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Abstract
Our general concern is with how to integrate a representation of action into an existing set

of state constraints. As has been observed in the literature, state constraints implicitly define
indirect effects of actions as well as indirectly imposing further preconditions on the perfor-
mance of actions. Thus, any representation scheme we propose must address the ramification
and qualification problems, as well as the frame problem. In this paper we achieve such a rep-
resentation for a syntactically restricted class of situation calculus theories.

This paper presents two major technical contributions. The first contribution is provision of
an axiomatic closed-form solution to the frame, ramification and qualification problems for a
common class of ramification constraints. The solution is presented in the form of an automat-
able procedure that compiles a syntactically restricted set of situation calculus ramification con-
straints and effect axioms into a set of successor state axioms. The second major contributionof
this paper is provision of an independent semantic justification for this closed-form solution. In
particular, we present a semantic specification for a solution to the frame and ramification prob-
lems in terms of a prioritized minimization policy, and show that the successor state axioms of
our closed-form solution adhere to this specification. Observing that our minimization policy is
simply an instance of prioritized circumscription, we exploit results of Lifschitz on computing
circumscription [6] to show that computing the prioritized circumscription yields our succes-
sor state axioms. In the special case where there are no ramification constraints, computing the
circumscription yields Reiter’s earlier successor state axiom solution to the frame problem [17].

�
I would like to acknowledge Fangzhen Lin for providing helpful comments on the circumscription results, and

particularly for mathematically articulating my intuitions regarding the existence of a lemma that was essential to the
proof of Theorem 3.�

A subset of the material presented in this paper also appears in Representing Actions and State Constraints in
Model-Based Diagnosis, Proceedings of Fourteenth National Conference on Artificial Intelligence c

�
AAAI Press,

Menlo Park, CA, 1997.�
Current Address: Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, E-mail: mcilrait@parc.xerox.com,

Phone: 415-812-4332, Fax: 415-812-4334, and Knowledge Systems Laboratory, Stanford University, Gates Sciences
Building 2A-248, Stanford, CA 94305-9020, E-mail: sam@hpp.stanford.edu.

1



1 Introduction

This paper presents an axiomatic closed-form solution to the frame, ramification and qualification
problems for what we argue to be a commonly occurring class of state constraints. The results in
this paper are motivated by and contribute towards addressing the following more general problem.

Given a set of state constraints describing some aspect of the world which we hence-
forth refer to as the system, how do we integrate a representation of action and change,
so that we can reason about the effects of an agent’s � actions on the system, and the
effect of the system on performing those actions.

This general problem arises in the context of many applications of artificial intelligence (AI). For
example, in the case of diagnostic problem solving, we might have a set of state constraints rep-
resenting the behaviour of some device, such as a power plant or a motor vehicle. We might then
wish to integrate a representation of actions in order to perform such tasks as system maintenance,
testing, repair or contingency planning. In contrast, in an active vision application, the state con-
straints might represent the ontology of objects that could occur in a scene, and we might wish to
integrate a representation of actions in order to contemplate the effects of moving the camera or
acting upon objects in the scene in order to achieve our goal of image understanding.

In the context of our general problem, state constraints serve two purposes. On the one hand,
they define consistent states of our system. In this role, state constraints have traditionally been
used to reason about the system; for example in the case of diagnosis, to conjecture diagnoses. In
the context of a theory of action and change, state constraints have an additional role. They also
serve as ramification constraints and qualification constraints, implicitly defining indirect effects of
actions, and further constraining when actions can be performed, respectively. As a consequence,
addressing our general problem must preserve the original role of our state constraints while pro-
viding a solution to the frame, ramification and qualification problems.

We achieve our objective by exploiting the language of the situation calculus, and integrating a
situation calculus representation of action with our state constraints. This paper presents two major
technical contributions to this end. In Sections 4 through 6, we show that for an arguably common
class of ramification constraints, we can provide an axiomatic closed-form solution to the frame and
ramification problems. Providing a closed-form solution means that our solution is present in the
axiomatization as opposed to requiring computation. This solution is presented via an automatable
procedure that compiles a set of situation calculus ramification constraints and effect axioms into a
set of successor state axioms. To address the qualification problem, we appeal to existing results [9],
compiling our qualification constraints, necessary conditions for action and successor state axioms
into action precondition axioms.

A shortcoming in the justification of our closed-form solution is that it relies on an informal ap-
peal to a completeness assumption. To overcome this shortcoming, the second major contribution
of this paper is to provide independent semantic justification for our solution. We describe these
results in Section 7. In order to achieve this semantic justification, we first define a prioritized min-
imization policy following the intuition followed by our closed-form solution. Appealing to this
minimization policy we provide semantic specification for a solution to the frame and ramifica-
tion problems. Further we show that under a consistency assumption, our successor state axioms

�
An agent can be a human, another system, a robot, or nature.
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are indeed a solution with respect to this specification. Observing that our minimization policy is
simply an instance of prioritized circumscription, we exploit results by Lifschitz on computing cir-
cumscription [6] to show that computing the prioritized circumscription yields our successor state
axioms. Finally, we show that when there are no ramifications, computing the circumscription re-
sults in the set of successor state axioms Reiter proposed as a solution to the frame problem [17].
This provides further justification for his solution to the frame problem.

2 The Situation Calculus

The situation calculus language we employ to represent our domains is a sorted first-order language
with equality. The language consists of sorts actions, situations, and domain. Each action is repre-
sented as a (parameterized) first-class object within the language. The evolution of the world can be
viewed as a tree rooted at the distinguished initial situation

���
. The branches of the tree are deter-

mined by the possible future situations that could arise from the realization of particular sequences
of actions. As such, each situation along the tree is simply a history of the sequence of actions per-
formed to reach it. The function symbol ��� maps an action term and a situation term into a new
situation term. For example, �����	��
��� ��� �
������ ����� is the situation resulting from performing the
action of turning on the pump in situation

���
. The distinguished predicate ������������ � � denotes that an

action ! is possible to perform in situation " (e.g., ���������	��
���� �#� �
������ ���$� ). As such, ������� deter-
mines the subset of the situation tree consisting of situations that are possible in the world. Finally,
those properties or relations whose truth value can change from situation to situation are referred
to as fluents. For example, the property that the pump is on in situation " could be represented by
the fluent ���%����
����� � � . In addition to the first-order language we use to axiomatize our domain, the
situation calculus also consists of a set of foundational axioms, &('�)+*-,#. which establish properties of
our situations and situation tree [9]. Included in these axioms is definition of the binary relation /
which provides a partial ordering over situations in the subset of the situation tree that is 0213"�" -ible.
Finally, note that the situation calculus language we employ in this paper is restricted to primitive,
determinate actions. Our language does not include a representation of time, concurrency or com-
plex actions, but we intend to extend our results to more expressive dialects of the situation calculus
(e.g., [18]) in future work.

3 Domain Axiomatization: An Example

Once again, our problem assumes an existing set of system state constraints and our task is to incor-
porate a representation of action, solving the frame, ramification and qualification problems. In this
paper, we forgo preliminary discussion on transforming our original system state constraints into
situation calculus state constraints (see [13] for such a discussion) and assume that our axiomatizer
has given us a situation calculus domain axiomatization comprising the following sets of axioms

4�5368724�9 ' 724 , 9+:;724�<�=?>@7A4�5-B � (1)

which we describe below. Note that this axiomatization does not solve the frame, ramification and
qualification problems.
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Figure 1: Power Plant Feedwater System

We illustrate this axiomatization with a simplified power plant feedwater system, depicted in
Figure 1 and used for applications of diagnostic problem solving [4]. The system consists of three
potentially malfunctioning components: a power supply ( ����� ��� ); a pump ( ��
��� ); and a boiler
( ! ��"$#%��� ). The power supply provides power to both the pump and the boiler. The pump fills the
header with water, ( � ���&��� �����&����"+�(' )���� �*��� ), which in turn provides water to the boiler, producing
steam. Alternately, the header can be filled manually ( � � � 
��+# ,-"$#%# ). To make the example more in-
teresting, we assume that once water is entering the header, a siphon is created and water will only
stop entering the header when the siphon is stopped. The system also contains lights and an alarm.
(See [13] for a detailed description.)

