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Abstract

Our concern in this paper is with conjecturing diagnoses to
explain what happened to a system, given a theory of sys-
tem behaviour and some observed (aberrant) behaviour. We
characterize what happened by introducing the notion of ex-
planatory diagnoses in the language of the situation calculus.
Explanatory diagnosesconjecture sequencesof actions to ac-
count for a change in system behaviour. We show that deter-
mining an explanatory diagnosis is analogous to the classi-
cal AI planning task. As such, we exploit previous results on
goal regression in the situation calculus to show that deter-
mining an explanatory diagnosis can be achieved by regres-
sion followed by theorem proving in the database describing
what is known of the initial state of our system. Further, we
show that in the case of incomplete information, determining
explanatory diagnoses is an abductive plan synthesis task.

Introduction
Given a theory of system behaviour and some observed
aberrant behaviour, the traditional objective of diagnosis is
to conjecture what is wrong with the system, (e.g., which
components of the device are behaving abnormally, what
diseases the patient is suffering from, etc.). Each candidate
diagnosis consists of a subset of distinguished literals that
are conjectured to be true or false in order to account for
the observation in some way. Different criteria have been
proposed for determining the space of such candidate diag-
noses. Within formal accounts of diagnosis, two widely ac-
cepted definitions of diagnosis are consistency-based diag-
nosis (e.g., (Reiter 1987), (de Kleer, Mackworth, & Reiter
1992)), and abductive explanation (e.g., (de Kleer, Mack-
worth, & Reiter 1992), (Poole 1988), (Console & Torasso
1991), (McIlraith 1994a)).

Our concern in this paper is with conjecturing diagnoses
to explain what happened to a system, given a theory of sys-
tem behaviour and some observed (aberrant) behaviour (i.e.,
what actions or events occurred to result in the observed
behaviour) (e.g., (McIlraith 1994b), (Cordier & Thiebaux
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1994)). Knowing or conjecturing what happened is inter-
esting in its own right, but can also assist in the prediction
of abnormal components or other relevant behaviour, and in
the prescription of suitable procedures for testing, repairing
or reacting. Compared to our traditional notion of what is
wrong diagnoses, knowing what happened can more accu-
rately capture the root cause of system malfunction, rather
than its manifestations.

In the spirit of previous foundational work in model-
based diagnosis (MBD) (e.g., (Reiter 1987), (Console &
Torasso 1991), (de Kleer, Mackworth, & Reiter 1992)), this
paper presents a mathematical characterization for the no-
tion of explanatory diagnosis. We take as our starting point
the existing MBD research on characterizing diagnoses for
static systems without a representation of actions (e.g., (de
Kleer, Mackworth, & Reiter 1992), (Console & Torasso
1991), (Reiter 1987)). Next, we exploit a situation calculus
representation scheme previously proposed by the author
(McIlraith 1997a) that enables the integration of a represen-
tation of action with the representation of the behaviour of a
static system. With this representation in hand, we provide
a logical characterization for the task of determining what
happened to a system. The characterization is presented in
the guise of explanatory diagnosis.

The distinguishingfeatures of our characterization are af-
forded in great part by the richness of our representation
scheme which provides a comprehensive and semantically
justified representation of action and change. In particular,
our representation provides an axiomatic closed-form solu-
tion to the frame and ramification problems, thus captur-
ing the direct and indirect effects of actions in a compiled
representation. This is critical to the ability to generate ex-
planatory diagnoses efficiently. Further, our representation
provides a closed-form solution to the qualification prob-
lem, thus identifying the conditions underwhich an action
is possible. It is interesting to note that when we are dealing
with incomplete knowledge of our initial state, conjecturing
an action or sequence of actions also requires conjecturing
that its preconditions are satisfied, which in many instances
serves to further constrain our search.



As we show in the sections to follow, our characterization
establishes a direct link between explanatory diagnosis and
planning, deductive plan synthesis and abductive planning.
As a consequence of a completeness assumption embedded
in our representation, we show how to exploit goal-directed
reasoning in the form of regression (Waldinger 1977) in or-
der to generate diagnoses. This completeness assumption
also provides for an easy mapping of our situation calculus
representation to Prolog.

Representation Scheme
Situation Calculus Language

The situation calculus language we employ to axiomatize
our domains is a sorted first-order language with equality.
The sorts are of type

�
for primitive actions, � for situa-

tions, and � for everything else, including domain objects
(Lin & Reiter 1994). We represent each action as a (pos-
sibly parameterized) first-class object within the language.
Situations are simply sequences of actions. The evolutionof
the world can be viewed as a tree rooted at the distinguished
initial situation ��� . The branches of the tree are determined
by the possible future situations that could arise from the re-
alization of particular sequences of actions. As such, each
situation along the tree is simply a history of the sequence
of actions performed to reach it. The function symbol ���
maps an action term and a situation term into a new situation
term. For example, ����	�
����� ��� ��������� ��� is the situation re-
sulting from performing the action of turning on the pump
in situation � � . The distinguished predicate ��������	! "��� � de-
notes that an action  is possible to perform in situation �
(e.g., ��������	�
����� ��� ���#���$��� � ). Thus, ������� determines the
subset of the situation tree consisting of situations that are
possible in the world. Finally, those properties or relations
whose truth value can change from situation to situation are
referred to as fluents. For example, the fluent ���%	!���#���$� �
expresses that the pump is on in situation � .

