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Abstract

Our general concern iswith how to integrate a representation of action into an existing set
of state constraints. As has been observed in the literature, state constraints implicitly define
indirect effects of actions as well as indirectly imposing further preconditions on the perfor-
mance of actions. Thus, any representation scheme we propose must address the ramification
and qudlification problems, as well as the frame problem. In this paper we achieve such arep-
resentation for a syntactically restricted class of situation calculus theories.

This paper presentstwo major technical contributions. Thefirst contributionisprovision of
an axiomatic closed-form solution to the frame, ramification and qualification problems for a
common class of ramification constraints. The solutionis presented in the form of an automat-
ableprocedure that compilesasyntactically restricted set of situation cal culusramification con-
straintsand effect axiomsinto a set of successor stateaxioms. The second major contribution of
thispaper isprovision of an independent semantic justification for thisclosed-form solution. In
particular, we present a semanti ¢ specification for asolutionto theframe and ramification prob-
lemsin terms of aprioritized minimization policy, and show that the successor state axioms of
our closed-form sol ution adhere to this specification. Observing that our minimization policy is
simply an instance of prioritized circumscription, we exploit results of Lifschitz on computing
circumscription [6] to show that computing the prioritized circumscription yields our succes-
sor state axioms. In the special case where there are no ramification constraints, computing the
circumscriptionyieldsReiter’searlier successor state axiom solutionto theframe problem[17].
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proof of Theorem 3.

TA subset of the material presented in this paper also appears in Representing Actions and State Constraintsin
Model-Based Diagnosis, Proceedings of Fourteenth National Conference on Artificial Intelligence © AAAI Press,
Menlo Park, CA, 1997.

{Current Address: Xerox PARC, 3333 CoyoteHill Road, Palo Alto, CA 94304, E-mail: mcilrait@parc.xerox.com,
Phone: 415-812-4332, Fax: 415-812-4334, and Knowledge Systems Laboratory, Stanford University, Gates Sciences
Building 2A-248, Stanford, CA 94305-9020, E-mail: sam@hpp.stanford.edu.

1



1 Introduction

This paper presents an axiomatic closed-form solution to the frame, ramification and qualification
problems for what we argue to be a commonly occurring class of state constraints. The resultsin
this paper are motivated by and contribute towards addressing the following more general problem.

Given a set of state constraints describing some aspect of the world which we hence-
forth refer to as the system, how do we integrate arepresentation of action and change,
so that we can reason about the effects of an agent’s' actions on the system, and the
effect of the system on performing those actions.

This genera problem arises in the context of many applications of artificial intelligence (Al). For
example, in the case of diagnostic problem solving, we might have a set of state constraints rep-
resenting the behaviour of some device, such as a power plant or amotor vehicle. We might then
wish to integrate a representation of actionsin order to perform such tasks as system maintenance,
testing, repair or contingency planning. In contrast, in an active vision application, the state con-
straints might represent the ontology of objects that could occur in a scene, and we might wish to
integrate a representation of actions in order to contemplate the effects of moving the camera or
acting upon objects in the scene in order to achieve our goal of image understanding.

In the context of our general problem, state constraints serve two purposes. On the one hand,
they define consistent states of our system. In this role, state constraints have traditionally been
used to reason about the system; for example in the case of diagnosis, to conjecture diagnoses. In
the context of atheory of action and change, state constraints have an additional role. They also
serve asramification constraints and qualification constraints, implicitly defining indirect effects of
actions, and further constraining when actions can be performed, respectively. As a consegquence,
addressing our general problem must preserve the original role of our state constraints while pro-
viding a solution to the frame, ramification and qualification problems.

We achieve our objective by exploiting the language of the situation calculus, and integrating a
situation cal culus representation of action with our state constraints. This paper presents two major
technical contributionsto thisend. In Sections 4 through 6, we show that for an arguably common
class of ramification constraints, we can provide an axiomatic closed-form solution to the frame and
ramification problems. Providing a closed-form solution means that our solution is present in the
axiomatization as opposed to requiring computation. This solution is presented via an automatable
procedure that compiles a set of situation cal culus ramification constraints and effect axiomsinto a
set of successor state axioms. To addressthe qualification problem, we appeal to existing results[9],
compiling our qualification constraints, necessary conditionsfor action and successor state axioms
into action precondition axioms.

A shortcoming in the justification of our closed-form solutionisthat it relies on an informal ap-
peal to a completeness assumption. To overcome this shortcoming, the second major contribution
of this paper is to provide independent semantic justification for our solution. We describe these
resultsin Section 7. In order to achieve this semantic justification, wefirst define a prioritized min-
imization policy following the intuition followed by our closed-form solution. Appealing to this
minimization policy we provide semantic specification for a solution to the frame and ramifica-
tion problems. Further we show that under a consistency assumption, our successor state axioms

! An agent can be ahuman, another system, arobot, or nature.
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are indeed a solution with respect to this specification. Observing that our minimization policy is
smply an instance of prioritized circumscription, we exploit results by Lifschitz on computing cir-
cumscription [6] to show that computing the prioritized circumscription yields our successor state
axioms. Finally, we show that when there are no ramifications, computing the circumscription re-
sultsin the set of successor state axioms Reiter proposed as a solution to the frame problem [17].
This provides further justification for his solution to the frame problem.

2 The Situation Calculus

The situation cal culuslanguage we employ to represent our domainsisasorted first-order language
with equality. The language consists of sortsactions, situations, and domain. Each action is repre-
sented as a (parameterized) first-class object within thelanguage. The evolution of theworld can be
viewed as atree rooted at the distinguished initial situation 5. The branches of the tree are deter-
mined by the possible future situations that could arise from the realization of particular sequences
of actions. Assuch, each situation along thetreeis simply ahistory of the sequence of actions per-
formed to reach it. The function symbol do maps an action term and a situation term into a new
stuation term. For example, do(turn_on_pump, Sy) iS the situation resulting from performing the
action of turningon the pumpinsituation S,. The distinguished predicate Poss(a, s) denotesthat an
action a ispossible to performin situation s (e.g., Poss(turn_on_pump, Sg)). ASsuch, Poss deter-
mines the subset of the situation tree consisting of situationsthat are possibleintheworld. Finally,
those properties or relations whose truth value can change from situation to situation are referred
to as fluents. For example, the property that the pump is on in situation s could be represented by
thefluent on( Pump, s). In additionto thefirst-order language we use to axiomatize our domain, the
Situation cal culus also consists of aset of foundational axioms, ¥ ¢,.,,,« Which establish properties of
our situations and situation tree [9]. Included in these axioms s definition of the binary relation <
which providesapartia ordering over situationsin the subset of the situation treethat is Poss-ible.
Finally, note that the situation cal culus language we employ in this paper isrestricted to primitive,
determinate actions. Our language does not include a representation of time, concurrency or com-
plex actions, but weintend to extend our resultsto more expressive dial ects of the situation calculus
(e.g., [18]) in future work.