Notation: all formulae are universally quantified from the outside, unless stated otherwise.
.0/ 536 is a set of situation calculus state constraints. These incorporate the existing system state

constraints, indexed where appropriate with a situation term, " . / 536 is in turn comprised of sets
of ramification constraints /2143�5 , qualification constraints /76 * 398 , and domain constraints / . ) 5:3�; , ..</�143�5 , the set of ramification constraints for our feedwater example is as follows:

=?> ! �������@����� � �BA =?> ! ����
����� � ��A ��������
����� � �:C � �3�D��� �����&����"+�E' )������*������� � (2)

� ����
��+# ,F"G#%#+��� �HC � �3�D��� �����&����"+�E' )������*������� � (3)
> ! �������@����� � �:C #%"I'�) ��� ��
 � ��� � (4)

=?> !�������� ����� � �:C = #%"J'() ��� ��
 � ��� � (5)

� ���&��� �����&����"+�E' )���� �+������� ��A =?> !�������� ����� � ��A =?> !��&!(��"$#%����� � �-A ���%�&!(��"G#%����� � �HC �-�D��� �8��� � (6)
= �&� �3�D��� ����D����"	�(' )���� �+���3��� ��A =?> !�������� ����� � ��A =?> !��&!(��"G#%����� � �-A ���%�&! ��"G#%����� � � �HC = �-�D��� �8��� � (7)

= � �3�D��� �����&����"+�(' )���� �*������� �BA �#�%�&!(��"$#%����� � �:C �*# � �#�8��� � (8)
> !��&!(��"G#%����� � �:C �*# �����8��� �LK (9)
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Axiom (2) states that if the power and pump are operating normally and if the pump is on,
then it implies that water will be entering the header. As an aside, note that axioms (4) and (5)
could be defined as one iff statement. We have written them as noted in order to simplify
designation of the criteria for our forthcoming transformation procedure.

.</?6 * 398 , the set of qualification constraints for our feedwater example is as follows:

= ����������
����� � �-A � � ��
�*# ,-"$#%#+��� � �LK (10)

. / . ) 5:3�; , , the set of domain constraints for our feedwater example is as follows:

����� ��� �� ��
��� �� ! ��"$#%��� K (11)

Actions are axiomatized as a set of effect axioms / 9 ' , necessary conditions for actions / , 9+: , and
unique names for actions / <�= >

..
/ 9 ' is the set of effect axioms representing the changes in the truth values of fluents as a result
of performing actions. For each fluent � in our language, we may have both positive and
negative effect axioms of the following syntactic form,

������������� � ��A����� �
	� � �� � �:C� �
	� � � ������� � � � (12)

������������� � �BA����� �
	� � ��� � �HC = � �
	� � � ������ � � � � (13)

where � ����
���� ! � "�� and � ����
���� ! � "�� are simple formulas � whose free variables are among ���� ! � " .
The following axioms compose / 9 ' for our feedwater example.

������������� � �2A � � ��
���� ��� �
���� C ���%����
����� ��������� � � � (14)

������������� � ��A � � ��
��#� ��,-, �
���� C = ���%����
����� ��������� � � � (15)

������������ � �2A � � ��
��#� �#� �-��"$#%��� C ���%�&! ��"$#%����� � ������ � � � (16)

������������� � �BA � � ��
��� ��,F, �-��"$#%��� C = ���%�&! ��"$#%����� � ������ � � � (17)

������������ � �2A � � ����@��� ,��+"G# C > !�������� ����� ��������� � � � (18)

������������ � ��A � � ��
 � ����@��� C =?> !�������� ����� ��������� � � � (19)

������������� � �BA � � ����@��� ,-" � C =?> !�������� ����� ��������� � � � (20)

���#��������� � ��A � � �
���� �-
��#� �#
 � C > ! ����
����� ��������� � � � (21)

������������ � ��A � � ��
��� ,F" � C =?> ! ����
����� ��������� � � � (22)

������������� � ��A � � �-��"$#%��� � # ��� C > ! �&! ��"$#%����� � ������ � � � (23)

������������ � ��A � � �-��"$#%��� ,F" � C =?> !��&!(��"$#%����� ��������� � � � (24)

������������� � ��A � � ��
��#� ��� � � ��
�*# ,-"$#%# C � � � 
��+# ,-"$#%#+��� ������ � � � (25)

���#��������� � ��A � � ��
���� ��,-, � � ��
�*# ,-"$#%# C = � � � 
��+# ,-"$#%#+��� ������ � � � (26)

������������� � ��A � � �-��� � � " ��)���� C = � ���&��� �����&����"+�E' )���� �+��������������� � � � (27)

������������ � �2A � � ��
��#� ��� �*# ����� C �*# �����8��� ������ � � � (28)

������������� � ��A � � ��
��#� ��,-, �+# � ��� C = �+# � ���8��� �3���� � � �LK (29)
�
A simple formula with respect to � is one in which only domain specific predicate symbols are mentioned (i.e., they

do not mention ��� �!� or " ), in which fluents do not include the function symbol #$� , in which there is no quantification
over sort �&%('*)�+,'*%-� ./� , and in which there is at most one free �!%0'*)1+,'*%2� ./� variable.
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Axiom (14) states that if action ! is possible in situation " , and ! is the ��
���� ��� �
���� action, then
the pump will be ��� in the situation resulting from performing action ! in situation " .

. / , 9	: is the set of axioms representing the necessary conditions for an action to be performed.
For each action prototype

�
in our language, necessary conditions are of the following form:

��������� > � 	� � � � �:C �
;> � (30)

where �
;> is a simple formula with respect to " , whose free variables are among �� � " .

The following axioms compose some of / , 9	: for our feedwater example.

���������	��
���� ��� �
����� � � (31)

���������+��
��� ��,-, �*# � �#� � � �HC �&� �3�D��� �����&����"+�E' )���� �+������� ��� = ���%�&!(��"G#%����� � � � (32)

���������	��
��#� ��,-, �*# ����� � � �HC =?> ! �&! ��"G#%����� � � (33)K K K
���#�����	��
��� �#� � � � 
��+# ,-"$#%#�� � � C = �+# � ���8��� � (34)

Axiom (34) states that if it is possible to turn on the manual filling then the alarm must be off.

.�/ <�=?>
is the set of unique names axioms for actions. They state that identical actions have identical

arguments, and every action name refers to a distinct action.
The following axioms compose some of / <�=?>

for our feedwater example.

��
���� ��� �
��� �� ��
��� ��,-, ��
��� �� K K K �� ��
��#� ��,-, �*# ����� (35)

. / 5-B is the initial database. It captures what is known of the initial state of the world.
The following axioms might compose / 5$B for our feedwater example.

=?> ! �������@����� � � �-A = � � ��
�*# ,-"$#%#+� � � ��A =?> !�����
������ � � ��A = � �3�D��� �����&����"+�E' )������*����� � � � (36)
= �#�%�&!(��"$#%����� ��-��A = ���%����
������ ����BA =?> ! �&! ��"$#%����� ���� (37)

4 The Frame and Ramification Problems

Once again, our domain axiomatization comprises the sets of axioms defined in (1). The job of
the axiomatizer is done, but as previously observed, these axioms do not provide a solution to the
frame, ramification and qualification problems. In this section, we propose a solution to the frame
and ramification problems for what we argue to be a common class of ramification constraints. The
qualification problem is discussed in a subsequent section.

Lin and Reiter [9] proposed a definition for a solution to the frame and ramification problems in
our situation calculus language using circumscription and minimal model semantics. This solution
has its limitations. Sometimes there is no minimal model. In other cases, there are multiple mini-
mal models, some of which do not reflect the intended interpretation of the ramification and effect
axioms. Most importantly, there is no guaranteed procedure to produce a closed-form solution.