The situation calculus language we employ in this paper
is restricted to primitive, determinate actions. Our language
does not include a representation of time, concurrency, or
complex actions, but we believe the results presented herein
can be extended to more expressive dialects of the situation
calculus (e.g., (Reiter 1996)) without great difficulty.

Domain Representation: An Example
In this section we briefly describe the representation scheme
we use to characterize our system. The scheme, proposed
in (McIlraith 1997a), integrates a situation calculus the-
ory of action with a MBD system description, &(' (de
Kleer, Mackworth, & Reiter 1992). The resultant represen-
tation of a system comprises both domain-independent and
domain-specific axioms. The domain-independent axioms
are the foundational axioms of the discrete situation calcu-
lus, )+*�,�-�.�/ (Lin & Reiter 1994). They are analogous to the

axioms of Peano arithmetic, modified to define the branch-
ing structure of our situation tree, rather than the number
line. The domain-specific axioms, 0 specify both the be-
haviour of the static system, and the actions 1 that can affect
the state of the system, as well as those actions required to
achieve testing and repair. Together they define our domain
representation )324)+*�,-�.�/6570 .

We determine 0 using a procedure proposed in (McIl-
raith 1997a) that compiles a typical MBD system descrip-
tion, &(' and a set of axioms relating to the preconditions
and effects of actions into a representation that provides a
closed-form solution to the frame, ramification and qualifi-
cation problems. The resultant domain axiomatization 032
0#8�98�: 5;0</=,>�?=@A.B5C0 8�8 5;0%D<EF5G0<H<IJDK5;0%L : DK5C0 8�9 is
described below. The representation is limited to a syntac-
tically restricted but commonly occurring class of theories
called solitary stratified theories (McIlraith 1997a). Intu-
itively, the dependency graphs of the actions and state con-
straints of these theories contain no loops or cycles. It is also
important to note that a completeness assumption is embed-
ded in this representation. The assumption states that all the
conditions underwhich an action M can lead, directly or in-
directly, to fluent N becoming true or false in the successor
state are captured in the axiomatization of our system.

We illustrate the representation in terms of a small por-
tion of a power plant feedwater system (McIlraith 1997b)
derived from the APACS project (Kramer & et al. 1996).
Our example models the fillingof a vessel either by the oper-
ation of an electrically powered ( OQP�R ) pump ( OQSUT ), or by
manual filling. For notational convenience, all formulae are
understood to be universally quantified with respect to their
free variables, unless explicitly indicated otherwise. For a
more thorough description of this representation scheme,
please see ((McIlraith 1997a), (McIlraith 1997b)).

The set of state constraints relativized to situation &WV ,
0 8�98�: is as follows. These constraints could be acquired from
a typical MBD system description, &(' .

XZY+[ 	!��\]�^�_��� �a` XZY+[ 	!���#���_��� �b` ���%	!���#���_��� �c;dae�fAfAe ��g"	!��� � (1)

�h ��a�� f dae�fAf 	!� ��� c;dae�fAfAe ��g"	!� ��� (2)

The set of domain constraints, 0i/=,>�?=@A. is as follows.

��\]�kjl ���#� (3)

The set of successor state axioms, 0 8�8 is composed of ax-
ioms of the following general form, one for each fluent N .

OQm�n�npo_M%qrn�s�tvuwNho_x�m"o_M%q=n�sys(z|{J}�~ (4)

�
Actions can be performed by agents: a human, another sys-

tem, or nature.



where { } is a simple formula � of a particular syntactic
form. E.g.,

��������	! "�$� � c�� ���%	!���#���_���p	! "�$� ����  l 
_����� ��� ������ 	!���%	!���#���$� �a`  jl 
_����� � dad ����� ��� (5)

��������	! "�$� � c�� Y+[ 	!��\]�^�_���p	! "�_� ��	�  l ��\J� d  e�f ����
� 	 Y�[ 	!��\J�=�� �b`  jl  ��� ��\J� `  hjl ��\J� dae � ��� (6)

��������	! "�$� � c�� Y�[ 	!�����a�����	! "�$� ��	�
 l ���#� �$����� ���"
� 	 Y�[ 	!��������� �a`  jl ���#� dae � ��� (7)

����� ��	! "�$� � c�� �  ��a�� f dae�fAf 	!����	! "�� ����
 l 
_����� ��� �h ��a�� f dae f f� 	!�h ��a�� f dae�fAf 	!� �
`  hjl 
_����� � dad �  ����� f dae f f ��� (8)

��������	! "�_� � c�� d�e�fAf e ��g 	!���p	! "�r� ����
 l 
_����� ��� �h ��a�� f d�e�fAf� 	!�  ����� f dae�fAf 	!� �a`  hjl 
_����� � dad �  ����� f dae f f �� � 	! Qjl ��\J� d  e�f ����


` 	 X<Y�[ 	!��\J�=�_� � �  l  ��� ��\]��  l ��\J� d�e � ��
` 	! jl ����� �$����� ��� 


` 	 XZY+[ 	!���#���_� � �  l ���#� d�e � ��
` 	! l 
����� ��� ������ 	!���%	!�����a�$� �a`  jl 
_����� � dad ���#� ����� 	 dae�fAfAe ��g"	!� �%`  hjl �=
�$� � e ������� ��� (9)

Axiom (5) states that if action M is possible in situation n ,
then the pump is on in the situation resulting from perform-
ing action M in situation n (i.e., m���o_OUSQTiq=x�m"o_M%q=n�sys ) if and
only if the action M is ���bR�� m�� TbSUT , or the pump was al-
ready on in n and M was not the action ���bR�� m���� T%SQT .

