Updating OLAP Dimensions

Carlos A. Hurtado Alberto O. Mendelzon Alejandro A. Vaisman
chl@db.toronto.edu mendel@db.toronto.edu av2n@d.c.uba.ar
University of Toronto University of Toronto Universidad de Buenos Aires

Abstract

OLAP systems support data analysis through a multidimensional data model, according to which data facts are viewed as points in a space of application-related "dimensions", organized into levels which form a hierarchy. Although the usual assumption is that these points reflect the dynamic aspect of the data warehouse while dimensions are relatively static, in practice it turns out that dimension updates are often necessary to adapt the multidimensional database to changing requirements. These updates can take place either at the structural level (e.g. addition of categories or modification of the hierarchical structure) or at the instance level (elements can be inserted, deleted, merged, etc.). They are poorly supported (or not supported at all) in current commercial systems and have not been addressed in the literature. In a previous paper we introduced a formal model supporting dimension updates. Here, we extend the model, adding a set of semantically meaningful operators which encapsulate common sequences of primitive dimension updates in a more efficient way. We also formally define two mappings (normalized and denormalized) from the multidimensional to the relational model, and compare an implementation of dimension updates using these two approaches.

1 Introduction

The term OLAP (On Line Analytical Processing) refers to data analysis over large collections of historical data (data warehouses), in order to support the decision-making process, allowing the analyst to perform analysis of factual data (e.g. daily sales in the different branches of a supermarket chain) according to dimensions of interest (e.g. regions, products, stores, etc.). Data is often stored in OLAP servers, and client tools are provided by vendors, in order to facilitate visualization. These servers can be either relational databases (ROLAP) or multidimensional databases, which store data in proprietary multidimensional arrays (MOLAP).

Several works have proposed formal models for OLAP applications [1, 3, 2]. Most of these are based on the original idea of the "star schema," [7] in which data is stored in a set of dimension tables and fact tables. The usual assumption here is that data in the fact tables reflect the dynamic aspect of the data warehouse, whereas data in the dimension tables represent basically static information about the "dimensions" according to which factual data will be analyzed. However, in practice, the evolution of the information stored in the warehouse requires the update of some of the dimensions. For instance, if we think of the data warehouse as a materialized view of data located in multiple sources [10], we can imagine a situation in which the structure of these sources changes, or a new source is added, or an old one dropped. Any of these changes may require updates to the structure of some dimensions. Further, as multidimensional views are designed according to requirements from end users (a point highly emphasized in many industrial white papers [6, 9]), a redefinition of the initial requirements may cause a dimension update.

In a previous work [5] we introduced a multidimensional model that includes a framework for dimension updates and a set of primitive dimension update operators. Here we present a set of semantically meaningful complex operators that encapsulate common sequences of primitive ones, leading to a more efficient implementation. We also sketch algorithms for implementing both the primitive and the complex operators in a ROLAP star schema environment, and compare two different approaches, normalized and denormalized dimension tables, from the point of view of dimension update algorithms.

The contributions of this paper are: (a) an extension of the multidimensional model formerly introduced [5], with a set of complex operators which can be implemented more efficiently than equivalent sequences of primitive operators; (b) a mapping from the multidimensional to the relational model, using two different approaches: normalized and denormalized dimension tables, and some properties of these mappings; (c) an algorithmic definition of the dimension update operators, which we use to compare how the two relational representations behave under dimension updates.
The rest of the paper is organized as follows: In Section 2 we review the multidimensional model supporting dimension updates, and we introduce the new update operators. In Section 3 we present and discuss the implementation of the dimension update operators using two possible relational representations for the multidimensional model: normalized and denormalized dimension tables. We conclude in Section 4, summarizing the paper and commenting on our future research directions.

2 Dimension Update Operators

2.1 Dimension Modeling

In this section, we give an overview of the data model which was introduced in a former work [5]. We refer the interested reader to that work, where she/he will find a complete description of the model.

Assume the following sets: a set of level names L, where each level \(l \in L \) is associated with a set of attributes \(dom(l) \); a set of attribute names A with an associated domain \(dom(a) \); a set of dimension names D; and a set of fact table names F.

We start by defining the notion of dimension schema which is a DAG (Directed Acyclic Graph), representing the multiple hierarchy of levels of the dimension.