Our contribution in this section is to provide an automatic procedure for generating a closed-
form solution to the frame and ramification problems for a common class of state constraints. This
solution is distinguished because it is closed-form and because it captures the intended interpreta-
tion of / 536 with respect to the theory.
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4.1 The Problem

We illustrate our problem with a subset of the feedwater system example. Consider the ramifica-
tion constraints, (2) and (3) above. The effect axioms, necessary conditions for actions and initial
conditions are as defined in the previous section. Assume for the sake of simplifying the example
that � ��� � K ������������ � � , i.e., that all actions are possible in all situations.
Assume the action ��
��#� ��� ��
��� is performed in

���
, resulting in situation

�
�
� � ���	��
��#� �#� �
������ ��$� .

From effect axiom (14), we infer that ��������
����� � �
�
. What do our ramification constraints tell us

about the indirect effect of this action? Under Lin and Reiter’s minimization policy to maximize
persistence, three minimal models � are apparent.

�
�
��� =?> !�������� ����� � �

� � =?> ! ����
���%� � �
� �L� ���&��� ����D����"	�(' )���� �*����� � �

���
�

� ��� > !�������� ����� � �
� � =?> ! ����
���%� � �

� � = � �3�D��� ����D����"	�(' )���� �*����� � �
���

�
�
��� =?> !�������� ����� � �

� � > ! ����
���%� � �
� � = � �3�D��� ����D����"	�(' )���� �*����� � �

���

Clearly, the intended model is
�

� . Turning on the pump results in water entering the header. It
does not result in an abnormal power supply, or an abnormal pump. We intuitively know this to be
the intended model, because we have a basic understanding of machinery. More importantly, the
axiomatizer has communicated the intended interpretation through the syntactic form of the rami-
fication constraints, as we explain below.

Recall that our state constraints serve two purposes. On the one hand, they define consistent
states of the world; However, in the context of a theory of action and change, state constraints
have an additional role. They also serve as ramification and qualification constraints, indirectly
constraining the effects of actions and further constraining the preconditions for actions

When employing the ramification constraints to infer the indirect effects of actions, the implica-
tion connective is interpreted as causal or definitional, in the logic programming sense. Following
[5], we say that a fluent is defined in an axiom or set of axioms if it appears on the right-hand side
of an implication connective in that axiom or set of axioms. Thus, it follows that an effect axiom
for fluent � also serves to define fluent � .

If we assume that a fluent only changes value according to the effect axioms and the ramifi-
cation constraints that define it, then the ramification constraints above only provide information
about changes in the truth value of fluent � �3�D��� �����&����"	�(' )������*������� � . With this assumption, we can
conclude that the consequence of performing ��
��� ��� �
��� in

� �
is captured by model

�
� .

In the section to follow, we use this intuition to generate successor state axioms that reflect
the intended interpretation of the ramification constraints and effect axioms, for a syntactically re-
stricted class of theories.

4.2 A Closed-form Solution

In this section we provide a closed-form solution to the frame and ramification problems for axiom-
atizations whose syntactic representation of ramification constraints and effect axioms, collectively
form a solitary stratified theory.

We combine the notion of solitary theory [6] and stratified logic program (e.g., [5]) to define
the notion of a solitary stratified theory. Note that unlike stratified logic programs, we use a strictly

�
We only list the relevant portion of the models here.
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/ relation to distinguish the strata of our theories. Intuitively, a solitary stratified theory is a strat-
ified logic program that allows negation in the consequent. If such a theory were represented as a
dependency graph, the graph would have no cycles. The stratification of a solitary stratified theory
need not be unique and we could write a procedure to determine a stratification automatically.

Definition 1 (Solitary Stratified Theory)
Suppose

4
is a theory in the language of the situation calculus with domain fluents, � . Then

4
is

a solitary stratified theory with stratification � 4 � �
4
� �
K K K � 4 , � , and partition ��� � ��� � �

K K K ��� , � if,. for
� � � �������$�
	 , � ; is the set of fluents

� ; that are defined in stratum
4 ; ; and

� �
7 � �

7 K K K 7 � , � � , and. 4
is the union

4
�
7 4

�
7 K K K 4 , of sets of axioms

4 ; where for each stratum,
4 ; is solitary with

respect to � ; ; i.e., each
4 ; can be written as the union ��� ;� = � ; � 7 ��� ;�� � ; � , where

1. � ; is the set of fluents,
� ; such that � =�� � ; is defined in

4 ; ;
2. � ;�� = � ; , is a set of formulae of the form ��� ; C = � ; � , – at most one for each fluent

� ;�� � ; ,
where each � ; is a formula containing no fluents drawn from � ; 7 K K K 7 � , .

3. � ;�� � ; , is a set of formulae of the form ��� ; C� ; � , – at most one for each fluent
� ;�� � ; ,

where each � ; is a formula containing no fluents drawn from � ; 7 K K K 7 � , .

Example:
In our feedwater example, / � /214345��:/ 9 ' is a solitary stratified theory with stratification � /

�
� / � � / � ).. /

� comprises Effect Axioms (14) – (26),. / � comprises Ramification Constraints (2) – (7), and Effect Axiom (27).. /
� comprises Ramification Constraints (8) – (9), and Effect Axioms (28) and (29).

In what follows, we define a seven step syntactic manipulation procedure which results in a
closed-form solution to the frame and ramification problems for solitary stratified theory / � / 9 ' �/B1 3�5 . The solution is predicated on an appeal to a completeness assumption which enables us to
generate explanation closure axioms.

Transformation Procedure
Let / � /B1 3�5�� / 9 ' be a solitary stratified theory, with stratification � /

�
� / � �������$� / , � .

Step 1. For every fluent � ; defined in an effect axioms of / ; , generate at most one general positive
and one general negative effect axiom as per axioms (12) and (13) above.

Step 2. For every fluent � ; defined in a ramification constraint of / ; , generate general positive and
negative ramification axioms, relativized to situation � � 1 � ! � " �!� .
General Ramification Axioms

� ���� ����������� � � � C � ; ��� �3���� � � �� (38)
� ��!� ����������� � � � C = � ; ��� �3���� � � � (39)

" ��!� � � 1 � ! � "��&� and " ��!� � � 1 � ! � "��&� are formulae whose free variables are among ! � " , and any state or
action arguments.

#
Henceforth, action and state arguments, $% will not be explicitly represented in canonical formulae.
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Step 3. Combine the two sets of axioms above, to define extended positive and negative effect ax-
ioms, for every fluent � ; .
Extended Effect Axioms

���#��������� � ��A � � ��!� ���� � � � � ��!� ��� ������� � � � � C� ; ����������� � � � (40)

���#��������� � ��A � � ��!� ���� � � � � ��!� ��� ������� � � � � C = � ; ����������� � � � (41)

Example:
Extended positive and negative effect axioms for the fluent ����������
����� ��������� � � � , defined in / � ,

������������ � ��A � � ��
��� �#� �
��� C ��������
����� ��������� � � � (42)

������������ � ��A � � ��
��� ��,-, ��
��� C = �#�%����
������ � ������� � � �LK (43)

For the fluent � �3�D��� �����&����"+�(' )���� �*������� �3���� � � � , defined in / � ,
� =?> ! �������@����� � ������ � � ��A =?> !�����
������ � ������� � � ��A ��������
����� ��������� � � � �

� � ����
��+# ,-"$#%#+��� ������� � � �BC � ���&��� �����&����"	�(' )���� �+���3����������� � � � (44)

������������ � ��A � � �$��� � � " ��)��� C = � ���&��� �����D����"	�(' )������*������� ������� � � �LK (45)

Step 4. Make the following completeness assumption regarding the effects and ramifications.
All the conditions underwhich an action � can lead, directly or indirectly, to fluent

�
becoming

true or false in the successor state are characterized in the extended positive and negative effect
axioms for fluent

�
.