The set of action precondition axioms, 0 D<E is composed
of axioms of the followinggeneral form, one for each action
prototype � in the domain.

OUm�n�npo��Uo��� s�q=n�sWz�� D (10)

where ��D is a simple formula with respect to n .
��������	!�=
�y� � e ������ ��� ��� 	 X �h ��a�� f d�e�fAf 	!� �

` X ��� 	!���#���_� �� (11)

����� ��	 ����� dae ���$� ��� X ��� 	!���#���_� � (12)

����� ��	 ����� �$����� ���"
$�� ��� ���%	!�����a�$� � (13)

��������	�
_����� ��� �  ��a�� f dae�fAf �$� ��� X ��� 	!���#���_� � (14)

��������	�
����� ��� �����a�$� �	� X �h ��a�� f dae f f 	!� � (15)

��������	�
����� � dad �����a�$� �	� ��������	 ��\J� d  e f ����
��r� ��� (16)

��������	 ��\J� dae ���$� ��� ��������	! ���� ��\J�=�$� ��� (17)

��������	�
��� � � dad �  ����� f dae f f �$� ��� 
_���
 (18)
 
A simple formula only mentions domain-specific predicate

symbols, fluents do not include the function symbol ��� , there is no
quantification over sort � e 
�� �
 e ��� , and there is at most one free
� e 
_�� �
 e ��� variable.

Finally, we provide a possible set of initial conditions for
our system. These constitute the initial database, 0 8 9 . Note
that in general we do not have complete knowledge of the
initial state of our system. This makes the task of diagno-
sis all the more challenging. In this example, we do not
know initially whether the pump and power are operating
normally. We also do not know whether the vessel was fill-
ing in the initial state.

��� 	!���#���_��� �b` X �h ��a�� f dae f f 	!��� � (19)

In the interest of space, we do not show the unique names
axioms for actions, 0ZH<IJD and the domain closure axiom for
actions, 0 L : D .

Relationship to Logic Programming
It is interesting to note that our proposed situation calcu-
lus representation can be viewed as an executable specifica-
tion because it is easily realized in Prolog by exploitingPro-
log’s completion semantics and simply replacing the equiv-
alence connectives characteristic of axioms in 0 8�8 and 0%D<E
by implication connectives. The Lloyd-Topor transforma-
tion (Lloyd 1987) must then be applied to convert this the-
ory into Prolog clausal form. Later in this paper, we will ad-
vocate using Waldinger’s notion of regression to rewrite ax-
ioms of our representation and simplify computation. This
type of regression rewriting is precisely achieved by Pro-
log’s backwards chaining mechanism.

Preliminaries
With our representation in hand, we turn our attention to the
task of diagnosis. In this section we introduce the frame-
work for performing diagnosis relative to our representa-
tion. For our purposes we adopt the ontological and nota-
tional convention of the MBD literature and view the sys-
tems we are diagnosing as comprising a number of inter-
acting components, !#"%$ OQ& . These components have
the property of being either abnormal or normal in a sit-
uation. We express this property in our situation calculus
language using the fluent �'& . For example, �'&ho_OUSQTiq=n�s
denotes that the pump component is abnormal in situation
n . Note that the use of �'& is not mandatory to the con-
tributions of this paper. Once again, following the conven-
tion in the MBD literature, we define our diagnoses relative
to the domain-independent concept of a system (de Kleer,
Mackworth, & Reiter 1992), adapted to our situation calcu-
lus framework.

Definition 1 (System)
A system is a quadruple o)kq�(*)"&i0 , !#"%$ OQ&(q�"%&Q&(s

where:+ ) , the background theory, is a set of situation calculus
sentences describing the behaviour of our system and the
actions that can affect it.

+ (*)"&�0 , the history, is a sequence of ground actions
uwM 1 q-,.,-,=qrM/^~ that were performed starting in &iV .



+ !%"%$ OU& , the components, is a finite set of constants.

+ "%&Q& } , the observation, is a simple formula composed of
fluents whose only free variable is the situation variable
n , and which are otherwise ground.

Example 1
In our power plant example above, ) is our axiomatization
)J*�,-�.�/Q5G0 and !%"%$ OU&K2���OQSUTiq=OQP#R�� . The obser-
vation, "%&Q& } could be ��������� �
	aon�s , for example. (*)"&�0
could be empty, i.e., u ~ , or perhaps u ���%R�� m�� T%SQT�~ .

Explanatory Diagnosis
In this section we introduce and formally characterize the
notion of an explanatory diagnosis which conjectures what
happened to result in some observed (aberrant) behaviour.
In particular, given a system, o)kq%(*) &�0 , !%"%$ OQ&(q
"%&U& } s , the objective of explanatory diagnosis is to conjec-
ture a sequence of actions, u�� 1 q-,.,-,=q��."~ such that our obser-
vation is true in the situation resulting from performing that
sequence of actions in x�m"o ( ) &�0�qr&iV�s . Since we may have
incomplete information about the initial state of our system,
we also provide characterizations of weaker forms of ex-
planatory diagnosis, which we propose to aid in the search
for diagnoses. Finally, we exploit the preference criterion of
chronological simplicity to define a preferred subset of our
explanatory diagnoses.

Characterizing Explanatory Diagnosis
The problem of determining explanatory diagnoses is an in-
stance of temporal explanation or postdiction (e.g., (Shana-
han 1993)), and is related to the classical AI planning prob-
lem, as we see below and in the section to follow.