3 Domain Axiomatization: An Example

Once again, our problem assumes an existing set of system state constraintsand our task isto incor-
porate a representation of action, solving the frame, ramification and qualification problems. Inthis
paper, we forgo preliminary discussion on transforming our original system state constraints into
situation calculus state constraints (see [ 13] for such adiscussion) and assume that our axiomatizer
has given us a situation cal culus domain axiomatization comprising the following sets of axioms

Tsc UTeg UTpee UTuna U Ts,, (1)

which we describe below. Note that this axiomatization does not solve the frame, ramification and
qualification problems.
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Figure 1: Power Plant Feedwater System

We illustrate this axiomatization with a ssimplified power plant feedwater system, depicted in
Figure 1 and used for applications of diagnostic problem solving [4]. The system consists of three
potentially malfunctioning components. a power supply (Power); a pump (Pump); and a boiler
(Boiler). The power supply provides power to both the pump and the boiler. The pump fills the
header with water, (water _entering_header), which in turn provides water to the boiler, producing
steam. Alternately, the header can befilled manually (manual_f:ll). To make the example morein-
teresting, we assume that once water is entering the header, a siphon is created and water will only
stop entering the header when the siphon is stopped. The system also contains lightsand an alarm.
(See[13] for adetailed description.)

Notation: all formulae are universaly quantified from the outside, unless stated otherwise.

o T'sc isaset of stuation calculus state constraints. These incorporate the existing system state
constraints, indexed where appropriate with a situation term, s. T's¢ isin turn comprised of sets
of ramification congtraints 7., qualification constraints 7',.,,,;, and domain constraints 7., 4.y -

o T,.., the set of ramification constraints for our feedwater exampleisasfollows:

= AB(Power,s) N ~AB(Pump, s) A on(Pump, s) D water_entering_header(s
manual_fill(s) D water_entering_header(

AB(Power, s) D lights_out(

= AB(Power,s) D —lights_out(s

water_entering_header(s) A ~AB(Power,s) N ~AB(Boiler, s) A on(Boiler,s) D steam(s
- (water_entering_header(s) AN “AB(Power,s) A =“AB(Boiler, s) A on(Boiler,s)) D ~steam(
—water_entering_header(s) A on(Boiler, s) D alarm(

AB(Boiler,s) D alarm(s). (9)

S
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Axiom (2) states that if the power and pump are operating normally and if the pump is on,
then it implies that water will be entering the header. As an aside, note that axioms (4) and (5)
could be defined as one iff statement. We have written them as noted in order to simplify
designation of the criteriafor our forthcoming transformation procedure.

T,ua1, the set of qualification constraints for our feedwater exampleis as follows:
=(on(Pump, s) A manual_fill(s)). (10)
o Tyomain, the set of domain constraints for our feedwater example is as follows:

Power # Pump # Boiler. (12)

Actions are axiomatized asaset of effect axioms 7. s, necessary conditionsfor actions 7’,.., and
unique names for actions 7Ty 4.
e T, isthe set of effect axioms representing the changes in the truth values of fluents as a result
of performing actions. For each fluent /' in our language, we may have both positive and
negative effect axioms of the following syntactic form,

Poss(a,s) NYE(%,a,s) D F(F,do(a, s)) (12)
Poss(a,5) A17(7,a,5) 3 ~F(,do(a, 5)), (13

where v# (7, a, s) and y7 (7, a, s) are smple formulas® whose free variables are anong 7, a, s.
The following axioms compose 7' s for our feedwater example.

Poss(a,s) A a = turn_on_pump D on( Pump, do(a, s)) (14)

Poss(a,s) N a =turn_of f_pump D —on(Pump,do(a, s)) (15)
Poss(a,s) N a = turn_on_boiler O on(Boiler,do(a, s)) (16)

Poss(a,s) A a = turn_of f_boiler O —on(Boiler,do(a, s)) a7)
Poss(a,s) A a = power_fail > AB(Power,do(a,s)) (18)

Poss(a,s) A a = aux_power D ~AB(Power,do(a,s)) (19)

Poss(a,s) N a = power_fiz O ~AB(Power,do(a, s)) (20)

Poss(a,s) A a = pump_burn_out O AB(Pump,do(a,s)) (21)
Poss(a,s) A a = pump_fiz DO = AB(Pump,do(a, s)) (22)

Poss(a,s) A a = boiler_blow D AB(Boiler,do(a, s)) (23)

Poss(a,s) A a = boiler_fiz O ~AB(Boiler,do(a, s)) (24)

Poss(a,s) A a = turn_on_manual_fill O manual_fill(do(a, s)) (25)
Poss(a,s) A a = turn_of f_manual_fill D> —manual_fill(do(a, s)) (26)
Poss(a,s) A a = stop_siphon O —~water_entering_header(do(a, s)) (27)
Poss(a,s) Aa = turn_on_alarm D alarm(do(a, s)) (28)

Poss(a,s) ANa = turn_of f_alarm D —alarm(do(a, s)). (29)

2 A simpleformulawith respect to s isoneinwhich only domain specific predicate symbolsare mentioned (i.e., they
do not mention Poss or <), inwhich fluents do not include the function symbol do, in which thereisno quantification
over sort situations, and in which thereis a most one free situations variable.
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Axiom (14) states that if action « ispossiblein situation s, and a isthe turn_on_pump action, then
the pump will be on in the situation resulting from performing action « in situation s.

o T,.. isthe set of axioms representing the necessary conditions for an action to be performed.
For each action prototype A in our language, necessary conditions are of the following form:

Poss(A(T),s) D 7Y, (30)

where 7, is asimple formulawith respect to s, whose free variables are among 7, s.
The following axioms compose some of 7',.. for our feedwater example.

Poss(turn_on_pump, s) (31)

Poss(turn_of f_alarm, s) D (water_entering_header(s) V ~on( Boiler, s)) (32
Poss(turn_of f_alarm,s) O = AB(Boiler, s) (33)
Poss(turn_on_manual_fill,s) O —alarm(s) (34

Axiom (34) statesthat if it is possible to turn on the manual filling then the alarm must be off.

e Ty n 4 istheset of uniquenamesaxiomsfor actions. They statethat identical actions haveidentical
arguments, and every action name refersto adistinct action.
The following axioms compose some of 7y 4 for our feedwater example.

turn_on_pump # turn_of f pump # ... # turn_of f_alarm (35)

e T's, istheinitial database. It captureswhat is known of the initial state of the world.
The following axioms might compose 7's, for our feedwater example.

= AB(Power, So) A ~manual_fill(So) AN “AB(Pump, So) A ~water_entering_header(Sy)  (36)
—on(Boiler, So) A mon(Pump, So) A “AB(Botler,Sy) (37)

4 TheFrameand Ramification Problems

Once again, our domain axiomatization comprises the sets of axioms defined in (1). The job of
the axiomatizer is done, but as previously observed, these axioms do not provide a solution to the
frame, ramification and qualification problems. In this section, we propose a solution to the frame
and ramification problemsfor what we argue to be acommon class of ramification constraints. The
qualification problem is discussed in a subsequent section.

Lin and Reiter [9] proposed adefinition for a solution to the frame and ramification problemsin
our situation calculus language using circumscription and minimal model semantics. This solution
has its limitations. Sometimes there is no minimal model. In other cases, there are multiple mini-
mal models, some of which do not reflect the intended interpretation of the ramification and effect
axioms. Most importantly, there is no guaranteed procedure to produce a closed-form solution.

