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Abstract

In this paper we examine an important set of repre-
sentation issues which have not been addressed by the
model-based diagnosis community. In particular, we
examine the problem of integrating a model-based di-
agnosissystem description, ��� , with a theory of action
to parsimoniously represent the effect of actions on a
system and the effects of system state on performing
actions in the world. We employ the situation calculus,
a first-order language, as our representation language.
In the context of the situation calculus, ��� presents
an, often complex, set of state constraints. These state
constraints implicitly define indirect effects of actions
as well as indirectly imposing further preconditions
on the performance of actions. As a consequence,
��� presents further complications to addressing the
frame, ramification and qualification problems. For
the purposes of this paper, we examine a syntactically
restricted ��� , which commonly occurs in the axiom-
atization of model-based diagnosis domains. The con-
tributions of this paper include: 1) a framework for
integrating ��� and a theory of action. 2) a proce-
dure for compiling ��� into a set of successor state
axioms. These axioms capture the intended interpreta-
tion of ��� , while providing a closed-form solution to
the frame and ramification problems.

Introduction
Of recent years, a number of researchers have argued that
diagnostic problem solving (DPS) is purposive in nature,
that in some instances, identifying candidate diagnoses is
only relevant to the extent that it enables an agent to act
— to execute a test, to repair a system, to control it, or
perhaps to invoke a contingency plan. From this viewpoint,
we claim that a comprehensive account of DPS must involve
reasoning about action and change (McIlraith 1997).

It is widely acknowledged that providing an accurate rep-
resentation of the behaviour of an electro-mechanical device
or physical system is one of the most challenging aspects
of diagnostic problem solving (Hamscher, Console, & de
�
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Kleer 1992). Indeed, any form of model-based reasoning
is only as good as the model it employs. In this paper, we
examine the problem of integrating a model-based diagno-
sis system description, 	�
 (de Kleer, Mackworth, & Reiter
1992) with a theory of action, to parsimoniously represent
the effect of actions on a system and the effects of a sys-
tem on performing actions in the world. We employ the
situation calculus (McCarthy 1968) as our representation
language for action. In the context of the situation calcu-
lus, 	�
 presents an, often complex, set of state constraints.
These state constraints implicitly define indirect effects of
actions as well as indirectly imposing further preconditions
on performing an action. Consequently, integrating 	�
 and
a theory of action requires us to address the frame problem
– identifying and parsimoniously representing the situation
invariants, the ramification problem – identifying the im-
plicit effects of actions, and the qualification problem –
identifying the conditions underwhich an action is possible.

We begin our paper with an overview of the situation
calculus. Next, we describe a method for representing a
DPS domain in the situation calculus through a straightfor-
ward transformation of 	�
 , followed by the definition of
action-related axioms. The axiomatization is illustrated via
a power plant example. We adopt the view (e.g., (Reiter
1991)) that successor state axioms and action precondition
axioms provide an attractive solution to the frame and ram-
ification problems, and the qualification problem, respec-
tively, because they are parsimonious, axiomatic and mono-
tonic. Nevertheless, we also show that previous solutions
to the frame and ramification problems are not sufficiently
discriminating to capture the intended interpretation of our
domain axiomatization. The subsection entitled “A Closed-
Form Solution”, describes our proposal for a closed-form
solution to the frame and ramification problems for syntac-
tically restricted state constraints, which occur commonly
in DPS 	�
 ’s. The solution comprises a simple syntactic
manipulation which compiles our DPS axiomatization into
a set of successor state axioms, capturing the intended in-
terpretation of our domain. We subsequently augment this
compilation with an existing solution to the qualification
problem. In the final sections we provide a brief discussion
of our representation, outlining its use in achieving various
DPS tasks, and contrasting it to related work.



Situation Calculus Overview
The situation calculus language we employ to axiomatize
our domains is a sorted first-order language with equality.
The sorts are of type � for primitive actions, � for situa-
tions, and � for everything else, including domain objects
(Lin & Reiter 1994). We represent each action as a (pos-
sibly parameterized) first-class object within the language.
Situations are simply sequences of actions. The evolutionof
the world can be viewed as a tree rooted at the distinguished
initial situation ��� . The branches of the tree are determined
by the possible future situations that could arise from the
realization of particular sequences of actions. As such, each
situation along the tree is simply a history of the sequence
of actions performed to reach it. The function symbol ���
maps an action term and a situation term into a new situation
term. For example, ���	��
� ��� ������� � ��� is the situation re-
sulting from performing the action of turningon the pump in
situation � � . The distinguishedpredicate ��������������� � denotes
that an action � is possible to perform in situation � (e.g.,
����������
� ��� ������� ��� � ). Thus, ������� determines the subset of
the situation tree consisting of situations that are possible in
the world. Finally, those properties or relations whose truth
value can change from situation to situation are referred to
as fluents. For example, the property that the pump is on in
situation � could be represented by the fluent ��������������� � .