Definition 2 (Explanatory Diagnosis)
An explanatory diagnosis for system o_)kq

(*)"&�0 , !%"%$ OU&(q�"%&U&%}]s is a sequence of actions � 2
u�� 1 q,.,-,=q�� . ~ such that,

+ )�� 24OQm�n�n�o (*) &�0���� q=& V s �
5 "#&Q& } ox�m"o (*)"&i0���� q=&<V�s$s .

Thus � is an explanatory diagnosis if the observation is
true in the situation resulting from performing the sequence
of actions � in situation x�m"o (*)"&i0�q=&iV�s , and further that the
preconditions for each action of the action sequence ( ) &�0��
� are true in the appropriate situations, commencing at &WV .

Identifying the sequence of actions composing an ex-
planatory diagnosis, � is analogous to the plan synthesis
 
Notation:��� �
����� is an abbreviation for �  � ��� ��=�� �!p��" � ����#�=��"%$ � .
���p	 �  � �#�#��=�r �& � �$� � is an abbreviation for
����	! & � 	!���p	! &(' � � 	!���p	! &)'  � 	*�#�#�=�r	!���p	! � �$� �������� .

Finally, ��������	 �  � �#�#�#�r�$ �$ � �$� � is an abbreviation
for ��������	! � �$� �%` ��������	!  �$���p	! � �$� ���` �#�#�

` ��������	! $ �����p	 �  � �#�#�#�r�$ $+' � � �$� �� .

problem, and thus is realizable using deduction on the sit-
uation calculus axioms. According to Green (Green 1969),
a plan to achieve a goal , o_n�s is obtained as a side effect of
proving � � � m�S n�� 2�-an ,�,ho_n�s . The bindings for the situation
variable n represent the sequence of actions. In our case,
� � � m�S n�� 2.-an , , o_n�s is analogous to )/� 20-an , "%&Q& } o_n�s .
As such, our representation enables us to generate explana-
tory diagnoses deductively, just as we could deductively
generate a plan in the situation calculus.

Example 2
Continuingwith our power plant example, given the system
o)kq�u�~ , ��OUP#R�q=OQSQT1��q�2 ��������� �
	aon�sys , the sequence of actions
u T%P#R �bM3��� �bR�4^~ constitutes one example of an explanatory
diagnoses for the system. Another explanatory diagnosis for
our system is u ���%R�� m���� T%SQT�~ .

Observe that for certain problems there can be an infinite
number of sequences of actions that constitute explanatory
diagnoses. For example, the following sequences of actions
also constitute valid explanatory diagnoses for our example
system:
u T%P#R �bM3��� �bR�4"q�T%P#R �
� � q�TbP�R �%M3�5���bR�4^~ ,
u T%P#R �bM3��� �bR�4"q�T%P#R M� � q$T%P#R �%M3�5� �%R�4^~ ,
u ���%R�� m���� T%SQT�qrT%P#R �%M3�5� �%R�4"q-���bR�� m�� TbSUT�~ ,

and so on.
Definition 2 is not sufficiently discriminating to eliminate

these, clearly suboptimal explanatory diagnoses. We must
define a preference criterion. Probability measures, even
simple order of magnitude probabilities have provided an
effective preference criterion for many applicationsof MBD
(de Kleer 1991). Likewise, we believe that in the case of de-
termining explanatory diagnoses in the context of the situa-
tion calculus, probabilities will serve us well in identifying
preferred explanatory diagnoses. Unfortunately, probability
measures are not always available. In this paper, we limit
our discussion to what we refer to as a chronologically sim-
ple preference criterion.

In our chronologically simple preference criterion, we
prefer diagnoses that are relativized to situations reached
without performing any extraneous actions. Note that this
preference criterion is syntactic in nature, relying on the no-
tion of a primitive action as a unit measure.

Definition 3 (Simpler)
Given a sequence of actions (*) &�0 2 u�� 1 q-,.,-,=q� . ~ ,

define � !k0#& o ( ) &�0#s to be the set �6� 1 q-,.,-,$q#� . � , and7 �98Go ( ) &�0#s to be the the length of the sequence of ac-
tions composing (*) &�0 .

Thus, given ( ) &�0 � 2 uwM 1 q.,-,-,rq=M"."~ and (*) &�0 & 2
u�: 1 q.,-,.,=q#:=."~ , situation & D 2 x�m"o ( ) &�0 � q=&<V�s is simpler
than situation &%; 2Kx�m"o (*)"&�0 & qr&<V"s iff �'!k0#& o (*)"&i0 �ks< �'!k0#& o (*)"&�0 &Qs and

7 �98Go ( ) &�0 � s =7 �98Go ( ) &�0 &Qs .



Definition 4 (Chronologically Simple Expl. Diagnosis)
� is a chronologically simple explanatory diagnosis for sys-
tem o_)kq-(*) &�0 , !%"%$ OQ&(q�"%&U&%}+s iff � is an explanatory
diagnosis for the system, and there is no explanatory diag-
nosis ��� such that situation &�� 2 x�m"o (*)"&�0 � ����qr& V s is
simpler than situation &K24x�m"o (*) &�0 ��� q=& V s .

We might further distinguish this criterion to prefer
chronologically simple explanatory diagnoses where the ac-
tions are limited to those, for example, performed by nature.
It is no doubt possible to provide a more general and formal
account of explanatory diagnosis in terms of circumscrip-
tion. Nevertheless the account providedserves our purposes
for diagnosis, so we leave this issue, and the more pragmatic
issue of exploiting probabilities, for future work.