Step 5. From the completeness assumption, generate explanation closure axioms. We argue that
if action ! is possible in " and if the truth value of fluent � ; changes from

� ��	 � to � ! � "*� upon doing
action ! in situation " , then either � ��!� � ! � " � is

� ��	2� or " ��!� � � 1 � ! � "��!� is
� ��	2� . An analogous argument

can be made when the truth value of fluent � changes from �;! � "*� to
� ��	2� upon doing action ! in

situation " . This assumption is captured in the following positive and negative explanation closure
axioms. For every fluent � ; ,
Explanation Closure Axioms

������������ � �2A � ; ��� �BA = � ; ��� ������� � � � C � ��!� ����� � � � � ��!� ��� ������ � � � (46)

������������ � ��A = � ; ��� ��A � ; ��� ������ � � �HC � ��!� ���� � � � � ��!� ��� ������� � � �LK (47)

Step 6. From the extended positive and negative effect axioms and the explanation closure axioms,
define intermediate successor state axioms for each fluent � ; . We distinguish them as intermediate
because, in the next step, we simplify them through a further syntactic transformation. For every
fluent � ; ,
Intermediate Successor State Axioms

������������� � �:C � � ; ��� ������� � � ���������� � � (48)

� ��!� � � ��!� ����� � � � � ��!� ��� �3���� � � �
� � � ��� �BA = � � ��!� ����� � � � � ��!� ��� �3���� � � � � �LK (49)
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The set of intermediate successor state axioms, /�� 535 ��� ;��
���	�	�	� � , /
�

535 � , where /
� 535 � is the set of
axioms for fluents � ; , defined in stratum /2; .
Example:
Intermediate successor state axioms for the fluent ���%����
������ � ������ � � � defined in / � and for the fluent
� �3�D��� �����&����"+�(' )���� �*������� �3���� � � � defined in / � :
������������ � ��C � ���%����
����� ��������� � � � � � � ��
���� ��� �
��� � �����%����
����� � ��A � �� ��
��� ��,-, ��
��� � � (50)

������������ � �:C � � ���&��� �����&����"	�(' )���� �+���3����������� � � � �
� � ��
�*# ,-"$#%#+��� ������� � � �
� � =?> ! �������@����� � ������ � � ��A =?> ! ����
���%� � �3���� � � �-A ��������
����� ��������� � � � �
� � ���&��� ����D����"	�(' )���� �+���3��� ��A � �� �$��� � � " ��)��� � (51)

Step 7. By regressing � the intermediate successor state axioms, generate (final) successor state ax-
ioms. These axioms are simple formulae containing no reference to fluents indexed by the situation
term � 1 � ! � " � . For every fluent � ; ,
Successor State Axioms

������������ � � C � � ; ����������� � � � ��� �!� � (52)

where � �!� is the following simple formula,  ; � �535�� � ��!��� , i.e.,

� �!� � ����!� ����� � � ��� ; � �535 � � ��!� ��� �3���� � � � �
� � � ��� �BA = � � ��!� ����� � � ��� ; � �535 � � ��!� ��� �3���� � � � � � � (53)

and  ; � �535 ��� � is the regression of formula � under successor state axioms / 535�� �������$� / 535 ��� � .
The set of successor state axioms is / 535 � � ;��

���	�	�	�	� , /
5�5 � , where / 535 � is the set of axioms for

fluents � ;����@; .
Example:
(50) is both the intermediate and the final successor state axiom for fluent ���%����
������ � ������ � � � . The
intermediate successor state axiom (51) transforms into the following successor state axiom.

������������� � �:C � � ���&��� �����&����"+�E' )���� �+��������������� � � � �
� � ��
���� ��� � ����
�*# ,-"G#%#
� ��� ����
��+# ,F"G#%#+��� ��A � �� ��
��#� ��,-, � � ��
�*# ,-"$#%# �
� � ��� �� ����@��� ,��+"G# A � =?> !�������� ����� � ��� � � � 
 � ���� ��� � � � ���� ��� ,-" � � �A ��� �� �
��� �-
��� ��
 � A � =?> ! ����
����� � ��� � � ��
��� ,F" � � �A ��� � ��
��#� �#� �
���� � �����%����
����� � ��A � �� ��
��� ��,-, ��
��� � � �
� �&� ���&��� �����D����"	�(' )������*������� ��A � �� �-��� � � " ��)��� � � K (54)

�
Regression (e.g., [21]) is a recursive rewriting procedure used here to reduce the nesting of the #$� function in

situation terms. If � is a fluent with successor state axiom � � �&�! +#" ��$&%'�( 
$% "*#$�) +*" �+$,$.- /�0 in 13242 then5 24276	�8 ' � "�9+9�9:" '<;=" # �) �>
"@?=$,$BA#CD/
0FE G�H�I	J	J	J	I G)K!I L�I MN H�I	J	J	J I N K!I OPI Q .
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Proposition 1 Suppose / � / 9 ' � /�143�5 is a solitary stratified theory of the form described above.
Then for every fluent � �

� �
� , the successor state axiom for � � is identical to the intermediate

successor state axioms for � � , and is of the following general form.

������������ � �:C � � � ��� ������� �
� � � � �� � ����� � � � � � � ���

��A = � �� � ���� � � � ��� �� � ��� � � �
Further, for any formula � ,

� ; � 535 � � � � � ; 535 � � � , and for any fluent � ; �
���� � 1 � ! � "��&� ,
� ; � 535 � � ; �
	� � � ������ � � � � � � ; 535 � � ; �
	� � � ������ � � � � � � 535 � � � ; � 	� � � ������ � � � �

where  ; � 535 denotes regression under the intermediate successor state axioms /�� 535�� � ����� �0/
� 535 � ,
 ; 535 denotes regression under the successor state axioms / 5�5�� � ����� � / 535 � , and  5�5 � denotes
regression under the successor state axioms / 5�5 �

Our successor state axioms provide a closed-form solution to the frame and ramification prob-
lems. Since we have compiled / 9 ' and /B143�5 into / 535 , we can replace / 9 ' and /B14345 by / 535 and /

5$B143�5
in (1), where /

5-B14345 is the set of ramification constraints, relativized to � � . We prove the legitimacy
of this claim in Section 7.2.

5 The Qualification Problem

Our domain theory, 4�<�=?>@724�535�724�5-B?724 5-B143�5 7 4 6 * 3L8 7A4 . ) 5:3�; , 724 , 9	: (55)

now provides a solution to the frame and ramification problems. It remains to address the quali-
fication problem. As previously observed the qualification constraints in /:6 * 3L8 can further restrict
those situations " in which an action ! is 0213"�" -ible. We propose to use Lin and Reiter’s solution
[9], to determine a set of action precondition axioms / >�� . It transforms the necessary conditions for
actions, / , 9+: and the qualification constraints, / 6 * 3L8 into a set of action precondition axioms / >�� .
Following their results, we add one more step to our procedure.

Step 8. Define one action precondition axiom for each action prototype
� �
�� � as follows.

Action Precondition Axioms

��������� > �
	� � � � � ��� > A �6��
	������� � 6 � (56)

where,
� 6 � � 535 ����������� > �
	� � � � � � � (57)

� > � � �> � K K K � � ,> for each �
;> of (30) in / , 9	: . � 535

is the regression operator under the successor
state axioms, / 535 .

Example: Consider (10) of / 6 * 3L8 , and (34) and (31) of / , 9+: . The action precondition axioms for
��
���� ��� � ����
�*# ,-"G#%# and ��
��� ��� �
��� following Step 8 of our procedure are:

���������	��
��#� ��� � � ��
�*# ,-"$#%#�� � � � = �*# �����8��� �FA = ���%����
������ � � (58)

���������	��
��� ��� �
���%� � � � = � ����
�*# ,-"G#%#+��� �LK (59)
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The action precondition axioms provide a closed-form solution to the qualification problem. Since
we have compiled / , 9	: and /26 * 398 into / >�� , we can replace / , 9	: and /26 * 398 by / >�� and /

5-B6 * 3L8 in our
theory, where /

5-B6 * 398 is the set of qualification constraints relativized to situation � � . Lin and Reiter’s
solution also requires a domain closure axiom for actions, /�� 6> .

6 Discussion of the Closed-Form Solution

Incorporating the results of the previous sections yields the following final domain theory which
integrates our syntactically restricted state constraints and a representation of action, while solving
the frame, ramification and qualification problems:

4�<�=?>A724 � 6�>8724�5�5(7A4�>��87A4�5-B 7A4 5-B536 7A4 . ) 5 34; , K (60)

This representation can be viewed as an executable specification because it is easily realized in
Prolog by exploiting Prolog’s completion semantics and simply replacing the equivalence signs,
characteristic of / 535 and / > � , by implications. The Lloyd-Topor transformation [11] must then be
applied, to convert the resultant theory into Prolog clausal form. Indeed, as an interesting aside, in
the sections to follow we show that our successor state axioms are semantically characterized as the
outcome of computing a particular prioritized circumscription. Perfect models in logic programs
have a prioritized circumscription semantics [16], thus the logic program produced from translation
of our successor state axioms also has a perfect model semantics. See [13] for further details.

