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Abstract

Our concern in this paper is with conjecturing diagnosesto
explain what happened to a system, given a theory of sys-
tem behaviour and some observed (aberrant) behaviour. We
characterize what happened by introducing the notion of ex-
planatory diagnosesin thelanguage of the situation calculus.
Explanatory diagnosesconjecturesequencesof actionsto ac-
count for a changein system behaviour. We show that deter-
mining an explanatory diagnosis is analogous to the classi-
cal Al planningtask. As such, we exploit previousresults on
goal regression in the situation calculus to show that deter-
mining an explanatory diagnosis can be achieved by regres-
sion followed by theorem proving in the database describing
what is known of the initial state of our system. Further, we
show that in the case of incompleteinformation, determining
explanatory diagnosesis an abductive plan synthesistask.

Introduction

Given a theory of system behaviour and some observed
aberrant behaviour, the traditional objective of diagnosisis
to conjecture what is wrong with the system, (e.g., which
components of the device are behaving abnormally, what
diseases the patient is suffering from, etc.). Each candidate
diagnosis consists of a subset of distinguished literals that
are conjectured to be true or fase in order to account for
the observation in some way. Different criteria have been
proposed for determining the space of such candidate diag-
noses. Withinformal accounts of diagnosis, two widely ac-
cepted definitions of diagnosis are consistency-based diag-
nosis (eg., (Reiter 1987), (de Kleer, Mackworth, & Reiter
1992)), and abductive explanation (e.g., (de Kleer, Mack-
worth, & Reiter 1992), (Poole 1988), (Console & Torasso
1991), (Mcllraith 1994a)).

Our concern in this paper is with conjecturing diagnoses
to explain what happened to asystem, given atheory of sys-
tem behaviour and some observed (aberrant) behaviour (i.e.,
what actions or events occurred to result in the observed
behaviour) (e.g., (Mcllraith 1994b), (Cordier & Thiebaux
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1994)). Knowing or conjecturing what happened is inter-
esting in its own right, but can also assist in the prediction
of abnorma components or other relevant behaviour, andin
the prescription of suitable proceduresfor testing, repairing
or reacting. Compared to our traditional notion of what is
wrong diagnoses, knowing what happened can more accu-
rately capture the root cause of system mafunction, rather
than its manifestations.

In the spirit of previous foundational work in model-
based diagnosis (MBD) (e.g., (Reiter 1987), (Console &
Torasso 1991), (de Kleer, Mackworth, & Reiter 1992)), this
paper presents a mathematical characterization for the no-
tion of explanatory diagnosis. We take as our starting point
the existing MBD research on characterizing diagnoses for
static systems without a representation of actions (e.g., (de
Kleer, Mackworth, & Reiter 1992), (Console & Torasso
1991), (Reiter 1987)). Next, we exploit asituation calculus
representation scheme previoudly proposed by the author
(Mcllraith 19974) that enables theintegration of arepresen-
tation of action withthe representation of the behaviour of a
static system. With this representation in hand, we provide
alogica characterization for the task of determining what
happened to a system. The characterization is presented in
the guise of explanatory diagnosis.

Thedistinguishingfeatures of our characterization are & -
forded in great part by the richness of our representation
scheme which provides a comprehensive and semanticaly
justified representation of action and change. In particular,
our representation provides an axiomatic closed-form solu-
tion to the frame and ramification problems, thus captur-
ing the direct and indirect effects of actions in a compiled
representation. Thisiscritical to the ability to generate ex-
planatory diagnoses efficiently. Further, our representation
provides a closed-form solution to the qualification prob-
lem, thus identifying the conditions underwhich an action
ispossible. Itisinterestingto notethat when we are dealing
withincomplete knowledge of our initia state, conjecturing
an action or sequence of actions also requires conjecturing
that its preconditions are satisfied, which in many instances
servesto further constrain our search.



Asweshow inthesectionstofollow, our characterization
establishes adirect link between explanatory diagnosisand
planning, deductive plan synthesis and abductive planning.
As aconsequence of acompl eteness assumption embedded
in our representation, we show how to expl oit goal-directed
reasoning in theform of regression (Wadinger 1977) in or-
der to generate diagnoses. This completeness assumption
also providesfor an easy mapping of our situation calculus
representation to Prolog.