The situation calculus language we employ in this paper
is restricted to primitive, determinate actions. Our language
does not include a representation of time, concurrency, or
complex actions, but we believe the results presented herein
can be extended to more expressive languages.

Axiomatizing a DPS Domain
The axiomatization of a system comprises both domain-
independent and domain-specific axioms. The domain-
independent axioms are to be the foundational axioms of
the discrete situation calculus, ���! #"�$&% (Lin & Reiter 1994).
They define the branching structure of our situation tree.
The domain-specific axioms, must specify both the be-
haviour of the static system, and the actions that can affect
the state of the system, as well as those actions required to
achieve testing and repair.

We take as our starting point the extensive research on
model-based diagnosis (MBD) (Hamscher, Console, & de
Kleer 1992) and assume a system description, 	�
 . Our task
is to provide an axiomatization that integrates this 	�
 with a
domain action theory. Our domain action theory is described
in terms of situation calculus effect axioms, unique names
axioms, and necessary conditions for actions (e.g., (Reiter
1991)). In the rest of this section we describe a straightfor-
ward four step procedure to axiomatize a DPS domain. In
the section that follows, we provide a procedure for automat-
ically transforming these axioms into a final axiomatization
which addresses the frame, ramification and qualification
problems. For the purposes of this paper, we restrict our
attention to systems that are inherently static in nature but
whose behaviour can change as the result of an action per-
formed by an agent ' .

Illustrative Example
The results in this paper are illustrated in terms of a simpli-
fied power plant feedwater system drawn from (Kramer et
al. 1996). The system consists of three potentially malfunc-
tioningcomponents: a power supply ( ��(*) ); a pump ( ����� );
and a boiler ( +�,�) ). The power supply provides power to
both the pump and the boiler. The pump fills the header
with water, ( (-�	
 ./�0
 1��	) ), which in turn provides water to
the boiler, producing steam. Alternately, the header can be
filled manually ( �2��, 3�45,5, ). To make the example more in-
teresting, we take liberty with the functioning of the actual
system and assume that once water is entering the header, a
siphon is created. Water will only stop entering the header
when the siphon is stopped. The system also contains lights
and an alarm.
Example: We commence with a system description, ��� :
687 +9����(�) ��: 6;7 +<������� ��: �!�=������� �?> (@�	
 ./��
 1��	) (1)

�A��, 3�45,5, > (@�	
 ./��
 1��	) (2)
BCBCB

Axiom (1) states that if the power and pump are normal and
if the pump is on, then water will be entering the header.

Axiomatization Procedure
Step 1. Transform 	�
 into a set of situation calculus state
constraints, D8E�F by indexing any predicate that can change
as the result of an action with a situation term � .
Example: Axiom (1) above becomes:
6;7 +<����(*)G�H� ��: 687 +9�����I�J�K� ��: �������������H� �

> (@�	
 .���
 1&�	)!��� � B

Step 2. Distinguish the state constraints, DLE�F into:M DJNCOCP , the set of ramification constraints.M DJQR"	OCS , the set of qualification constraints.M D %C #PTOCU5$ , those state constraints that are neither
ramification nor qualification constraints.
While we can provide no provably correct method for

automatically differentiating the axioms of DLE�F , experience
has provided the following intuitions.
M Axioms that are causal or definitional in nature belong in
D�NVOCP . In MBD terminology, these would include typical
fault model axioms of 	�
 as well as axioms of 	�
 that
describe the correct behaviour of a system (e.g., (de Kleer,
Mackworth, & Reiter 1992)). Such axioms are often
characterized syntactically by inclusion of an implication
sign, e.g., 7XW : 7�Y : BCBCB : 7�Z > 7@[ �
where each \ U is a literal with or without a situation term.

M The physical impossibility axioms of 	�
 (Friedrich, Got-
tlob, & Nejdl 1990), which describe physically impossi-
ble states, should be included in D8Q�"	OCS . Physical impos-
sibility axioms are often characterized syntactically as a
negated conjunction of literals, e.g.,6 � 7]W : 7�Y : BVBCB : 7TZ � B
W
An agent can be another system, a robot, a human or nature.