The state constraints that play the role of ramification constraints with respect to our theory of
actions are compiled into successor state axioms, one for every fluent in our theory. When state
constraints are absent, as in the case of Reiter’s solution to the frame problem [17], successor state
axioms provide a parsimonious representation for frame and effect axioms. In the presence of ram-
ification constraints, the successor state axioms can, under certain conditions, grow exceedingly
long. This presents the problem of trying to find the best trade-off between precompilation and
runtime computation; a problem that many AI researchers face, and one that is often best addressed
with respect to the specific domain. Fortunately, in our case we have an ideal compromise in those
cases where / 535 proves to be unwieldy, that is to employ the intermediate successor state axioms
as our representation. The axioms in / � 5�5 capture the intended interpretation of our domain but
are only partially compiled, and thus don’t risk the length concerns associated with the axioms in/ 535 . Further, /
� 535 preserves the compositionality of our representation, which is important in some
model-based reasoning applications.

Recall that our closed-form solution to the frame and ramification problems is restricted to the
class of solitary stratified theories. The syntax of such theories provides a mechanism for commu-
nicating the causal dependency relationship between fluents. Since the dependency graph dictated
by the stratification of the fluents contains no cycles, the propagation of change from one fluent
to another is singularly defined. While we can make no definitive claims about the frequency of
occurrence of solitary stratified theories in general, they appear to occur quite commonly in the
representations of industrial artifacts without feedback loops, e.g., the power plant feedwater sys-
tem. In these systems, the causal dependency between fluents often reflects physical connectivity
of components and subcomponents.

12



As we have observed, our closed-form solution appeals to a completeness assumption in order
to generate explanation closure axioms. While this completeness assumption may not be valid for
all domains, it is, for example, viewed as a reasonable assumption in the case of industrial artifacts,
where the number of components is fixed, and where the environment is controlled. To more for-
mally justify our closed-form solution, Section 7 provides an independent semantic justification.
From these results we also show that our solution is predicated on a consistency condition.

7 Semantic Justification

In previous sections, we presented a closed-form solution to the frame and ramification problems
for syntactically restricted ramification constraints and effect axioms that collectively form a soli-
tary stratified theory. Our solution involved compiling effect axioms and ramification constraints
into successor state axioms. Unfortunately, the compilation procedure, and as a consequence, our
closed-form solution are predicated on a loose appeal to a completeness assumption. In the rest of
this paper we provide an independent semantic justification for our closed-form solution. In partic-
ular we show how to specify and compute a solution to the frame and ramification problems using
minimal model semantics and circumscription. This represents the second major technical contri-
bution of this paper.

We achieve our semantic justification as follows. Exploiting the natural stratification of soli-
tary stratified theories, we specify a nonmonotonic solution to the frame and ramification problems
in terms of a prioritized minimization policy. We show that under a consistency assumption, our
successor state axioms (52) are solutions to the frame and ramification problems with respect to
the specification. We also show that any solution with respect to our specification is also a solution
with respect to Lin and Reiter’s specification [9]. In Section 7.2, we observe that our minimization
policy is equivalent to a particular instance of prioritized circumscription. Through simple syntac-
tic renaming and by exploiting results from Lifschitz on computing circumscription (e.g., [6]), we
show that under a consistency assumption, computing this prioritized circumscription results in the
computation of our successor state axioms. This result establishes the correctness of our closed-
form solution with respect to our nonmonotonic specification. Finally, we use these results to show
that, in the case where there are no ramification constraints, computing the circumscription results
in the successor state axioms defined by Reiter in his solution to the frame problem [17].

7.1 Minimization Policy

In this section we define a prioritized minimization policy and use it to specify what counts as a
solution to the frame and ramification problems for solitary stratified theories. To solve the frame
problem, we wish to capture the intuition that things normally stay the same, and that when they
do not, it is abnormal. We express the notion of abnormality through the distinguished predicate
! � �!� � ! � " ��� , one for each fluent � ; � � ; , � � � ������� � 	 . The predicate ! � �!� � ! � "�� is an abbreviation
for � � � ; � "���� � ; � � 1 � ! � "��&� � .

We wish to minimize ! � �!� � ! � "�� , and in so doing, capture the intuition that in the absence of
something abnormal, the truth value of a fluent persists after an action is performed. In order to

�
The predicate +�� is distinguished from the predicate 	�
 , which is commonly used in model-based diagnosis rep-

resentations to denote that a component of a system is behaving abnormally in a situation.
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define our minimization policy, we must differentiate between an initial situation and the situation
resulting from performing an action, which we will refer to henceforth as the resulting situation.
Like the minimization policies advocated by Lin and Shoham [10] and Lin and Reiter [9], our policy
minimizes ! � �!� � ! � " � with 0213"�" � ! � "�� and the truth status of fluents in the initial situation, � ; �
���� "��
remaining fixed. Fluents in the resulting situation, � ; � � 1 � ! � "��&� are allowed to vary.

While we share basic minimization principles with previously advocated solutions to the frame
and ramification problems, our minimization policy is distinguished because it places a priority or-
dering over the minimization of the predicate ! � �!� � ! � "�� . The ordering is

� �
�
� � � � � ����� � � � , �

where
� � ; is a tuple containing the abnormality predicate ! � �!� � ! � "�� for each fluent � ; � � ; . The

priority ordering corresponds to the stratification of the solitary stratified theory, / � / 9 ' � /B1 3�5 .� �
�
� ! � "�� is assigned the highest priority for minimization, and

� � , � ! � "�� is assigned the lowest
priority.

Under this prioritized minimization policy, each ! � �!� � ! � "�� is minimized, even at the expense
of increasing the extent of predicates ! � ����� � � ! � "�� ������� � ! � ��� � ! � " � and fluents ��� � � 1 � ! � "��&� , � �
� �������$�
	 . The intuition behind this prioritized minimization hinges on the fact that our theory is
solitary stratified. Recall from the discussion in Section 4.1 that the intended interpretation we wish
to capture with our solitary stratified theories / is that a fluent � ; is defined by the axioms in stratum/B; , using fluents drawn from �

�
�������$� � ; �

� . Any mention of � ; in stratum /
	 , � � �
contributes no

further towards the definition of � ; , but rather serves to define the fluent � 	 of that stratum. This
captures the intended interpretation of our ramification constraints and effect axioms. As a result,
to address the frame and ramification problems, we minimize each ! � �!� � ! � "�� allowing ! � �� � ! � " � ,
� � �

to vary as well as allowing all the fluents in resulting situations, � � � � 1 � ! � "��&� , � � � ������� �
	
to vary. As we will see, this prioritized minimization policy captures our intended solution to the
frame and ramification problems for solitary stratified theories.

The definition of the minimization policy follows. Let " and ! denote variables of sort situation
and action respectively. Further, let ��� , � 3 and ��. denote assignment functions from free variables
of sorts situation, action and domain, respectively.

Definition 2 (Prioritized Model Preference) Suppose, / is a solitary stratified theory with strat-
ification � /

�
������� � / , � , domain fluents � , and partition � �

�
� � � �������$� � ,/� , where � � � ,;��

�
� ; . Sup-

pose ! � �!� �
�� � ! � "���� abbreviates � � � ; �
���� "���� � ; � �� � � 1 � ! � "��!� � and � and ��� are models of / .
Model � � is preferred over model � with respect to variable assignment to situations, ��� ,

(denoted by ���;/������ ), iff the following conditions hold.
1. � and ��� have the same universe of discourse.
2. � and ��� agree on their interpretation of everything, including 0213"3" , with the potential

exception of domain fluents.
3(a). � and ��� agree on the extensions of every fluent � ; �
�� � "�� , in every stratum /?; ,� � � ������� �
	 .