Representation Scheme
Situation CalculusLanguage

The situation calculus language we employ to axiomeatize
our domains is a sorted first-order language with equality.
The sorts are of type A for primitive actions, S for situa-
tions, and D for everything e se, including domain objects
(Lin & Reiter 1994). We represent each action as a (pos-
sibly parameterized) first-class object within the language.
Situationsare simply sequences of actions. The evolutionof
theworld can beviewed as atreerooted at the distinguished
initial situation S,. The branches of the tree are determined
by the possible futuresituationsthat could arise fromthere-
alization of particular sequences of actions. As such, each
situation along the tree is simply a history of the sequence
of actions performed to reach it. The function symbol do
maps an action term and asituationterminto anew situation
term. For example, do(turn_on_pmp, So) isthe situationre-
sulting from performing the action of turning on the pump
in situation So. The distinguished predicate Poss(a, s) de-
notes that an action « is possible to perform in situation s
(e.g., Poss(turn_on_pmp, So)). Thus, Poss determines the
subset of the situation tree consisting of situationsthat are
possiblein the world. Finally, those properties or relations
whose truth value can change from situation to situation are
referred to as fluents. For example, the fluent on(Pmp, s)
expresses that the pump ison in situation s.

The situation calculus language we employ in this paper
isrestricted to primitive, determinate actions. Our language
does not include a representation of time, concurrency, or
complex actions, but we believe the results presented herein
can be extended to more expressive dia ects of the situation
caculus (e.g., (Reiter 1996)) without great difficulty.

Domain Representation: An Example

In thissection we briefly describe therepresentation scheme
we use to characterize our system. The scheme, proposed
in (Mcllraith 1997a), integrates a situation caculus the-
ory of action with a MBD system description, SD (de
Kleer, Mackworth, & Reiter 1992). The resultant represen-
tation of a system comprises both domain-independent and
domain-specific axioms. The domain-independent axioms
are the foundational axioms of the discrete situation cal cu-
lus, ¥ ¢ound (Lin & Reiter 1994). They are analogousto the

axioms of Peano arithmetic, modified to define the branch-
ing structure of our situation tree, rather than the number
line. The domain-specific axioms, T' specify both the be-
haviour of the static system, and the actions' that can affect
the state of the system, as well as those actions required to
achieve testing and repair. Together they define our domain
representation X = X ounqg AT

We determine 7" using a procedure proposed in (Mcll-
raith 1997a) that compiles atypical MBD system descrip-
tion, SD and a set of axioms relating to the preconditions
and effects of actions into a representation that provides a
closed-form solutionto the frame, ramification and qudifi-
cation problems. The resultant domain axiomatization 7" =
qué A Taomain N Tss ANTap ANTuna ANTpca ATs, 1S
described below. The representation islimited to a syntac-
tically restricted but commonly occurring class of theories
caled solitary stratified theories (Mcllraith 1997a). Intu-
itively, the dependency graphs of the actions and state con-
straintsof thesetheoriescontain noloopsor cycles. Itisaso
important to notethat a compl eteness assumption isembed-
ded in thisrepresentation. The assumption statesthat al the
conditions underwhich an action a can lead, directly or in-
directly, to fluent ' becoming true or false in the successor
state are captured in the axiomatization of our system.

We illustrate the representation in terms of a small por-
tion of a power plant feedwater system (Mcllraith 1997b)
derived from the APACS project (Kramer & et a. 1996).
Our examplemodel sthefillingof avessdl either by the oper-
ation of an electrically powered (Pwr) pump (Pmp), or by
manua filling. For notational convenience, al formulaeare
understood to be universally quantified with respect to their
free variables, unless explicitly indicated otherwise. For a
more thorough description of this representation scheme,
please see (Mcllraith 19974), (Mcllraith 1997h)).

The set of state constraints relativized to situation Sy,

T32 isasfollows. These constraintscould be acquired from
atypica MBD system description, SD.

—~AB(Pwr,So) A= AB(Pmp, So) A on(Pmp, So)
D filling(So) Q)
manual_fill(So) D filling(So)  (2)
The set of domain constraints, 73omain 1S asfollows.

Pwr # Pmp €)

The set of successor state axioms, T's s is composed of ax-
ioms of the following general form, one for each fluent F'.

Poss(a, s) D [F(do(a,s)) = ®F] 4

! Actions can be performed by agents: a human, another sys-
tem, or nature.



where & is a simple formula? of a particular syntactic
form. E.g.,
Poss(a, s) D [on(Pmp,do(a, s)) = a = turn_on_pmp
V (on(Pmp, s) A a # turn_of f_pmp)] (5)

Poss(a, s) D [AB(Pwr,do(a,s)) = a = pwr_failure
V (AB(Pwr, s) A a # auz_pwr A a # pwr_fiz)] (6)

Poss(a,s) D [AB(Pmp,do(a,s)) =
a = pmp_burn_out

V (AB(Pmp,s) A a # pmp_fiz)] @

Poss(a, s) D [manual_fill(do(a,s)) =
a = turn_on_manual_fill
V (manual_fill(s)
Aa # turn_of fomanual_fill)] (8)

Poss(a,s) D [filling(do(a, s)) =
a = turn_on_manual_fill
V (manual_fill(s) A a # turn_of f_manual_fill)
V [(a # pwr_failure
A (mAB(Pwr,s)Va = auz_pwr
Va = pwr_fiz))
A (a # pmpburn_out
A (mAB(Pmp,s) V a = pmp_fiz))
A (a = turn_on_pmp
V (on(Pmp, s) Aa # turn_of f_pmp))]
V (filling(s) A a # stop_siphon)] 9)

Axiom (5) states that if action a is possible in situation s,
then the pump ison in the situation resulting from perform-
ing action « in situation s (i.e., on(Pmp, do(a, s))) if and
only if the action a is turn_on_pmp, or the pump was al-
ready onin s and a was not the actionturn _of f_pmp.