Definition 1 (Dimension Schema) A dimension schema is a tuple \((\text{dname}, L, A, \leq, \rightarrow) \), where \(\text{dname} \in D \) is the name of the dimension, \(L \subseteq L \) is a set of levels, which contains a distinguished level name \(\text{All} \), such that \(dom(\text{All}) = \{ \text{All} \} \), \(\leq \) is a relation over levels, such that \(\leq^* \), its transitive and reflexive closure, is a partial order, with a unique bottom level, called \(l_n\), a unique top level, \(\text{All} \), and, for every level \(l \in L \), \(l \leq l \) and \(l \leq^* l \) hold. Moreover, if \(l_n \) and \(l_n \) are levels in \(L \), and \(l_n \leq l_n \), then there is no level \(l \), distinct from \(l_n \) and \(l_n \), s.t. \(l_n \leq l_n \) and \(l_n \leq^* l_n \). Finally, \(A \subseteq A \) is a finite set of attributes, and \(\rightarrow \) is a function from attribute names to level names, s.t. \(a \rightarrow l \) means that \(\rightarrow \) is applied to an attribute \(a \), returns the level \(l \) the attribute belongs to.

An instance of a dimension is obtained by specifying a set of rollup functions, one for each edge in the dimension schema. An important feature of the model is that it allows the representation of so-called “incomplete dimensions”: dimensions where some levels do not have associated elements. For instance, we might want to add a brand but do not yet have products that belong to it.

Definition 2 (Dimension Instance) A dimension instance is a tuple \((D, \text{RUP}, \text{DESC}) \), where \(D \) is a dimension schema, \(\text{RUP} \) is a set of partial functions such that: (1) for each pair of levels \(l_1, l_2 \) such that \(l_1 \leq l_2 \), there exists a rollup function \(\text{RUP}_{l_1}^{l_2} : dom(l_1) \rightarrow dom(l_2) \) in \(\text{RUP} \); (2) for each triple of levels \(l_1, l_2, l_3 \in L \) such that \(l_1 \leq l_2 \) and \(l_2 \leq l_3 \), \(\text{ran}(\text{RUP}_{l_2}^{l_3}) \subseteq \text{dom}(\text{RUP}_{l_1}^{l_3}) \); and (3) \(\text{DESC} \) is a partial function with signature \(\text{DESC} : \text{dom}(l) \rightarrow \text{dom}(a) \), for each level \(l \) and attribute \(a \), such that \(a \rightarrow l \).

Definition 3 (Consistent Dimension Instance) We say that a dimension instance \((D, \text{RUP}, \text{DESC}) \), defined as above, is consistent, if for each pair of paths in the graph with nodes \(l_i \) in \(L \) and edges in \(\leq \), \(\tau_i = l_1, l_2, \ldots, l_{m-1}, l_m > l_n = l_m, \text{we have} \text{RUP}_{l_i}^{l_n} \circ \ldots \circ \text{RUP}_{l_{m-1}}^{l_m} = \text{RUP}_{l_i}^{l_n} \circ \ldots \circ \text{RUP}_{l_{m-1}}^{l_m} \).

In our model, we can summarize facts through levels, but not necessarily through attributes. The summarizability of facts through levels is always possible by the following constraints presented definitions 2 and 3:

- The range of every rollup function is a subset of the domain of the rollup functions above it. This means that any value in the lower level is mapped to some value in the upper level. Thus, a measure associated to it is not lost in the summary.
- Given two paths in the dimension schema starting and ending at the same level, the composition of the rollup functions must be the same. This ensures that in the common final level, each element belongs to a single class.

In what follows, dimension will stand for dimension instance, except when noted. We will also denote by \(\text{RUP}^* \) the set of rollup functions that indirectly relate for each pairs of levels \(l_m, l_n \in L \), \(l_m \leq^* l_n \), such that if \(l_m = l_n \), \(\text{RUP}^*_{l_n} = \text{id} \); otherwise, if \(l_m \ldots l_n \) is a path from \(l_m \) to \(l_n \), and in the graph with nodes in \(L \) and edges in \(\leq \), \(\text{RUP}^*_{l_n} = \text{RUP}^*_{l_{m+1}} \circ \ldots \circ \text{RUP}^*_{l_{m-1}} \).

It can be shown that rollup functions defined over the same level must have the same domain, the set of all values at that level. More formally, given a dimension instance, for each triple of levels \(l, l', l'' \) of it, such that \(l \leq l' \) and \(l \leq l'' \), \(\text{dom}(\text{RUP}_{l'}^{l''}) = \text{dom}(\text{RUP}_{l'}^{l''}) \).

Given a dimension and a pair of levels \(l, l' \), such that \(l \leq l' \), the instance set of \(l \), or \(\text{instance}(l) \), is the set containing the values in \(l \). Analogously, if \(c \) is an attribute, \(\text{instance}(c) \Rightarrow \text{ran}(\text{DESC}) \), where \(l \) is a level such that \(c \rightarrow l \).