I.e., for any assignment � 3 and � . , and any fluent � ; �
���� "�� , � � � ������� � 	 ,
��� � � � � � .�� � � ; �
���� "�� iff � � � � � � .�� � � ; �
���� "��

�
For the purposes of this definition only, we explicitly include action and predicate arguments $% .
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3(b). For some
�
,
��� ��� 	 , � and ��� agree on the extensions of every ! � � � � ���� ! � "�� in

stratum /
	 , � � � ������� � ��� �
, and the extensions of ! � �!� �
�� � ! � "�� in ��� are a subset

of the extensions of ! � ��� � ���� ! � "�� in � .
I.e., for some

�
and any assignment � 3 and � . , and any fluent � 	 �
�� � " � , � � � �������$� ��� �

,
��� � � � � � 3 � � . � � 0213"3" � ! � "���� � ! � � � �
���� ! � "�� iff � � � � � � 3 � � .�� � � ! � �� �
���� ! � " �

and for some fluent � ; �
���� "�� , there are two assignments � 3 and � . such that,
� � � � � � 3 � � .�� � 0 13"3" � ! � "���� ! � ��� � ���� ! � "�� but ��� � � � � � 3 � � .�� � � ! � ��� �
�� � ! � "��

� is a minimal model of / if there is no � � and no variable assignment to situations � � such that
� � /���� � .

From our prioritized model preference, we provide a semantic specification for a solution to the
frame and ramification problems for our syntactically restricted theories. In particular, we specify
that under the prioritized minimization policy, the minimal models of our restricted theories pre-
scribe solutions to the frame and ramification problem. Recall that & '�)+*-,#. is the set of foundational
axioms of the situation calculus [9].

Definition 3 (Semantic Specification) Suppose � � � '�)	*-,�. 7 4�<�=?> 7 4�9 ' 7 4 143�5 where
4 �4�9 ' 7A4 14345 is a solitary stratified theory, with stratification � 4 � �

4
� �
K K K � 4 , � , domain fluents � , and

partition ��� � ��� � �
K K K ��� , � , such that � � � ,;��

� �
; . Finally suppose � is a minimal model of & .

Then � captures a solution to the frame and ramification problem for & .

As observed in Section 4.1, Lin and Reiter previously defined a solution to the frame and rami-
fication problem as the minimal models of our same & under a similar non-prioritized minimization
policy [9]. Interestingly, our minimization policy collapses to Lin and Reiter’s policy when 	 � �

.

Proposition 2 If � is a minimal model of & , then � is also a minimal model of & under Lin and
Reiter’s minimization policy, outlined in [9].

Remark 1 If � captures a solution to the frame and ramification problem for & as specified in
Definition 3, then it also meets Lin and Reiter’s general specification for a solution to the frame
and ramification problem, as outline in [9].

To contrast our minimization policy to Lin and Reiter’s, recall that their specification provides
criteria for a solution to the frame and ramification problems. Unlike our specification which is
limited to a syntactically restricted class of theories, their specification need not yield a minimal
model, and indeed can yield multiple minimal models, some of which will not reflect the intended
interpretation of the effect axioms and ramification constraints. Further, as we show in the pages to
follow, our specification for our restricted theories guarantees a procedure to generate an axiomatic
solution, whereas Lin and Reiter’s does not.

Next we demonstrate the relationship between our semantically specified solution to the frame
and ramification problem and the successor state axioms we defined in (52). This relationship is
predicated on a consistency assumption. The consistency assumption, ensures that either an action
is impossible to perform in situation " , or that performing the action will not result in a situation
where a fluent is determined to be both true and false by some combination of effect axioms and
ramification constraints. The unique names axioms, / <�=?>

ensure that no action has the effect of
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making a fluent both true and false in the same situation. The necessary conditions for actions, / , 9+:
dictate that an action is impossible to perform in a situation if performing the action results in an
inconsistency between the effect of the action and the intended effects of ramification constraints.

Under the consistency assumption, the successor state axioms combined with the foundational
axioms, the unique names axioms for actions and the ramification constraints relativized to � � col-
lectively entail the ramification constraints relativized to the situations accessible from � � . This
enables us to exclude /?143�5 and / 9 ' from our theory, provided /

5-B14345 is present.

Theorem 1 Suppose & is the theory defined in Definition 3 and / 5�5 is the set of successor state
axioms as per (52). Further, assume that the following consistency condition holds,

4�<�=?>@724 , 9	:�� � � � ��� � �LK ������������ � �HC
= � � ����!� ���� � � ��� � � ��!� ����������� � � � � �EA � � ��!� ����� � � ��� � � ��!� ��� ������ � � � � � � K (61)

Then for every ramification constraint ��� " � ��� � "�� � / 14345 ,

� '�)+*-,#. 7A4�<�=?>@724�535�724 5-B143�5 � � � � � �9K �� � � C ����� � (62)

where
4 5$B14345 is the set of ramification constraints relativized to

���
,

4 5-B143�5 � � � � ���� � � � � �LK ����� � � 4 1 3�5 �+K
To paraphrase, we make a consistency assumption (61) about our theory, which says that either an
action is impossible, or if it is possible, that it is never the case that the direct effects or ramifi-
cations of an action ( � ’s and " ’s, respectively) can make a fluent both false and true in the same
situation. Under this assumption, (62) says that if we replace the effect axioms, / 9 ' and ramifica-
tion constraints, /?14345 by the successor state axioms of (52), / 535 and the ramification constraints
relativized to the initial situation, /

5$B143�5 , that the resulting theory will entail the ramification con-
straints, not only at situation � � , but via the successor state axioms, at every situation " that follows
� � on the tree of 0213"3" -ible situations, i.e., those situations " such that � � � " .

The following theorem proves that, under the stated consistency assumption, the successor state
axioms provide a solution to the frame and ramification problems, in keeping with our specification.
Later, we will see that the results in this theorem are subsumed by Theorem 4.

Theorem 2 Suppose & is the theory defined in Definition 3 and / 5�5 is the set of successor state
axioms derived from / 9 ' and /B14345 of & as per (52). Finally assume that the following consistency
condition holds,
4�<�=?>A724 , 9	:�� � ���#��������� � �:C = � � � ��!� ����� � � ��� � � ��!� ��� �3���� � � � � �EA � � ��!� ����� � � ��� � � ��!� ��� ������� � � � � � � K

Then if � is a model of � '�)+*-,�. 7 4�<�=?>87 4�535@7 4 5-B143�5 then � is a minimal model of & and �
captures a solution to the frame and ramification problems under Definition 3.

The models of these theories are not equivalent because the successor state axioms, / 535 only
characterize the effects of 0213"�" -ible actions, not all actions. Replacing the ramification constraints
by /

5-B143�5 and / 535 is insufficient. To be complete, we must somehow express that the ramification
constraints hold for the situations that are not accessible from � � using 0213"3" . We can address this
issue mathematically, but for most of our applications we are only interested in considering the sub-
set of the situation tree that is 021�"3" -ible, and so instead we simply restrict further discussion to this
subset of all situations.
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7.2 Computing Minimal Models using Circumscription

In this section we observe that semantic entailment in the minimal models of our prioritized model
preference can be captured by circumscription and that, for the class of theories we are studying, the
result of circumscription is first-order definable. We further show that for our class of theories, the
successor state axioms defined in (52) are equivalent to those generated by computing our circum-
scription. Indeed, under a consistency assumption, we show that our circumscription computes the
explanation closure axioms, and in turn the successor state axioms. This result formally establishes
the equivalence between a monotonic theory which includes the successor state axioms of (52), and
our nonmonotonic specification of a solution to the frame and ramification problems.

The objective of our circumscriptive policy is to minimize the difference between the truth value
of fluents in an initial situation and a resultant situation. For any situation � , our circumscription
minimizes ! � �!� � ! � ��� with 0213"�" � ! � � � and � ; � � � fixed and with � ; � � 1 � ! � � �&� allowed to vary.

To simplify the computation of this circumscription, we transform our theory & 143�5 into a sim-
pler theory, & �143�5 . The circumscription is then computed with respect to & �143�5 by exploiting results
of Lifschitz on computing circumscription (e.g., [6], [7]). Our objective in transforming our theory
is three-fold.