Observe that the characterization of explanatory diagno-
sis just presented assumes that � and "%&U&<} occur after
(*)"&�0 . While this assumption is not critical to character-
izing explanatory diagnoses, it acts as a form of preference,
facilitating computation of � .

Dealing with Incomplete Information
Note that in Example 2, we do not have complete infor-
mation about the initial state of our system. It could be
the case that observation 2 �
������� �
	 was true in & V , i.e.,
2 �
������� �
	ao_& V s , but it is simply not entailed by ) . Conse-
quently, the empty action sequence is not a valid explana-
tory diagnosis, and we must conjecture a sequence of ac-
tions that make our observation true. To accommodate a
lack of information about the initial state, we may instead
wish to generate explanations by assuming additional infor-
mation about the world, and making our explanations con-
ditioned on these assumptions. We capture this intuition in
an assumption-based explanatory diagnosis.

Definition 5 (Assumption-based Expl. Diagnosis)
Given an assumption (Fo_&(s relativized to ground situation
& such that
+ & V ��� & � x�m"o (*) &�0 � � qr& V s ,
+ )G5 (Fo_&(s is satisfiable, and

+ )G5 (Fo_&(s � 2 OQm�n�npo ( ) &�0�qr& V s .
An assumption-based explanatory diagnosis for system o)kq
(*)"&�0 , !%"%$ OQ&(q "#&Q& } s under assumption (Go_&(s is a se-
quence of actions � 2 u�� 1 q-,.,-,$q#� / ~ such that,+ )G5 (Fo_&(s � 2 OQm�n�npo ( ) &�0 ��� qr&<V s

5*"%&U& } o_x�m"o ( ) &�0 ��� qr&<V s$s .
�
Notation: The transitive binary relation � defined in 	�
��� $��

further limits our situation tree by restricting the actions that are
applied to a situation to those whose preconditions are satisfied in
the situation. Intuitively, if ��� � � , then � and � � are on the same
branch of the tree with � closer to � � than � � . Further, � � can be
obtained from � by applying a sequence of actions whose precon-
ditions are satisfied by the truth of the ������� predicate.

In some instances, we may want to make a priori as-
sumptions about the world, conjoin these assumptions to
our theory and then try to compute our explanatory di-
agnoses. For example, we may wish to assume that all
components are operating normally in & V , if this is con-
sistent with our theory and action history. This would
be achieved by making (Go&(s in our definition above
equal to ����� :���� E 8 2 � & o���q=&<V�s (i.e., 2 �'&ho_OUSQTiq=&<V�s(5
2 � &hoOQP#R�q=&<V�s . Similarly, we may wish to assume that the
observation, "%&Q& } is true in x�m"o (*)"&i0�q=&ZV�s , if this can
be consistently assumed. In our example above, this would
mean assuming 2 ��������� �
	ao&ZV s .

In still other instances, we may not want to fix our as-
sumptions a priori but rather make a minimum number of
assumptions, as necessary to generate an explanatory diag-
nosis with a minimal number of actions. Such assumptions
might be limited to a distinguished set of literals, which the
domain axiomatizer considers to be legitimately assumable
(e.g., �'& fluents).

Finally, we observe that the requirement in Definition 2
and Definition 5 that ) � 23OUm�n�npo (*)"&�0 �*� q=& V s may be too
stringent in the case of an incomplete initial database (i.e.,
it may not be reasonable to require that we know that an ac-
tion is possible in a situation that is incompletely specified).
We may prefer to consider explanatory diagnoses, where the
theory allows us to consistently assume that the precondi-
tions for (*)"&i0 or for (*)"&�0���� hold, but not necessarily
that they are entailed by our theory. To this end, we propose
the following alteration on our definition of explanatory di-
agnoses. A comparable refinement can be made to our def-
inition of assumption-based explanatory diagnosis.

Definition 6 (Potential Explanatory Diagnosis)
A potential explanatory diagnosis for system o)kq
( ) &�0 , !%"#$ OQ&(q�"#&Q&%}]s is a sequence of actions � 2
u�� 1 q-,.,-,=q� / ~ such that,
+ )K5;OUm�n�npo (*)"&�0 ��� qr&<V�s is satisfiable, and

+ ) 5 OQm�n�n�o (*) &�09� � qr&<V�s � 2�"%&Q& } o_x�m"o (*)"&�09� � q=&<V�s$s .
Note in particular, that (*) &�0 is a set of actions that we

know to have been performed starting in situation &WV . This
also tells us that the preconditions for each of the actions in
( ) &�0 were true in the corresponding situations, providing
us with further information concerning the truth values of
fluents at various situation along the situation tree.

Exploiting Regression
In the previous section, we provided characterizations of
explanatory diagnosis, given a potentially incomplete ini-
tial state. Upon first glance, the general problem of com-
puting explanatory diagnoses does not look very promis-
ing because of the second-order induction axiom in ) *�,-�.�/ ,
and the potentially large size of the situation search space.
In this section, we show how diagnoses can be computed



by exploiting regression. Given a system o)kq (*) &�0 ,
!%"#$ OQ&(q�"%&Q&%}�s , we are interested in finding a sequence
of actions � such that )�� 2 OQm�n�npo ( ) &�0 � � q=& V sB5
"%&U&%}#ox�m"o (*) &�0��6� qr& V sys . Generating a sequence of ac-
tions that constitutes an explanatory diagnosis for an ob-
servation "%&Q& } is analogous to generating a sequence of
actions that constitutes a plan to achieve a goal "%&Q& } o_n�s .
The sequence of actions following (*) &�0 that determine n
constitutes an explanatory diagnosis � .

