because the resulting multivariate state is an outcome

drawn according to the target distribution� Furthermore� because all values of a variable

have non�zero probability of being generated� the method is irreducible and aperiodic so

long as all the variables get updated at some point�

Although it is conceptually simple� Gibbs sampling requires that one is able to sample

from the conditional distribution of each variable� For complicated distributions like the

neural network posteriors in this thesis� this is usually not possible� Other schemes exist

that do not have this requirement� Below� we present the Metropolis algorithm with
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simple proposals� which requires only that we be able to evaluate the target probability

density at a given state� but whose weaknesses will motivate the more sophisticated

hybrid Monte Carlo method used in this thesis�

��� The Metropolis Algorithm with Simple Propos�

als

The Metropolis algorithm �Metropolis et al�� ���	� is a well�known algorithm for con�

structing a Markov chain with a desired invariant distribution�

Let ��X� be the desired invariant distribution� Suppose our Markov chain currently

has stateXi� The Metropolis algorithm amounts to the following Markov chain transition

rule� First� propose a transition to a new state X �
i from the current state Xi� where the

proposal probability density M�Xi�X
�
i� must be symmetric� that is�

M�Xi�X
�
i� �M�X �

i �Xi� �����

M�Xi�X
�
i� is the probability density of going to X

�
i given that we were originally at Xi�

Next� accept the proposed state as the next Markov chain state Xi�� with the following

probability�

P �accept� � min

�
��
��X �

i�

��Xi�

�
�����

If we reject� the state Xi�� is set to be the previous state Xi�

One can show that the Metropolis algorithm guarantees that the target distribution

��X� is an invariant distribution of the Markov chain� However� it does not guarantee

that the Markov chain is irreducible and aperiodic�

Let us consider the performance of the Metropolis algorithm in sampling from some

target distribution when we use a simple Gaussian proposal with a �xed covariance  
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centred on the current point Xi�

P �X �
i� �

�

���j j�d�� exp
�
��
�
�X �

i �Xi�
T ���X �

i �Xi�

�
���
�

where d is the dimensionality of the state space� This example will illuminate the key

issues in sampling a distribution with the Metropolis algorithm�

If the variance of the Gaussian proposals are too large compared with the width of the

target distribution� the Metropolis algorithm almost always rejects� as proposals usually

end up in regions of low target probability� Clearly� this may lead to a slow exploration of

the state space� and a proposal with a smaller variance and higher acceptance rate may be

better� Indeed� with the exception of special cases like two�dimensional Gaussian target

distributions� fairly high acceptance rates �� ���� are better than very low acceptance

rates� But in order to keep the acceptance rate high� the standard deviation of the

proposal distribution must be of a size comparable to the distribution�s thinnest cross

section� and so the steps taken must be very small compared to the overall distribution

if the distribution is very thin in one direction� but very long in others�

Thus� the �rst problem is that the presence of a long� thin region in a distribution

constrains such a scheme to take steps which may be very small compared to the size

of the overall distribution� This by itself is not so bad if the direction of the next

step is somehow correlated with that of the �rst� However� it is not� and that is the

second problem� the next step is chosen independently of the �rst� and because it has

the possibility of doubling back on the �rst step� a random walk results� This e�ect is

illustrated in Fig� ����

We expect that the posterior distribution of a neural network�s weights is complicated

under most circumstances� and might potentially have long� narrow regions� Thus� to

sample from the posterior distribution of a neural network using the Metropolis algo�

rithm with Gaussian proposals� we would need to use proposal distributions with small

variances� This leads to ine�cient random walks as described above�

A method that is more appropriate for the complicated posteriors seen in neural
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Figure ���� Illustration of random walk when using the Metropolis algorithm with sim�

ple Gaussian proposals to explore a two dimensional Gaussian distribution� Here� the

standard deviation of the Gaussian proposals was ����� and of the ��� samples obtained�

there were �
 rejections� �Large steps are actually more e�cient for the special case of

a two�dimensional Gaussian target distribution� this �gure serves as an illustration of

random walks only��
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network models is the hybrid Monte Carlo algorithm� which addresses the random walk

problem by having auxiliary momentum variables that allow it to keep going in the

same direction for many steps� This means that� in the case of hybrid Monte Carlo� the

Metropolis rejection test is applied only after many steps to give it a chance at travelling

a long distance�

��� The Hybrid Monte Carlo Method

The hybrid Monte Carlo method� �rst used in physics by Duane et al� ����
�� can be

thought of as a Metropolis algorithm with a sophisticated proposal� In this section�

we describe how the hybrid Monte Carlo method works� Neal ����	� ����� has written

relevant expositions of this technique� but we include it here for completeness� We will

use the symbols C and C � to denote normalizing constants�

In hybrid Monte Carlo� we associate a physical system with the distribution that

we want to sample from� In essence� we simulate the movement of a particle moving

in a potential energy well equal to the negative log of the probability density for the

distribution that we want to sample from� Each iteration consists of randomizing the

velocity of this particle� simulating its motion for some time� and then obtaining its

position� which becomes a new sample�

Suppose that we wish to sample from the distribution P �q�� where q � �d� �d is

then the state space of our associated physical system� and q is a state of the system�

We augment each state variable qi with a momentum variable pi� and we de�ne the

Hamiltonian�

H�q�p� � E�q� !K�p� �����

where the potential energy E�q� is obtained from the desired distribution as�

E�q� � � logP �q�� logZ �����
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for any choice of Z� and the kinetic energyK�p� is de�ned with the set of masses fmigdi���

K�p� �

dX
i��

p�i
�mi

������

HybridMonte Carlo allows us to set up a Markov chain that converges to C � exp��E�q��
K�p�� as its unique invariant distribution� By ignoring the values of p� we obtain samples

of q drawn from the target distribution P �q�� since this is the marginal distribution�

In the hybrid Monte Carlo method� we simulate the time evolution of the physical

system with the above Hamiltonian using Hamiltonian dynamics� which is given by�

dp

dt
� �rE�q�

dq

dt
�

p

mi

������

Let us assume for now that we have the ability to do the simulation with perfect

accuracy� Since Hamiltonian dynamics leaves H invariant and keeps phase space volume

constant �see Appendix A�� simulating the system over any �xed length of time yields

a new pair �q�p� that leaves any distribution that is a function of H invariant� In

particular� it leaves C � exp��H�q�p�� � C � exp��E�q��K�p�� invariant�

However� a Markov chain that consists of only this update is not irreducible� as all

points generated from a starting point never leave a hypershell of constant H� thus vio�

lating the irreducibility requirement for Thm �� To rectify this situation� we update the

momentum variables in such a way that the Markov chain has some chance of reaching

all the other values of H after some number of iterations� Speci�cally� before the simu�

lation of Hamiltonian dynamics� we replace all the momentum variables by new values

drawn from the distribution C exp��K�p��� Again� this update leaves the distribution
C � exp��E�q��K�p�� invariant since it draws p from the correct conditional distribution�
which happens to be independent of q�

So the joint update consisting of the momentum update followed by the Hamiltonian

dynamics simulation is a Markov chain that leaves C � exp��E�q��K�p�� invariant� If

we can construct such a Markov chain and prove that it is irreducible and aperiodic�
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then we have a Markov chain that converges to the desired distribution C � exp��E�q��
K�p��� and we can obtain the desired samples by ignoring p� Moreover� if� during the

Hamiltonian simulation� we follow the dynamical trajectory of a state for a long time� we

might obtain a state that is much less correlated with the original state than a Metropolis

algorithm with simple proposals�

The method presented thus far is not the actual hybrid Monte Carlo algorithm� but

it contains all the essential ideas� What is di�erent about hybrid Monte Carlo is that� in

reality� we are unable to simulate Hamiltonian dynamics perfectly� Owing to the fact that

neural network models are highly complex and so lead to non�integrable Hamiltonians�

we have to settle for an approximate discretized simulation of Hamiltonian dynamics�

followed by a Metropolis rejection test that ensures that C � exp��H� is kept invariant�
As before� the update consisting of momentum resampling followed by the simulation

keeps the desired distribution C � exp��H� invariant� The conditions under which this
Markov chain is irreducible and aperiodic depends on its details� and we delay discussing

this until Section ��	�	�

Finally� we note that the discretized simulation is now also a Metropolis proposal�

with the probability of rejection increasing as the simulation error as measured by the

rise inH increases� When we do the simulation well� we keepH almost invariant over long

trajectories� so it is in our interests to do the simulation as well as we can in order to have

a high acceptance rate� even though simulation errors are corrected by the Metropolis

rejection test to give the exact desired distribution�

����� Leapfrog Proposals

Because the discretized simulation used as a Metropolis proposal is deterministic� the

standard reversibility condition for Metropolis proposals �Eqn� ���� does not apply�

Instead� the equivalent reversibility conditions for deterministic proposals are that the

mapping that is the Metropolis proposal is its own inverse� and that it has Jacobian ��
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That is�

Theorem � �Deterministic Proposals for Metropolis Algorithm
 If Y �M�X�

is a deterministic mapping that satis�es the two conditions�

�����Y�X
����� � 
volume conservation� ������

M�M�X�� � X 
reversibility� ����	�

then by accepting the update X � M�X� with probability min��� ��M�X�����X�� and

rejecting it otherwise� the distribution ��X� is left invariant�

We give the proof of this in Appendix B�

To satisfy the two conditions of volume conservation and reversibility� we use a deter�

ministic proposal composed of �leapfrog updates� to simulate the Hamiltonian dynamics

by performing a trajectory of l steps each lasting � time� At the end of each trajectory�

we negate the momentum p� Each leapfrog update consists of�

pi�t!
�

�
� � pi�t�� �

�

�E

�qi
�q�t�� for each i � ���d

qi�t! �� � qi�t� ! �
pi�t! ����

mi

for each i � ���d

pi�t! �� � pi�t!
�

�
�� �

�

�E

�qi
�q�t! ��� for each i � ���d

����
�

Note that� in the above scheme� all the components are updated before moving on

to the next line� For instance� all the components of pi�t!
�
�� are calculated before the

update for q is computed�

To see that the leapfrog update satis�es the volume conservation condition� we note

that the change in each component of each state variable does not depend on itself� and

so each component�s update amounts to a shear� which is a volume�preserving trans�

formation� and which therefore has Jacobian �� This is discussed in greater detail in

Appendix C�
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Also� it is easy to check that the negation of the momentum at the end of a leapfrog

trajectory of multiple leapfrog steps means that� if a trajectory takes us from point A to

point B� then starting at B takes us back to A� Thus� leapfrog trajectories also satisfy

the reversibility condition�

We summarize the algorithm for the hybrid Monte Carlo in Algorithm � and Algo�

rithm �� Note that the momentum negation is not implemented as the momentum is

replaced by resampling before the next leapfrog trajectory anyways�

The algorithm discussed thus far avoids random walks by allowing long trajectory

lengths� However� the actual algorithm implemented by Neal ������ has an additional

optimization of the stepsizes that estimates the local second derivative of the potential

energy in order to take steps that are appropriately scaled in the various dimension� This

is discussed next�

����� Stepsize Selection

In using the hybrid Monte Carlo method� the question of what values to choose for the

stepsize � and for the masses mi naturally arises� As we shall see� it turns out that

choosing the masses is equivalent to choosing di�erent stepsizes in di�erent dimensions

of the state variable� and the careful choice of these stepsizes is necessary for hybrid

Monte Carlo to perform well�

It is clear from Eqn� ���
 that� since � is the timestep of a discretized simulation

of Hamiltonian dynamics� large values of � cause an inaccurate simulation so that H

can wander far from its initial value� In particular� such an inaccurate simulation will

typically land the proposed state in a region of low target probability� This is analogous to

using a Gaussian proposal with too large a variance in the Metropolis algorithm example

of Section ���� and so having to reject frequently� Thus� keeping rejection rates low

requires careful selection of � that is low enough� and yet not so low that we explore the

distribution laboriously�
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Algorithm � HybridMonteCarlo�nsamples� l� ��qinit�

q� � qinit

for each component j do

p�j � N�mean � �� variance � mj�

end for

for i � � to nsamples do

for each component j do

p�j � N�mean � �� variance � mj�

end for

pi � p�

qi � qi��

for j � � to l do

�qi�pi�� LeapfrogUpdate�qi�pi� ��

end for

if U ��� �� 
 min��� exp��H�qi�pi� !H�qi���pi����� then

qi � qi��

pi � p�

end if

end for

Return fqi�pignsamples
i��
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Algorithm � LeapfrogUpdate�q�p� ��

for each component i do

pi � pi � ����� 
 ��E��qi��q�

end for

for each component i do

qi � qi ! ���mi�
 pi

end for

for each component i do

pi � pi � ����� 
 ��E��qi��q�

end for

Return q�p

As described by Neal ������� for a toy quadratic Hamiltonian of the form�

H �
q�

���
!
p�

�
������

H diverges under the leapfrog discretization if a stepsize � 
 �� is used� whereas H stays

bounded if � 	 ��� To transfer this result to a general non�quadratic H�q�p�� we note

that� near equilibrium� samples are usually obtained near local minima of E�q�� where it

can be approximated by its Taylor expansion to second order� Thus� we expect a stepsize

� � ���E��q������ to be appropriate near equilibrium�
In the case where the state space is multi�dimensional but the Taylor expansion to

second order has no correlations between its dimensions� we could set�

� � min
i

�
��E

�q�i

�� �

�

������

in order to prevent the leapfrog simulation from diverging� But if the Taylor expansion

has correlations between its dimensions� the above might not be small enough� as the

stability of the leapfrog updates is constrained by the narrowest cross�section� which

might not be axis�aligned at all� In general� the stepsize � has to be adjusted downwards
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by di�erent amounts depending on the shape and orientation of the energy function� To

take this into account� we introduce an operator�de�ned tuning parameter �� which we

call the stepsize adjustment factor� and which controls the stepsizes as follows�

� � � 
min
i

�
��E

�q�i

�� �

�

����
�

However� choosing the same stepsize to use in all directions may cause slow� random

walk�like exploration in those directions unless we use very long trajectories� which may

be unnecessarily computationally intensive� The underlying problem is that of making a

move that is compatible with the local length scales of the distribution� It is the same

problem that we encountered earlier in considering the Metropolis algorithm with simple

proposals� but under a slightly di�erent guise�

Clearly� it is preferable to use di�erent and appropriate stepsizes for each direction�

the values of which we choose by looking at the local length scales of the distribution�

Ideally� we would like to set the stepsize for direction i� �i� based on the width of the

potential energy bowl in the direction qi�

�i � �

�
��E

�q�i

�� �

�

������

However� one may wonder if the leapfrog update with di�erent stepsizes for di�erent

components still simulates Hamiltonian dynamics� The answer is that the masses are

the extra degrees of freedom that enable us to implement di�erent stepsizes in di�erent

directions and still keep H approximately constant� To see this� we �rst note that� if we

rewrite the leapfrog equations in terms of "pi � pi�
p
mi� they become�

"pi�t!
�

�
� � "pi�t�� �

�

�p
mi

�E

�qi
�q�t��

qi�t! �� � qi�t� !
�p
mi
"pi�t! ����

"pi�t! �� � "pi�t!
�

�
�� �

�

�p
mi

�E

�qi
�q�t! ���

������
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We set the stepsizes �i � ��
p
mi� and rewrite the leapfrog updates as�

"pi�t!
�

�
� � "pi�t�� �i

�

�E

�qi
�q�t��

qi�t! �� � qi�t� ! �i"pi�t! ����

"pi�t! �� � "pi�t!
�

�
�� �i

�

�E

�qi
�q�t! ���

������

These new updates are exactly equivalent to the original ones in Eqns� ���
� except

we work in terms of rescaled momenta� Should we choose to� we can always recover the

old momenta after an update� But rather than using the original leapfrog updates� we

can work in terms of "pi using the new mass�absorbed updates� We note the following

important facts about one mass�absorbed update of q and p using Eqns� �����

Fact � Each mass�absorbed leapfrog update keeps H�q� "p� � E�q� !
Pd

i�� "p
�
i �� approxi�

mately invariant� This is because it keeps H�q�p� � E�q� !
Pd

i�� p
�
i ��mi approximately

invariant� and the two H�s are equal�

Fact � Each mass�absorbed leapfrog update conserves phase space volume in the state

space �q� "p� since "pi is related to pi merely by the scale factor
p
mi� This holds if the �i�s

are set independently of the current value of q or p�

Fact � Each mass�absorbed leapfrog update is reversible so long as the �i�s are set without

using the current values of q and p� since these are di
erent at the beginning and at the

end of each step�

In view of these three facts� we have the following revised algorithm that stores "p

instead of p� Before the leapfrog updates� we estimate the stepsize �i�

�i � �

�
��E

�q�i

�� �

�

������

independently of the current state using some problem�dependent heuristic� The leapfrog

trajectory now consists of mass�absorbed updates� at the end of which we apply the

Metropolis rejection test using the Hamiltonian H�q� "p� � E�q� !
Pd

i�� "p
�
i ��� Since the
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proposals in the �q� "p� state space are reversible and conserve phase space volume� the

Metropolis rejection test can be used to produce an update that keeps exp��H�q� "p��
invariant� Thus� we have a Markov chain that leaves exp��E�q��Pd

i�� "p
�
i ��� invariant�

We summarize hybrid Monte Carlo with stepsize selection in Algorithm 	� where the

function Stepsizes�� computes the appropriate stepsize to use for each component� We

call the function LeapfrogUpdate�� with a vector for its stepsize parameter unlike the

scalar in Algorithm �� but what we mean here should be clear� The setting of the stepsizes

depends on the exact problem at hand� For a neural network model� Neal ������ sets

them based on the current values of the hyperparameters� These do not change over

the course of a leapfrog trajectory in the scheme presented in his book� so that leapfrog

trajectories are reversible�

����� Convergence of Hybrid Monte Carlo

In this section� we discuss the conditions under which this Markov chain algorithm con�

verges to a unique invariant distribution�

Thm� � tells us that� in order for hybrid Monte Carlo to converge to a unique

distribution� it must be both irreducible and aperiodic� Whether or not this is true

depends on the details of the Hamiltonian� the leapfrog trajectory length� and the stepsize

adjustment factor� Although we have no formal proof� we have strong reasons to believe

that both conditions are satis�ed in most neural network applications� whose Hamiltonian

dynamics are highly nonlinear and whose Hamiltonians have values that are �nite for

�nite values of the state parameters�

Let us �rst discuss peridocity� For most problems involving complex nonlinear Hamil�

tonians such as the ones we encounter in neural network applications� we expect that

periodicity is unlikely and� if it should appear� is pathological rather than typical� An

example of such an unlikely periodicity is a case where the Hamiltonian dynamics takes

us exactly halfway or completely around a hypershell of constant H� and this periodicity
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Algorithm � HybridMonteCarloWithStepsizes�nsamples� l� ��qinit�

q� � qinit

p� � N�mean � �� variance � I�

for i � � to nsamples do

p� � N�mean � �� variance � I�

�� � 
 Stepsizes��

pi � p�

qi � qi��

for j � � to l do

�qi�pi�� LeapfrogUpdate�qi�pi� ��

end for

if U ��� �� 
 min��� exp��H�qi�pi� !H�qi���pi����� then

qi � qi��

pi � p�

end if

end for

Return fqi�pignsamples
i��
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persists in hypershells of all values of H so that momentum resampling does not avail

us of an escape from periodicity� Such a situation appears very unlikely for the highly

nonlinear neural network Hamiltonians that we use� so we expect that we will probably

always have aperiodicity in practice� Still� if one wishes to be on the safe side� one can

vary the stepsize adjustment factors randomly over a small range� and that should re�

move any periodicities �Mackenzie� ������ This modi�cation was not implemented in our

version of the algorithm�

Irreducibility depends on the exact shape of the potential energy surface� Let us

assume for now that our hybrid Monte Carlo algorithm is able to simulate Hamiltonian

dynamics perfectly� Then it seems intuitively clear that� so long as the potential energy

does not become in�nity for �nite values of q� hybrid Monte Carlo should be irreducible�

In particular� while moving around in a local minimum� it always has some probability

of gaining a su�ciently large kinetic energy from momentum replacement to leave it and

visit other parts of state space� This can only be prevented if that local minimum is

bounded by walls of in�nite potential energy� And since our neural network Hamiltonian

is always �nite for �nite values of q� we expect that we will always have irreducibility�

However� hybrid Monte Carlo really only simulates Hamiltonian dynamics approximately�

so it is conceivable that a �nite potential well could be a trap like an in�nite one� Never�

theless� the fact that hybrid Monte Carlo does simulate Hamiltonian dynamics is reason

to believe that the above argument for irreducibility should usually apply�
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Hyperparameter Updates Using

Gibbs Sampling

��� Neural Network Architecture

In this thesis� we concern ourselves with a neural network with one hidden layer only�

The techniques described here can readily be extended to networks with more hidden

layers�

The neural network model used here will have Nx input units� Nh hidden units and

Ny output units� The parameters of the neural network are referred to collectively as 
�

As shown in Fig� 	��� they are�

Input�to�hidden weights U � fuigNu

i��

Hidden�to�output weights V � fvigNv

i��

Hidden biases A � faigNa

i��

Output biases B � fbigNb

i��

where Nu � NxNh� Na � Nh� Nv � NhNy and Nb � Ny�

We will sometimes use the alternative notation�

��
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Nx input units

Nh hidden units

Ny output units

Figure 	��� Neural network architecture used in this work

Input�to�hidden weight from unit i to unit j Uij

Hidden�to�output weight from unit j to unit k Vjk

Bias on hidden unit j Aj

Bias on output unit k Bk

In this neural network� we use the tanh��� nonlinearity� and it occurs only at the single
hidden layer� Thus� for input vector fxigNx

i�� the j�th hidden unit output is�

hj � tanh

� NxX
i��

Uijxi !Aj

�
�	���

while the output at unit k has no nonlinearity�

fk �

NhX
j��

Vjkhj !Bk �	���

��� Neural Network Model of the Data

The neural network model of the data is as follows� Let � be the error in the output of

the neural network for training input x and target y�

� � f�x� 
�� y �	�	�
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We assume that each component of � has precision �or inverse variance� ��� Then�

given an input case x� the parameters of the network 
� and ��� the probability of ob�

serving the target y is�

P �yj
� ���x� �
�
��
��

�Ny��

exp

�
���
�
jf�x� 
�� yj�

�
�	�
�

The prior distributions of the four groups of parameters are normal with means � and

precisions ��� The asterisk indicates the corresponding group of network parameters� and

may be u� v� a or b� For instance� for the input�to�hidden weights U �

P �U j�u� �
�
�u
��

�Nu��

exp

�
��u
�

NuX
i��

u�i

�
�	���

The prior distribution of the parameters 
 is simply the joint distribution�

P �
j�� � P �U j�u�P �V j�v�P �Aj�a�P �Bj�b� �	���

where � denotes f��� �u� �v� �a� �bg� � is the set of hyperparameters which control the prior
distribution of each group of parameters� These prior distributions keep the network

parameters small� and amount to a principled formulation of the weight decay terms

found in the neural network training literature �see Bishop� ������

Rather than �xing the hyperparameters� we allow them to vary also� and we let them

each have gamma distributions� For instance� for �u�

P ��u� �
��u���u��u��

#��u���
��u����u exp���u�u���u� �	�
�

which is a gamma distribution with mean �u and shape parameter �u for each �u� The

prior distribution of the hyperparameters P ��� is simply the joint distribution�

P ��� � P ����P ��u�P ��v�P ��a�P ��b� �	���

In this work� �� and �� are �xed by hand�
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��� Posterior Distributions of the Parameters and

the Hyperparameters

We can infer the posterior distributions for the parameters 
 � fU� V�A�Bg and the
hyperparameters � � f��� �u� �v� �a� �bg when the training data is observed� In the Monte
Carlo approach� we do this by obtaining samples from the distribution P �
� �jx� y�� where
x � fxcgNc

c�� and y � fycgNc

c�� are the training data�

Neal ������ samples from P �
� �jx� y� by obtaining a series of Markov chain samples
f
i� �igNs

i�� where �i � P ��j
 � 
i��� x� y� is obtained by Gibbs sampling� and 
i is obtained

from 
i�� as a hybrid Monte Carlo update that leaves the distribution P �
j� � �i� x� y�

invariant� During the �rst iteration� �� is set to some moderate values� We discuss the

convergence properties of this Markov chain in Section 	�
���

In the remainder of this section� we give the distributions P �
j�� x� y� and P ��j
� x� y��
which are required for the above sampling scheme�

Using Bayes� Rule� we obtain the posterior distribution for 
 as�

P �
j�� x� y� � P �yj
� �� x�P �
j�� x�
P �yj��

� P �yj
� ��� x�P �
j��

�
� NcY
c��

P �ycj
� ���xc�
�
P �U j�u�P �V j�v�P �Aj�a�P �Bj�b�

�	���

The reader is referred to Eqns� 	�
 and 	�� for the full expansion of the above expres�

sion�

The posterior distribution for �� P ��j
� x� y�� is the probability of the hyperparameters
conditioned on 
� x and y�

P ��j
� x� y� � P ���j
� x� y�P ��uj
� x� y�P ��vj
� x� y�P ��aj
� x� y�P ��bj
� x� y� �	����

Consider the hyperparameter ��� Since each �� is the precision of its group of pa�

rameters� it can be inferred solely from those parameters independently of x and y� For
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instance� for �u�

P ��uj
� x� y� � P ��ujfuigNu

i���

� P �fuigNu

i��j�u�P ��u�

� � ��u�Nu�����
u exp

�
��u
�

�
�u
�u
!

NuX
i��

u�i

�� �	����

��� on the other hand� is the noise in each component of yc� �� is inferred from the

errors �c � f�xc� 
�� yc�

P ���j
� x� y� � P �f�cgNc

c��j��� 
� x�P ����

� �
����NcNy�����
� exp

�
���
�

�
��
��
!