. To make the literal ! � explicit in our theory.

. To remove all mention of the situation term " , since our minimization policy and correspond-
ing circumscription is defined with respect to a fixed situation � .

. To syntactically distinguish between � in � � � 1 � ! � "��&� and � in � � "�� so that we can exploit
results on computing circumscription, and in particular so that we can easily compute the
predicate completion of fluents, � in our resultant situation, fixing fluents, � in the initial
situation.

The transformation and results are not complex, although the notation may be a little off-putting.
To illustrate the transformation, consider the effect axioms and ramification constraints for the fluent
! � !���� � "�� , as originally defined in our feedwater example.

������������� � �FA � � ��
��� �#� �*# ����� C �*# ����� ����������� � � �
������������� � �-A � � ��
��� ��,F, �*# ����� C = �+# � ���8����������� � � �

= � ���&��� �����&����"+�E' )���� �+������� ��A ���;�D! ��"$#%���3� � �:C �*# ����� ��� �
> !2�D! ��"$#%���3� � �:C �*# ����� ��� �

= � ���&��� �����D����"	�(' )������*������� ������� � � ��A ���%�&!(��"G#%��� � � ������� � � � C �*# ����� ����������� � � �
> ! �&!(��"G#%��� � � ������� � � � C �*# ����� ����������� � � �

Our first step is to distinguish the predicate ! � �!� � ! � "�� into ! � ��!� � ! � "�� � ! � ���� � ! � "�� , and to make them
explicit in our theory by adding positive and negative generic frame axioms, one for each fluent
� ; � � . We refer to these frame axioms collectively as / ' 14345 9 . In our example, our frame axioms
are as follows.

������������� � �-A �+# � ��� ��� ��A = ��� �3L8 341D5 ����� � � C �+# � ��� ��� ������� � � �
������������� � �-A = �*# �����8��� ��A = ��� �3L8 341D5 ����� � �:C = �+# � ��� ��� ������� � � �
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Next, we rewrite our theory & 1 3�5 � / ' 143�5 9 as a new theory, & �143�5 . To do so, we extend our language
by the addition of a new predicate 0213"�" � and new predicates � �; , � � �; , ! � � ��!� , and ! � � ��!� , one for each
fluent � ; ��� . Next, for every axiom in & 14345 � / ' 143�5 9 , we replace each occurrence of 021�"3" � ! � "�� ,
� � "�� , � � � 1 � ! � "��!� , ! � ���� , and ! � ��!� with the corresponding occurrence of 0213"�" � , � �; , � � �; , ! � � ��!� , and
! � � ��!� . In our example above, the axioms are transformed as follows.

���#��� � ��� �BA � � ��
��� ��� �+# � ��� C �+# � ��� � � ��� �
������� � ��� �FA � � ��
��� ��,-, �+# � ��� C = �+# � ��� � � ��� �

= � �3�D��� �����&����"+�(' )���� �*��� � A ��� � �D! ��"$#%��� �:C �+# � ��� �
> ! � �D! ��"$#%��� �:C �+# � ��� �

= � ���&��� ����D����"	�(' )���� �+��� � � ��� �-A ��� � � �&!(��"G#%��� � � �HC �+# � ��� � � ��� �
> ! � � �&!(��"G#%��� � � �HC �+# � ��� � � ��� �

������� � ��� ��A �*# ����� � A = ��� � �3L8 341D5 ��� �:C �+# � ��� � � ��� �
������� � ��� ��A = �+# � ��� � A = �1� � �398 3�1D5 ��� �:C = �+# � ��� � ��� �

Using analogous notation to that employed in & 143�5 , we refer to

� � ��
��� �#� �+# � ��� � � � � �398 3�1D5 ��� �
� � ��
��� ��,F, �+# � ��� � � � � �398 3�1D5 ��� �

� = � ���&��� ����D����"	�(' )���� �+��� � A ��� � �&!(��"G#%��� � � � > ! � �D! ��"$#%��� � � � � � �3L8 341D5
� = � �3�D��� �����&����"	�(' )������*��� � � ��� �-A ��� � � �&! ��"$#%��� � � � � � > ! � � �&! ��"G#%���3� � � � � � � � �3L8 341D5 ��� �LK

There is no � � �3L8 341D5 and no � � � �398 3�1D5 ��� � .
Generalizing, the transformed theory, & �143�5 is produced from & 14345 � / ' 14345 9 as follows.

Definition 4 ( & � ) Suppose & is the theory defined in Definition 3. Define & � to be the theory

� '�)+*-,�. 724�<�=?> 724 �9 ' 724 �143�5 724 �' 14345 9
where / ' 14345 9 is the set of positive and negative frame axioms, one each for each fluent � ; ��� ,

���#��������� � �?A � ; � 	� � � �-A = ��� ��!� � 	� � �� � �HC� ; �
	� � � �3���� � � � (63)

���#��������� � ��A = � ; � 	� � � �-A = �1� ��!� � 	� � ��� � � C = � ; �
	� � � �3���� � � � (64)

and / �' 14345 9 , / �9 ' and / �14345 are / ' 143�5 9 above, and / 9 ' , /B143�5 drawn from & with. each occurrence of � ; �
�� � " � replaced by � �; �
�� � ,. each occurrence of � ; �
�� � � 1 � ! � " �!� replaced by � � �; �
���� ! � ,. each occurrence of ! ��� ��� ����!� �
�� � ! � "�� replaced by ! � � � ��� ������ �
���� ! � , and. each occurrence of 0213"3" � ! � " � replaced by 0213"3" � � ! � .
Lemma 1 below establishes that our nonmonotonic specification of a solution to the frame and ram-
ification problems can be captured by prioritized circumscription in our transformed theory. The
results follow directly from the semantic definition of prioritized circumscription (e.g., [6]), and
the definition of our prioritized model preference.
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Lemma 1 Suppose & is the theory defined in Definition 3 and & � is the theory defined in Definition
4. Then � is a minimal model of & with respect to the prioritized model preference of Definition
2 iff ��� is a model of

� � K ����� � � � � ��� > � �
� K K K � > � , � � � �� � K K K � � � �, � �

where each
� � ; is a tuple containing the abnormality predicates ! � � ��!� � ! � and ! � � ��!� � ! � , and where

���
	 � �
is the circumscription ���
	 � � & ��� � � �

� ����� � � � , � � � �
�

�������$� � � �, � with. each occurrence of ! � � � ��� ��� � ! � replaced by the corresponding ! � � ��� ����!� � ! � "�� ,. each occurrence of � �; replaced by � ; � " � ,. each occurrence of � � �; � ! � replaced by � ; � � 1 � ! � "��&� , and. each occurrence of 0213"3" � � ! � replaced by 0213"3" � ! � "�� .
Lifschitz proved some very nice results identifying when circumscription is first-order defin-

able, and when we can actually compute the axioms that result from a circumscription (e.g., [6],
[7]). In the theorem to follow, we exploit these results to show that, under a consistency assump-
tion, our prioritized circumscription of

� � ; with respect to & � leads to the creation of explanation
closure axioms, which when combined with effect axioms and ramification axioms, are equivalent
to successor state axioms.

The consistency assumption upon which we predicate our theorem is the transformation of the
assumption employed in the previous section. Recall that the objective of the consistency assump-
tion is to ensure that � ; � � 1 � ! � "��&� and � � ; � � 1 � ! � "��&� never co-occurred. Since we have added generic
frame axioms to & � , we must reflect this addition in the consistency assumption.

Assumption 1 (Consistency Assumption) For each fluent � ; , assume
4�<�=?>@7A4 �, 9+: � � ������� � ��� �:C

= � � � � ��!� ��� ��� � � � ��!� ��� ��� � � �; A = ��� � ��!� ��� � � ��A � � � ��!� ��� � � � � � ���� ��� � � � = � �; A = �1� � ��!� ��� � � � � (65)

where / �, 9	: is the transformation of / , 9+: as described in Definition 4.