It may appear, at first sight, that attributes and levels could be freely interchanged, making the distinction superfluous. However, there may be cases in which some elements \(i \in \text{instance}(l) \) have no rollup defined for them to another level \(l_j \), s.t. \(l_j \leq l_j \). Then, we could not define \(l_j \) as a dimension level, because, among other reasons, the summarizability property would be violated.

2.2 Primitive Update Operators

A summary of the primitive set of operators which we introduced in a former work [5] is presented in Figure 1. Operators dealing with attributes are straightforward, and we omit them.

2.3 Complex Update Operators

Many common changes to dimensions result in long sequences of primitive updates using only the operators defined so far. In this section we introduce complex
<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalize</td>
<td>Adds a new level above a pre-existing one, with a rollup function between the old and the new levels.</td>
</tr>
<tr>
<td>Specialize</td>
<td>Adds a new level below the current bottom level, which will become the new bottom level (l_{un}). A rollup function between them is also added.</td>
</tr>
<tr>
<td>Relate</td>
<td>Adds a new edge, between two parallel levels. The associated rollup function, if it exists, is determined automatically. If it is not possible to do so uniquely, the operator is not applicable.</td>
</tr>
<tr>
<td>Unrelate</td>
<td>Deletes an edge between two levels.</td>
</tr>
<tr>
<td>Delete Level</td>
<td>Deletes a level with the precondition that the new hierarchy must have a unique bottom level (\text{All cannot be deleted}).</td>
</tr>
<tr>
<td>Add Instance</td>
<td>Adds a value, call it (x), to the domain of some rollup function. A pair of the form ((x, y)) for each rollup function sharing this domain must be provided as an argument, (s.t. \ y) is a value in the range of each of such rollup functions.</td>
</tr>
<tr>
<td>Delete Instance</td>
<td>Deletes a value (x) from a level (l), as well as all the pairs ((x, y)) s.t. (y) is an element in the range of a rollup function departing from (l).</td>
</tr>
</tbody>
</table>

Figure 1: Primitive Dimension Update Operators.

operators, intended to capture such common sequences and encapsulate them in a single operation. The complex operators are **Reclassify**, **Split**, **Merge**, and **Update**. They are all what we call instance updates, because they affect the instances of a dimension, not its schema. We will treat each one separately.

Reclassify Suppose a brand is purchased by a new company, or new regions are assigned to salespeople as a result of marketing decisions, stores are assigned to different regions, etc. All of these operations could be performed as a transaction involving a series of **Delete Instance** and **Add Instance** operations. We define instead a new one, **Reclassify**, that can do the job in a single step. However, this reclassification may or may not lead to a consistent dimension. Thus, we must give conditions under which the operator is applicable.

Operator 1 (Reclassify) Given a dimension \(d=(\text{dname}, L, A, \leq, \geq, RUP, DESC) \), a pair of levels \(l_a \) and \(l_b \), a pair of elements \(x_a \in \text{instset}(l_a) \) and \(x_b \notin \text{instset}(l_b) \); Reclassify \((d, l_a, b, x_a, x_b)\) is a new dimension \((\text{dname}, L, A, \leq, \geq, RUP, DESC) \) s.t.:\

\[
RUP_{l_a}^{b}(x_a) = RUP_{l_a}^{b} \setminus \{(x_a, x_b) \}
\]

\[
RUP_{l_b}^{a}(x_b) = RUP_{l_b}^{a} \cup \{(x_a, x_b) \}
\]

\[
RUP_{l_{n+1}}^{l_{n+1}} = RUP_{l_{n+1}}^{l_{n+1}} \setminus \{(x_a, x_b) \} RUP_{l_{n+1}}^{l_{n+1}}(x_a) = x_a
\]

for all other levels \(l, l_{\text{new}} \); the new dimension remains consistent.

Figure 2: Reclassification

Reclassify is not defined for every possible dimension, as is shown in Figure 2. Here, if we reclassify \(a_1 \) from \(b_1 \) to \(b_2 \), consistency would be violated at level \(C \), which is reached from \(b_1 \) and from \(l_{un} \). However, note that as no level other that \(B \) rolls up to level \(E \), no problems arise from this level. This observation leads to a general condition under which reclassification may always be performed.

Definition 4 (Conflicting Levels) Let us suppose we have \(d, l_a, b, l_b, x_a, x_b \), defined as in operator 1. We say a level \(l_b \in d \) s.t. \(l_a \not\leq l_b \) is conflicting w.r.t. reclassification, if there exists a level \(l_i \) s.t. \(l_i \leq l_{un} \), there is an alternative path between \(l_a \) and \(l_b \) not including \((l_a, l_b)\), and \(x_a \) is reached by at least one element in \(\text{instset}(l_i) \). A conflicting level is minimal if it is not reachable by any other conflicting level.