As is commonly done in planning tasks, we advocate ex-
ploiting regression (e.g., (Waldinger 1977)) to generate ex-
planatory diagnoses. In this context, regression is a recur-
sive rewriting procedure used to reduce the nesting of the
x�m function in situation terms. We will show that generat-
ing explanatory diagnoses reduces to regression followed
by entailment with respect to the initial database. Computa-
tionally, the merit of regression is that it searches backwards
through the situation space from the observation rather than
searching forward from the initial database. Under the as-
sumption that the observation consists of fewer literals than
the initial database, regression will make for more efficient
search. Observe that Prolog’s backwards chaining mecha-
nism achieves the substitution performed by regression.

Regression
In earlier work, Reiter proved soundness and completeness
results for regression (Reiter 1992b). We exploit these re-
sults in our treatment of explanatory diagnosis. To that end,
we define two regression operators, ��� and � Ei,���� . Follow-
ing in the spirit of (Reiter 1991) and (Reiter 1992b),

Definition 7 (Regression Operator ��� )
Given a set of successor state axioms, 0 8�8 composed of ax-
ioms of the following form

OQm�n�n�oM%qrn�s�tvu N o_x�m"o_M%q=n�sysizv{ } ~$q (20)

����u�� ~ , the repeated regression of formula � with respect
to successor state axioms 0 8�8 is the formula that is ob-
tained from � by repeatedly replacing each fluent atom
Nhox�m"o_M%qrn�s$s in � by { } , until the resulting formula makes
no mention of the function symbol x�m .

We can similarly define a OQm�n�n regression operator over
the set of action precondition axioms, 0ZD<E . This regression
operation rewrites each occurrence of the literal OQm�n�npo_M%qrn�s
by ��D as defined in the action precondition axioms.

Definition 8 ( OQm�n�n Regression Operator)
Given a set of action precondition axioms, 0 D<E composed
of axioms of the form

OQm�n�n�o �Qo��� s�q=n�s6z ��D#q (21)

� Ei,����"u
	 ~ is the formula obtained by replacing each occur-
rence of predicate OQm�n�npo��Uo��� s qrn�s by �#D . All other literals
of 	 remain the same.

Hence,

� Ei,���� uwOQm�n�npo��Uo��� s�q=n�s_~ 2�� D q (22)

and for formulae 	 , 	 1 and 	 � ,
� Ei,���� u 2�	 ~ 2�2�� Ei,���� u
	 ~$q (23)

� Ei,���� u o���as�	 ~i2 o���as�� Ei,���� u
	 ~$q (24)

� Ei,���� u o*-��as�	 ~i2 o -��as�� Ei,���� u
	 ~ , (25)

� Ei,���� u�	 1 5�	 � ~ 2�� Ei,�����u�	 1 ~�5�� Ei,����"u
	 � ~$q (26)

� Ei,���� u�	 1
� 	 � ~ 2�� Ei,���� u�	 1 ~

� � Ei,���� u
	 � ~$q (27)

� Ei,�����u�	 1 t�	 � ~ 2�� Ei,����"u�	 1 ~(t�� Ei,����"u
	 � ~$q (28)

� Ei,����"u
	 1 z�	 � ~ 2�� Ei,����"u
	 1 ~ z�� Ei,���� u�	 � ~ , (29)

Finally for any formula 	 containing no occurrence of
predicate OQm�n�n ,

� Ei,����"u
	 ~b2�	 , (30)

Next we adapt Reiter’s results on the soundness and com-
pleteness of regression (Theorem 1, Theorem 2, (Reiter
1992b)) to our representation. They are presented in the
following proposition. The theory ) @A. @�� mentioned in the
proposition below is a subset of ) containing only the ini-
tial database, and no information about successor situations.
It also excludes the induction axiom in ) *�,-�.�/ .
Proposition 1 (Soundness & Completeness)
Given+ ) @A. @�� , a subset of the situation calculus theory ) , such

that ) @A. @�� 2v) H<I 8 570 8 9 5 0 8�9 ?^> 570 /=,�>+?=@A. 570 H<IJD ,

where ) H<I 8 is a subset of )+*�,�-�.�/ containing the set of
unique names axioms for situations.

+ a sequence of ground actions, n (*) &�0 such that ) @A. @��a5
� � u � Ei,�����uwOQm�n�n�on (*)"&�0+q�&<V�s ~A~ is satisfiable.

+�! on�s , a simple formula whose only free variable is the sit-
uation variable n .

Suppose &C24x�m"o_n (*) &�0�qr&ZV s , then+ )�� 2 ! ox�m"o_n (*) &�0�qr&<V�sys iff
)J@A. @�� � 2�����u ! ox�m"o_n (*)"&�0+q=&<V sys ~ ,

+ )�� 2|OQm�n�npo_n (*)"&i0�q=& V s iff
)J@A. @�� � 2�����u � Ei,�����uwOQm�n�n�on ( ) &�0�qr&<V"s ~A~ ,

+ ) 53OUm�n�npo_n (*)"&�0+q=&<V�sJ5 ! ox�m"on ( ) &�0�qr&<V�sys is sat-
isfiable iff )+@ ."@�� 5���� u � Ei,�����uwOQm�n�n�on (*) &�0�qr&<V�s_~A~ 5
���"u ! o_x�m"o_n (*)"&i0�q=&<V�s$s_~ is satisfiable,

Thus, assuming situation n is a possible situation and ex-
ploiting regression, ! o_n�s holds at situation n iff its regres-
sion is entailed in the initial database. The beauty of propo-
sition 1 is that it enables us to generate explanatory diag-
noses via regression followed by theorem proving in the ini-
tial database, without the need for the second-order induc-
tion axiom in )+*�,-�.�/ .