Our contribution in this section is to provide an automatic procedure for generating a closed-
form solution to the frame and ramification problemsfor acommon class of state constraints. This
solution is distinguished because it is closed-form and because it captures the intended interpreta-
tion of T's with respect to the theory.



4.1 TheProblem

We illustrate our problem with a subset of the feedwater system example. Consider the ramifica
tion constraints, (2) and (3) above. The effect axioms, necessary conditions for actions and initial
conditions are as defined in the previous section. Assume for the sake of simplifying the example
that Va, s. Poss(a, s), i.€., that al actionsare possiblein all situations.
Assumetheactionturn_on_pumpisperformedin Sy, resultinginsituation S; = do(turn_on_pump, So).
From effect axiom (14), we infer that on( Pump, S1). What do our ramification constraints tell us
about the indirect effect of this action? Under Lin and Reiter’s minimization policy to maximize
persistence, three minimal models’® are apparent.

My : {=AB(Power, S1),~AB(Pump, S1), water_entering_header(Sy)}
My : {AB(Power, Sy), " AB(Pump, 51), ~water_entering_header(Sy)}
Mgz : {=AB(Power, S1), AB(Pump, 51), ~water_entering_header(5y)}

Clearly, the intended model is M. Turning on the pump results in water entering the header. It
does not result in an abnormal power supply, or an abnormal pump. We intuitively know thisto be
the intended model, because we have a basic understanding of machinery. More importantly, the
axiomatizer has communicated the intended interpretation through the syntactic form of the rami-
fication constraints, as we explain below.

Recall that our state constraints serve two purposes. On the one hand, they define consistent
states of the world; However, in the context of a theory of action and change, state constraints
have an additional role. They also serve as ramification and qualification constraints, indirectly
constraining the effects of actions and further constraining the preconditions for actions

When employing theramification constraintsto infer theindirect effectsof actions, theimplica-
tion connective is interpreted as causal or definitional, in the logic programming sense. Following
[5], we say that afluent is defined in an axiom or set of axiomsif it appears on the right-hand side
of an implication connective in that axiom or set of axioms. Thus, it follows that an effect axiom
for fluent /" also servesto define fluent F'.

If we assume that a fluent only changes value according to the effect axioms and the ramifi-
cation constraints that define it, then the ramification constraints above only provide information
about changesin thetruth value of fluent water _entering_header(s). With thisassumption, we can
conclude that the consequence of performing turn_on_pump in S is captured by model M;.

In the section to follow, we use this intuition to generate successor state axioms that reflect
the intended interpretation of the ramification constraints and effect axioms, for a syntactically re-
stricted class of theories.

4.2 A Closed-form Solution

In this section we provide a closed-form sol ution to the frame and ramifi cation problemsfor axiom-
atizations whose syntacti c representation of ramification constraints and effect axioms, collectively
form a solitary stratified theory.

We combine the notion of solitary theory [6] and stratified logic program (e.g., [5]) to define
the notion of asolitary stratified theory. Notethat unlike stratified logic programs, we use a strictly

3We only list the relevant portion of the models here.



< relation to distinguish the strata of our theories. Intuitively, a solitary stratified theory is a strat-
ified logic program that allows negation in the consequent. If such atheory were represented as a
dependency graph, the graph would have no cycles. The stratification of a solitary stratified theory
need not be unique and we could write a procedure to determine a stratification automatically.

Definition 1 (Solitary Stratified Theory)
Suppose T’ is a theory in the language of the situation calculus with domain fluents, £. Then T is
a solitary stratified theory with stratification (74,75, ..., T,), and partition (£, Lo, . .., L) if,
e for + = 1,...,n, £; is the set of fluents F; that are defined in stratum 7;; and
LiULyU...UL, =L,and
e T istheunion 73 U T, U ...T, of sets of axioms T; where for each stratum, 7; is solitary with
respect to £;; i.e., each T; can be written asthe union (D; < -£;) U (& < £;), where
1. £; istheset of fluents, #; such that [-]#; isdefined in 7;;
2. D; < ~L;,isaset of formulae of theform (D; > - F;), —at most one for each fluent ; € £;,
where each D; is aformula containing no fluentsdrawn from£; U...U £,,.
3. & < L;,isaset of formulae of the form (#; O F;), —at most one for each fluent #; € £,
where each £; isaformula containing no fluentsdrawn from£; U... U £,,.

Example:
Inour feedwater example, 7' = T, UT. s isasolitary stratified theory with stratification (74, 75, T5).
e T comprises Effect Axioms (14) — (26),
e T, comprises Ramification Constraints (2) — (7), and Effect Axiom (27).
e T3 comprises Ramification Congtraints (8) — (9), and Effect Axioms (28) and (29).
In what follows, we define a seven step syntactic manipulation procedure which resultsin a
closed-form solution to the frame and ramification problemsfor solitary stratified theory 7" = 7. s U

T,.m. The solution is predicated on an appeal to a completeness assumption which enables us to
generate explanation closure axioms.

Transformation Procedure
Let7T = T.,.. U T.; beasolitary stratified theory, with stratification (74, 75, ..., T,).

Step 1. For every fluent F; defined in an effect axioms of 7’;, generate at most one general positive
and one general negative effect axiom as per axioms (12) and (13) above.

Step 2. For every fluent F; defined in aramification constraint of 77, generate general positiveand
negative ramification axioms, relativized to situation (do(a, s)).
General Ramification Axioms
of;(do(a, ) D Fi(do(a, 5))* (38)
vr(do(a, 5)) > = Fi(do(a, 5)) (39)

v} (do(a, s)) and vy, (do(a, s)) areformulae whose free variables are among a, s, and any state or
action arguments.

“Henceforth, action and state arguments, # will not be explicitly represented in canonical formulae.
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Step 3. Combine the two sets of axioms above, to define extended positive and negative effect ax-
ioms, for every fluent F;.
Extended Effect Axioms

Poss(a,s) A (vE(a,s) Vvl (do(a,s))) D Fi(do(a, s)) (40)
Poss(a, s) A (7}1,(@, s)V 'Ugi(do(a, s))) D —Fi(do(a,s)) (42)

Example:
Extended positive and negative effect axioms for the fluent (on( Pump, do(a, s)), defined in T4,

Poss(a, s) A a = turn_on_pump D on( Pump, do(a, s)) (42)
Poss(a,s) N a =turn_of f_pump D —on(Pump,do(a, s)). (43)

For the fluent water _entering_header(do(a, s)), defined in T,

(mAB(Power,do(a,s)) N ~AB(Pump,do(a,s)) A on(Pump,do(a,s)))
V manual_fill(do(a,s)) D water_entering_header(do(a, s)) (44)
Poss(a,s) A a = stop_siphon D —~water_entering_header(do(a, s)). (45)

Step 4. Make the following completeness assumption regarding the effects and ramifications.

All the conditions underwhich an action « can lead, directly or indirectly, to fluent /' becoming
true or false in the successor state are characterized in the extended positive and negative effect
axioms for fluent F'.