Theorem 1 (Definiteness of Reclassify) Reclassify \((d, l_a, b, x_a, x_b)\) is defined if and only if for every minimal conflicting level \(l_b \), \(RUP_{l_a}^{l_b}(x_a) = RUP_{l_a}^{l_b}(x_a) \) holds, where \(RUP_{l_a}^{l_b}(x_a) = x_a \).

Split Suppose, for instance, that some country is divided into four regions, north, south, east, west, in order to assign salespeople, and someone decides that the northern region should be divided into two or more, because it is getting too crowded, and more sales reps must be assigned to it. We need an operator that can handle this situation, this is, an operator which lets the user specify which salesperson is assigned to each region, and automatically reorganize the dimension, keeping it consistent. Formally:

Operator 2 (Split) Given a dimension \(d=(\text{dname}, L, A, \leq, \geq, RUP, DESC) \), a level \(l_a \), an element \(x_a \in \text{instset}(l_a) \), a list \(E \) of the form \{\(x_{a_1}, \ldots, x_{a_n} \)\}, where \(x_{ai} \in \text{dom}(l_a) \setminus \text{instset}(l_a) \), another list \(P \) of the form \(P = \{l_{a_1}[[l_i: \text{list}_1] \ldots (l_m: \text{list}_m)] \} \ldots x_{a_n}[[l_i: \text{list}_1] \ldots (l_m: \text{list}_m)] \} \), where \(l_i < l_{un} \), \(i = 1 \ldots m \), \text{list}_i \) is a list of elements in \(\text{instset}(l_i) \) of the form \(\{x_1, \ldots, x_k\} \) s.t. \(RUP_{l_i}^{l_a}(x_i) = x_i \); Split \((d, l_a, x_a, E, P)\) is a new dimension \((\text{dname}, L, A, \leq, \geq, RUP, DESC)\), where:

\[
RUP_{l_i}^{l_a} = RUP_{l_i}^{l_a} \setminus \{(x_a, x_b) \} RUP_{l_i}^{l_a}(x_a) = x_a \cup \{(x_a, x_b) \} RUP_{l_i}^{l_a}(x_a) = x_a
\]
\{(x_i, x_{aj}) | x_{aj} \in E, x_i \in \text{list}_i \text{ s.t. } x_{aj}[l_i : \text{list}_i] \in P\};
RUP^{l_i}_{t_q} = RUP^{l_i}_{t_q} \setminus \{(x_i, x_r)|RUP^{l_i}_{t_q}(x_r) = x_i\} \cup \\
\{(x_i, x_r)|RUP^{l_i}_{t_q}(x_r) = x_j, x_i \in X\};
RUP^{l_i}_{t_q} = RUP^{l_i}_{t_q} \setminus \{(x_i, x_r)|RUP^{l_i}_{t_q}(x_r) = x_i\} \cup \{(x_i, x_r)|RUP^{l_i}_{t_q}(x_r) = x_j, x_i \in X, x_r \in \text{list}_l\};
RUP^{l_i}_{t_q} = RUP^{l_i}_{t_q}, \text{ for all other levels } l_i, l_j; \text{ The new dimension remains consistent.}

Example 1 Suppose we want to split element d in Figure 3, into two elements d1 and d2 in the domain of level D. The operation will be denoted by Split(dname, D, \{d1, d2\}, \{(B : (b1, b2)), (C : (c1, c2))\}); Note that the user must assign the rollup functions corresponding to the new values d1 and d2, and this assignment must be s.t. the dimension remains consistent. In this example, b1, b2, c1, and c2, were assigned to d1.

Operator 3 (Merge) Given a dimension dname, L, \(\leq \), \(\leq \), RUP, DES, a level \(l_a \), an element \(x_a \in \text{list}_l \), \(\forall \text{ elements } x_i \in \text{list}_l \text{ s.t. } x_i \notin \text{list}_l \), a set of elements \(X = \{x_1, \ldots, x_n\} \) \(\forall \text{ elements } x_i \in \text{list}_l \text{ s.t. } x_i \notin \text{list}_l \), \(\forall \text{ elements } x_i \in X \) rollup to the same element in every level \(\forall \text{ elements } x_i \in \text{list}_l \text{ s.t. } x_i \notin \text{list}_l \), Merge(dname, L, X, x_N) is a new dimension dname, L, A, \(\leq \), RUP, DES, where : \(RUP^{l_a}_{t_q} = RUP^{l_a}_{t_q} \setminus \{(x_i, x_r)|RUP^{l_a}_{t_q}(x_r) = x_j, x_i \in X\} \cup \{(x_i, x_r)|RUP^{l_a}_{t_q}(x_r) = x_j, x_i \in X\}; \text{ The new dimension remains consistent.}

Example 2 Figure 4 shows an example of Merge. We can see that the operation Merge(d, E, \{c2, c3\}, X_a) keeps the dimension in a consistent state.