The set of action precondition axioms, 7’4 p iscomposed
of axiomsof thefollowinggenera form, onefor each action
prototype A in the domain.

Poss(A(Z),s) =4 (20)
where Tl 4 isasimple formulawith respect to s.

Poss(stop_siphon, s) = (—mmanual_fill(s)
A —on(Pmp,s)) (11)
Poss(pmp_fiz,s) = —on(Pmp,s) (12)
Poss(pmp_burn_out, s) = on(Pmp,s) (13)
Poss(turn_on_manual_fill, s) = -on(Pmp,s) (14)
Poss(turn_on_pmp, s) = "manual_fill(s) (15)
Poss(turn_of f_pmp, s) = Poss(pwr_failure,s) =  (16)
Poss(pwr_fiz,s) = Poss(auz_pwr,s) =  (17)
Poss(turn_of fomanual_fill, s) = true  (18)

2A simple formula only mentions domain-specific predicate
symbols, fluentsdo not include the function symbol do, thereisno
quantification over sort situation, and there is at most one free
s1tuation variable.

Finally, we provide a possible set of initia conditionsfor
our system. These constitutetheinitial database, 7's,. Note
that in general we do not have complete knowledge of the
initia state of our system. This makes the task of diagno-
sis dl the more challenging. In this example, we do not
know initidly whether the pump and power are operating
normally. We also do not know whether the vessel wasfill-
ing intheinitial state.

on(Pmp, So) A ~manual_fill(Sy) (29

In the interest of space, we do not show the unique names
axiomsfor actions, 7y v 4 and thedomain closure axiom for
a:tions, Tpca.

Relationship to L ogic Programming

It is interesting to note that our proposed situation calcu-
lus representation can be viewed as an executabl e specifica
tion becauseitiseasily realized in Prolog by exploitingPro-
log's compl etion semantics and simply replacing the equiv-
aence connectives characteristic of axiomsinT'ss and T4 p
by implication connectives. The Lloyd-Topor transforma-
tion (LIoyd 1987) must then be applied to convert thisthe-
ory into Prolog clausal form. Later inthispaper, wewill ad-
vocate using Wa dinger’ snotion of regression to rewriteax-
ioms of our representation and simplify computation. This
type of regression rewriting is precisely achieved by Pro-
log’s backwards chaining mechanism.

Preliminaries

With our representation in hand, we turn our attention to the
task of diagnosis. In this section we introduce the frame-
work for performing diagnosis relative to our representa
tion. For our purposes we adopt the ontologica and nota-
tional convention of the MBD literature and view the sys-
tems we are diagnosing as comprising a number of inter-
acting components, COM PS. These components have
the property of being either abnormal or normal in a sit-
uation. We express this property in our situation calculus
language using the fluent AB. For example, AB(Pmp, s)
denotes that the pump component is abnormal in situation
s. Note that the use of AB is not mandatory to the con-
tributionsof this paper. Once again, following the conven-
tioninthe MBD literature, we define our diagnosesrelative
to the domain-independent concept of a system (de Kleer,
Mackworth, & Reiter 1992), adapted to our situation cal cu-
lus framework.

Definition 1 (System)
A system is a quadruple (X, HIST, COMPS, OBS)
where:
e X, the background theory, is a set of situation calculus
sentences describing the behaviour of our system and the
actionsthat can affect it.

e HIST, the history, is a sequence of ground actions
[a1, ..., ax] that were performed starting in Sp.



e COM PS, the components, is a finite set of constants.

e OBSp,theobservation, isasimpleformulacomposed of
fluents whose only free variableis the situation variable
s, and which are otherwise ground.

Example 1

In our power plant example above, X isour axiomatization
Ytound AT and COMPS = {Pmp, Pwr}. The obser-
vation, OBSr could be filling(s), for example. HIST
could be empty, i.e., [ ], or perhaps [turn_on_pmp].

Explanatory Diagnosis

In this section we introduce and formally characterize the
notion of an explanatory diagnosis which conjectures what
happened to result in some observed (aberrant) behaviour.
In particular, given a system, (X, HIST, COMPS,
OBSF), theobjectiveof explanatory diagnosisisto conjec-
tureasequence of actions, [a1, . . ., @, ] Such that our obser-
vation istruein the situation resulting from performing that
sequence of actionsin do( H IST, Sy). Since we may have
incompl eteinformation about theinitial state of our system,
we aso provide characterizations of weaker forms of ex-
planatory diagnosis, which we propose to aid in the search
for diagnoses. Finally, we exploit the preference criterion of
chronological smplicity to define a preferred subset of our
explanatory diagnoses.