NcX
c��

jf�xc� 
�� ycj�
�� �	����

Note that Eqns� 	��� and 	��� are gamma distributions�

��� Sampling From the Posterior Distributions of

the Parameters and the Hyperparameters

Since Eqns� 	��� and 	��� are gamma distributions� independent samples for the hyper�

parameters can be drawn using well�known techniques �Devroye� ������

Drawing samples from the posterior distribution of the parameters is more di�cult�

For instance� standard Gibbs sampling cannot be used because the conditional distribu�

tion of each network parameter can be a very complicated function due to the training

error terms� A simple Metropolis method su�ers from random walks as previously de�

scribed� So instead� Neal ������ obtains samples from the network parameters using

the hybrid Monte Carlo technique with stepsize selection as described in Algorithm 	 of

Section ��	� To sample from the posterior distribution for 
� the potential energy is set
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as follows�

E�
� � � logP �
j�� x� y�

�
��
�

NcX
c��

jf�xc� 
�� ycj� ! �u
�

NuX
i��

u�i !
�v
�

NvX
i��

v�i !
�a
�

NaX
i��

a�i !
�b
�

NbX
i��

b�i ! const

�	��	�

where the constant is immaterial because it does not a�ect the dynamics of the system

that gives rise to the desired probability distribution� This constant corresponds to

prefactors in the distribution P �
j�� x� y� that do not depend on 
� The parameters 


correspond to q in Algorithm 	�

����� Convergence of the Algorithm

In this section� we discuss the conditions under which this Markov chain algorithm con�

verges to a unique invariant distribution�

Recall that our algorithm alternately updates the hyperparameters by Gibbs sampling

and the parameters using hybrid Monte Carlo� In Section ��	�	� we have already discussed

the reasons why hybrid Monte Carlo by itself should converge to a unique distribution�

The question is� combined with the hyperparameter Gibbs sampling update step� does

the resulting Markov chain converge�

A Markov chain update is periodic so long as it is periodic in one of the parameters

of its state space� so the fact that Gibbs sampling of the hyperparameters has non�zero

probability of producing any value does not immediately imply aperiodicity� However�

when the hyperparameters are updated from one iteration to the next� hybrid Monte

Carlo sees a random modi�cation of the potential energy surface that� if anything� would

prevent systematic behaviour like periodicity� Thus� the Gibbs sampling step renders

periodicity even more unlikely than ever�

When the hyperparameters change from one iteration to the next� hybrid Monte Carlo

sees a modi�cation of the potential energy surface that does not introduce any in�nite
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barriers� so the argument from Section ��	�	 still applies� and we expect that� with

su�cient iterations� all regions of the network parameters� state space can be visited

regardless of the values the hyperparameters have� Thus� we expect that all regions of

the joint state space containing both parameter and hyperparameter can be visited after

a su�cient number of iterations� and our algorithm should be irreducible�

Although we have no formal proof� based on the above arguments� we expect that

our Markov chain does converge to a unique distribution�

��� Ine	ciency Due to Gibbs Sampling of Hyperpa�

rameters

Despite the fact that we avoid random walks in network parameter space given the hy�

perparameters� Gibbs sampling of the hyperparameters can lead to a slow random walk

in the joint state space of the hyperparameters and the network parameters� This is be�

cause the distribution of the parameters conditional on the hyperparameters is restricted

by the conditioning on the hyperparameters� this restricts the possible values the param�

eters are likely to visit� and so the distribution of the hyperparameters conditional on

the parameters are unlikely to change much from the previous iteration in order to be

consistent with the parameters�

This is especially apparent when there are many hidden units� Consider sampling

the input�to�hidden weights ui given �u� When there are many of them� they represent

their distribution well� with a variance close to ���u� Thus� when �u is Gibbs�sampled�

we are likely to obtain a value close to �u again� and so the Markov chain becomes highly

correlated from sample to sample�

This problem can be alleviated when there are many training cases� In Eqn� 	��	� the

prior terms will be of order �Nu !Nv !Na!Nb���� When NcNy � Nu !Nv !Na!Nb�

the likelihood term has a stronger e�ect in determining the shape of the potential energy
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bowl sampled from� and so the weights move mostly to �t the data rather than to satisfy

the prior constraints imposed by their precisions� and so in this case� the hyperparameters

become slaved to the weights� which in turn are well�determined by the data�

When we do not have the option of obtaining more training cases� and we use large

numbers of hidden units� the random walk described above becomes an issue� and may

slow the method down so much as to render it impractical to use� The next chapter intro�

duces the solution that is considered in this thesis� that of updating the hyperparameters

using hybrid Monte Carlo as opposed to Gibbs sampling�



Chapter �

Hyperparameter Updates Using

Hamiltonian Dynamics

��� The New Scheme

To overcome the slow movement of the hyperparameters when using Gibbs sampling� we

propose to update the hyperparameters using Hamiltonian dynamics in the same way as

the parameters�

����� The Idea

The problem with the old scheme is that the alternating updates of the hyperparameter

and its associated parameters cause them to pin each other down� resulting in Markov

chain moves that are small compared to the overall distribution� and which can double

back since Markov chains have only state memory and no momentum memory� This

doubling back is similar to the random walk behaviour of the Metropolis algorithm with

simple proposals� Since hybrid Monte Carlo is our way of overcoming that� we hope that

hybrid Monte Carlo� by producing trajectories that can keep going in the same general

direction for long distances� may also allow hyperparameters to travel long distances in
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a single leapfrog trajectory without doubling back� This should lead to gains in how

rapidly the parameters and the hyperparameters sample the posterior distribution�

����� The New Scheme in Detail

Rather than updating the parameters conditional on the hyperparameters� and vice versa�

our aim is now to update the parameters 
 and the hyperparameters � jointly according

to the joint posterior distribution�

P �
� �jx� y� � P ���P �
j��P �yj
� �� x��P �yjx�

� P ���P �
j��P �yj
� ��� x�
�
���

where we have dropped the normalizing constant P �yjx� and used the fact that� given 
�
y�s dependence on the hyperparameters � is restricted to just the noise hyperparameter

���

From Eqns� 	�
� 	�� and 	��� we get�

E�
� �� � � log�P �
� �jx� y��

�

� X
��u�v�a�b

E�

�
�
�
�� !N�

�
� �
�
log���� !

��
�

�
��
��
!

NcX
c��

jf�xc� 
�� ycj�
� �
���

where N� � NcNy �the total number of target variables in the training data�� and�

Eu � �
�
�u !Nu

�
� �
�
log��u� !

�u
�

�
�u
�u
!

NuX
i��

u�i

�
�
�	�

and Ev� Ea and Eb are similarly de�ned�

The above is the new potential energy that hybrid Monte Carlo must use in its

simulation� Accordingly� we now expand the state space to include the hyperparameters�

We denote the position and momentum variables corresponding to the parameters and

hyperparameters with the subscripts 
 and � respectively�

q � �q��q��

p � �p��p��

�
�
�
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However� some complications now arise due to the necessity for the leapfrog proposals

to be symmetric� The main problem is that the hyperparameters at the beginning and

at the end of a leapfrog trajectory are now di�erent� so setting the parameter stepsizes

based on the hyperparameters at the beginning does not lead to reversible dynamics�

i�e�� by reversing the momentum and following the leapfrog dynamics backwards from

the �nishing point� one does not arrive back at the starting point�

The solution is to �rst update just the parameters by one step using stepsizes based

on the current value of the hyperparameters� This is the same dynamical update with

stepsize selection as before� and due to Fact 	 of Section ��	��� it is reversible� as the

hyperparameters have not changed� Then� we update the hyperparameters by one step

using stepsizes based only on the newly�computed value of the parameters� This is also

reversible as the parameters do not change over the step� These two updates comprise

one step in the new leapfrog trajectory updating both parameters and hyperparameters�

By repeating this l times� we obtain a leapfrog trajectory of length l that� by being

reversible in each step� is fully reversible end to end�

Due to Fact �� each step leaves H�q�p� � E�q� !
P

p�i �� approximately constant�

and so H is left approximately constant over the entire trajectory for small enough ��

Also� phase space volume is conserved by each step due to Fact �� and so it is conserved

over the entire trajectory� Thus� we see that we have a trajectory that keeps H roughly

constant� and is a valid Metropolis proposal due to reversibility and phase space volume

conservation�

There is actually a slight complication� if we update �rst the parameters� then the

hyperparameters� the reversed trajectory is the one that updates �rst the hyperparame�

ters and then the parameters� which is not actually the one we are using� To overcome

this problem� at the beginning of a trajectory� we choose with equal probability to update

either the parameters or the hyperparameters �rst� Thus� a trajectory that goes from

point A to point B is proposed with ��$ probability� while one that goes in reverse from
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B to A is proposed also with ��$ probability� and so we have symmetric proposals� We

summarize this algorithm in Algorithm 
� There is a di�erent stepsize for each com�

ponent of q� including the expanded � portion of the state� and we denote the set of

stepsizes for the parameters as �� and the stepsizes for the hyperparameters as �� �

Algorithm � Leapfrog trajectory that updates both parameters and hyperparameters

using Hamiltonian dynamics

r� U ��� ��

if r 	 ��� then

for i � � to l do

�� � ParamStepsize�q��

fq��p�g � LeapfrogUpdate�q��p�� ���q��

�� � HyperparamStepsize�q��

fq��p�g � LeapfrogUpdate�q��p� � ���q��

end for

else

for i � � to l do

�� � HyperparamStepsize�q��

fq��p�g � LeapfrogUpdate�q��p� � ���q��

�� � ParamStepsize�q��

fq��p�g � LeapfrogUpdate�q��p�� ���q��

end for

end if

An alternative way of achieving reversibility is to always start and end a leapfrog

trajectory with either a parameter update or with a hyperparameter update� The exact

method used should not signi�cantly a�ect the performance of the algorithm�
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��� Reparameterization of the Hyperparameters

Numerically� it is inconvenient to work with the hyperparameters as precisions� as neg�

ative values of precisions are invalid� Thus� we reparameterize the hyperparameters by

working with log precisions instead�

�� � log����

�u � log��u�

�v � log��v�

�a � log��a�

�b � log��b�

�
���

We let the set � denote the reparameterized hyperparameters�

� � f��� �u� �v� �a� �bg �
���

The posterior probability density is changed by this reparameterization� The new

density is obtained by multiplying by the appropriate Jacobian of each variable transfor�

mation in turn�

P �
� �jx� y� � P �
� �jx� y�

���� ������

����
Y

��u�v�a�b

���� ������

����
� P �
� �jx� y�
 exp

�
�� !

X
��u�v�a�b

��

� �
�
�

And so the new potential energy is�

E�
� �� � � logP �
� �jx� y�

� E�
� ��� �� �
X

��u�v�a�b

��

�

� X
��u�v�a�b

E	
�

�
�
�
�� !N�

�

�
�� !

e	�

�

�
��
��
!

NcX
c��

jf�xc� 
�� ycj�
�

�
���

where�

E	
u � �

�
�u !Nu

�

�
�u !

e	u

�

�
�u
�u

!

NuX
i��

u�i

�
�
���

and E	
v � E

	
a and E

	
b are similarly de�ned�
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��� Reparameterization of the Weights

The current parameterization scheme has a weakness that can be seen by considering

the potential energy as a function of the weights U and their hyperparameter �u� In

the absence of data� the potential energy depends on U and �u simply through E	
u � and

we see that it is shallow and broad for low values of �u and narrow and deep for higher

values �but not too high�� This is because� for �xed �u� E	
u is quadratic in ui with width

proportional to ��
p
e	u� This makes sense as ��

p
e	u � ��

p
�u is the prior standard

deviation of ui� When there is data� the landscape will be changed somewhat� but the

tendencies imposed by the priors will still be there�

The e�ect of this shape of the potential energy function is to make it unlikely for a

sample that starts in the broad� shallow region to end up in the narrow� deep region� The

reason is because� since H is �approximately� conserved during a leapfrog trajectory� a

particle that enters the narrow� deep region from the shallow region has enough energy to

escape out to the shallow region again� and will indeed likely do so before we catch it in

the deep region� since the latter has a comparatively small volume� Similarly� a particle

that starts o� in a narrow� deep region will likely not have enough total energy to escape

unless it acquired an unusually large amount of energy during momentum resampling�

This situation is suboptimal as it increases autocorrelations� To move around more

easily in state space� we introduce the following reparameterization of the weights�

"ui � ui
p
�u � uie

	u��

"vi � vi
p
�v � vie

	v��

"ai � ai
p
�a � aie

	a��

"bi � bi
p
�b � bie

	b��

�
����

and we continue to use�

�� � log����

�� � log���� where � � u� v� a� b

�
����
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The notation of Chapter 	 will continue to apply� except we will use a tilde to indicate

a reparameterized parameter� For instance� "U will represent the group of reparameter�

ized input�to�hidden weights fuigNu

i��� and "Uij will represent a reparameterized weight

from input unit i to hidden unit j� We will also use the following naming for all the

reparameterized weights�

� � f "U� "V � "A� "Bg �
����

Due to the reparameterization� the posterior probability of the parameters and the

hyperparameters must change accordingly� The complete reparameterization is obtained

from Eqn� 
�
 as�

P ��� �jx� y� � P �
� �jx� y�

����
NuY
i��

�ui
�"ui

NvY
i��

�vi
�"vi

NaY
i��

�ai
�"ai

NbY
i��

�bi

�"bi

����
� P �
� �jx� y�
 exp

�
��
�

X
��u�v�a�b

N���

� �
��	�

And so under the reparameterization� the potential energy becomes�

E��� �� � � logP ��� �jx� y�

� E�
� ��� �� �
X

��u�v�a�b

�� !
�

�

� X
��u�v�a�b

N���

�

�

� X
��u�v�a�b

E	
	�

�
!
�

�

�
��N� ! ����� !

��
��
e	� ! e	�

NcX
c��

jf�xc��� ��� ycj�
�

�
��
�

where�

E	
	u �

�

�

�
��u�u ! �u

�u
e	u !

NuX
i��

"u�i

�
�
����

and similarly for E	
	v � E

	
	a and E

	
	b
�

It can be seen that the the quadratic term "u�i in E	
	u now has a constant coe�cient�

so this reparameterization is e�ective at removing the variation with its hyperparameter

of the width of ui�s potential bowl�
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To distinguish between the new methods with and without the reparameterization

of the weights� we will call the new method before the weight reparameterization the

Dynamical A method� and the new method with the weight reparameterization the Dy�

namical B method�

��� First Derivatives of the Potential Energy

Each leapfrog step update requires the �rst derivatives of the Hamiltonian with respect

to the parameters and the hyperparameters� To take steps that are appropriately scaled

in the various directions for stability and e�ciency� we need the second derivatives as

well� which we give in Section 
��� Here� we give the expressions for the �rst derivatives�

We �rst de�ne�

Lc��� �� � e	�jf�xc��� ��� ycj��� �
����

which is the negative log likelihood of one training case� less the normalizing term� We

then obtain from Eqn� 
��
�

�E��� ��

���
�
�

�

�
��N� ! ��� !

��
��
e	�
�
!

NcX
c��

Lc��� �� �
��
�

�E��� ��

���
�
�

�

�
��� ! ��

��
e	�

�
!