Update We also need an operator that only changes the value of an element, keeping the structure and rollup functions unchanged. For instance, suppose a brand name for a set of items changes, say, for marketing reasons, but the corporation for that brand remains the same, as well as the set of products related to the brand. Again, all these changes could be reflected by a sequence of individual insertions and deletions.

Operator 4 (Update) Given a dimension dname, L, A, \(\leq \), RUP, DES, a level \(l_a \), an element \(x_a \in \text{instset}(l_a) \), and an element \(x_a \notin \text{instset}(l_a) \); Update(dname, L, x_a, x_N) is a new dimension dname, L, A, \(\leq \), RUP, DES, such that : \(RUP^{l_a}_{t_q} \setminus \{(x_i, x_r)|RUP^{l_a}_{t_q}(x_r) = x_j, x_i \in X\} \cup \{(x_i, x_r)|RUP^{l_a}_{t_q}(x_r) = x_j\}; \text{ The new dimension remains consistent.}

3 Computing the Update Operators

In this section we discuss the implementation of our update operators in a relational representation. We do this at an abstract level that suggests a concrete implementation using e.g. SQL. We study two possible implementations: (a) dimensions are stored as a single table (denormalized case), and (b) dimensions are stored as a set of normalized tables. We present the details of the implementation of the Reclassify operators. We refer the reader to the full version of this paper [4] for details on the remaining operators.

3.1 Mapping Dimensions to Relations

Denormalized Representation The idea in the denormalized representation is to build a single table containing all the rollups in the dimension.

Schema The schema \(\mathcal{S}_d \) = (rname, A, \mathcal{F}) of the relation is defined as follows: rname is dname; A contains an attribute I for each level \(l \in L \); \mathcal{F} contains a functional dependency rname : \(l_a \rightarrow b_l \) for each pair of levels \(l_a, l_b \in L \text{ such that } l_a \leq l_b \).
Instance The set of tuples T_d in the relation is defined as follows: Let us define the leafs of a level $l \in L$. LeafSet(l), as the set of elements in InstSet(l) which are not reached by any other element below in the dimension instance. Formally, LeafSet(l) = InstSet(l)(\capran($RU_{P_i}^r$,)), where l_1, \ldots, l_n are the levels directly below l in the hierarchy. For every level l, and for every element $e \in$ LeafSet(l), we have a tuple t_i in T_d defined as follows: $t_i = \begin{cases} RU_{P_i}^r(e) & \text{if } l \leq l_i \\ \text{null} & \text{otherwise} \end{cases}$

The fd’s are only applied over non-null values, i.e., a null in l_a can be related to two different elements in l_b even if we have $l_a \rightarrow l_b$ in F. This allows to have the denormalized relation with NULLs in attributes associated to levels below leaf elements.

Example 3 Consider the dimension of Figure 2; its denormalized relation representation would be:

<table>
<thead>
<tr>
<th>I</th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>k_1</td>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>e_1</td>
<td>f_1</td>
<td>g_1</td>
</tr>
<tr>
<td>t_2</td>
<td>k_1</td>
<td>a_2</td>
<td>b_2</td>
<td>c_2</td>
<td>e_2</td>
<td>f_2</td>
<td>g_1</td>
</tr>
<tr>
<td>t_3</td>
<td>k_3</td>
<td>a_1</td>
<td>b_1</td>
<td>c_2</td>
<td>e_2</td>
<td>f_3</td>
<td>g_1</td>
</tr>
<tr>
<td>t_4</td>
<td>k_2</td>
<td>a_2</td>
<td>b_2</td>
<td>c_2</td>
<td>e_2</td>
<td>f_2</td>
<td>g_1</td>
</tr>
<tr>
<td>t_5</td>
<td>k_2</td>
<td>a_3</td>
<td>b_3</td>
<td>c_2</td>
<td>e_2</td>
<td>f_3</td>
<td>g_1</td>
</tr>
</tbody>
</table>

Normalized Representation In this paragraph we propose a mapping from the multidimensional model to a normalized relational model, in order to perform the comparison between both approaches wrt dimension updates. The idea in the normalized representation is to build a table for each direct rollup in the dimension.