Characterizing Explanatory Diagnosis

The problem of determining explanatory diagnosesisanin-
stance of temporal explanation or postdiction (e.g., (Shana
han 1993)), and isrelated to the classical Al planning prob-
lem, as we see below and in the section to follow.

Definition 2 (Explanatory Diagnosis)

An  explanatory diagnosis for system (X,
HIST, COMPS, OBSF) isa sequence of actions £ =
[a1, ..., a,] such that,

e X | Poss(HIST - E,Sp)?
AOBSp(do(HIST - E, Sp)).

Thus F isan explanatory diagnosisif the observationis
truein the situation resulting from performing the sequence
of actions £ insituationdo( H I.ST, Sy ), and further that the
preconditionsfor each action of theaction sequence H 15T
E are truein the appropriate situations, commencing at Sg.

Identifying the sequence of actions composing an ex-
planatory diagnosis, E' is analogous to the plan synthesis

*Notation:
HI1ST - Eisanabbreviationfor [a1, ..., ak, a1, ..., ax].
do([a1, ..., am], s) isan abbreviation for
do(am,(do(am—1,(do(@m—2,(...,(do(a1,s)))))))).
Finally, Poss([a1, ..., ax], s) isan abbreviation
for Poss(a1, s) A Poss(az,do(aq,s)) A ...
A Poss(an,do([ar,...,an—1],3)).

problem, and thus is realizable using deduction on the sit-
uation calculus axioms. According to Green (Green 1969),
aplanto achieve agoa G(s) isobtained as a side effect of
proving Azioms = 3s.G(s). Thebindingsfor thesituation
variable s represent the sequence of actions. In our case,
Azioms = 35.G(s) isandogousto ¥ = 3s.OBSk(s).
As such, our representation enables us to generate explana
tory diagnoses deductively, just as we could deductively
generate aplan in the situation calculus.

Example2

Continuingwith our power plant example, given thesystem
(X, [], {Pwr, Pmp},~filling(s)), thesequence of actions
[pwr_failure] congtitutes one example of an explanatory
diagnosesfor thesystem. Another explanatory diagnosisfor

our systemis[turn_of f _pmp).

Observethat for certain problemsthere can be an infinite
number of sequences of actions that constitute explanatory
diagnoses. For example, thefollowing sequences of actions
also congtitute vaid explanatory diagnosesfor our example
system:

[pwr_failure, pwr_fiz, pwr_failure],

[pwr_failure, pwr_auz, pwr_failure],

[turn_of f _pmp, pwr_failure, turn_on_pmp|,
and so on.

Definition 2 isnot sufficiently discriminating to eliminate
these, clearly suboptima explanatory diagnoses. We must
define a preference criterion. Probability measures, even
simple order of magnitude probabilities have provided an
effective preference criterionfor many applicationsof MBD
(deKleer 1991). Likewise, we believethat inthe case of de-
termining explanatory diagnosesin the context of the situa
tion calculus, probabilitieswill serve uswell inidentifying
preferred explanatory diagnoses. Unfortunately, probability
mesasures are not always available. In this paper, we limit
our discussion to what werefer to as achronologicaly sim-
ple preference criterion.

In our chronologicaly simple preference criterion, we
prefer diagnoses that are relativized to situations resched
without performing any extraneous actions. Note that this
preference criterionissyntactic in nature, relying on the no-
tion of a primitive action as a unit measure.

Definition 3 (Smpler)

Given a sequence of actions HIST = [a1,...,ax],
define ACTS(HIST) to be the set {a4,...,a,}, and
LEN(HIST) to be the the length of the sequence of ac-
tionscomposing H1ST.

Thus, given HISTA = [a1,...,a,] and HISTB =
[b1,...,bys], Situation S4 = do(HISTA, Sy) is simpler
thansituation S = do(HISTB, Sy) iff ACTS(HIST A)
C ACTS(HISTB) and LEN(HISTA) <
LEN(HISTB).



Definition 4 (Chronologically Simple Expl. Diagnosis)
FE isachronologically simpleexplanatory diagnosi sfor sys-
tem (X, HIST, COMPS, OBSy) iff E isan explanatory
diagnosisfor the system, and there is no explanatory diag-
nosis £ such that situation S° = do(HIST - E',Sy) is
simpler than situation S = do(HIST - E, Sp).