NcX
c��

�Lc��� ��

���
�
����

where� as usual� � � u� v� a or b� and�

�E��� ��

� "Uij

� "Uij !
NcX
c��

�Lc��� ��

� "Uij

�
����

Derivatives for the other weight types are obtained from Eqn� 
��� by replacing "Uij

by the corresponding parameter�

To compute the derivative �E���� using Eqn� 
��
� we need to compute the net�

work outputs for every training case� This involves performing a forward pass through
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the net for each training case� each pass requiring compute time of order the number

of connections in the network� The fact that we do a forward pass means that using

backpropagation to compute other �rst derivatives will be e�cient� We now explain how

these other derivatives are computed�

����� First Derivatives with Respect to Parameters

To compute the derivatives with respect to the parameters �Eqn� 
����� we need to �nd

the corresponding derivatives of the output Lc� They are most e�ciently computed using

backpropagation provided certain results are stored during a preceding forward pass such

as the one required by the above computation of �E�����

The backpropagation works as follows� Consider Figure 
��� which represents two

arbitrary adjacent layers in the network�

hDj

gDj

"Vije�	��

hSi

gSi

�
�
�
�
��I

�
�
�
�
��� ��

��
��

��
��

��
��

��
��

Figure 
��� Two adjacent layers�

Here� "Vije�	�� is the weight connecting a source unit i to a destination unit j� We use

gi to denote the total activation of unit i before the tanh��� nonlinearity� and hi to denote
the output of unit i after the nonlinearity� Source unit values are denoted by superscript

S� while destination unit values have superscript D� The total input into destination

unit j is�

gDj �
X
i

hSi
"Vije

�	�� !"bje
�	��� �
����
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where �� is the hyperparameter controlling the biases "bj� Thus� the �rst derivative of the

potential energy with respect to "Vij can be computed as follows�

�Lc��� ��

� "Vij
�
�Lc��� ��

�gDj

�gDj

� "Vij

�
�Lc��� ��

�gDj
hSi e

�	��

�
����

A similar expression holds for derivatives with respect to biases� In the above� if j is

actually an output unit� then gDj � fj� so�

�Lc��� ��

�gDj
� e	��fj�x

c��� ��� ycj � �
����

The outputs fj�xc��� �� can once again be considered to have already been obtained

�free� from the forward pass� As in standard backpropagation� we start with the above

error derivatives at the output layer and propagate them backwards using�

�Lc��� ��

�gSi
�
X
j

�Lc��� ��

�gDj

�gDj
�hSi

�hSi
�gSi

� sech��gSi �
X
j

�Lc��� ��

�gDj
"Vije

�	��

�
��	�

If gi was stored for every unit during the forward pass� the above derivatives can be

computed rapidly in a backward pass taking time of order the number of connections in

the network for each training case� Actually� we will see below that� if we can save only

one quantity� the most useful one is�

�j � e�	��
X
i

hSi "Vij �
��
�

which is the total input going into unit j from all the units feeding into it� From �j � gj can

easily be obtained in constant time� Furthermore� it will be useful in other calculations

that will be presented in the subsequent discussion�

Note that� thus far� we have seen how the computation of �E���� and the �rst

derivatives with respect to all the parameters is dominated by a forward pass and a

backward pass through the network�
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����� First Derivatives with Respect to the Hyperparameters

The computation of �E���� has already been described� To compute �E����� we need

to compute the corresponding derivatives of Lc��� ��� In a similar fashion as the weights�

computation� we can write for the hyperparameter � in Eqn� 
��� that controls weights�

�Lc��� ��

��
�
X
j

�Lc��� ��

�gDj

�gDj
��

� ��
�

X
j

�Lc��� ��

�gDj

�X
i

hSi
"Vij

�
e�	��

� ��
�

X
j

�Lc��� ��

�gDj
�j

�
����

while for the hyperparameter ���

�Lc��� ��

���
�
X
j

�Lc��� ��

�gDj

�gDj
��

� ��
�

X
j

�Lc��� ��

�gDj
"bje

�	���

�
����

We already computed the derivatives �Lc��gj during the backward pass for the deriva�

tives of the parameters� By ensuring that we save �j during the forward pass� the �rst

derivatives of Lc with respect to the u� v� a and b hyperparameters can be e�ciently com�

puted in time of order the number of units in the network� Summed over all cases� the

computational cost is O�Nc�Nh !Ny���

Because the number of units is considerably smaller than the number of parameters�

calculating these �rst derivatives with respect to the u� v� a and b hyperparameters is

considered to add negligible cost to the forward and backward passes we have already

done� Therefore� the computation of all the �rst derivatives is dominated by the forward

and backward passes through the net� each of which takes O�Ncj�j�
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��� Approximations to the Second Derivatives of the

Potential Energy

The second derivative of the potential energy with respect to the weights and the hyper�

parameters are needed to compute stepsizes for each leapfrog step update� Unlike the

�rst derivatives� we cannot compute the second derivatives exactly because� in order to

preserve phase space conservation and reversibility of leapfrog steps� the stepsizes used

for� say� hyperparameters� cannot depend on the current values of the hyperparameters�

We will also use additional simpli�cations to make evaluation easier and faster�

From Eqn� 
��
� we see that the problem is to obtain for the parameters�

��E��� ��

�"u�i
� � !

NcX
c��

��Lc��� ��

�"u�i
�
��
�

and similarly for "vi� "ai and "bi� and for the hyperparameters�

��E��� ��

����
�

��
���

e	� !

NcX
c��

Lc��� �� �
����

and for � taking the values u� v� a and b�

��E��� ��

����
�

��
���

e	� !
NcX
c��

��Lc��� ��

����
�
����

����� Second Derivatives with Respect to the Parameters

To obtain the derivative ��Lc��"u�i � we follow the heuristic given by Neal ������ Appendix

A�� which we include here for completeness� The heuristic operates by approximately

backpropagating the �nd derivative of Lc with respect to the output units back through

the net� Its details are as follows�
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Referring to Fig� 
��� Neal uses the following approximation�

��Lc��� ��

� "V �
ij

� ��Lc��� ��

��gDj �
�

�
�gDj

� "Vij

��

� ��Lc��� ��

��gDj �
�

e�	 


	

�


�
�xci�

� for i an input unit�

� otherwise�

�
�	��

Correspondingly� for biases�

��Lc��� ��

�"b�j
� ��Lc��� ��

��gDj �
�

e�	
�

�
�	��

We see that it is necessary to compute the derivatives ��Lc���gDj �
�� We will do so in

a way analogous to the backpropagation of the �rst derivative �Lc���gDj � as described in

Section 
�
��� In the case that unit j is an output unit� the derivative is �xed� namely�

��Lc��� ��

��gDj �
�

�
��Lc��� ��

��f cj �
�

� e	� �
�	��

This is propagated backwards to obtain the second derivatives of Lc with respect to

all the inputs gi�s except for the input units�� whose derivatives are not needed� Neal

propagates the derivatives using�

��Lc��� ��

��gSi �
�

�
X
j

��Lc��� ��

�"�gDj �
�
"V �
ije

�	 �
�		�

Because we are not allowed to use the current value of the parameters� we replace "V �
ij

in the above by the estimate �� since "V �
ij has variance � at equilibrium� Thus� we actually

use�

��Lc��� ��

��gSi �
�

�
X
j

��Lc��� ��

�"�gDj �
�

e�	 �
�	
�

From Eqns� 
�	� and 
�	
� we see that the second derivatives are the same for all

training cases� Thus� the backpropagation pass is done only once regardless of the number

of training cases� after which the second derivatives with respect to the parameters can

be estimated in time of order equal to the number of parameters�
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����� Second Derivatives with Respect to the Hyperparameters

To obtain
PNc

c�� L
c in Eqn� 
���� we need to calculate the network output for each training

case� Like the computation for �E����� this can be done with a forward pass for each

case� Unlike that computation� we cannot use the current values of the hyperparameters�

In this thesis� we replace � by %�� the prior hyperparameter means�

%�� � log ��

%�u � log�u

%�v � log�v

%�a � log�a

%�b � log�b

�
�	��

Thus� we really compute�

��E��� ��

����
� ��
���

e

	� !

NcX
c��

Lc��� %�� �
�	��

For the second derivatives with respect to the other hyperparameters� we similarly

replace all occurrences of � by %�� From Eqn� 
���� we see that we need to estimate

��Lc��� %�������� For this� we will use the same kind of backpropagation as when estimat�

ing the second derivatives with respect to the parameters�

Once again referring to Fig�
��� for � being either a hyperparameter for the weights

or the biases that contribute to the calculation of the gDj �s�

��Lc

���
�

�

��

�
�Lc

��

�

�
�

��

X
j

�Lc

�gDj

�gDj
��

�
X
j

�
�Lc

�gDj

��gDj
���

!
��Lc

���gDj

�gDj
��

�

�
X
j

�Lc

�gDj

�
��
�

�gDj
��

�
!
X
j

X
j�

��Lc

�gDj� �g
D
j

�gDj�

��

�gDj
��

�
�	
�
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where we have made the replacement ��gDj ���
� � �������gDj ���� which can easily be

checked� Thus�

��Lc

���
� ��

�

�Lc

��
!
X
j

X
j�

��Lc

�gDj� �g
D
j

�gDj�

��

�gDj
��

�
�	��

For the second term� following Neal ������ Appendix A�� we ignore multiple con�

nections from the same unit� which amounts to dropping all cross terms� We end up

with�

��Lc

���
� ��

�

�Lc

��
!
X
j

��Lc

��gDj �
�

�
�gDj
��

��

�
�	��

We have already seen how we can estimate ��Lc���gDj �
� using the approximate back�

propagation �Eqn� 
�	
� of Section 
����� The di�erence here is that we can use the

actual values of the parameters� but not the hyperparameters� Thus� we replace � by its

estimate %� � %� in the backpropagation equation�

��Lc��� ��

��gSi �
�

�
X
j

��Lc��� ��

��gDj �
�
"V �
ije

�
	 �
�
��

As before� we compute the above quantity in a backward pass only down to the �rst

hidden layer� and these derivatives are all independent of the training case�

For the second factor in a summation term in Eqn� 
�	�� evaluation is straightforward�

From Eqn� 
���� we have�

�
�gDj
���

��

�
e�


	�



b�j �
�
��

for a hyperparameter controlling biases� and�

�
�gDj
��

��

�
e�


	




� nX
i��

"Vijh
S
i

��

�
�



��j

�
�
��

for a hyperparameter controlling weights� Once again� if we save �j during the forward

pass to obtain the network outputs for estimating ��E������ the above factors can be
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obtained almost for free� We emphasize here that the this �j di�ers from the �j used in

�rst derivative calculations in that the forward pass during which �j is saved uses the

estimates %� instead of ��

Thus far� the dominating computation in estimating the second derivative of E with

respect to the hyperparameters is the estimation of ��E������ which requires a forward

pass for every training case�

Let us now turn our attention to the �rst derivative �Lc��� in Eqn� 
�	�� Its

computation was already discussed in Section 
�
��� except that it uses the estimates %�

instead of �� and the error propagated backwards comes from the forward pass used in

estimating ��E������

The estimation of this derivative requires one backward pass� which must be done

for each training case� Thus� combined with the forward passes of ��E����� � two passes

through the net are necessary to estimate the second derivatives of E with respect to the

hyperparameters�

��
 Summary of Compute Times

In this section� we summarize the compute time required by the Dynamical B method per

leapfrog update of both the parameters and hyperparameters� Recall that the Dynamical

B method includes the reparameterization of the weights�

First� we summarize the compute times required to calculate each group of derivatives

in Table 
��� The compute times are dominated by passes through the network for each

training case� which takes timeO�Ncj�j��� and we consider other operations as essentially
free�

Examining a leapfrog update in detail� we see that it looks like Table 
���

When the parameters are changed �step ��� the �rst derivatives of both parameters

and hyperparameters need to be recalculated in order to update the momenta in steps
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Group of Derivatives Compute time

�st with respect to parameters and hyperparameters � 
O�Ncj�j�
�nd with respect to parameters �free�

�nd with respect to hyperparameters � 
O�Ncj�j�

Table 
��� Cost of computing various groups of derivatives for the Dynamical B method�

Step Description

� Update momentum of parameters

� Update parameters

	 Update momentum of parameters


 Update momentum of hyperparameters

� Update hyperparameters

� Update momentum of hyperparameters

�Step � is then repeated for the next leapfrog update�

Table 
��� The steps in one complete leapfrog update in the Dynamical B method� The

Dynamical A method has the same sequence of steps comprising one leapfrog update�

	 and 
� The cost is one forward�backward pass pair� Also� at the end of step �� the

second derivatives with respect to the hyperparameters need to be recalculated for use

in steps 
 through �� taking a second forward�backward pass pair� After the update of

the hyperparameters at step �� the �rst derivatives need to be recalculated again for the

momentum updates at step � and step � of the next complete leapfrog update� This

requires a third forward�backward pass pair� Finally� the second derivatives with respect

to the parameters also need to be recalculated for use in step � of the next iteration� but

this is essentially free�

Thus� each leapfrog update costs 	 forward�backward pass pairs� This result will

be used later in determining how long to let the parameterized new method run when

comparing its performance to the old method�
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��� Computation of Stepsizes

We have described our heuristic for approximating the second derivative of the potential

energy with respect to the hyperparameters� The stepsize is then computed as the inverse

square root of that second derivative� as in Eqn� ����� But because this heuristic uses

Eqn� 
�	�� second derivatives have the possibility of being negative� and square roots

would then be imaginary� We note that when the second derivative becomes negative�

it merely indicates that the potential energy surface is now concave downwards� but its

magnitude should still be indicative of the length scale of the surface variations in the

region� Thus� the negative sign is really no problem� and we take absolute values to

obtain the stepsize as�

� � �

�����
�E

���

����
� �

�

�
�
	�

Similarly� the stepsize for the parameters are obtained as�

� � �

�
��E

�"u�i

�� �

�

�
�

�

and similarly for the other parameter types�

��� Compute Times for the Dynamical A Method

We also give the compute time for one leapfrog update for the Dynamical A method

as this has to be taken into account later in performance comparison� Recall that the

Dynamical A method is the new method before the weight reparameterization�

The computation of the �rst and second derivatives with respect to the weights in this

scheme are not signi�cantly di�erent from Dynamical B�s� The algorithmically demand�

ing portions of these computations are the derivatives of Lc with respect to a weight�

and the backpropagation algorithms given above work the same way except that the

factors of e�	�� that always go with the reparameterized weights are missing� Thus� �rst
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derivatives with respect to the weights also require one forward and one backward pass

for each training case� while second derivatives are essentially free�

The computation of the �rst derivatives and second derivatives with respect to the

hyperparameters di�er substantially� however� because the hyperparameters do not ap�

pear in the computation of the network output f��� in this case� The �rst derivatives
are�

�E�
� ��

���
� �

�
�� !N�

�

�
!
e	�

�

�
��
��
!