Schema $S_d = (\text{rrname}, Sc, F)$ is defined as follows:

- rrname is name; for each level l_i, such that $l_i \leq l_i$, we have a relation schema $\text{name}(l_i, \text{All})[l_i]$ in schema Sc, where $\text{name}(l_i, \text{All})$ denotes the name of the relation. For each pair of levels $l_i, l_j \in L$ such that $l_i \leq l_j$, we have a relation schema $\text{name}(l_i, l_j)[l_i,l_j]$ in Sc. Let r be the outer-join of the relations in Sc for each pair of levels $l_i, l_j \in L$ such that $l_i \leq l_j$, we have the functional dependency $r: l_i \rightarrow l_j$ in F. As in the previous section, the fd’s in F do not consider NULLs.

Instance R is a set of relations defined as follows: For each relation schema $\text{name}(l_i, \text{All})[l_i] \in Sc$ we have a relation with the elements in InstSet(l_i) as tuples; for each relation schema $\text{name}(l_i, l_j)[l_i, l_j] \in Sc$ we have a relation with the pairs in $RU_{P_i}^r$ as tuples; for each pair of levels $l_i, \text{All} \in L$ such that $l_i \leq \text{All}$, we have a relation denoted as $R_{l_i, \text{All}} = (S_{l_i, \text{All}}, T_{l_i})$ with schema $S_{l_i, \text{All}} = (\text{name}(l_i, \text{All}), \{l_i\}, \{\}, \{\})$, and tuples $T_{l_i} = \{(e) | e \in \text{InstSet}(l_i)\}$.

3.2 Primitive Operators

Structural Update Operators The implementation of the structural update operators is straightforward. The algorithm performs four types of operations: (a) Operations that verify preconditions over the schema; for instance, when the DelLevel operator is applied, the algorithm checks that the resulting dimension has one bottom and one top level. Operations of this type have the same execution cost in both representations for all the operators. (b) Operations that verify preconditions over the instance. As an example, when the Generalize operator is applied, the algorithm checks that the domain of the added rollup function includes the instance set of the level being generalized. For the Relate operator, these type of operations have a higher cost in the normalized representation than the denormalized one, because the algorithm performs a set of joins between the relations in order to verify the added functional dependency. For the remaining operators, operations of type (b) have the same cost in both representations. (c) Operations that update the schema: operations which add/delete edges/levels to/from the schema, and compute the transitive reduction (i.e., the graph without transitive edges) of the updated schema. They have the same cost for all the operators. (d) Operations that update the instance, in general, additions/deletions of rollup functions associated to edges added/deleted by means of the operations described in (c). Their execution cost is higher for the denormalized representation because when a rollup function is added, the algorithm performs a join between the new rollup function and the dimension table; in the case of the normalized representation, the algorithm only adds the new rollup functions to the set of relations.

From the above paragraph we conclude that, in general, the execution of the Generalize, Specialize and DelLevel operators is more expensive in the denormalized representation. On the other hand, the execution of the Relate operator is more expensive in the normalized representation because of the cost incurred in operations of type (c). Because the Unrelate operator performs only operations of type (a) and (b), it has the same cost for both representations.

Instance Update Operators The algorithms for the instance update operators have two types of operations: (a) Operations that verify the preconditions, and (b) Operations that compute the net effect of the updates, i.e., the set of tuples being added and deleted to/from the relation(s). The comparison between the execution costs of the algorithm in both representations requires a more detailed analysis than in the case of the structural update operators. Let us present some general observations on the implementation proposed here. In the case of the AddInstance operator, operations of type (a) consist mainly in verifying that the inserted element reaches the same elements in the levels above it in the schema, through any possible path; for the DelInstance operator, operations of type (a) mainly consist in verifying that the element deleted is a leaf. In general, these operations will have a higher execution cost in the normalized representation than in the denormalized representation because the algorithm must perform joins over the normalized relations versus selections over the denormalized relation, respectively. A comparison between the costs of the operations of type (b) for both representations does not give a definitive result favoring either of the alternatives, in the general case.
3.3 Complex Operators

The procedural implementation of the update operators requires the execution of a set of standard operations over a DAG which represents the set of functional dependencies in the mapping; this DAG is the same in both representations. In the algorithms, we will use Reach\(l_s, l_b, S\) to mean that there is a path from vertex \(l_s\) to vertex \(l_b\) in dag \(S\), ReachSet\(l_s, S\) to stand for the set of all vertices that can be reached indirectly from \(l_s\), and Preset\(l_s, S\) to stand for the set of all vertices that reach indirectly \(l_s\). In addition, we will use relational algebra operators augmented by the Update operator, which will allow us to express the update statement provided by SQL. The update operator is denoted as \(p(R, cond, t)\), where \(R\) is a relation, \(cond\) is a condition over the relation, and \(t\) represents a tuple, with attributes in the set of attributes of \(R\). The new relation results from updating these attributes of the tuples in \(R\) satisfying \(cond\) with the values in \(t\). We will also use sentences of the form \(precondition:condition\) meaning that the algorithm halts and does not perform the update if \(condition\) is false.