We might further distinguish this criterion to prefer
chronologically simpleexplanatory diagnoseswhere the ac-
tionsarelimited tothose, for example, performed by nature.
It isno doubt possibleto provideamore genera and formal
account of explanatory diagnosisin terms of circumscrip-
tion. Neverthel essthe account provided serves our purposes
for diagnosis, soweleavethisissue, and themore pragmatic
issue of exploiting probabilities, for future work.

Observe that the characterization of explanatory diagno-
Sis just presented assumes that £ and O BSy occur after
HIST. Whilethisassumption is not critical to character-
izing explanatory diagnoses, it acts as aform of preference,
facilitating computation of F.

Dealing with Incomplete Information

Note that in Example 2, we do not have complete infor-
mation about the initia state of our system. It could be
the case that observation —filling was true in Sy, i.e,
—filling(Sy), but it is simply not entailed by ¥. Conse-
quently, the empty action sequence is not a valid explana
tory diagnosis, and we must conjecture a sequence of ac-
tions that make our observation true. To accommodate a
lack of information about the initia state, we may instead
wish to generate explanations by assuming additional infor-
mation about the world, and making our explanations con-
ditioned on these assumptions. We capture thisintuitionin
an assumption-based explanatory diagnosis.

Definition 5 (Assumption-based Expl. Diagnosis)

Given an assumption H (S) relativized to ground situation
S such that

L] SO S SS S dO(HIST 'E,So),
e XA H(S) issatisfiable, and
e X AH(S) | Poss(HIST, Sy).

An assumption-based explanatory diagnosisfor system (X,
HIST,COMPS,0OBSp)under assumption H (.S) isase-
quence of actions ' = [a, . . ., a] Such that,
e XANH(S) | Poss(HIST - E,Sp)

A OBSp(do(HIST - E, Sp)).

®*Notation: Thetransitive binary relation < definedin X ;ouna
further limits our situation tree by restricting the actions that are
applied to a situation to those whose preconditions are satisfied in
the situation. Intuitively, if s < s , then s and s are on the same
branch of the tree with s closer to Sy than s . Further, s can be
obtained from s by applying a sequenceof actions whose precon-
ditions are satisfied by the truth of the Poss predicate.

In some instances, we may want to make a priori as-
sumptions about the world, conjoin these assumptions to
our theory and then try to compute our explanatory di-
agnoses. For example, we may wish to assume that al
components are operating normally in Sy, if thisis con-
sistent with our theory and action history. This would
be achieved by making H(S) in our definition above
equal to /\cECOMPS —AB(e, So) (i.e, "AB(Pmp, Sp) A
—AB(Pwr, Sp). Similarly, we may wishto assume that the
observation, OBSF istruein do(HIST, Sy), if this can
be consistently assumed. In our example above, thiswould
mean assuming — filling(So).

In still other instances, we may not want to fix our as-
sumptions a priori but rather make a minimum number of
assumptions, as necessary to generate an explanatory diag-
nosis with aminimal number of actions. Such assumptions
might be limited to a distinguished set of literals, which the
domain axiomatizer considersto be legitimately assumable
(e.g., AB fluents).

Finally, we observe that the requirement in Definition 2
and Definition5that ¥ = Poss(HI1ST - E, Sq) may betoo
stringent in the case of an incomplete initial database (i.e.,
it may not be reasonabl e to require that we know that an ac-
tionispossiblein asituationthat isincompletely specified).
We may prefer to consider explanatory diagnoses, wherethe
theory alows us to consistently assume that the precondi-
tionsfor HIST or for HIST - E hold, but not necessarily
that they are entailed by our theory. To thisend, we propose
the following alteration on our definition of explanatory di-
agnoses. A comparable refinement can be made to our def-
inition of assumption-based explanatory diagnosis.

Definition 6 (Potential Explanatory Diagnosis)

A potential explanatory diagnosis for system (X,
HIST, COMPS, OBSF) is a sequence of actions £ =
[a1, R ak] such that,

e YA Poss(HIST - E, Sy) issatisfiable, and

e YA Poss(HIST-E,Sy) EOBSFp(do(HIST-E, Sp)).

Note in particular, that F 75T isaset of actions that we
know to have been performed starting in situation Sg. This
also tellsusthat the preconditionsfor each of the actionsin
H IST weretruein the corresponding situations, providing
us with further information concerning the truth values of
fluents at various situation along the situation tree.

Exploiting Regression
In the previous section, we provided characterizations of
explanatory diagnosis, given a potentialy incomplete ini-
tia state. Upon first glance, the genera problem of com-
puting explanatory diagnoses does not look very promis-
ing because of the second-order inductionaxiomin X oun 4,
and the potentialy large size of the situation search space.
In this section, we show how diagnoses can be computed



by exploiting regression. Given a system (X, HIST,
COM PS,0BSp), weareinterested in finding a sequence
of actions E such tha ¥ | Poss(HIST - E,Sp) A
OBSp(do(HIST - E,Sy)). Generating a sequence of ac-
tions that constitutes an explanatory diagnosis for an ob-
servation O BSF is analogous to generating a sequence of
actions that constitutes a plan to achieve agoal OBSFp(s).
The sequence of actionsfollowing H I.ST' that determine s
constitutes an explanatory diagnosis F.