From these results, we can characterize explanatory diag-
nosis with respect to regression.

Proposition 2 (Expl. Diagnosis with Regression)
The sequence of actions � 2 u�� 1 q-,.,-,=q� / ~ is an explana-

tory diagnosis for system o_)kq (*)"&�0 , !%"%$ OU&(q�"%&U&<}+s
iff

)J@A. @�� � 2�� � u � Ei,�����uwOQm�n�n�o (*) &�0�� � qr&<V�s ~A~
5�� � u "%&Q& } o_x�m"o (*)"&�0���� q=&<V�sys ~ , (31)

There are obvious analogues for assumption-based explana-
tory diagnoses and potential explanatory diagnoses. We do
not restate them here.

Determining Diagnoses
Different applications will use these characterizations of di-
agnoses in different ways, to meet the needs of the specific
domain. In this section we examine two such uses: verify-
ing a given diagnosis and generating diagnoses.

Verifying a Diagnosis
For many systems, particularly those that have an incom-
plete initial database, it may be pragmatic to maintain a li-
brary of most likely diagnoses and attempt to verify or refute
these diagnoses in order of descending likelihood. These
libraries could be indexed by observations and/or situation
histories. The diagnoses themselves could be sequences of
actions and possibly assumptions.

Given a system o_)kq�(*) &�0 , !%"%$ OQ&(q"%&Q& } s , and a
candidate diagnosis � , such that &v2 x�m"o ( ) &�0�� � q=&iV�s ,
we are interested in verifying that � is indeed a diagnosis
of the system. Verifying this candidate diagnosis is simply
a query evaluation problem. It can be accomplished by re-
gression and theorem proving in the initial database, as per
Proposition 2 above.

Example 3
Given the system o)kq u�~ , ��OQP�R�qrOUSQT%��q 2 �
�5� �����
	�o_n�s$s , and
the candidate diagnosis � = u T%P#R �%M ��� �%R�4=~ , � can be veri-
fied to be an explanatory diagnosis with respect to the sys-
tem by evaluating the query

� � u � Ei,���� uwOQm�n�npo_x�m"oATbP#R �%M3�5���bR�4"qr& V sys ~A~
5�� � u 2 ��������� �
	aox�m"oATbP�R �bM3��� �bR�4"q=&<V�s$s ~

with respect to the initial database, )�@A. @�� .
Again, verifying such a diagnosis in Prolog is straightfor-

ward through exploitation of Prolog’s backwards chaining
mechanism which is analogous to regression.

Generating Diagnoses
In contrast, to generate diagnoses for a a system o_)kq�( ) &�0 ,
!%"#$ OQ&(q�"%&Q& } s , we are interested in finding a sequence
of actions � such that ) � 2 OUm�n�npo (*)"&�0 � � q]&ZV�s 5

"#&Q& } ox�m"o (*)"&i0���� q�&<V�sys . As observed previously, gen-
erating a sequence of actions that constitutes an explanatory
diagnosis for an observation "%&U&<} is identical to generat-
ing a sequence of actions that constitutes a plan to achieve
a goal -an , "%&Q&%}�o_n�s . Thus, following the work on deduc-
tive plan synthesis (e.g., (Green 1969)), we can view the
generation of explanatory diagnoses as a deductive plan
synthesis problem that is realizable using theorem prov-
ing. As a side effect of proving -an , "#&Q& } on�s , a theorem
prover will generate bindings for n . The sequence of ac-
tions following (*)"&�0 that determine n constitutes an ex-
planatory diagnosis � . Further, following Proposition 2 of
the previous section, we can achieve such an explanatory
diagnosis by regression and theorem proving. In trying to
prove -an , "%&Q& } on�s , Prolog’s backwards chaining mecha-
nism takes precisely this approach.

Unfortunately, as we observed previously, ) @ ."@�� may not
be sufficiently complete to determine a situation & such that
"#&Q& } o&(s is entailed by our theory. In our earlier discus-
sion, we proposed assumption-based explanatory diagnoses
and potential explanatory diagnoses as means of address-
ing the problem. The idea was to further complete our the-
ory by making assumptions regarding the truth value of se-
lected literals. We observed that these assumptions could be
made prior to attempting to determine an explanatory diag-
nosis, or that they could be made on an as-needs basis dur-
ing computation. In the former case, we simply conjoin the
regression of the assumption to the initial database and use
regression and theorem proving as we would for generating
normal explanatory diagnoses. In the latter case, generating
an assumption-based explanatory diagnosis is analogous to
an abductive planning problem, and we can use computa-
tional machinery for abduction to realize the computation of
assumption-based explanatory diagnoses. We single out the
work by Eshghi (Eshghi 1988) on abductive planning with
event calculus as an example of abductive planning. While
his representation and objectives are different from ours, his
discussion of abductive planning illustrates the possibilities
for the generation of assumption-based explanatory diag-
noses. In the context of explanatory diagnosis, abductive
plan generation would attempt to prove "%&U&<}�on�s , if an at-
tempted proof failed because it dead-ended on a literal or lit-
erals that were assumable, then these would be abduced and
the proof continued. We have not yet implemented our own
abductive explanation generator for the situation calculus.