Step 5. From the compl eteness assumption, generate explanation closure axioms. We argue that
if action a ispossiblein s and if thetruth value of fluent F; changesfrom ¢rue to false upon doing
action e insituation s, then either . (a, s) istrue or vg (do(a, s)) istrue. Ananaogous argument
can be made when the truth value of fluent F' changes from false to true upon doing action a in
situation s. Thisassumption is captured in the following positive and negative explanation closure
axioms. For every fluent F;,

Explanation Closure Axioms

Poss(a,s) A Fi(s) AN ~F;(do(a,s)) D vgi(a, s)V 'vgi(do(a, s)) (46)
Poss(a,s) A =F;(s) A Fi(do(a, s)) D v (a,s) Vv vf (do(a, s)). (47)

Step 6. From the extended positive and negative effect axioms and the explanation closure axioms,
define intermediate successor state axiomsfor each fluent F;. We distinguish them asintermediate
because, in the next step, we ssimplify them through a further syntactic transformation. For every
fluent F;,

I ntermediate Successor State Axioms

Poss(a, s) D [Fi(do(a,s)) = ®%], (48)
o = 7}‘5((1,5) \Y; 'U;i(do(a,s))
V(F(s) A =(v5,(a,s) V vp (do(a, 5)))). (49)



The set of intermediate successor state axioms, 7’55 = Uiy, Trss;, Where Tygs, is the set of
axiomsfor fluents F;, defined in stratum 7;.

Example:
I ntermedi ate successor state axiomsfor thefluent on( Pump, do(a, s)) definedinT; and for thefluent
water_entering_header(do(a, s)) defined in T:

Poss(a,s) D [on(Pump,do(a,s)) = a = turn_on_pumpV (on(Pump,s) A a # turn_of f_pump)](50)

Poss(a,s) D [water_entering_header(do(a,s)) =
manual_fill(do(a, s))
V (mAB(Power,do(a, s)) N ~AB(Pump,do(a, s)) A on(Pump,do(a,s)))
V water_entering_header(s) A a # stop_siphon] (51)

Step 7. Byregressing® theintermediate successor state axioms, generate (final) successor state ax-
ioms. These axiomsare ssmple formulae containing no reference to fluentsindexed by the situation
term do(a, s). For every fluent F,

Successor State Axioms

Poss(a,s) D [Fi(do(a,s)) = of] (52)

where @, isthefollowing simpleformula, R [®5.], 1.,

Or, = 7fi(a,5)V REY [v] (do(a, s))]
V (F(s) A =(v7(a,5) V RSE [vF, (do(a, 5))])) (53)
and R [¢] isthe regression of formula ¢ under successor state axioms T'ss, , . . ., Tss,._, -

The set of successor state axiomsis T'ss = Uy, T'ss;, Where Tss, is the set of axioms for
fluents F; € L;.

Example:
(50) is both the intermediate and the final successor state axiom for fluent on( Pump, do(a, s)). The
intermediate successor state axiom (51) transformsinto the following successor state axiom.

Poss(a, s) D [water_entering_header(do(a,s)) =
a = turn_on_manual_fill
V (manual_fill(s) A a # turn_of f_manual_fill)
V [(a # power_fail N (wAB(Power,s)V a = auz_power V a = power_fiz))
A (a # pumpburn_out A (mAB(Pump,s)V a = pump_fiz))
A (a = turn_on_pump V (on(Pump, s) A a # turn_of f_pump))]
V (water_entering_header(s) A a # stop_siphon)). (54)

SRegression (e.g., [21]) is a recursive rewriting procedure used here to reduce the nesting of the do function in

situation terms. I F' is a fluent with successor state axiom Poss(a,s) D F(Z,do(a,s)) = ®p in Tss then
RSS[F(tla <yt do(a, (r))] =op |f11,7::,ytz,:&a,5-
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Proposition 1 Suppose”' = 7.7 U T, isa solitary stratified theory of the form described above.
Then for every fluent F; € L, the successor state axiom for F; isidentical to the intermediate
successor state axiomsfor F, and is of the following general form.

Poss(a,s) D [Fi(do(a,s)) = 7# (a,s)V (F1(s) A 77 (a,5)) = O, = p]
Further, for any formula ¢, Ris5[¢] = Ris[¢], and for any fluent F;(z, do(a, s)),
Tsslbi(@, do(a, 5))] = Rigs[Fi(F, do(a, 5))] = Rss, [Fi(F, do(a, 5))]

where R’ denotesregression under the intermediate successor state axioms 7'rss, U. ..U Trss;
R’ denotes regression under the successor state axioms 7'ss, U ... U Tsg,, and Rgs, denotes
regression under the successor state axioms 7'ss,

Our successor state axioms provide a closed-form solution to the frame and ramification prob-
lems. Sincewe havecompiled 7'.; and T',,.,, into T'ss, wecanreplace T.; and T,,,, by T'ss and T'°

rTam

in (1), where T isthe set of ramification constraints, relativized to S,. We prove the legitimacy

Tam

of thisclaim in Section 7.2.

5 TheQualification Problem

Our domain theory,
TuynaUTss UTs, U T

rTam

U Tqual U Taomain U Thec (55)

now provides a solution to the frame and ramification problems. It remains to address the quali-
fication problem. As previously observed the qualification constraintsin 7',,,; can further restrict
those situations s in which an action a is Poss-ible. We propose to use Lin and Reiter’s solution
[9], to determineaset of action preconditionaxioms7 4. It transformsthe necessary conditionsfor
actions, T,,.. and the qualification constraints, 7,,,; into a set of action precondition axioms 74 .
Following their results, we add one more step to our procedure.

Step 8. Define one action precondition axiom for each action prototype A() as follows.
Action Precondition Axioms

Poss(A(%),s) =14 A /\ ¢, (56)
C€Tqual
where,
e = Rss[C(do(A(Z), s))] (57)

My =k v...va% foreach ri of (30)inT,... Rss istheregression operator under the successor
state axioms, 7'ss.

Example: Consider (10) of 7)., and (34) and (31) of 7,... The action precondition axioms for
turn_on_manual_fill and turn_on_pump following Step 8 of our procedure are:

Poss(turn_on_manual_fill, s) = —alarm(s) A mon(Pump, s) (58)

Poss(turn_on_pump, s) = ~manual_fill(s). (59)
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The action precondition axioms provide a closed-form solution to the qualification problem. Since
we have compiled 7',.. and T},,,; into T'sp, we can replace T),.. and T,,,,; by T4 and qufal in our
theory, where 70 | isthe set of qualification constraintsrel ativized to situation Sy. Linand Reiter’s

qual

solution aso requires adomain closure axiom for actions, Tpe 4.

6 Discussion of the Closed-Form Solution

Incorporating the results of the previous sections yields the following final domain theory which
integrates our syntactically restricted state constraints and arepresentation of action, while solving
the frame, ramification and qualification problems:

TunaUTpocaUTss UTspUTs, U Tg% U Tiomain- (60)

This representation can be viewed as an executable specification because it is easily realized in
Prolog by exploiting Prolog’'s completion semantics and simply replacing the equivalence signs,
characteristic of T'ss and 7'4p, by implications. The Lloyd-Topor transformation [11] must then be
applied, to convert the resultant theory into Prolog clausal form. Indeed, as an interesting aside, in
the sectionsto follow we show that our successor state axioms are semantically characterized asthe
outcome of computing a particular prioritized circumscription. Perfect models in logic programs
have aprioritized circumscription semantics [ 16], thusthelogic program produced from trand ation
of our successor state axioms also has a perfect model semantics. See[13] for further details.