Asiscommonly donein planning tasks, we advocate ex-
ploiting regression (e.g., (Waldinger 1977)) to generate ex-
planatory diagnoses. In this context, regression is a recur-
sive rewriting procedure used to reduce the nesting of the
do function in situation terms. We will show that generat-
ing explanatory diagnoses reduces to regression followed
by entailment with respect to theinitia database. Computa-
tionally, the merit of regressionisthat it searches backwards
through the situati on space from the observation rather than
searching forward from the initial database. Under the as-
sumption that the observation consists of fewer literalsthan
theinitial database, regression will make for more efficient
search. Observe that Prolog’s backwards chaining mecha
nism achieves the substitution performed by regression.

Regression

In earlier work, Reiter proved soundness and compl eteness
results for regression (Reiter 1992b). We exploit these re-
sultsin our treatment of explanatory diagnosis. To that end,
wedefinetwo regression operators, R* and R p,ss . Follow-
ing in the spirit of (Reiter 1991) and (Reiter 1992b),
Definition 7 (Regression Operator R*)

Given a set of successor stateaxioms, T'ss composed of ax-
ioms of the following form

Poss(a, s) D [F(do(a,s)) = ®F], (20)

R*[¥], the repeated regression of formula ¥ with respect
to successor state axioms Tss is the formula that is ob-
tained from ¥ by repeatedly replacing each fluent atom
F(do(a,s))in ¥ by ®p, until the resulting formula makes
no mention of the function symbol do.

We can similarly define a Poss regression operator over
the set of action preconditionaxioms, 7’4 p. Thisregression
operation rewrites each occurrence of theliteral Poss(a, s)
by 1T 4 as defined in the action precondition axioms.

Definition 8 (Poss Regression Operator)
Given a set of action precondition axioms, 7’4 p composed
of axioms of the form

Poss(A(¥),s) =Tlg4, (21

R poss [W] istheformula obtained by replacing each occur-
rence of predicate Poss(A(Z), s) by IL4. All other literals
of W remain the same.

Hence,
Rposs[Poss(A(Z), s)] = M4, (22)
and for formulae W, W, and W5,

Rposs["W] = 7Rposs (W], (23)

Rposs [(YU)W] = (YU)Rposs (W], (24)

R Poss [(FU)W] = (FU)Rposs [W].  (25)

Rposs (W1 AWa]l = Rposs[W1] A Rposs[Wa], (26)
Rposs W1V Wa]l = Rposs (Wil V Rposs [Wa],  (27)
Rposs[W1 D Wa] = Rposs [W1] D Rposs[Wa], (28)
Rposs W1 = Wal = Rposs [W1] = Rposs [Wa].  (29)

Finaly for any formula 1/ containing no occurrence of
predicate Poss,

RPoss [W] =W. (30)

Next we adapt Reiter’ sresultson the soundness and com-
pleteness of regression (Theorem 1, Theorem 2, (Reiter
1992b)) to our representation. They are presented in the
following proposition. The theory ;,,;; mentioned in the
proposition below is a subset of ¥ containing only the ini-
tial database, and no information about successor situations.
It also excludes theinduction axiomin X ¢ 5, 4.

Proposition 1 (Soundness & Completeness)

Given

e Y., a subset of the situation calculus theory X2, such
that Xinit = Suns A Tsg A Tet A Taomain A Tuna,

ram
where Xy s isa subset of £ ,,,4 Containing the set of
unique names axioms for situations.

e asequence of ground actions, s_H I ST such that ;,,;; A
R* [Rposs [Poss(s-HIST, Sy)]] issatisfiable.

¢ ()(s),asmpleformulawhoseonlyfreevariableisthesit-
uation variable s.

Suppose S = do(s_HIST, Sy), then
o ¥ = Q(do(s-HIST, Sp)) iff
Yinit | R*[Q(do(s-H ST, So))],

e X = Poss(s_HIST, Sy) iff
Yinit = R*[Rposs[Poss(s-HIST, So)]],

e ¥ A Poss(s_HIST, So) A Q(do(s_HIST, Sp)) is sat-
isfiable iff X;,;; A R* [RPOSS[POSS(S_HIST, So)]] A
R*[Q(do(s-HIST, Sy))] is satisfiable,

Thus, assuming situation s is a possible situation and ex-
ploiting regression, Q(s) holds at situation s iff itsregres-
sionisentailed intheinitia database. The beauty of propo-
sition 1 is that it enables us to generate explanatory diag-
noses viaregression followed by theorem provingintheini-
tial database, without the need for the second-order induc-
tionaxiomin X¢oung.