NcX
c��

�
f�xc� 
�� yc

���
�
�
��

and�

�E�
� ��

��u
� �

�
�u !Nu

�

�
!
e	u

�

�
�u
�u
!

NuX
i��

u�i

�
�
�
��

and similarly for hyperparameters of v� a and b�

The compute times for hyperparameters of �rst derivatives of ��� where � � u� v� a

and b take time of order the number of parameters and is independent of the number

of training cases� This makes it of lower order time complexity than that the forward

and backward passes for computing the �rst derivatives of the parameters� The compu�

tation of �E���� requires all the network outputs for each training case� but which were

already computed during the forward passes for the �rst derivatives with respect to the

parameters� so we essentially get this derivative for free as well�

The second derivatives with respect to the hyperparameters are�

��E�
� ��

����
�
e	�

�

�
��
��
!

NcX
c��

�
f�xc� 
�� yc

���
�
�

�

and�

��E�
� ��

���u
�
e	u

�

�
�u
�u
!

NuX
i��

u�i

�
�
�
��

and similarly for hyperparameters of v� a and b�

The compute times for each second derivative is essentially the same as that for the

�rst derivative with respect to the same hyperparameter� Once again� we can use the



Chapter �� Hyperparameter Updates Using Hamiltonian Dynamics ��

network outputs already computed for the �rst derivatives with respect to the parameters�

Note that this di�ers from the case of the reparameterized weights because� there� the

hyperparameters are involved in computing the network outputs� and so the the outputs

computed during the forward passes for the �rst derivatives cannot be used� as the

second derivatives with respect to the hyperparameters cannot use the current values

of the hyperparameters� That forced us to redo the passes through the network with

estimates for the hyperparameters� but we do not have to do that here� thereby saving

computation�

We summarize the various compute costs in the Table 
��

Group of Derivatives Compute time

�st with respect to parameters and hyperparameters � 
O�Ncj�j�
�nd with respect to parameters �free�

�nd with respect to hyperparameters �free�

Table 
�	� Cost of computing various groups of derivatives for the Dynamical A method�

Like before� one leapfrog update requires the computation of all the �rst derivatives

twice� Therefore� one leapfrog update requires two forward�backward pass pairs in this

case�
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��� Training Data

To verify the new methods and compare their performance with the old method� the

synthetic data set of Table ��� was used� We use a small data set to reduce the compute

time required to obtain the results for this thesis� Even then� months passed before all

the necessary runs were completed�

Input x Input y Output z

�����
���e��� 
���
�	��e��� ���������e!��

���	�����e��� 
�

�����e��� ��
�
	

�e!��


��������e��� �
��������e��� ��	������e���


�����

�e��� ���
�
���	e��� ��

���
�e���

����
��

�e��� 
��

���	e��� ������
�
e���

����
�	
�e��� �����
�	�
e��� 
����
���e���

�
��
���
�e��� �
�����	��e��� ��
���
��e��	

�
���	
�	�e��� 	��������e��� ���
��	���e���

Table ���� Training data has two inputs and � output� These data are plotted in Fig�

����

�
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Figure ���� � points comprising the synthetic data set used� There are � inputs �x and

y� and � target �z�� The training data are shown using asterisks� The circles represent

the training data before the addition of Gaussian noise� while the crosses are the input

data drawn on the plane z � ��
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Figure ���� The surface from which the synthetic data was taken�
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The training data was synthesized as follows� The inputs �xi� yi� were uniformly

drawn from ���� ��
 ���� ��� The mapping used on each input pair was calculated using
the function below�

f�x� y� � ��	 ! ���x ! ��
�y � ����� ! ��	y�x! ����� �����

This mapping is illustrated in Fig� ���� Gaussian noise with standard deviation ���

was added to each function output to obtain the target�

��� Veri
cation of the New Methods

To verify the correctness of the new methods� the posterior distribution was obtained

using all the methods for a network of � hidden units on the above training data� The

old Gibbs sampling program as implemented by Neal was treated as the standard against

which the new programs were compared�

The priors for the hyperparameters are speci�ed as gamma distributions as in Eqn�

	�
 using � and � parameters� For the demonstration of the correctness of the new

methods� they were set as in Table ����

Parameter Setting

�
� �

�

� ����

�
� �

�

u ����

�
� �

�

v ��
�

�
� �

�

a ����

�
� �

�

b ����

Parameter Setting

�� ����

�u ����

�v ����

�a ����

�b ����

Table ���� Settings for parameters specifying the priors of the hyperparameters

Fairly long runs were done with all three methods at the settings in Table ��	�
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����� Results From Old Method

Method � l Saved every

Gibbs ��	� 
�� ���

Dynamical A ��
� ��� ��

Dynamical B ���� 	�� ��

Table ��	� Settings for the various methods in order to verify correctness of new programs�

For the new methods� we set the parameter and hyperparameter stepsize adjustment

factors equal to each other� and indicate their value by � in this table�

The output surface as predicted from ���� samples obtained using the Gibbs update

method is shown in Fig� ��	� We see that the data points are being �tted reasonably� The

fact that the points are being �tted implies that the posterior distribution has changed

from the prior� Indeed� from Fig� ��
� we see that the marginal posterior distributions of

the hyperparameters di�er from the marginal prior distributions�

We show in Fig� ��� the correlation between the input�to�hidden and the hidden bias

hyperparameters� As expected� when larger input�to�hidden weights are allowed� larger

biases �with the opposite sign� are required to compensate� This is because the output

function cannot be composed of hidden units that all saturate� so the input into at least

some of the hidden units must be kept small�

Also� we show in Fig� ��� how� as the number of hidden units increases� the hidden

bias hyperparameter becomes more pinned to the actual standard deviation of the hidden

biases� and vice versa� This is manifested as an increased correlation between them� This

is a direct demonstration of the problem we set out to solve�

����� Results of New Methods Compared with the Old

To verify the correctness of the programs implementing the new methods� we compare

the posterior distributions obtained using the new programs against that from the old�
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Figure ��	� The surface predicted by the samples obtained for the master run for � hidden

units� The training data are shown using asterisks� while the crosses are the input data

drawn on the plane z � ��

To obtain the posterior distribution� any samples near the beginning found by visual in�

spection not to be in equilibriumwere �rst dropped� ��� samples from each method were

then used to plot the histogram of each hyperparameter� Here� we look at the histogram

of log ��� which is the log of each hyperparameter speci�ed as a standard deviation� Each

such histogram approximates the marginal distribution of a hyperparameter�

We need to be able to compare the joint distribution over hyperparameters for two

methods� Because we are unable to plot a distribution over the joint ��dimensional space

of all the hyperparameters� we compare marginal distributions instead� This compari�

son is valid because� if the marginal distributions of the hyperparameters match for two

methods� then they almost certainly have the same joint distribution over hyperparame�

ters� While it is true that� in principle� equal marginal distributions does not imply equal

joint distributions� the fact that the marginals match is too amazing a coincidence to be

explained any other way than by concluding that the joint distributions match�
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Figure ��
� Dotted lines represent prior densities �obtained analytically� while solid lines

represent posterior marginal distributions obtained from the Gibbs sampling method�

These plots� obtained using � hidden units� show that the posterior distributions of the

hyperparameters have changed from the priors�
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Figure ���� Correlation between input�to�hidden and hidden bias hyperparameters ob�

tained using the old method�
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Figure ���� Correlation between the standard deviation of the hidden biases and the their

hyperparameter becomes stronger as the hidden layer size increases�
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As can be seen in Figs� ��� and ��
� the marginals for all the hyperparameters

obtained by the programs running both the new methods match those of the original as

implemented by Neal�

��� Methodology for Evaluating Performance

Having shown that the new methods have been correctly implemented� we are now ready

to assess their performance�

A Markov chain Monte Carlo method typically goes through a �burn in� phase before

settling down to equilibrium� Before reaching equilibrium� its samples are not representa�

tive of its invariant distribution� As these non�representative samples should be discarded

in order not to skew later estimates� the speed with which a Markov chain equilibrates

is a matter of interest� However� due to time constraints� we will not be considering

this question� Instead� we will only assess the relative performances of the old and the

new methods in moving about in the posterior distributions of the hyperparameters once

equilibrium has been reached� We do not consider the speed with which the posterior of

the parameters is explored as there can be large numbers of parameters� and it is di�cult

to know which parameters to compare as they can sometimes taken on di�erent roles�

In addition to examining the performances of the original method and the Dynamical

B method� we also look at the performance of the Dynamical A method to ascertain if

the reparameterization of the weights is indeed bene�cial�

The performance of the methods depends on the number of leapfrog steps allowed in

one trajectory and the stepsize adjustment factor� These can be viewed as tuning param�

eters that a�ect the e�ciency of each method� Since performance can vary dramatically

depending on the setting of these tuning parameters� it is only fair to compare how well

the methods work when optimally tuned�

For the old method� the tuning parameters are l� the number of leapfrog steps allowed
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Figure ��
� Crosses represent the distribution obtained from the original Gibbs update

method� while circles represent that of the Dynamical A update method� Each distribu�

tion has been normalized to have area ��
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Figure ���� Crosses represent the distribution obtained from the original Gibbs update

method� while circles represent that of the Dynamical B update method� Each distri�

bution has been normalized to have area �� Note that the distribution for the original

method looks slightly di�erent from that of the plots for the previous comparison with

the Dynamical A method because the binning for the histograms is slightly di�erent�
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in one trajectory� and �� the stepsize adjustment factor� For the new methods� l is also

a tuning parameter� but we now have two stepsize adjustment factors� �p for the param�

eters� and �h for the hyperparameters� We have two stepsize adjustment factors because

we might wish to control how fast the parameters move compared to the hyperparameters

in order to obtain the best performance� Moreover� the di�erent heuristics with which

the stepsizes are computed for the parameters and the hyperparameters means that their

relative magnitudes might be quite di�erent� which also suggests separate stepsize ad�

justment factors� However� due to time constraints� we will not explore the problem of

how to set the two adjustment factors separately� and will instead set them equal to each

other ��p � �h� and call it �� with the understanding that the performance of the new

methods could be increased if the two ��s are not set equal to each other�

The performace of a method on a hyperparameter is assessed using the variance of

means measure� whose presentation we delay till the next section� For a given setting

of the tuning parameters� this measure can be computed for each hyperparameter� The

smaller the measure is� the more e�ciently the method explores the marginal posterior

distribution of that hyperparameter� Since we wish to compare the methods when they

are operating optimally� we will compare their variance of means measures at optimal

settings of l and ��

To �nd the optimal setting of l and � for a given method� we run it over a grid

of settings in tuning parameter space� measuring its variance of means performance at

each setting� The geometric mean of the variance of means of the hyperparameters is

computed to obtain a single measure that combines the performances over the di�erent

hyperparameters� In computing the geometric mean� we leave out the variance of means

measure for the output bias hyperparameter as that hyperparameter controls only one

parameter for this network and is therefore not that meaningful� The optimal setting of

the tuning parameters is then picked as the setting that minimizes the geometric mean�

It is not safe to directly use the variance of means at this optimal setting to compare
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the performances of the methods� however� as they are biased downwards as a result of

this selection process� Instead� the programs are then re�run with di�erent random seeds

to re�obtain the variance of means measures so as to avoid the bias� In the next section�

we describe the variance of means measure in greater detail�

����� The Variance of Means Measurement of Performance

The variance of means measure characterizes how well a method explores the posterior

distribution of a hyperparameter at a �xed setting of the tuning parameters� To obtain

this measure� we run several Markov chains� each started from an independent point

drawn from the posterior distribution of the parameters and hyperparameters� Each

chain is run for a �xed number of Nf leapfrog steps regardless of what l is�

For a given setting of the tuning parameters� we obtain the means of the hyperpa�

rameters sampled by each chain� The entire chain of Nf leapfrog steps can be thought

of as being divided up into a �xed number of Ns super�transitions each comprised of

Nf�Ns leapfrog steps� Although each leapfrog trajectory yields a sample from the cor�

rect distribution� we use only one sample per super�transition to compute the means of

the hyperparameters for each chain� Thus� regardless of the value of l� the same number

of samples Ns is used to compute the means as shown in Table ��
� For the i�th chain�

the hyperparameter means obtained are�

�log �i�� log �
i
u� log �

i
v� log �

i
a� log �

i
b� �����

where� for instance� each mean log �iu is computed as follows�

log �iu �

NsX
j��

log �i�ju �Ns ���	�

� refers to a hyperparameter expressed as a standard deviation� We take the log

before computing the mean as experience shows that the standard deviation can vary

over several orders of magnitude� and yet variations on a small scale are as interesting as

variation on a scale a few orders of magnitude larger�
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Chain Samples