The state constraints that play the role of ramification constraints with respect to our theory of
actions are compiled into successor state axioms, one for every fluent in our theory. When state
constraints are absent, asin the case of Reiter’s solution to the frame problem [17], successor state
axioms provide a parsimonious representation for frameand effect axioms. In the presence of ram-
ification constraints, the successor state axioms can, under certain conditions, grow exceedingly
long. This presents the problem of trying to find the best trade-off between precompilation and
runtime computation; a problem that many Al researchersface, and onethat is often best addressed
with respect to the specific domain. Fortunately, in our case we have an ideal compromisein those
cases where T'ss provesto be unwieldy, that isto employ the intermediate successor state axioms
as our representation. The axiomsin 7755 capture the intended interpretation of our domain but
are only partially compiled, and thus don’t risk the length concerns associated with the axiomsin
Tss. Further, T7ss preservesthe compositionality of our representation, whichisimportantin some
model-based reasoning applications.

Recall that our closed-form solution to the frame and ramification problemsis restricted to the
class of solitary stratified theories. The syntax of such theories provides a mechanism for commu-
nicating the causal dependency relationship between fluents. Since the dependency graph dictated
by the stratification of the fluents contains no cycles, the propagation of change from one fluent
to another is singularly defined. While we can make no definitive claims about the frequency of
occurrence of solitary stratified theories in general, they appear to occur quite commonly in the
representations of industrial artifacts without feedback 1oops, e.g., the power plant feedwater sys-
tem. In these systems, the causal dependency between fluents often reflects physical connectivity
of components and subcomponents.
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As we have observed, our closed-form solution appeals to a compl eteness assumption in order
to generate explanation closure axioms. While this completeness assumption may not be valid for
all domains, itis, for example, viewed as areasonable assumption in the case of industrial artifacts,
where the number of componentsis fixed, and where the environment is controlled. To more for-
mally justify our closed-form solution, Section 7 provides an independent semantic justification.
From these results we also show that our solution is predicated on a consistency condition.

7 Semantic Justification

In previous sections, we presented a closed-form solution to the frame and ramification problems
for syntactically restricted ramification constraints and effect axioms that collectively form a soli-
tary stratified theory. Our solution involved compiling effect axioms and ramification constraints
into successor state axioms. Unfortunately, the compilation procedure, and as a consequence, our
closed-form solution are predicated on aloose appeal to a completeness assumption. In the rest of
this paper we provide an independent semantic justification for our closed-form solution. In partic-
ular we show how to specify and compute a solution to the frame and ramification problems using
minimal model semantics and circumscription. This represents the second major technical contri-
bution of this paper.

We achieve our semantic justification as follows. Exploiting the natural stratification of soli-
tary stratified theories, we specify a nonmonotonic solution to the frame and ramification problems
in terms of a prioritized minimization policy. We show that under a consistency assumption, our
successor state axioms (52) are solutions to the frame and ramification problems with respect to
the specification. We a so show that any solution with respect to our specification is aso asolution
with respect to Lin and Reiter’s specification [9]. In Section 7.2, we observe that our minimization
policy is equivalent to a particular instance of prioritized circumscription. Through ssmple syntac-
tic renaming and by exploiting results from Lifschitz on computing circumscription (e.g., [6]), we
show that under a consistency assumption, computing this prioritized circumscription resultsin the
computation of our successor state axioms. This result establishes the correctness of our closed-
form solution with respect to our nonmonotonic specification. Finally, we use these resultsto show
that, in the case where there are no ramification constraints, computing the circumscription results
in the successor state axioms defined by Reiter in his solution to the frame problem [17].

7.1 Minimization Policy

In this section we define a prioritized minimization policy and use it to specify what counts as a
solution to the frame and ramification problemsfor solitary stratified theories. To solve the frame
problem, we wish to capture the intuition that things normally stay the same, and that when they
do not, it is abnormal. We express the notion of abnormality through the distinguished predicate
abr,(a,s)®, oneforeach fluent F; € £;,i = 1,...,n. The predicate aby,(a, s) isan abbreviation
for =[Fi(s) = Fi(do(a, s))].

We wish to minimize abg, (a, s), and in so doing, capture the intuition that in the absence of
something abnormal, the truth value of afluent persists after an action is performed. In order to

5The predicate ab is distinguished from the predicate A B, which iscommonly used in model-based diagnosis rep-
resentations to denote that a component of a system is behaving abnormally in a situation.
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define our minimization policy, we must differentiate between an initial situation and the situation
resulting from performing an action, which we will refer to henceforth as the resulting situation.
Likethe minimization policiesadvocated by Lin and Shoham [10] and Lin and Reiter [9], our policy
minimizes abr,(a, s) with Poss(a, s) and the truth status of fluentsin the initial situation, F;(Z, s)
remaining fixed. Fluentsin the resulting situation, F;(do(a, s)) are alowed to vary.

While we share basic minimization principleswith previousy advocated solutionsto the frame
and ramification problems, our minimization policy is distinguished because it places apriority or-
dering over the minimization of the predicate abg, (a, s). The orderingis

Aby > Aby > ... > Ab,,

where Ab; isatuple containing the abnormality predicate abr, (a, s) for each fluent F; € £;. The
priority ordering corresponds to the stratification of the solitary stratified theory, 7' = Ty U T} 4.
Ab(a, s) is assigned the highest priority for minimization, and Ab,(a, s) is assigned the lowest
priority.

Under this prioritized minimization policy, each aby, (a, s) is minimized, even at the expense
of increasing the extent of predicates aby,,, (a,s),...,abg,(a,s) and fluents Fj(do(a, s)), k =
1,...,n. Theintuition behind this prioritized minimization hinges on the fact that our theory is
solitary stratified. Recall fromthe discussion in Section 4.1 that theintended interpretation wewish
to capturewith our solitary stratified theories 7" isthat afluent F; isdefined by the axiomsin stratum
T;, using fluentsdrawn from £, ..., £,_,. Any mention of F; in stratum 77}, y > @ contributes no
further towards the definition of F;, but rather serves to define the fluent F; of that stratum. This
captures the intended interpretation of our ramification constraints and effect axioms. As aresult,
to address the frame and ramification problems, we minimize each abr,(a, s) alowing abr, (a, s),
J > 1tovary aswell as allowing al the fluentsin resulting situations, F(do(a,s)), k =1,...,n
to vary. Aswe will see, this prioritized minimization policy captures our intended solution to the
frame and ramification problemsfor solitary stratified theories.

The definition of the minimization policy follows. Let s and « denote variables of sort situation
and action respectively. Further, let o, o, and o; denote assignment functions from free variables
of sorts situation, action and domain, respectively.