Related Work

As previously noted, this work has been influenced by for-
mal characterizations of diagnosis for systems without an
explicit representation of actions (e.g., (de Kleer, Mack-
worth, & Reiter 1992), (Reiter 1987), (Console & Torasso
1991)). It has also been influenced by Reiter’s work on
the frame problem and the problem of temporal projection



(Reiter 1992a). With the exception of previous work by
the author (McIlraith 1997a), the research to date on diag-
nostic problem solving has not really addressed the prob-
lem of incorporating a representation of action into the rep-
resentation of the behaviour of a system. As such, there
is little related work that exploits a comprehensive repre-
sentation of action. In (McIlraith 1997b), the author has
also provided a mapping of the traditional notions of what
is wrong diagnosis, i.e., consistency-based and abductive
diagnosis, into this rich representation scheme. There is
other diagnosis research that is loosely related to the sub-
ject of this paper, particularly research on temporal diagno-
sis and diagnosis of dynamic systems (e.g., (Brusoni et al.
1995), (Console et al. 1994), (Hamscher 1991), (Friedrich
& Lackinger 1991), (DeCoste 1990), (Lackinger & Nejdl
1991), (Dressler 1994)). Brusoni et al. ((Brusoni et al.
1995), (Brusoni et al. 1995)) recently provided a character-
ization of temporal abductive diagnosis together with algo-
rithms for computing these diagnoses under certain restric-
tions. This builds on earlier work by Console et al. on di-
agnosing time-varying misbehaviour (Console et al. 1994).
Their work decouples atemporal and temporal diagnoses,
using &W' to represent the behaviour of the atemporal com-
ponents and transitiongraphs to represent the temporal com-
ponents. The later work uses temporal constraints to rep-
resent the temporal components. Also related is the work
by Cordier and Thiébaux on event-based diagnosis (Cordier
& Thiebaux 1994). Their work is similar in motivation to
our work on explanatory diagnosis, viewing the diagnosis
task as the determination of the event-history of a system
between successive observations. None of the work cited
above provides a comprehensive representation of the pre-
conditions for and the effects of actions. Nor does it address
the frame, ramification and qualification problems.

In the area of reasoning about action, research on tempo-
ral explanation and postdiction is also very much related to
results on explanatory diagnosis (e.g., (Crawford & Ether-
ington 1992), (Baker 1991)). Of particular note is research
by Shanahan on temporal explanation in the situation cal-
culus (Shanahan 1993). While Shanahan also proposes the
situation calculus as a representation language for axioma-
tizing his domain, he does so without an axiomatic solution
to the frame and ramification problems. As such these prob-
lems must be addressed coincidentally with generating ex-
planatory diagnoses. In contrast, our characterization of ex-
planatory diagnosis, with its axiomatic solution to the frame
and ramification problems, provides for much simpler char-
acterization and computation of temporal explanation.

Contributions

The results in this paper provide contributions in two areas
of research: model-based diagnosis and knowledge repre-
sentation. We focus here on the contributions to the model-

based diagnosis community. Our concern in this paper was,
given a system that affects and can be affected by the actions
of agents, and given some observed (aberrant) behaviour,
how do we capture the notion of what happened, i.e., how
do we go about conjecturing a sequence of actions that ac-
count for the behaviour we have observed.

We addressed this problem by providing a mathematical
characterization of the notion of explanatory diagnosis in
the context of a rich situation calculus representation, pro-
posed in (McIlraith 1997a). Observing that we often have
incomplete information about our initial state, we also pro-
posed the notions of assumption-based and potential ex-
planatory diagnosis, to allow for the conjectured sequences
of actions that constitute a diagnosis to be predicated on
some other assumptions we choose to make about the world.
Our characterizations of explanatory diagnosis immediately
make apparent the direct relationship of explanatory diag-
nosis to plan synthesis. As such, following the results of
Green on deductive plan synthesis, we observed that gen-
erating explanatory diagnosis could be achieved by deduc-
tion. Of course, searching a situation space can be very in-
efficient, and further, our representation scheme for our sit-
uation space includes a second-order induction axiom. We
showed that we can generate explanatory diagnoses more
efficiently by regression followed by theorem proving in
the initial database, which excludes the second-order induc-
tion axiom. Following regression, verifying a diagnosis in-
volves simple query evaluation, whereas generating a diag-
nosis relies on deduction. We further observed that generat-
ing assumption-based explanatory diagnoses where the as-
sumptions are conjectured on an as-needs basis requires ab-
duction. Finally, while this paper’s focus is on contribut-
ing to the mathematical foundations of diagnostic problem
solving, we noted that there is a straightforward translation
from our situation calculus representation scheme to Pro-
log, and further that Prolog’s backwards chaining mecha-
nism performs regression for us. The issue of computation
has only been addressed in a cursory manner. In future re-
search we will investigate the feasibility of various algo-
rithms for computing explanatory diagnoses.

Acknowledgements
I would like to thank Ray Reiter, Yves Lespérance, Hec-
tor Levesque and Allan Jepson for helpful comments on the
work presented in this paper. I would also like to thank the
reviewers for their thoughtful reviews.

References
Baker, A. 1991. Nonmonotonic reasoning in the framework of
the situation calculus. Artificial Intelligence 49:5–23.

Brusoni, V.; Console, L.; Terenziani, P.; and Dupré, D. T. 1995.
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