Theorem 3 Suppose & � as defined in Definition 4 and Consistency Assumption 1 holds. Then

����� ��� � �� > � �
� K K K � > � , � � � �� ��� � � K K K � � � �, ��� � � � � '�)+*-,�. 7A4 <�=?> 724 �9 ' 7A4 �143�5 724 �� 6 7A4 �>�� � 9 6 * ;�� �� � '�)+*-,�. 7A4�<�=?>@724 �5�5 724 �>�� � 9 6 * ;�� �

. / �� 6 � � ,;��
�
/ �� 6 � is the set of explanation closure axioms for theory & � .

Each / �� 6 � is a set of formulae of the following form, one each for every � ; ��� ; .
������� � ��� �-A � �; A = � � �; ��� �:C � � ��!� ��� � � � � � ��!� ��� �
������� � ��� �FA = � �; A � � �; ��� �:C � � ��!� ��� � � � � � ���� ��� �LK

. / �5�5 � � ,;��
�
/ �5�5 � is the set of successor state axioms for theory & � .

Each / �5�5 � is a set of formulae of the following form, one for every � ; ��� ; .
������� � ��� �:C � � � �; ��� � � � � ��!� ��� � ��� ; � � � � � � ��!� ��� � � � � � �; ��� �BA = � � � ��!� ��� � ��� ; � � � � � � ��!� ��� � � � � �

where  ; � � is the regression operator under the successor state axioms, / �5�5�� � ����� �0/ �535 ��� � .
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. / �>�� � 9 6 * ;�� � � � ,;��
�
/ �>�� � 9 6 * ;�� � � is the set of circumscribed definition of ! � � ��!� � ! � and ! � � ��!� � ! � .

/ �>�� � 9 6 * ;�� � � is a set of formulae of the following form, one formula for every � ; ��� ; .
����� � ���� ��� � � ������� � ��� �-A = � �; A � � � ��!� ��� � � � � � ��!� ��� � �
����� � ���� ��� � � ������� � ��� ��A � �; A � � � ��!� ��� � � � � � ��!� ��� � � �

We have shown that our circumscription computes our successor state axioms in our transformed
theory. In what follows we easily relate the results of Theorem 3 back to the successor state axioms
of our original language.

Proposition 3 Suppose & is the theory defined in Definition 3 and & � is the theory defined in Def-
inition 4 and assume that Consistency Assumption 1 holds. Then

� � K ����� � � � � � � > � �
� K K K � > � , � � � �� � K K K � � � �, � � � '�)+*-,�. 724�<�=?>@7A4�535(7A4�>�� � 9 6 * ;�� �

where. � � 	 � �
is as defined in Lemma 1.. / 5�5 is the set of successor state axioms for fluents � ; ��� of & . They are of the form of (52).. 4 >�� � 9 6 * ;�� � is

4 �>�� � 9 6 * ;�� � , of Theorem 3, with each occurrence of �1� � � ��� ��� ��� � , � �; ,
� � �; ��� � , and

������� � ��� � replaced by the corresponding ��� � ��� ����!� ����� � � , � ; ��� � , � ; ����������� � � � , and ������������� � � .
Finally, in the theorem to follow, we show that if we restrict our consideration to the situations that
are 0213"3" -ible in the world, (i.e., " , s.t. � � � " , using notation from & '�)+*-,#. ), that the nonmonotonic
theory & '�)+*-,�. � / <�=?> � / 9 ' � /�143�5 is equivalent to the monotonic theory & '�)+*-,�. � / <�=?> � / 5�5 .

Theorem 4 Suppose & is the theory defined in Definition 3 and assume that the following consis-
tency condition holds:

4�<�=?>A724 , 9	:�� � ���#��������� � �:C = � � ����!� ����� � � ��� � � ��!� ��� �3���� � � � � �EA � � ��!� ����� � � ��� � � ��!� ��� ������� � � � � � � K

Suppose � is a model of & . Then for variable assignment � � to " such that, � � � " ,
� is a minimal model of & with respect to the prioritized model preference of Definition 2

iff
��� is a model of �?'�)	*-,�. 7@4 <�= > 724 535

.

Using similar rewriting tricks, we can apply these results to Reiter’s successor state axiom solution
to the frame problem to establish that in the case where there are no ramification constraints, our
prioritized minimization policy, and also Lin and Reiter’s minimization policy [9] both compute
Reiter’s successor state axioms, and hence his closed-form solution to the frame problem. These
results confirm the syntactic form of Reiter’s successor state axiom solution.

Theorem 5 Suppose & is the theory defined in Definition 3 and that / 1 3�5 � ���
. Further, assume

the following consistency assumption holds,

4 <�=?> � � = � ������ ���� � �-A�� ��!� ���� � � �9K (66)

Suppose � is a model of & . Then for variable assignment � � to " such that, � � � " ,
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� is a minimal model of & with respect to the prioritized model preference of Definition 2
iff

��� is a model of � '�)	*-,�. 7@4�<�= >@724�535 � ,
where

4%535 � is the set of successor state axioms of the following form.

������������ � �:C � � ; ����������� � � � � � ��!� ����� � � � � � ; ��� ��A = � ��!� ���� � � � � (67)

(66) states that an action cannot make a fluent both true and false in the same situation. It cap-
tures the same intuition as our previous consistency assumption without the need to discuss ramifi-
cations, and consequently, without the need to restrict ourselves to those situations that are 021�"3" -
ible. The successor state axioms, / 535 � defined in (67) are the successor state axioms Reiter iden-
tified as his solution to the frame problem [17].

This concludes the independent semantic justification for our closed-form solution. Proofs of the-
orems can be found in [13]. In what follows, we briefly discuss related work.

8 Related Work

The dialect of the situation calculus language used in this paper originates with the Cognitive Robotics
Group at the University of Toronto. Our compilation approach to solving the ramification problem,
and more specifically our appeal to a completeness assumption to generate explanation closure ax-
ioms is derivative of Reiter’s [17], Schubert’s [19] and Pednault’s [14] approaches to solving the
frame problem. The basic minimization policy we employed in our semantic justification is deriva-
tive of Lin and Shoham [10] and Lin and Reiter [9], with the important addition of making the min-
imization prioritized. This enabled us to define a closed-form solution for our restricted theories.
The intuition behind our solution to the frame and ramification problems – the notion of interpreting
our ramification constraints as definitional in nature, was influenced by research on the semantics
of normal logic programs and deductive databases (e.g., [16]), and is related to preliminary work on
this problem by Pinto [15]. Indeed the spirit of this solution – the notion of imposing a directional
interpretation on our implication connective in our ramification constraints, is akin to the intuition
behind proposed solutions to the ramification problem which advocate minimizing an explicitly rep-
resented notion of causality (e.g., [8], [12], [3], [20], [2]). Indeed the author suspects that for the
syntactically restricted case studied here, all our different proposed solutions may produce the same
results, just as many of the independent solutions to the frame problem prove to be identical under
certain conditions [1]. What distinguishes this work in particular is that it provides an axiomatic
closed-form solution and it retains the dual role played by our state constraints.

9 Contributions

This paper addressed the problem of integrating a theory of action with a pre-existing set of state
constraints. The first major contribution of this paper was provision of an axiomatic closed-form
solution to the frame, ramification and qualification problems for an arguably common class of the-
ories, which we referred to as solitary stratified theories. The solution was presented as an automat-
able procedure that compiled effect axioms and ramification constraints into a set of successor state
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axioms. The benefit of our solution over many previous solutions is that the axiomatic closed-form
solution enables us to use monotonic reasoning machinery to perform inference, rather than having
to reason nonmonotonically.

The second major contribution of this paper was an independent semantic justification for our
solution. Limiting our attention to solitary stratified theories, we proposed a semantic specifica-
tion for a solution to the frame and ramification problems in terms of a prioritized minimization
policy, proving that the successor state axioms of our closed-form solution agreed with this spec-
ification. Establishing our minimization policy as an instance of prioritized circumscription, we
observed that this circumscription was first-order definable and showed that computing the priori-
tized circumscription yielded exactly our successor state axioms. We also showed that in the special
case where there are no ramification constraints, computing the circumscription produced exactly
Reiter’s earlier successor state axiom solution to the frame problem. These results provide solid
support for the syntactic form of our closed-form solution, and as a side effect, Reiter’s as well.
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