Definition 2 (Prioritized Model Preference) Suppose, 7' isa solitary stratified theory with strat-
ification (77, ..., T,), domain fluents £, and partition (L4, L., ..., L,), where £ = U, £;. Sup-
pose abr, (7, a, s)” abbreviates —[Fi(Z, s) = Fi(Z, do(a, s))] and M and M’ are models of 7.
Model M’ is preferred over model M with respect to variable assignment to situations, o,
(denoted by M <,,. M), iff the following conditions hold.
1. M and M’ have the same universe of discourse.
2. M and M’ agree on their interpretation of everything, including Poss, with the potential
exception of domain fluents.
3(a). M and M’ agree on the extensions of every fluent #;(Z, s), in every stratum 7%,
1=1,...,n.
|.e.,, for any assignment o, and o4, and any fluent F;(#,s),i = 1,...,n,
Mo, 00 = Fi(Z,s) iff M, o,,04= Fi(Z,s)

“For the purposes of thisdefinition only, we explicitly include action and predicate arguments .
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3(b). For somei, 1 <i < n, M and M agree on the extensions of every abr, (, a,s) in

stratum 7}, j = 1,...,i — 1, and the extensions of abr (7, a, s) in M are a subset
of the extensions of abg, (7, a, s) in M.
|.e., for some: and any assignment o, and o4, and any fluent #;(z.s), 5 =1,...,01—1,

M 0,,04,04 = Poss(a,s) A —abg,(Z,a,s) iff M, o, 04,04 = —abp,(Z,a,s)
and for some fluent F;(%, s), there are two assignments o, and o; such that,
M,0,,0,,04 = Poss(a,s) A abg.(Z,a,5) but M’ o, 0,04 = —abr(,a,s)

M isaminima model of 7 if thereisno M and no variable assignment to situations o, such that
M <,, M.

From our prioritized model preference, we provide a semantic specification for asolution to the
frame and ramification problems for our syntactically restricted theories. In particular, we specify
that under the prioritized minimization policy, the minimal models of our restricted theories pre-
scribe solutionsto the frame and ramification problem. Recall that X ¢,.,.4 isthe set of foundational
axioms of the situation calculus[9].

Definition 3 (Semantic Specification) Suppose ¥ = Yf,und U Tuna U Tef U Tryp Where T =

Tes U T,um i1Sasolitary stratified theory, with stratification (74, 7Tz, . . ., T,,), domain fluents £, and

partition (L4, L, ..., L,), such that £ = | Ji, £;. Finally suppose M isa minimal model of 3.
Then M captures a solution to the frame and ramification problem for 3.

Asobserved in Section 4.1, Lin and Reiter previously defined a solution to the frame and rami-
fication problem as the minimal models of our same ¥ under asimilar non-prioritized minimization
policy [9]. Interestingly, our minimization policy collapsesto Lin and Reiter’spolicy whenn = 1.

Proposition 2 If M isaminimal model of ¥, then M isalso a minimal model of > under Lin and
Reiter’s minimization policy, outlined in [9].

Remark 1 If M captures a solution to the frame and ramification problem for ¥ as specified in
Definition 3, then it also meets Lin and Reiter’s general specification for a solution to the frame
and ramification problem, as outlinein [9].

To contrast our minimization policy to Lin and Reiter’s, recall that their specification provides
criteriafor a solution to the frame and ramification problems. Unlike our specification which is
limited to a syntactically restricted class of theories, their specification need not yield a minimal
model, and indeed can yield multiple minimal models, some of which will not reflect the intended
interpretation of the effect axiomsand ramification constraints. Further, as we show in the pagesto
follow, our specification for our restricted theories guarantees a procedure to generate an axiomatic
solution, whereas Lin and Reiter’s does not.

Next we demonstrate the relationship between our semantically specified solution to the frame
and ramification problem and the successor state axioms we defined in (52). This relationship is
predicated on a consistency assumption. The consistency assumption, ensures that either an action
isimpossible to perform in situation s, or that performing the action will not result in a situation
where a fluent is determined to be both true and false by some combination of effect axioms and
ramification constraints. The unique names axioms, 7Ty 4 ensure that no action has the effect of
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making afluent both true and fal sein the same situation. The necessary conditionsfor actions, 7',...
dictate that an action isimpossible to perform in a situation if performing the action resultsin an
inconsistency between the effect of the action and the intended effects of ramification constraints.

Under the consistency assumption, the successor state axioms combined with the foundational
axioms, the unique names axioms for actions and the ramification constraintsrelativized to .S, col-
lectively entail the ramification constraints relativized to the situations accessible from S,. This
enables us to exclude 7,,,, and 7. ; from our theory, provided 7% is present.

Tam

Theorem 1 Suppose X is the theory defined in Definition 3 and T'ss is the set of successor state
axioms as per (52). Further, assume that the following consistency condition holds,

TonaU Ty E (Va,s).Poss(a,s) D

~ (78 (a, 5) V R[VE (do(a, )]) A (77 (a, 5) V R[vE,(do(a, 5))])]. (61)
Then for every ramification constraint (Vs).C'(s) € Ty um,
Y found U Tuna U Tss UTS0 = (Vs).80 < s D C(s) (62)

where 7% isthe set of ramification constraints relativized to Sy,

TS, = {C(S0) | (V5).C(5) € Tram}.

To paraphrase, we make a consistency assumption (61) about our theory, which says that either an
action isimpossible, or if it is possible, that it is never the case that the direct effects or ramifi-
cations of an action (y’sand v’s, respectively) can make a fluent both false and true in the same
Stuation. Under this assumption, (62) says that if we replace the effect axioms, 7', ; and ramifica-
tion constraints, 7,,,, by the successor state axioms of (52), T'ss and the ramification constraints
relativized to the initial situation, 7'% , that the resulting theory will entail the ramification con-
straints, not only at situation Sy, but viathe successor state axioms, at every situation s that follows
So onthetree of Poss-iblestuations, i.e., those situations s such that Sy < s.

Thefollowing theorem provesthat, under the stated consi stency assumption, the successor state
axioms providea solution to the frame and ramification problems, in keeping with our specification.
Later, we will see that the results in this theorem are subsumed by Theorem 4.

Theorem 2 Suppose ¥ is the theory defined in Definition 3 and T'ss is the set of successor state
axioms derived from 7% s and 7., of ¥ asper (52). Finally assume that the following consistency
condition holds,

TunaUT,e. E Poss(a,s) D _‘[(71-5(% s)V R['v;i(do(a, sH A (’y}i(a, s)V R['v}?i(do(a, sH]-

Then if M isamodel of ¥,,n4 U Tna U Tss U T2, then M isa minimal model of ¥ and M
captures a solution to the frame and ramification problems under Definition 3.

The models of these theories are not equivalent because the successor state axioms, 7'ss only
characterize the effects of Poss-ible actions, not all actions. Replacing the ramification constraints
by 7% and Tss isinsufficient. To be complete, we must somehow express that the ramification
constraints hold for the situations that are not accessible from S, using Poss. We can address this
issue mathematically, but for most of our applicationswe are only interested in considering the sub-
set of the Situation treethat is Poss-ible, and so instead we smply restrict further discussion to this

subset of all situations.
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7.2 Computing Minimal Modelsusing Circumscription

In this section we observe that semantic entailment in the minimal models of our prioritized model
preference can be captured by circumscription and that, for the class of theorieswe are studying, the
result of circumscription isfirst-order definable. We further show that for our class of theories, the
successor state axioms defined in (52) are equivalent to those generated by computing our circum-
scription. Indeed, under a consistency assumption, we show that our circumscription computesthe
explanation closure axioms, and in turn the successor state axioms. Thisresult formally establishes
the equival ence between amonotonic theory which includesthe successor state axiomsof (52), and
our nonmonotonic specification of a solution to the frame and ramification problems.