Fromtheseresults, we can characterize explanatory diag-
nosis with respect to regression.
Proposition 2 (Expl. Diagnosiswith Regression)
The sequence of actions £ = [ay, .. ., ai] isan explana-
tory diagnosis for system (X, HIST, COMPS, OBSF)
iff

Yinit E R* [RPOSS[POSS(H[ST - F SO)]]
/\'R,*[OBSF(dO(HIST - E,So))] (3D

There are obviousana oguesfor assumption-based explana-
tory diagnoses and potential explanatory diagnoses. We do
not restate them here.

Determining Diagnoses
Different applicationswill use these characterizations of di-
agnoses in different ways, to meet the needs of the specific
domain. In this section we examine two such uses. verify-
ing agiven diagnosi s and generating diagnoses.

Verifying a Diagnosis

For many systems, particularly those that have an incom-
plete initial database, it may be pragmatic to maintain a li-
brary of most likely diagnosesand attempt to verify or refute
these diagnoses in order of descending likelihood. These
libraries could be indexed by observations and/or situation
histories. The diagnoses themselves could be sequences of
actions and possibly assumptions.

Given asystem (X, HIST, COMPS, OBSF), and a
candidate diagnosis E, such that S = do(HIST - E, So),
we are interested in verifying that F isindeed a diagnosis
of the system. Verifying this candidate diagnosisis simply
aquery evauation problem. It can be accomplished by re-
gression and theorem proving in theinitia database, as per
Proposition 2 above.

Example 3

Giventhesystem (X, [ ], { Pwr, Pmp},—filling(s)), and
the candidate diagnosis E=[pwr_failure], F' can be veri-
fied to be an explanatory diagnosiswith respect to the sys-
tem by eval uating the query

R*[Rposs[Poss(do(pwr_failure, Sp))]]
A R* [~ filling(do(pwr_failure, Sy))]

with respect to theinitial database, X;,,;;.

Again, verifying such adiagnosisin Prologisstraightfor-
ward through exploitation of Prolog’s backwards chaining
mechanism which is analogous to regression.

Generating Diagnoses

In contrast, to generate diagnosesfor aasystem (X, HIST,
COMPS,0BSr), weareinterested in finding a sequence
of actions ' such that ¥ = Poss(HIST - E, So) A

OBSp(do(HIST - E, Sy)). Asobserved previously, gen-
erating a sequence of actionsthat constitutesan explanatory
diagnosisfor an observation O BSr isidentica to generat-
ing a sequence of actions that constitutes a plan to achieve
agod 3s.0BSr(s). Thus, following the work on deduc-
tive plan synthesis (e.g., (Green 1969)), we can view the
generation of explanatory diagnoses as a deductive plan
synthesis problem that is realizable using theorem prov-
ing. As aside effect of proving 3s.0BSr(s), atheorem
prover will generate bindings for s. The sequence of ac-
tions following H ST that determine s constitutes an ex-
planatory diagnosis £. Further, following Proposition 2 of
the previous section, we can achieve such an explanatory
diagnosis by regression and theorem proving. In trying to
prove 3s.0BSr(s), Prolog's backwards chaining mecha-
nism takes precisely this approach.

Unfortunately, as we observed previously, ;,,;: may not
be sufficiently completeto determine asituation S such that
OBSr(S) isentaled by our theory. In our earlier discus-
sion, we proposed assumption-based explanatory diagnoses
and potential explanatory diagnoses as means of address-
ing the problem. The idea was to further complete our the-
ory by making assumptions regarding the truth value of se-
lected literals. We observed that these assumptions could be
made prior to attempting to determine an explanatory diag-
nosis, or that they could be made on an as-needs basis dur-
ing computation. Inthe former case, we simply conjoin the
regression of the assumption to theinitial database and use
regression and theorem proving as we would for generating
normal explanatory diagnoses. Inthelatter case, generating
an assumption-based explanatory diagnosisis analogous to
an abductive planning problem, and we can use computa-
tional machinery for abductionto realize the computati on of
assumption-based explanatory diagnoses. We singleout the
work by Eshghi (Eshghi 1988) on abductive planning with
event calculus as an example of abductive planning. While
hisrepresentation and objectivesare different fromours, his
discussion of abductive planningillustratesthe possibilities
for the generation of assumption-based explanatory diag-
noses. In the context of explanatory diagnosis, abductive
plan generation would attempt to prove O BSr(s), if an a-
tempted proof failed because it dead-ended onalitera or lit-
eralsthat were assumabl e, then these would be abduced and
the proof continued. We have not yet implemented our own
abductive explanation generator for the situation calculus.