The algorithms for the Reclassify operator in the denormalized and normalized representations are depicted in Figure 5 and Figure 6, respectively. First, we verify that \(l_s\) and \(l_b\) are directly connected. Then, we check that the element \(x_a\) to which \(l_a\) will be reclassified belongs to the instance set of \(l_b\). After this, the main task consists in verifying the precondition introduced in Theorem 1. This is done as follows: the procedure FindCon levels finds a subset of the conflicting levels which contains all the minimal conflicting levels; it stores them in a variable Conf Levels. Then the minimal conflicting levels are computed and stored in the variable LTC (Levels To check). In the case of the denormalized representation, the recursive procedure FindCon levels computes the variable Conf Levels, traversing the subgraph below \(l_a\). The vertices which are candidates to be added to Conf Levels are stored in \(A_1\), and are determined by the operation Join\((l_s, l_b, S_i)\) which computes the vertices reached by both \(l_s\) and \(l_b\) in \(S_i\), which are not pair-wise reachable. The relation \(R\) is computed to determine if there is a value in the instance set of \(l_b\), which reaches \(x_a\). If this is the case, the levels in \(A_1\) are added to Conf Levels. The procedure FindConlevels performs the minimum number of outer-joins to build the relation \(R\): the set of levels to visit is pruned using the fact that if there are no elements which reach \(x_a\) from a level \(l\), then there are no elements which reach \(x_a\) from levels below \(l\).

In the case of the denormalized representation, the procedure ReachTuple computes the tuples \(t_1\) and \(t_2\) which have the values reached by \(x_a\) and \(x_b\), respectively, then it is verified that the tuples \(t_1\) and \(t_2\) have the same value in the attributes of Conf Levels. While in the denormalized representation ReachTuple is computed by a single selection, in the normalized approach, the computation of ReachTuple could be expensive because it requires a traversal of the subgraph of \(S_i\) induced by the vertices in Reach\((l_s, S_i)\) making a sequence of selections over the relations. However, it is not necessary to compute all the the values in the attributes of \(t_1\) and \(t_2\), but only the values in attributes in LTC. After computing LTC, the path from \(l_a\) to every level \(l_i\) in LTC is computed. This path is required by the procedure ReachTuple, which performs the traversal of the path making a sequence of selections over the relations in order to compute the value associated to \(l_i\). Note that the ReachTuple procedure requires the path \(\tau\), along which the computation must proceed, to be specified as one of its arguments. However, we prefer to overload the method, rather than changing its name.

The computation of the update over the relation when the precondition is computed is straightforward.

```
Main
precondition: there is an edge \((l_a, l_b)\) in \(S_d\)
precondition: \(\text{InitSet}(l_b, x_b)\)
\(t_1 := \text{ReachTuple}(l_a, x_a)\)
\(t_2 := \text{ReachTuple}(l_b, x_b)\)
Call FindCon Levels
LTC := \text{MinSet}(\text{Conf Levels}, S_d)
For every level \(l\) in LTC:
precondition: \(R_d(l) = \emptyset\)
\(R_d := \mu(R, l_s = x_a, t_2)\)

Procedure FindCon Levels
\(R_1 := \text{PreRel}(l_a, x_a)\)
Let \(S_1'\) be the dag resulting from deleting the edge \((l_a, l_b)\) from \(S_d\)
For every level \(l_i\) in \(\text{PreSet}(l_a, S_1)\):
\(A_1 := \text{Join}(l_i, l_b, S_1')\)
If \((\text{Count}(A_1 > 0)) > 0\)
then \(\text{Conf Levels} := \text{Conf Levels} \cup A_1\)
```

Figure 5: Algorithm for \(\text{Reclassify}(R_d, l_s, l_b, x_a, x_b)\) in the denormalized representation.

Example 4 Let us apply the algorithm of Figure 5 to the dimension depicted in Figure 2. Its denormalized representation is depicted in Example 3. Suppose we would like to reclassify \(x_1\) from \(b_1\) to \(b_2\). After the first validations, we compute ReachTuple \((A_1, a_2)\) and ReachTuple \((B, b_1)\), obtaining:

\(t_1 = (\text{null, null, } a_1, b_1, c_1, c_2, f_1, g_1)\)
\(t_2 = (\text{null, null, } b_2, c_2, e_1, f_1, g_1)\)
Procedure FindCon Levels computes \(R_1 = \text{PreRel}(A, a_2)\), yielding

\[
\begin{array}{c|c}
& A \\
\hline
1 & A \\
2 & a_2 \\
\end{array}
\]

The conflicting level set will be the result of Join\((1, B, S_1')\), where \(S_1'\) is the graph \(S\) without the edge joining levels \(A\) and \(B\), in order to compute the alternative paths not including \(l_a\) and \(l_b\). Then, LTC \(= \{C\}\).