The objective of our circumscriptivepolicy isto minimizethe difference between thetruth value
of fluentsin an initial situation and a resultant situation. For any situation .S, our circumscription
minimizes abg,(a, S) with Poss(a, S) and F;(5) fixed and with F;(do(a, S)) allowed to vary.

To simplify the computation of this circumscription, we transform our theory ¥, intoasim-
pler theory, 3 . The circumscription isthen computed with respect to X%, by exploiting results
of Lifschitz on computing circumscription (e.g., [6], [7]). Our objectivein transforming our theory
isthree-fold.

e Tomakethelitera ab explicitin our theory.

e Toremoveall mention of the situation term s, since our minimization policy and correspond-
ing circumscription is defined with respect to afixed situation S.

e To syntactically distinguish between F' in F(do(a, s)) and F in F(s) so that we can exploit
results on computing circumscription, and in particular so that we can easily compute the
predicate completion of fluents, ¥ in our resultant situation, fixing fluents, ' in the initial
situation.

Thetransformation and results are not compl ex, although the notation may bealittle off-putting.
Toillustratethetransformation, consider the effect axiomsand ramification constraintsfor the fluent
alarm(s), asoriginally defined in our feedwater example.

Poss(a,s) A a = turn_on_alarm D alarm(do(a, s)
,8)

)
Poss(a,s) A a = turn_of f_alarm D —alarm(do(a, s))
—water_entering_header(s) A on(Boiler,s) D alarm(s)
)

)

AB(Boiler,s) D alarm(s
—water_entering_header(do(a, s)) A on(Botler,do(a,s)) D alarm(do(a, s
AB(Boiler,do(a,s)) D alarm(do(a, s

)
)
Our first step isto distinguish the predicate aby, (a, s) into abf, (a, s) A aby, (a, s), and to make them
explicit in our theory by adding positive and negative generic frame axioms, one for each fluent
F; € £. We refer to these frame axioms collectively as T'y,..,.... In our example, our frame axioms

are asfollows.

Poss(a,s) A alarm(s) A —ab

alm‘m(aa 5) D alaTm,(dO(a’ 3))
Poss(a,s) A —alarm(s) A ﬁa,b;'lmm(a, s) D —alarm(do(a, s))
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Next, werewriteour theory ¥,,,, UT s, aSanew theory, £, . Todo so, we extend our language

by the addition of a new predicate Poss™ and new predicates F*, Fr*, abyt, and aby;, onefor each
fluent F; € £. Next, for every axiomin X,,,, U T4, We replace each occurrence of Poss(a, s),
F(s), F(do(a,s)), abf., and abz, with the corresponding occurrence of Poss™, I, F;*, abjf, and
aby . Inour example above, the axioms are transformed as follows.

Poss*(a) A a = turn_on_alarm D alarm™(a)

Poss*(a) A a = turn_of f_alarm D —alarm™(a)
—water_entering_header™ A on™(Botler) D alarm®
AB*(Boiler) D alarm”®

—water_entering_header™(a) A on™(Boiler,a) D alarm™(a)
AB*™(Boiler,a) D alarm™(a)

Poss™(a) A alarm™ A —ab’}, )

)

alarm

(a) D alarm™(a

Poss*(a) A —alarm* A =ab*}  (a) D —alarm*(a

Using analogous notation to that employed in ¥..,.,., werefer to

a = turn_on_alarm as 5 (a)
(a

)

a = turn_of f_alarm as

(~water_entering_header* A on*(Boiler))V AB*(Boiler) as vl

alarm

(~water_entering_header**(a) A on*™*( Boiler,a))V AB**(Boiler,a) as v** (a).

alarm

Fyalarm

Thereisnov’,, —andnov’;— (a).

alarm alarm

Generalizing, the transformed theory, 3%, is produced from £,.,,,, U T'¢,,,,.. as follows.
Definition 4 (¥*) Suppose ¥ isthe theory defined in Definition 3. Define ¥* to be the theory
Efound UTuna U Tef U T:am U T;‘fra,me

where 7', iSthe set of positive and negative frame axioms, one each for each fluent F; € L,

Poss(a,s) N Fi(Z,8) A —abg. (%, a,8) D Fi(&,do(a, s)) (63)
Poss(a,s) N —Fi(Z,s)A ﬁabFi(ac, a,8) D —Fi(%,do(a,s)) (64)
adT7,,,...T;;and T, areTy.m. above, and T, T, drawn from ¥ with

e each occurrence of F;(Z, s) replaced by F*(Z),

e each occurrence of F;(Z, do(a, s)) replaced by F;*(Z, a),
e each occurrence of abﬁv/ ]("c a, s) replaced by ab*[+/"](
e each occurrence of Poss(a, s) replaced by Poss*(a).

,a),and

Lemma 1 below establishesthat our nonmonotoni ¢ specification of asolution to the frameand ram-
ification problems can be captured by prioritized circumscription in our transformed theory. The
results follow directly from the semantic definition of prioritized circumscription (e.g., [6]), and
the definition of our prioritized model preference.
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Lemma 1 Suppose ¥ isthetheory defined in Definition 3 and Y* isthe theory defined in Definition
4. Then M isa minimal model of > with respect to the prioritized model preference of Definition
2iff M’ isamodel of

Vs.CIRCT(X*; Aby > ... > Aby; IV, .. 1),

where each Ab; is a tuple containing the abnormality predicates ab3;" (a) and ab3; (a), and where
CTRCT isthecircumscription CTRC (X% Aby > ... > Aby,; FY*, ..., F*) with

o each occurrence of ab*[+/~)(a) replaced by the corresponding abtt’ (a, s),

e each occurrence of F;* replaced by Fj(s),

e each occurrence of F*(a) replaced by F;(do(a, s)), and

e each occurrence of Poss*(a) replaced by Poss(a, s).

Lifschitz proved some very nice results identifying when circumscription is first-order defin-
able, and when we can actually compute the axioms that result from a circumscription (e.g., [6],
[7]). Inthe theorem to follow, we exploit these results to show that, under a consistency assump-
tion, our prioritized circumscription of Ab; with respect to ¥* leads to the creation of explanation
closure axioms, which when combined with effect axioms and ramification axioms, are equivalent
to successor state axioms.

The consistency assumption upon which we predicate our theorem is the transformation of the
assumption employed in the previous section. Recall that the objective of the consistency assump-
tionistoensurethat F;(do(a, s)) and—F;(do(a, s)) never co-occurred. Sincewehave added generic
frame axiomsto ¥*, we must reflect this addition in the consistency assumption.

Assumption 1 (Consistency Assumption) For each fluent F;, assume

TynaU T, = Poss™(a) D

~[(VE (@) Vot (a) v (7 A —abf (@) A (vE (@) V oR ™ (a) V (< F A —abff(a)))] (65)

where 7**

nec

is the transformation of 7),.. as described in Definition 4.
Theorem 3 Suppose ¥* as defined in Definition 4 and Consistency Assumption 1 holds. Then

CVIRCV(E*; Aby > ... > Aby; Fl**((l), Cae F;*(”)) = Efound UTuna U T:f U T:am U TEC U T:lb—equiﬂs
Efmm,d UTunaU T:'S’ U sz—equm.s

o Tro = Ui, The, isthe set of explanation closure axioms for theory ¥*.
Each 7%, isa set of formulae of the following form, one each for every F; € L;.