����� ����� ����� � � � � � � ���Ns

� � log ���

����u ����u ����u � � � � � � ���Ns
u � log ��u

� ����v ����v ����v � � � � � � ���Ns
v � log ��v

����a ����a ����a � � � � � � ���Ns
a � log ��a

����b ����b ����b � � � � � � ���Ns

b � log ��b

����� ����� ����� � � � � � � ���Ns

� � log ���

����u ����u ����u � � � � � � ���Ns
u � log ��u

� ����v ����v ����v � � � � � � ���Ns
v � log ��v

����a ����a ����a � � � � � � ���Ns
a � log ��a

����b ����b ����b � � � � � � ���Ns

b � log ��b
���

���

���
���

�Nm��
� �Nm��

� �Nm��
� � � � � � � �Nm�Ns

� � log �Nm

�

�Nm��
u �Nm��

u �Nm��
u � � � � � � �Nm�Ns

u � log �Nm
u

Nm �Nm��
v �Nm��

v �Nm��
v � � � � � � �Nm�Ns

v � log �Nm
v

�Nm��
a �Nm��

a �Nm��
a � � � � � � �Nm�Ns

a � log �Nm
a

�Nm��
b �Nm��

b �Nm��
b � � � � � � �Nm�Ns

b � log �Nm

b

Table ��
� Each chain is run for Ns super�transitions at some setting of l and �� The

samples obtained from the super�transitions are used to compute the means of each

hyperparameter�
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If we run Nm Markov chains� we will have Nm values of log ��� The variance of means

measure that we have been talking about is then just the variance of these values of

log ��� We de�ne �� to be these variance of means measures�

�� � Var�log ���

�u � Var�log �u�

�v � Var�log �v�

�a � Var�log �a�

�b � Var�log �b�

���
�

Each variance is calculated using the mean estimated from a very long run of the old

method� which we assume to be very close to the true mean� For example� if the mean for

log �u obtained from a very long run of the old method is 	 log �u 
� then we compute

the variance from Nm Markov chains as�

�u �

PNm

i���log �
i
u� 	 log �u 
��

Nm
�����

This is the variance of means measure of performance� with lower variance indicating

better performance�

Let Tu be the ine�ciency factor in units of super�transitions for Ns samples of log �u�

Tu measures the worth in computing log �u of each super�transition of log �u relative

to one independent sample of log �u� For example� if Tu is �� then it takes twice as

many super�transitions to obtain a given variance of log �u as would be needed using

independent samples� Mathematically� the variance of means measures are related to

ine�ciency factors as follows�

�u �
Tu
Ns
Var�log �u� �����

Since Var�log �u� is a constant property of the posterior� and we are using the same

Ns for all tuning parameter settings� our estimate of Var�log �u� is proportional to Tu�

Although this Tu is for this particular number of samples Ns only� we would expect that�
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if a method has a lower Tu than another for this Ns� then it really is more e�cient at

exploring the posterior distribution� and so it should remain better for a di�erent Ns�

Thus� this measure is indicative of performance in general�

����� Error Estimation for Variance of Means

Error bars on the variance of the means are obtained as follows� Since the variance of �u

is calculated as the mean of the square deviations �log �iu� 	 log �u 
��� its variance is

given by�

Var��u� �
Var��log�iu� 	 log �u 
���

Nm

���
�

which is valid so long as the chains are independent� We ensure this by picking their

starting points su�ciently far apart from a long master run and by using a di�erent

random number seed for each chain�

����� Geometric Mean of Variance of Means

Rather than characterizing performance by the variance of the hyperparameter means for

all the hyperparameters� we de�ne the following single geometric mean scalar measure of

performance�

g �

�
���u�v�a

� �

�

�����

We obtain error bars for g by bootstrapping �see Efron and Tibshirani� ���	� as

follows� Let Z be the original set of Nm Markov chains� Thus� Z determines a single value

of g� A bootstrap realization Z� is a set of Nm Markov chains sampled uniformly with

replacement from the original chains� During bootstrapping� many bootstrap realizations

Z� are generated from Z� The idea is that the empirical distribution represented by Z

contains within it the natural variations that g has over the true distribution from which

Z is drawn� So� a value of g can be calculated from each Z�� and the histogram of these
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resulting g�s gives an estimate for the actual distribution of g� We quote error bars as

the ��$ con�dence interval of the histogram of g� i�e�� we quote the error bar �glo� ghi��

where glo and ghi are such that �$ of the values of g obtained from Z� are below glo� and

�$ are above ghi� We use ���� bootstrap samples to obtain these error bars�

����� Iterations Allowed for Each Method

As shown in Eqn� ���� �� is proportional to the ine�ciency factor of the method in units

of super�transitions� In order for comparisons of variances between two methods to make

sense� the amount of compute time used per super�transition should be the same in both

cases� However� the compute time of a program is tricky to calculate from things such as

number of multiplications� as programming style can a�ect it� Thus� in this thesis� the

amount of �work� that goes into a super�transition is estimated in algorithmic terms in

which we assume that the number of training cases Nc is large� and the number of hidden

units Nh is also large so that the number of weights j�j is large� This results in terms of
order Ncj�j dominating the time complexity� which comes entirely from complete sweeps

through the neural network for each training case�

In the old method� each trajectory is composed of 	 steps� sampling the hyperparam�

eters� computing the stepsizes� and performing the leapfrog steps� First� we note that

each leapfrog step requires the evalutaion of the derivative of the potential energy with

respect to a parameter�

�E

�ui
� ��

NcX
c��

�f�xc� 
�� yc� � �f�x
c� 
�

�ui
! �uui �����

which is most e�ciently computed for each training case using a forward sweep through

the network for f�xc� 
��yc and a backward sweep for �f�xc� 
���ui� Each of the � sweeps
takes O�Ncj�j� compute time for all the training cases� By comparison� the sampling of
the hyperparameters is dominated by the computation of the sum of the square of the

weights� as can be seen in Eqn� 	���� and by the computation of the total squared error
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of the network output �Eqn� 	����� The former takes O�j�j�� while the latter costs only
O�Nc� since the network error has already been computed at the end of the last leapfrog

step for the Metropolis rejection test� So� both can be neglected when compared to the

compute time required for a leapfrog step� The computation of the stepsizes is also free

by comparison because its summation over training cases �Neal� ����� Appendix A� can

be factored out and computed at the very beginning of the program� Thus� each super�

transition in the old method is approximately dominated by the leapfrog steps� each of

which takes � pair of forward�backward sweeps� each of which takes O�Ncj�j� compute
time� We summarize this along with the compute times for the new methods in Table

����

Hyperparameter updates by Network passes per leapfrog step

Gibbs �

Dynamical A 


Dynamical B �

Table ���� For a detailed explanation of the number of passes required for the two

dynamical methods� please refer to Section 
���

Because of the results in Table ���� the Dynamical B method is only allowed a third

as many leapfrog steps per super�transition as the old method� while the Dynamical A

method is allowed half� These measures ensure that each super�transition uses approxi�

mately the same amount of compute time regardless of method�

��� Markov chain start states

����� Master Runs

As mentioned earlier� each chain is started from a state chosen from equilibrium� To

obtain the starting points for a particular network� a very long run was done using the



Chapter �� Results 



old method� typically resulting in several hundred thousand to a million or more samples�

Any initial portion of the run not in equilibrium was discarded� and starting points were

then obtained from the remaining samples� These starting states were spaced many

ine�ciency factors apart so that they are likely to be nearly independent points that

represent the posterior distribution well�

The long run was done with a relatively small stepsize adjustment factor so that the

rejection rate is low �around �$�� This is because chains using large stepsize adjustment

factors may sometimes be unable to enter certain regions of state space where its rejection

rate is high� The reason for this is because� once it enters� it is likely to stay there for a

long time due to its high rejection rate� Because it remains stuck there for a long time�

it follows that it is unlikely to enter that region in the �rst place� Thus� using a low

rejection rate reduces the risk of overlooking such regions�

Long runs were obtained for networks with �� ��� �� and �� hidden units� Table ���

shows the prior settings used for these networks� while table ��
 tabulates the various

run settings used� the number of samples obtained� and the resulting rejection rate�

Hidden units �
� �

�

� �
� �

�

u �
� �

�

v �
� �

�

a �
� �

�

b �� �u �v �a �b

� ���� ���� ��
� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ��	
 ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ��	� ���� ���� ���� ���� ���� ���� ����

�� ���� ���� ����� ���� ���� ���� ���� ���� ���� ����

Table ���� Prior settings for the neural net architectures tested�

In order to ensure that our start states are from the equilibrium distribution� the

hyperparameters from the master runs were visually checked for the absence of long

term trends�
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Hidden units l � No� of samples Rejection rate

� 
�� ��	� ������ ����$

�� 
�� ��	� ������ 
���$

�� 
�� ���� 	������ ��
�$

�� 
�� ���
 
����� ����$

Table ��
� Tuning parameter settings� number of samples collected and rejection rates�

Rejection rates were chosen to be relatively low to reduce the risk of not being able to

enter regions where the rejection rates are high� For all the runs� only one sample was

saved for every ��� samples collected�

����� Starting States Used

Variance of means measures were obtained for networks with �� ��� �� and �� hidden

units� This requires several Markov chain starting states for each number of hidden units�

This section shows in detail how these states were obtained�

Table ��� shows the ine�ciency factors of log �u� as that was found to be the slowest

moving hyperparameter� i�e�� it had the highest ine�ciency factor� We use �� to denote

�
� �

�

� � It is the hyperparameter expressed as a standard deviation and is often easier to

understand� We compute the ine�ciency factor of log �� rather than simply �� as the

ine�ciency factor is then the same regardless of what power �� is raised to� thus removing

any questions as to whether it is more appropriate to measure the ine�ciency factor of

the variance or the standard deviation�

As each chain used in the variance of means measure should be started from an

independent point� we use samples from the master run spaced many ine�ciency factors

apart�

All the variance of means measures were computed using �� chains� The start states

of the �rst 
� chains are evenly spaced according to Table ���� It was decided to add ��

more chains because it was empirically observed that the di�erent methods seem to do
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very di�erently on chains starting at large log �u and log �a� large meaning greater than 


in this case� Speci�cally� it appeared from the �rst 
� chains that the old method and the

Dynamical A method do badly on chains starting at large values of these hyperparam�

eters� whereas the Dynamical B method does well� Because such large hyperparameter

values appear rarely in the posterior distribution� there are few of them among the 
�

chains� so assuming that they do have an important e�ect on the results� it is necessary

to oversample the region with large values of log �u and log �a and then downweight

those points accordingly in the computation of the variance of the means� Otherwise�

one might by chance compute the variance of means without any chain starting at large

values of those hyperparameters� and erroneously conclude that all the methods perform

similarly�

Hidden

units
Tu

Start state separation

�samples�

Start state

separation �Tu�s�

Initial samples

dropped

� 	�� ����� 	� �

�� 

� ����� �� �

�� ���� ����� �� �

�� 

� ����� �	 �

Table ���� First 
� starting states are drawn so that they are many ine�ciency factors

Tu apart� Tu is the ine�ciency factor of log �u�

To ensure that we have a decent number of points from the region G satisfying

log �u 
 
 or log �a 
 
 or both� it was decided to stratify the starting points so that 
�

of them are outside G and �� are inside� Of the �rst 
� points chosen according to the

separations in Table ���� some are already in G� So� the choice of points 
� through ��

was done as follows� for each number of hidden units� we chose enough additional points

in G so as to make them total �� in number� and we also chose enough points outside of

G so as to obtain 
� of them�
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To obtain these �� new points� a long sequence of many points was obtained from

the master �le at �xed separations �always at least 	 ine�ciency factors�� For �� and ��

hidden units� the �� new points were obtained past the end of the portion of the master

run used to obtain the �rst 
� starting states� for � and �� hidden units� the new points

used the portion already used for the �rst 
� states� and beyond if available� taking care

to always maintain at least 	 ine�ciency factors from the �rst 
� points� This sequence

was then uniformly sampled to obtain the desired number of points in G and points

outside of G�

����� Modi�ed Performance Measures Due to Strati�cation

The strati�cation of the starting states does change the calculation of the variance of

means measure and its error somewhat� For NG equal to the number of points taken

from region G and NG the number of points taken from outside� the variance of means

within each stratum for hyperparameter �u is�

�u�G �
�

NG

NGX
i��

�log �iu� 	 log �u 
�
�

�u�G �
�

NG

NmX
i�NG��

�log �iu� 	 log �u 
�
�

������

so that the overall variance of means that takes strati�cation into account is�

�u � ��� p��u�G ! p�u�G ������

where p is the fraction of the posterior distribution in region G�

For error estimates of the variance of the means� we compute the variance of the

above as before� which is similarly computed as the weighted sum of the error variances

computed separately for each strati�cation�

Var��u� � ��� p��Var��u�G� ! p�Var��u�G� ������
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Hidden units p

� 
���$

�� ����$

�� 
���$

�� 
���$

Table ���� Estimated fraction of the posterior distribution in region G for each number

of hidden units� Region G is de�ned as the region for which log �u 
 
 or log �a 
 
 or

both�

The above expressions correct for the oversampling of G using p� Table ��� gives

estimates of these quantities from each master run�

It should be noted that we have assumed that p is known in the calculation of the

error bars of the variance of means measures� but really� all we have are estimates� This

simpli�cation introduces some inaccuracies into the error calculations� but it is not likely

to change our conclusions much� as we will see later�

One might question why the various values of p in Table ��� are quite di�erent� The

author has some empirical experience showing that G is a region of somewhat higher

rejection rate than normal �around ��$ for �� hidden units�� It is possible that some of

the master runs have ��s that are high enough that they enter G rarely enough to make

a di�erence in the estimates of p� This aspect of the experiment is di�cult to control� as

it is usually not possible to tell in advance what the regions with high rejection rates are

going to be� and if they will make a di�erence to the �nal variance of means estimates in

the end� Furthermore� if such regions are identi�ed after obtaining master runs� it can

be very costly computationwise to redo the master runs at a smaller setting of ��

Finally� the bootstrap procedure takes the strati�cation into account as follows� the

�rst 
� chains in Z� are sampled uniformly with replacement from the �rst 
� chains in

Z� while the last �� chains in Z� are sampled uniformly with replacement from the last
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�� chains in Z� This ensures that each realization Z� is obtained from the same empirical

distribution represented by Z�

��� Number of Leapfrog Steps Allowed

In accordance with the deemed ratios of computation involved in each super�transition

for the various methods �Table ����� di�erent numbers of leapfrog iterations were used

for each Markov chain� These are listed in Table �����

Hyperparameter updates by Leapfrog steps per chain

Gibbs ��

��

Dynamical A 	�
���

Dynamical B ��
��


Table ����� The varying numbers of leapfrog steps that were allowed per Markov chain

in accordance with the ratios of computation involved in each super�transition for the

various methods as listed in Table ���

�

��
 Results of Performance Evaluation

The optimal tuning parameter settings for each method and for each number of hidden

units were assessed from Figs� ��� to ����� The optimal tuning parameters thus obtained

are given in Table ����� The corresponding g�s and variance of means and rejection rates

obtained at these optimal settings but in new runs with new random seeds are given in