Related Work

As previoudly noted, thiswork has been influenced by for-
mal characterizations of diagnosis for systems without an
explicit representation of actions (e.g., (de Kleer, Mack-
worth, & Reiter 1992), (Reiter 1987), (Console & Torasso
1991)). It has aso been influenced by Reiter’'s work on
the frame problem and the problem of tempora projection



(Reiter 1992a). With the exception of previous work by
the author (Mcllraith 1997a), the research to date on diag-
nostic problem solving has not really addressed the prob-
lem of incorporating a representation of action into the rep-
resentation of the behaviour of a system. As such, there
is little related work that exploits a comprehensive repre-
sentation of action. In (Mcllraith 1997b), the author has
also provided a mapping of the traditional notions of what
is wrong diagnosis, i.e., consistency-based and abductive
diagnosis, into this rich representation scheme. There is
other diagnosis research that is loosely related to the sub-
ject of this paper, particularly research ontempora diagno-
sis and diagnosis of dynamic systems (e.g., (Brusoni et al.
1995), (Consoleet al. 1994), (Hamscher 1991), (Friedrich
& Lackinger 1991), (DeCoste 1990), (Lackinger & Neidl
1991), (Dressler 1994)). Brusoni et d. ((Brusoni et al.
1995), (Brusoni et al. 1995)) recently provided a character-
ization of temporal abductive diagnosistogether with ago-
rithms for computing these diagnoses under certain restric-
tions. This builds on earlier work by Console et d. on di-
agnosing time-varying misbehaviour (Consoleet al. 1994).
Their work decouples atempora and tempora diagnoses,
using S D to represent the behaviour of the atemporal com-
ponentsand transitiongraphsto represent thetemporal com-
ponents. The later work uses tempora constraints to rep-
resent the temporal components. Also related is the work
by Cordier and Thiébaux on event-based diagnosis(Cordier
& Thiebaux 1994). Their work is similar in motivation to
our work on explanatory diagnosis, viewing the diagnosis
task as the determination of the event-history of a system
between successive observations. None of the work cited
above provides a comprehensive representation of the pre-
conditionsfor and the effects of actions. Nor doesit address
the frame, ramification and qudification problems.

In the area of reasoning about action, research on tempo-
ra explanation and postdictionis also very much related to
results on explanatory diagnosis (e.g., (Crawford & Ether-
ington 1992), (Baker 1991)). Of particular noteis research
by Shanahan on temporal explanation in the situation cal-
culus (Shanahan 1993). While Shanahan also proposes the
situation ca culus as a representation language for axioma-
tizing his domain, he does so without an axiomatic solution
to the frame and ramification problems. Assuch these prob-
lems must be addressed coincidentally with generating ex-
planatory diagnoses. In contrast, our characterization of ex-
planatory diagnosis, withits axiomatic solutionto theframe
and ramification problems, providesfor much simpler char-
acterization and computation of tempora explanation.

Contributions

The resultsin this paper provide contributionsin two areas
of research: model-based diagnosis and knowledge repre-
sentation. We focus here on the contributionsto the model -

based diagnosis community. Our concern in this paper was,
givenasystem that affectsand can beaffected by theactions
of agents, and given some observed (aberrant) behaviour,
how do we capture the notion of what happened, i.e., how
do we go about conjecturing a sequence of actions that ac-
count for the behaviour we have observed.

We addressed this problem by providing a mathematical
characterization of the notion of explanatory diagnosisin
the context of arich situation cal culus representation, pro-
posed in (Mcllraith 19974). Observing that we often have
incomplete information about our initia state, we also pro-
posed the notions of assumption-based and potential ex-
planatory diagnosis, to alow for the conjectured sequences
of actions that constitute a diagnosis to be predicated on
some other assumptionswe choose to make about theworld.
Our characterizations of explanatory diagnosisimmediately
make apparent the direct relationship of explanatory diag-
nosis to plan synthesis. As such, following the results of
Green on deductive plan synthesis, we observed that gen-
erating explanatory diagnosis could be achieved by deduc-
tion. Of course, searching a situation space can be very in-
efficient, and further, our representation scheme for our sit-
uation space includes a second-order induction axiom. We
showed that we can generate explanatory diagnoses more
efficiently by regression followed by theorem proving in
theinitial database, which excludesthe second-order induc-
tion axiom. Following regression, verifying adiagnosisin-
volves simple query evaluation, whereas generating adiag-
nosisrelies on deduction. We further observed that generat-
ing assumption-based explanatory diagnoses where the as-
sumptionsare conjectured on an as-needs basis requires ab-
duction. Finally, while this paper’s focus is on contribut-
ing to the mathematical foundations of diagnostic problem
solving, we noted that there is a straightforward trandlation
from our situation calculus representation scheme to Pro-
log, and further that Prolog’s backwards chaining mecha
nism performs regression for us. The issue of computation
has only been addressed in a cursory manner. In futurere-
search we will investigate the feasibility of various algo-
rithms for computing explanatory diagnoses.
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