As \(t_1(C) \neq t_2(C)\), the proposed reclassification fails.

To save space, we will not give the complete example for the normalized case, but we will comment on it. \(S_1\) will be the same graph as \(S_1'\) above, obtained by deleting the edge \(A, B\) from \(S, G_1\) will be the graph s.t. \(V = \{A, I\}\), and \(E = \{I - A\}\), that is, the graph whose edges are all the edges reaching \(A\); in this example, only \(I - A\). Applying the procedure LevelsToCheck\((A)\) will
Main
precondition: There is an edge (l_a, l_b) in S_d
precondition: $InitInstSet(l_a, x_b)$
Let S_1 be the dag resulting from deleting the edge (l_a, l_b) from S_d
Let G_1 be the subgraph of S induced by the vertices in $PreSet(l_1, S_d)$
$R := \sigma_{l_a,x_a}R_{l_b,a}$
Call $FindConfLevels(l_1)$
$LTC := \text{MinSet}(ConfLevels, S_d)$
For every level $l \in LTC$
$\tau_i := Path(l_1, l, S_d)$
$t_i := ReachTuple(R_d, \tau_i, l_b = x_b)$
t_j := ReachTuple(R_d, \tau_j, l_0 = R_{a_1b}(x_a))$
precondition: $t_i(t_1) = t_j(t_1)$
$R_{a_1b} := \mu(R_{a_1b}, l_a = x_a, (l_b, x_b))$
Procedure $FindConfLevels(l_1)$
Visited := Visited $\cup \{l_1\}$
For every level l in $PreSet(l_1, G_1) \setminus$ Visited
$A_1 := \text{Join}(l, l_0, S_1)$
If $A_1 \not\subseteq$ Conf Levels
$R := R$ outer join R_{a_1b}
If $\text{Count}(\tau_i, \sigma_{a_1,b_1}R, R_{a_1b}) = 0$
Visited := Visited $\cup PreSet(l, G_1)$
Else $ConfLevels := ConfLevels \cup A_1$
Call $FindConfLevels(l)$
Figure 6: Algorithm for $Reclassify(R_d, l_a, l_b, x_a, x_b)$ in
the normalized representation.

4 Conclusion and future work

Research on data warehouse evolution has focused on
fact tables. However, dimensions are also subjected to
evolve over time. In a former work [5] we presented a
multi-dimensional model which accounts for dimension
updates in data warehouses, including a set of primitive op-
ers for performing such updates. In this paper
we have extended the model with a set of semantically
meaningful operators: reclassification, merge, split, and
update. Although these operators could be implemented
by transactions of basic operators, they are more effi-
ciently performed as single operations. We also formally
defined the conditions under which these operators pre-
serve the consistency properties of a dimension.

We presented a mapping from the dimensional to
the relational model, and its properties, using two ap-
proaches: denormalized and normalized relational ta-
bles (Star or Snowflake schemas, respectively [7]). We
compared these approaches with respect to dimension
updates, and showed the advantages of the denormal-
ized approach.

Although several previous works on modeling OLAP
existed [1, 3], only [2] and [8] deal formally with di-
mension modeling, but without considering dimension
updates.

We are currently working on extending our oper-
ators in several ways. First, the operators only deal with
one update at a time. We would like to be able to per-
form a bulk reclassification, for instance. Moreover, we
would also like to be able to express these operations
intensionally, over elements satisfying some condition,
and to express the modified rollup functions also
intensionally.

Acknowledgments This work was partially supported by
the Institute of Robotics and Intelligent Systems, and by the
University of Buenos Aires.

References
to multi-dimensional databases. In Proceedings of the 6th International Conference on Extending
multi-dimensional databases. In Proceedings of the 22nd VLDB Conference, pages 106–115, Bombay,
India, 1996.
aining data cubes under dimension updates. In Proceedings of the IEEE-ICDE Conference, pages
Parallel Server and Informix Universal Server: A New Generation of Decision-Support Indexing for
Enterprisewide Data Warehouses, 1996. White Pa-
per.
and Sons, Inc, 1996.
In Proceedings of 6th International Conference on
Extending Database Technology (EDBT'98), Valencia, Spain, November 1998.
White Paper.
In Proceedings of the 4th International Conference on Information and Knowledge Management