Table �����

As can be seen from Table ����� the optimal setting of � for the Gibbs and Dy�

namical A methods tends to drecrease with increasing hidden layer size� Dynamical B�

interestingly� increases with increasing hidden layer size�
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Figure ���� � hidden units� a circle is drawn at the optimum point� and the surface as

a function of l and � are backprojected on to the walls at optimal � and l respectively�

Note that the vertical scale is inverted�
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Figure ����� �� hidden units� a circle is drawn at the optimum point� and the surface as

a function of l and � are backprojected on to the walls at optimal � and l respectively�

Note that the vertical scale is inverted�
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Figure ����� �� hidden units� a circle is drawn at the optimum point� and the surface as

a function of l and � are backprojected on to the walls at optimal � and l respectively�

Note that the vertical scale is inverted�
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Figure ����� �� hidden units� a circle is drawn at the optimum point� and the surface as

a function of l and � are backprojected on to the walls at optimal � and l respectively�

Note that the vertical scale is inverted�



Chapter �� Results �


Hyperparameter updates by Hidden units l � Rejection rate

Gibbs � ��� ��
�� ���$

Dynamical A � �� ���
� 
���$

Dynamical B � �		 ���
� ���
$

Gibbs �� ��� ��
�� ����$

Dynamical A �� ��� ��
�	 ���
$

Dynamical B �� �		 ����� ����$

Gibbs �� ��� ��
�� ����$

Dynamical A �� ��� ��
�	 

��$

Dynamical B �� �� ����� 	���$

Gibbs �� �� ����	 
��$

Dynamical A �� ��� ��	�� ����$

Dynamical B �� �
 ����� �
��$

Table ����� The optimal tuning parameters for each method and each number of hidden

units�

The values of g are plotted for each number of hidden units in Fig� ���	� The error

bars are big� and it is possible that there is essentially no di�erence in all the three

methods� However� there is some evidence that when the number of hidden units Nh is

increased to ��� the Dynamical B method begins to work better than the old method�

Note that the error bars in the �gure are ��$ con�dence intervals of the performance

measures� and do not take into account inaccuracies in assessing the optimal settings of

the tuning parameters� Thus� the real error bars are actually bigger by some unknown

amount�

From the graph� the Dynamical A method does not seem to perform that di�erently

from the other methods� except at �� hidden units� The cause of this seeming anomaly

at �� hidden units is discussed in the next chapter�
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The graph also shows that the Dynamical B method does not show any improvement

over the old method that is measurable given the size of the error bars� This is unfor�

tunate� However� the old method does seem to show a noticeable upward trend� while

the two new methods do not� This suggests that the old method is becoming more and

more ine�cient as the number of hidden units Nh increases even though the compute

time given to it is also increasing linearly with Nh� Thus� the graph suggests that the

compute time required to maintain the same level of performance as measured by g grows

superlinearly with Nh for the old method� On the other hand� the two new methods ap�

pear more likely to be either linear or sublinear� although it is di�cult to tell for certain

with the limited number of data points and the noise�

The size of the error bars impedes our analysis of the results� In the next section�

we show how we can perform bootstrapping on pairwise comparisons to obtain clearer

indications of how one method does compared to another�

��� Pairwise Bootstrap Comparison

To more sensitively compare how two methods perform� we can compute the ratio of g�s

for two di�erent methods� and use bootstrapping to obtain a con�dence interval for that

ratio� Here� a bootstrap realization is a choice of �� Markov chain start states rather

than Markov chains� as the chains themselves di�er for the two methods� This couples

the g�s for the � methods together� causing them to be evaluated at the same Markov

chain start state for each bootstrap realization� In this way� we might be able to better

distinguish between good and bad methods� For example� we might see that one method

always has a higher g than another when started from the same point even though their

individual g�s wander over a large range for di�erent bootstrap realizations so that the

error bars in the � g�s overlap signi�cantly�

In Fig� ����� we show these ratios with ��$ con�dence intervals obtained using ���
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Figure ���	� Comparison of g between the three methods at the optimal setting of the

tuning parameters as the number of hidden units increases� Crosses are the old method�

triangles are the Dynamical A method� and circles are the Dynamical B method� Error

bars terminate with the same symbol that represents each point� These error bars rep�

resent ��$ con�dence intervals� and do not take into account the error in the estimation

of the optimal tuning parameters� Thus� the true error bar is greater than those shown�
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Figure ���
� Comparison of optimal performance of the three methods as the number

of hidden units increases� Error bars terminate with the same symbol that represents

each point� These error bars are the standard deviation in the each variance of means

measure� and do not take into account the error in the estimation of the optimal tuning

parameters� Thus� the true error bar is greater than those shown�
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boostrap samples� From Fig� ����a� it seems fairly convincing that Dynamical B works

better than the old method for �� hidden units� Fig� ����b suggests that Dynamical

B tends also to work better than Dynamical A� while Fig� ����c is inconclusive on the

relative performances of Dynamical A and the old Gibbs method� However� we should

note that that there is some uncertainty in the error bars due to the fact that we might

not really have found the true optimal settings of the tuning parameters� Also� the ��

Markov chains we used might not have been enough to capture all the important regions�

Thus� even though the pairwise comparisons might suggest that Dynamical B works

better than the Gibbs method for �� hidden units� it is better to be cautious and conclude

that Dynamical B may work better than Gibbs� and if it does� it is not by much�

Now that it is clear that Dynamical B is not as good as one might hope� the question

is� why is that� and can it be made to go faster� We address these questions� as well

as the question of Dynamical A�s large error bars in g at �� hidden units� in the next

chapter�
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Figure ����� Pairwise comparisons of the various methods obtained by taking the ratio

of g� Error bars represent ��$ con�dence intervals obtained using ��� bootstrap realiza�

tions� Dashed lines have been drawn at the level of �� which signi�es equal performance�
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Table ����� Variance of means performances obtained by re�running the various methods

with new random seeds at the optimal tuning parameter settings� Each error bar is the

standard deviation of its variance of means measure�
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�� Has the Reparameterization of the NetworkWeights

Been Useful�

As we saw in the last chapter� the Dynamical A method seems to perform comparably to

Dynamical B except for �� hidden units� Upon closer examination� we see that the large

value of g for the Dynamical A method at �� hidden units is due to it not performing

well for some Markov chain starting states with large hyperparameter values for log �u

and log �a� i�e�� the second stratum� This can be seen in Fig� ���� and is a manifes�

tation of Dynamical A�s inability to move e�ciently between large and small values of

hyperparameters� This e�ect is less pronounced for �� hidden units probably because

the starting states in the second strati�cation are less extreme in value� As mentioned

before� this is an aspect of the experiment that is di�cult to control� Nevertheless� our

present results indicate that the Dynamical A method should be avoided because it may

move extremely slowly from some starting states�

��
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Figure ���� These plots compare how the various method fare on the �� Markov chain

starting states with large hyperparameters for �� hidden units� The circles show the ��

starting states with large hyperparameters� the crosses show the hyperparameter means

of all �� chains� while the dots show the means for the �� Markov chains that started

at the large hyperparameter values� Dashed lines connect each starting state with its

resulting mean�
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�� Making the Dynamical B Method Go Faster

As we saw in the last chapter� the Dynamical B method o�ers only a small improvement

over the old method� if any at all� The question then is� why�

The key may lie in the rejection rates� As can be seen in Fig� ���� the rejection rates

of the Dynamical B method di�er from those of the old method and the Dynamical A

method in that it shows a signi�cant increase with leapfrog trajectory length l�

The primary motivation for the new methods is to allow the hyperparameters to be

updated with the parameters during the course of a leapfrog trajectory� For this to

explore the posterior distribution e�ciently� long trajectory lengths are necessary� As

we can see from Fig� ���� the Dynamical B method ended up having rejection rate

characteristics that penalizes long trajectory lengths with high rejection rates� Thus� the

optimal setting of l is not as long as we might like�

With this observation in mind� if we can �nd out why the Dynamical B method has

this behaviour� we might be able to �x it� The next section formulates a simple model

that accounts for this increase in rejection rate with l�

����� Explanation for the Rising Rejection Rates

If the stepsizes were in�nitesimally small� the leapfrog trajectories would simulate Hamil�

tonian dynamics perfectly� and the rejection rate would be zero� However� they are not�

and are furthermore calculated by heuristics that may yield inappropriate values some�

times� This leads to rejection behaviour that a�ects the rate at which the Markov chain

explores the state space�

There are two qualitatively di�erent ways by which a leapfrog proposal under the

Dynamical B method may be rejected� In the �rst way� the leapfrog simulation of the

Hamiltonian dynamics is stable and H varies over a small range due to the discrete

nature of the simulation� At the end of the trajectory� the distribution of H over this
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Figure ���� Rejection rates versus trajectory length l for �� hidden units�
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small range determines the rejection rate� In the second way� the leapfrog simulation

becomes unstable at some point during the trajectory due to the heuristics yielding

stepsizes inappropriate for that region of state space� The e�ect of this is catastrophic

because the simulation is almost never able to recover� the value of H either diverges

or moves to a much higher value� resulting in near certain rejection� H has a much

greater tendency to move to a higher rather than a lower value because stepsizes that

are inappropriately large may still be stable in a wider orbit�

To illustrate this instability� H is plotted in Fig� ��	 for �� trajectories started from

the same state but with di�erent randomly�selected initial momenta� We see that once

an instability can occur at any time� and once it occurs� recovery is virtually impossible�

and will lead to near�certain rejection at the end of the trajectory� The cumulative e�ect

of risking a grossly wrong stepsize with each step is that� for very long trajectories� the

probability that we manage to get to the end without once having experienced a catas�

trophic instability is tiny� Therefore� the rejection rate should increase with trajectory

length� This explains the observed increase of the rejection rate with l for Dynamical B�

Another view of the instability of H is shown in Fig� ��
� which shows how the

distribution of H broadens with increasing number of leapfrog steps�

The old method� which updates the hyperparameters by Gibbs sampling� is not prone

to this cumulative rejection e�ect as its stepsize is not being constantly recalculated

during a trajectory� Even if its stepsize heuristic gives inapporpriate stepsizes with too

high a probability� the stepsizes are computed only once at the beginning of the trajectory�

and a good stepsize will tend to lead to a stable trajectory no matter how long it is� Such

long trajectories then become unstable only by entering a region for which its stepsizes are

inappropriate� This e�ect leads to rejection rates that increases with l as� the longer the

trajectory� the more likely such regions are encountered� However� the fact that rejection

rates for the old method show very little dependency on l �see Fig� ���� indicates that

entry into such regions happens very rarely� Thus� for the old method� most rejections
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Figure ��	� H plotted over �� trajectories started from the same state but with di�erent

initial momenta� Each trajectory has ����� leapfrog steps� As each trajectory progresses�

it may become unstable� If it does� H usually rises catastrophically� A transition to

in�nite H is shown here as a transition to �� � was set at ���
�� and a network of �

hidden units was used�

are due to the normal deviation of H away from its initial value�

That the repeated stepsize calculations handicaps the Dynamical B method with its

cumulative rejection e�ect might be cause for pessimism� However� the fact that the

Dynamical A method achieves fairly �at rejection rates �Fig� ���� shows that the rise

in rejection rates is not an inescapable cost of calculating the stepsizes before each step�

rather� with appropriate stepsize heuristics� it might be possible to achieve �at rejection

rates even in the Dynamical B method�

The stepsize heuristics used in the Dynamical B method for the parameters are the

same as that used in the old method� so they are unlikely to be the cause of the catastroph�

ically wrong stepsizes� We expect that it is the stepsize heuristics for the hyperparameters

that is at fault� The next section seeks to con�rm this�
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Figure ��
� The distribution of H broadens as a trajectory progresses� In�nity is binned

at � in these histograms� �� trajectories� all started at the same state but with di�erent

initial momenta� were used to generate these histograms� � was set at ���
�� A network

of � hidden units was used�
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����� The Appropriateness of Stepsize Heuristics

If a stepsize is inappropriately large and leads to instability� then perhaps a smaller

stepsize half as large might not� If� for example� the parameter stepsizes are sometimes

inappropriate� then under a leapfrog discretization where the hyperparameter update re�

mains the same but where each parameter update is split into two consecutive updates�

each with half the stepsize adjustment factor� the acceptance probability p should in�

crease� since the parameter update is now closer to the true Hamiltonian dynamics� On

the other hand� if the parameter stepsizes are usually appropriate and it is the hyperpa�

rameter stepsizes that are at fault� then the rejection rate should not change much�

As shown in Fig� ���� when the parameter updates were split� the rejection rates

did not change� while they dropped when the hyperparameter updates were split� This

indicates that the hyperparameter stepsizes calculated according to the current heuristics

are often inappropriate� Fig� ��� was obtained by averaging the rejection rates over a

small number of Markov chains run at various settings of l with � � ������ A network

with � hidden units was used� along with the training data from the last chapter� The

Markov chain starting states were chosen from the ones used in the tests in the last

chapter� with momenta randomly initialized from the unit normal distribution�

To remedy the inappopriateness of the hyperparameter stepsizes� it is possible that

the stepsize heuristics for the hyperparameters needs to be changed� On the other hand�

it is also possible that some setting of �h 	 �p rather than �h � �p is all that is necessary�

In the next two sections� we explore these two possibilities�

����� Di	erent Settngs for �h��p

In this section� we report the results of some experiments to test the possibility that

some setting of �h 	 �p can �atten the rejection rate versus l curves without us having

to change the stepsize heuristics�
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Figure ���� E�ect on rejection rates of splitting either the parameter updates or the

hyperparameter updates into two while using the Dynamical B method� Here� �h � �p �

������ This plot was obtained using a network with � hidden units�

We used a network with �� hidden units and the training data from the last chapter�

�� Markov chains were run at various trajectory lengths l with �p � ��	� and ���
� and

�h � �p����� The Markov chain starting states were taken from the states used for the

tests in the last chapter� and the momenta were randomly initialized from a unit normal

distribution� The resulting rejection rates averaged over the �� chains are plotted in Fig�

���� Compared to the case when �h � �p� the rejection rates do not rise as fast as the

trajectory length increases�

This suggests that� by decreasing the ratio �h��p� it may be possible to gain enough of

the advantage of having long trajectory lengths to o�set the smaller distances travelled

in each step due to the smaller �h�

The geometric mean performance measure g was also calculated at each setting of l�

It was found that the best value of g is ���
� which occurs at l � �
��
� �p � ��	�� This

value of g is considerably worse than the optimal one ����
	�� found for the Dynamical B
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Figure ���� These pictures show rejection rates for �� hidden units when di�erent ratios

of �h��p are used� The rejection rates do not rise as fast with increasing trajectory length

when �h is set to be smaller than �p� The �rst set of rejection rates were averaged over

�� Markov chains while the second were obtained using ���

method at this number of hidden units� So we see that� even though we are able to take

much longer trajectories with smaller �h��p� the smallness of �h may erase our advantage�

It is possible that some other setting of �p� or some other ratio of �h��p does better than

setting g � ���
	�� but this question will not be explored further in this thesis due to

time constraints� The key conclusion of this section is that smaller ratios of �h��p can

�atten the rejection curve and may be more advantageous than simply setting �h � �p�

����� Fine Splitting of Hyperparameter Updates

Apart from setting a low ratio for �h��p� we conjecture that� with su�ciently good

heuristics� we should also be able to get the rejection rate to stay �at as l increases� To

test this� we split the hyperparameter updates into ��� �ne updates �many more than

the two before�� The reason for doing this is that the more stable trajectory obtained by

the splitting may roughly model what a good heuristic gives�
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Figure ��
� E�ect on rejection rates of splitting the hyperparameter updates into ���

updates while using the Dynamical B method with �h � �p � ������ Compared to the

normal unsplit updates� rejection rates are now much lower� The network used here has

� hidden units�

The split hyperparameter updates were tried on a network with � hidden units� using

the same training data as in the last chapter� and using �� Markov chain starting states

taken also from the tests conducted in the previous chapter� Momenta were randomly

initialized from a unit normal distribution� The �� Markov chains were run at � � ����

with various values of l� Fig� ��
 shows that the resulting rejection rates for runs with

split hyperparameter updates still increases with l� but its rate of increase is much gentler

now� increasing about one order of magnitude from about �$� This is much better than

the rejection rate obtained from the normal unsplit updates� which we contrast in the

same �gure� The unsplit updates do worse even for � less than half the size�

This suggests that� with su�ciently good heuristics� trajectories might be able to go

far enough to truly reap the advantages of updating the hyperparameters dynamically�
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����� Why the Stepsize Heuristics are Bad

A possible explanation for why the hyperparameter stepsize heuristics do not work well is

that we cannot use the current values of the hyperparameters to compute their stepsizes�

As we are unable to get an estimate of them from the weights due to their reparame�

terization� we are forced to use their prior means� which are not necessarily very good

estimates�

In retrospect� this should have been obvious� The backpropagation of the second

derivative of the likelihoods multiplies together the hyperparameter variances of each

layer of weights that it propagates derivatives through� For instance� the second deriva�

tive of the likelihood with respect to the input to hidden weight hyperparameter �u is

proportional to ����u�v�� the product of the prior variances of the hidden to output

weights and the input to hidden weights� In an � hidden unit run� our settings were such

that ����u�v� � ���� Yet� from Fig� ���� it is clear that� as the Markov chain ranges over

the posterior distribution� the product of these two variances can actually range up to

e�� � ���
 ��� or more� Clearly� ��� as an estimate of ���
 ��� is bad� This can lead to
stepsizes which are �����e������
� � ���� times larger than what they would have been

if we had used the actual values of the hyperparameters�

The Dynamical A method does not su�er from this multiplicative e�ect of wrong

hyperparameter estimates as its neural network function does not depend on the hyper�

parameters� so there is no need to do backpropagation of second derivatives� Indeed� the

second derivative of the potential energy in Eqn� 
�� is proportional to just the precision

of the hyperparameter� so if our estimate of the hyperparameter is k times too small� the

stepsize is only going to go up by a factor of
p
k� Furthermore� the parameters contain

information about the value of the hyperparameter� the Dynamical A method estimates

a hyperparameter as its posterior mean given its weights�
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����� Other Implications of the Current Heuristics

The fact that the current heuristics uses the prior means of the hyperparameters as esti�

mates of the hyperparameters themselves during stepsize calculations has the implication

that� when the Dynamical B method is used� the prior means must be carefully selected

to be close to values where the hyperparameters have high posterior probability� This

allows the stepsizes to be accurate when moving about in areas of high posterior proba�

bility� If the prior means are badly set� exploration of the posterior is expected to become

very ine�cient�

A hybrid Monte Carlo method that computes bad stepsizes in some region of state

space may usually be unable to enter that region because it rejects once a trajectory

enters it� Furthermore� once having entered that region� it is obliged to stay in there a

long time �through its high rejection rate in that region� in order to compensate for its

inability to enter that region in the �rst place� This leads to high autocorrelations�

We might ask if the B method actually su�ers from this problem� If it does� it

is small� as an e�ect like this was not noticed� the marginal posterior distributions of

the hyperparameters obtained by the B method matches those from the old �Fig� �����

However� this is no guarantee that it will work similarly well for other problems�


�� Conclusion

In this thesis� we have introduced a new way of learning the hyperparameters in a neural

network model using Hamiltonian dynamics� We have presented two versions of the new

method� the Dynamical A method� and the Dynamical B method� which is the former

with weights reparameterized to enhance movement between large and small values of

the hyperparameters� We have also developed performance evaluation methodologies

that measure the rate of exploration of the posterior while accounting for the di�erent

compute times required for the di�erent methods� The observation that some parts of
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state space might have a large e�ect on the results then led us to a strati�ed version

of the performance measures� After extensive testing� we have found that these same

regions of state space can cause Dynamical A to become very ine�cient for the reasons

that led us to formulate Dynamical B� However� we have also shown that Dynamical B

does not show a measurable performance improvement over the old method�

The Dynamical A method as it currently stands su�ers from expected ine�ciencies�

but it was hoped that Dynamical B would overcome them and yield better performance�

Instead� there is currently no reason to recommend either new method over the old one�

We strongly believe that the Dynamical B method�s Achilles� heel is the fact that

its rejection rate increases with trajectory length� If longer trajectories can be achieved

while keeping rejection rates low� it is expected that the Dynamical B method can become

signi�cantly faster� To achieve this� future work might focus on an improved parameteri�

zation of the weights and&or more accurate hyperparameter stepsize heuristics� Also� the

stepsize heuristics can potentially be simpli�ed to allow more leapfrog steps to be taken�

Ultimately� our e�orts are being hampered by the fact that the volume of the state

space under the posterior having large hyperparameter variance is huge and low density�

while the region having small hyperparameter variance is small and very high density�

and hybrid Monte Carlo does not move well between these two types of regions� Doing

nothing about this leads to the Dynamical A method� which we have shown can have

severe ine�ciencies in certain regions� On the other hand� our e�ort to reparameterize

the weights to tackle this problem leads to the hyperparameters being confounded with

the weights in the computation of the network output� and that is the cause of our

inability to have long trajectories while keeping rejection rates down� It may be that we

are pushing against the inherent limitations of the hybrid Monte Carlo method here� but

we nevertheless hope that further work will overcome the present di�culties�



Appendix A

Preservation of Phase Space Volume

Under Hamiltonian Dynamics

Here� we show the well�known result that Hamiltonian dynamics keeps the Hamiltonian

H as well as phase space volume constant�

Hamiltonian dynamics is characterized by�

'q �
�H

�p

'p � ��H
�q

�A���

where q and p are the state and the momentum variables respectively�

The following shows that Hamiltonian dynamics keeps H constant�

dH

dt
�
�H

�q
'q !

�H

�p
'p

�
�H

�q

�
�H

�p

�
!
�H

�p

�
��H
�q

�

� �

�A���

To show that Hamiltonian dynamics conserves phase space volume� consider the phase

space �ow � 'q� 'p�� which de�nes a vector �eld in the phase space �q� p�� The fact that phase

���
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space volume is conserved is due to the fact that the divergence of this vector �eld is ��

r� 'q� 'p� � �

�q
'q !

�

�p
'p

�
�

�q

�
�H

�p

�
!

�

�p

�
��H
�q

�

�
��H

�q�p
� ��H

�p�q

� �

�A�	�



Appendix B

Proof of Thorem �� Deterministic

Proposals for Metropolis Algorithm

Here� we prove Theorem � from Section ��	���

First� we need the following de�nition�

De�nition � �Detailed Balance
 We say that the transition probabilities T �x�A� de�

�ned for all points x and all sets A satis�es detailed balance with respect to the density

��x� if� given any two sets A and B�

Z
A

��x�T �x�B�dx�

Z
B

��x�T �x�A�dx �B���

In words� the detailed balance condition says that� in equilibrium� the probability of

starting in A and moving to B in one transition is exactly equal to the probability of

starting in B and moving to A�

Recall that to say that a Markov update leaves a distribution ��x� invariant is to say

that the total probability mass ��A� in some arbitrary set A is unchanged by the Markov

transition� That is�

Z
R

��x�T �x�A�dx � ��A� �B���

��
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A

B’

B

A’

M(A)

M(B)

Figure B��� A maps to A� under M � and B maps to B � under M �

where R is the state space�

It is easy to see that if a Markov transition satis�es detailed balance with respect to

��x�� then it leaves ��x� invariant� we need only set B to R to see this� Thus� we only

need to prove that the Metropolis algorithm with deterministic proposals satisfying the

two conditions in Theorem � yields Markov updates that satisfy detailed balance with

respect to the desired distribution ��x�� That is our aim in the below discussion�

Consider the deterministic mapping M � R� R� Let A � R and B � R� Under M �

the image of A might in general have some part outside B� and the image of B might

have some part outside A� as shown in Fig� B���

Assume that the mappingM��� is the inverse of itself so thatM�M�x�� � x� we must

have that the M�A � B�� � B � A�� Suppose not� Then� there is a point x � A � B�

that maps into B � A�� which we show as �M�x�� in Fig� B��� �M�x� must be in A� as

x � A�� But the fact that x is in B� means that it is the image under M��� of some point
y in B� so thatM�y� � x� If indeed x maps on to the point �M�x��� thenM�M�y�� 
� y�

for y is in B but �M�x�� is not� Since this violates the assumption that M��� is its own
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x
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Figure B��� x � A �B� must map onto B �A��

inverse� we conclude that M�A �B �� � B �A�� Note that M�B �A�� � A�B� also due

to the self�inverting assumption on M����

With this fact in hand� we are ready to show how to achieve detailed balance for the

Metropolis algorithm� We assume self�inverting deterministic proposals� Since the total

probability mass �owing from A to B takes place in the �ow from A�B�� we can rewrite

the left hand side of Eqn� B���

Z
A

��x�T �x�B�dx�

Z
A�B�

��x�T �x�B�dx

�

Z
A�B�

��x�min

�
��
��M�x��

��x�

�
dx

�

Z
A�B�

min���x�� ��M�x���dx

�B�	�

where we have used theMetropolis transition probability T �x�B� � min��� ��M�x�����x���
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We can then rewrite the right hand side of Eqn� B���

Z
B

��y�T �y�A�dy �

Z
B�A�

��y�T �y�A�dy

�

Z
B�A�

��y�min

�
��
��M�y��

��y�

�
dy

�

Z
M�A�B��

��y�min

�
��
��M�y��

��y�

�
dy

�

Z
M�A�B��

min���y�� ��M�y���dy

�

Z
A�B�

min���M�x��� ��M�M�x����

�����y�x
����dx �using y �M�x��

�

Z
A�B�

min���M�x��� ��x��

�����y�x
����dx

�B�
�

Comparing the expressions resulting from manipulating the left and the right hand

sides of the detailed balance condition� we see that they are equal if the Jacobian

j�y��xj � �� Thus� detailed balance with respect to ��x� is achieved if the Metropolis

algorithm is used with deterministic proposals that are reversible �self�inverting� and that

have Jacobian �� and we are done�
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Preservation of Phase Space Volume

Under Leapfrog Updates

In this Appendix� we show that leapfrog updates preserve phase space volume�

Consider the simultaneous update of � variables such that each update does not

depend on the variable it updates� but depends on the value of the other variable�

x� � x! f�y�

y� � y ! g�x�

�C���

It can easily be shown that the Jacobian of such an update is � � f ��y�g��x�� so the

update does not preserve phase space volume in general� On the other hand� consider

two sequential updates where each update also depends on the variable updated by the

other only� but the updates are performed one after another�

x� � x! f�y�

y� � y ! g�x�� � y ! g�x! f�y��

�C���

The Jacobian of such an update can be shown to be identically equal to �� and so

it preserves phase space volume� This is simply a demonstration of the fact that each

sequential update of a variable that does not depend on itself amounts to a shear in the

���
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direction of that variable� Thus� each sequential update preserves phase space volume�

and indeed� a chain of such updates does as well�

The leapfrog updates are�

pi�t!
�

�
� � pi�t�� �

�

�E

�qi
�q�t�� for each i � ���d

qi�t! �� � qi�t� ! �
pi�t! ����

mi
for each i � ���d

pi�t! �� � pi�t!
�

�
�� �

�

�E

�qi
�q�t! ��� for each i � ���d

�C�	�

The update for p appears to be simultaneous in that pi is updated without reference

to any newly�updated components of p� However� in the leapfrog update� the update of

each pi does not actually depend on any other component of p� so the update of each pi

can be viewed as being sequential and conserving phase space volume� The same applies

to qi�
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