Poss™(a) N I AN =F"(a) D vg (a) Vg ~(a)
Poss™(a) A= A F7*(a) > v5F(a) V v (a).
o Tiq=Ur, TS, istheset of successor state axioms for theory ¥,
Each 7’55, isa set of formulae of the following form, one for every F; € L;.
Poss™(a) D [F7*(a) = v (a) v R v H(a)] v (F (s) A =(v5 () V R o (a)])]

where R~ istheregression operator under the successor stateaxioms, 7% U...UT%. .
€g p 58, 584
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© T cquive = Uimt This_cquins; 1Sthe set of circumscribed definition of b (a) and aby; (a).
T*

Ab—equivs; 1S @ Set of formulae of the following form, one formula for every F; € £;.

(ab}j(a) = Poss™(a) A = F] A (7}?(&) v v}f(a))
(abf; (a) = Poss™(a) A F7 A (75, () V v~ (a)))
We have shown that our circumscription computes our successor state axioms in our transformed
theory. Inwhat followswe easily relate the results of Theorem 3 back to the successor state axioms
of our original language.

Proposition 3 Suppose ¥ isthetheory defined in Definition 3 and ¥* isthe theory defined in Def-
inition 4 and assume that Consistency Assumption 1 holds. Then

VS.CIRC-I_(E*; Aby > ... > Aby; F]**, RN F:*) = Efound UTynaUTgg U TAb—eqm’vs

where
e C'IRC* isasdefined in Lemma 1.
e T'ss isthe set of successor state axiomsfor fluents F; € £ of .. They are of the form of (52).
® T'4b—cquivs 1S T7_oquins» OF Theorem 3, with each occurrence of ab*!+/=1(a), Iy, F7*(a), and

Poss*(a) replaced by the corresponding abg;t/_](a, s), F;(s), F;(do(a, s)),and Poss(a, s).

Finally, in the theorem to follow, we show that if we restrict our consideration to the situations that
are Poss-ibleintheworld, (i.e, s, st. Sy < s, using notation from £ ¢,,,.4), that the nonmonotonic
theory ¥ ¢ouna U Tuna U Tep U T,40 IS equivalent to the monotonic theory X ., U Tna U Tss.

Theorem 4 Suppose ¥ is the theory defined in Definition 3 and assume that the following consis-
tency condition holds:

TunaVUThee |5 Poss(a,s) > =(vF,(a,5) V R[vf, (do(a, 5))]) A (vE,(a,5) V R[vF (do(a, 5))])].

Suppose M isamodel of . Then for variable assignment o, to s such that, Sy < s,

M isa minimal model of ¥ with respect to the prioritized model preference of Definition 2

iff

M isamodel of X oung U Trna U Tss.
Using similar rewriting tricks, we can apply these resultsto Reiter’s successor state axiom solution
to the frame problem to establish that in the case where there are no ramification constraints, our
prioritized minimization policy, and also Lin and Reiter’s minimization policy [9] both compute
Reiter’s successor state axioms, and hence his closed-form solution to the frame problem. These
results confirm the syntactic form of Reiter’s successor state axiom solution.

Theorem 5 Suppose ¥ is the theory defined in Definition 3 and that 7',,,, = {}. Further, assume
the following consistency assumption holds,

Tuna = ﬁ(’Y}E(“»S) AYE(as8))- (66)

Suppose M isamodel of X. Then for variable assignment o, to s such that, S, < s,
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M isaminimal model of ¥ with respect to the prioritized model preference of Definition 2
iff
./M/ isa modd of Efound UTuna UTssrE,
where 7's sy 1S the set of successor state axioms of the following form.

Poss(a,s) D [Fi(do(a, s)) = 7f,(a,s) V (Fi(s) A =75, (a,5))] (67)

(66) states that an action cannot make a fluent both true and false in the same situation. It cap-
turesthe same intuition as our previous consistency assumption without the need to discuss ramifi-
cations, and consequently, without the need to restrict ourselves to those situations that are Poss-
ible. The successor state axioms, T'ssr defined in (67) are the successor state axioms Reiter iden-
tified as his solution to the frame problem [17].

This concludes the independent semantic justification for our closed-form solution. Proofs of the-
orems can be found in [13]. In what follows, we briefly discuss related work.

8 Related Work

Thedialect of thesituation cal culuslanguage used inthis paper originateswith the Cognitive Robotics
Group at the University of Toronto. Our compilation approach to solving the ramification problem,
and more specifically our appeal to a completeness assumption to generate explanation closure ax-
iomsis derivative of Reiter’'s[17], Schubert’s [19] and Pednault’s [14] approaches to solving the
frame problem. The basic minimization policy we employed in our semantic justificationis deriva-
tive of Lin and Shoham [10] and Lin and Reiter [9], with the important addition of making the min-
imization prioritized. This enabled us to define a closed-form solution for our restricted theories.
Theintuition behind our solution to the frameand ramification problems—the notion of interpreting
our ramification congtraints as definitional in nature, was influenced by research on the semantics
of normal logic programsand deductive databases (e.g., [ 16]), and isrelated to preliminary work on
this problem by Pinto [15]. Indeed the spirit of this solution — the notion of imposing adirectional
interpretation on our implication connective in our ramification constraints, is akin to the intuition
behind proposed sol utionsto the ramification problem which advocate minimizing an explicitly rep-
resented notion of causality (e.g., [8], [12], [3], [20], [2]). Indeed the author suspects that for the
syntactically restricted case studied here, al our different proposed solutions may produce the same
results, just as many of the independent solutions to the frame problem prove to be identical under
certain conditions [1]. What distinguishes this work in particular is that it provides an axiomatic
closed-form solution and it retains the dual role played by our state constraints.

9 Contributions

This paper addressed the problem of integrating a theory of action with a pre-existing set of state
congtraints. The first mgjor contribution of this paper was provision of an axiomatic closed-form
solution to the frame, ramification and qualification problemsfor an arguably common class of the-
ories, which wereferred to as solitary stratified theories. The solution was presented as an automat-
able procedure that compiled effect axioms and ramification constraintsinto a set of successor state
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axioms. The benefit of our solution over many previous solutionsisthat the axiomatic closed-form
solution enables us to use monotonic reasoning machinery to performinference, rather than having
to reason nonmonotonically.

The second major contribution of this paper was an independent semantic justification for our
solution. Limiting our attention to solitary stratified theories, we proposed a semantic specifica-
tion for a solution to the frame and ramification problems in terms of a prioritized minimization
policy, proving that the successor state axioms of our closed-form solution agreed with this spec-
ification. Establishing our minimization policy as an instance of prioritized circumscription, we
observed that this circumscription was first-order definable and showed that computing the priori-
tized circumscription yielded exactly our successor state axioms. We al so showed that in the special
case where there are no ramification constraints, computing the circumscription produced exactly
Reiter’s earlier successor state axiom solution to the frame problem. These results provide solid
support for the syntactic form of our closed-form solution, and as a side effect, Reiter’s as well.
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