Example: The static behaviour of such a feedwater system
can be represented by the following sets of axioms compos-
ing ����� . �����
	 is as follows:

6;7 +<����(*)G�H� ��: 6;7 +<���������H� ��: ���������I�J��� �
> (@�	
 ./��
 1��	)���� � (3)

�A��, 3�45,5,��� �?> (@�	
 ./��
 1��	)���� � (4)
7 +9����(�)C��� �?> ,�4��!1�
� ���
#��� � (5)

687 +9����(�)C�K� �-> 6 ,�4��!1�
� ���
#��� � (6)

(@�	
 ./��
 1��	)���� ��: 6;7 +<����(*)G�H� �
: 6;7 +<��+�,�)C�K� ��: ������+�,�)G�#� �?> ��
 .��	� ��� � (7)

6 ��(@�	
 .���
 1&�	)!��� �J: 687 +9����(�)C�K� �
: 687 +9��+I,�)C��� ��: �!�=��+�,�)C��� �K�?> 6 ��
 .��	� ��� � (8)
6 (@�	
 ./��
 1��	)���� ��: ������+I, )G��� �-> ��,5�	)�� ��� � (9)

7 +9��+I, )G��� �?> ��,5�	)�� ��� � B (10)

�������
� is as follows:6 ���!�������I���H� ��: �2��, 3�4 , ,��� �K� B (11)

������	��
��� is as follows:
��(�)��� �������� +I, ) B (12)

Step 3. Identify the actions that can affect the system or that
are required for testing, repairing, and reacting. Axiomatize
them as effect axioms, D�� � ; necessary conditions for actions,
D�$ �! ; and unique names for actions D#"%$'& .
Step 3a. D%� � , the set of positive and negative effect ax-
ioms. These describe the changes in the truth values of
fluents as a result of performing actions. For each fluent ( ,

���!� �������H� ��:*),+- �/.0 �K����� �->21 �/.0 �K��� �����#� �K� (13)

�������������K� ��:3)54- �/.0 �K���V� �?> 6 1 �6.0 �K��� �����#� �K� (14)

where 7�89;:=<>@?BAC?BD=E and 7�F93:=<>%?BAC?BD=E are simple formulas G
whose free variables are among <>@?BAC?BD .
Example: The following axioms compose �CH�I .

�������������K� �J: � � 
� �!� ���I� > ���������I�J����	������� �K� (15)

��������������� ��: � � 
�� �!3�3 ���I� > 6 ���������I�J����	������� �K� (16)

���!� ��������� ��: � � 
� ��� JR,�) > �!����+I,�)C�K���	������� �K� (17)

���!���!�����#� ��: � � 
� ��3�3 JR,�) > 6 ������+�,�)C����	������� �K� (18)

��������������� ��: � � ��(�) 3��	45, > 7 +9����(�)C����	������� �K� (19)

���!� �������H� ��: � � �K 0 ��(*) > 687 +9����(�)C����	������� �K� (20)

��������������� ��: � � ��(�) 3�4 0 > 687 +9����(�)C����	������� �K� (21)

���!���!�����#� ��: � � ����� JB&) � ���
 > 7 +9�����I�J����	������� �K� (22)

���!���!�����H� ��: � � ���I� 3�4 0 > 687 +9�����I�J����	������� �K� (23)

�������������K� ��: � � J�,�) J�,5��( > 7 +9��+I,�)C�K���	������� �K� (24)

��������������� ��: � � J�,�) 3�4 0 > 6;7 +<��+�,�)C����	������� �K� (25)

���!� ��������� ��: � � 
� ��� �2��, 3�45,5, > �2��, 3�45,5,�����	������� �K� (26)

�������������H� �J: � � 
� �!3�3 �2��, 3�45,5,
> 6 �2��, 3�45,5,�����	������� �K� (27)

��������������� ��: � � ��
 � ��4 ��1��!� > 6 (@�	
 ./��
 1��	)������	������� �K� (28)

���!� ��������� ��: � � 
� ��� ��,5�	)�� > ��,5�	)�� ����� �����V� �K� (29)

���!���!�����#� ��: � � 
� ��3�3 ��,5�	)�� > 6 ��,5�	)�� �����	������� �K� (30)
Y
A simple formula with respect to � is one in which only domain

specific predicate symbols are mentioned (i.e., they do not mention
������� or L ), in which fluents do not include the function symbol
��� , in which there is no quantification over sort ��4�
M �	
�45����� , and
in which there is at most one free � 4�
N �	
45����� variable.

Step 3b. D=$ �� , the set of axioms representing the neces-
sary conditions actions to be performed. For each action
prototype, \ ,

��������� 7 �/.0 � ��� �?>PO �Q (31)

where R U& is a simple formula with respect to D , whose free
variables are among <>#?BD .
Example: The following axioms compose some of � � H�S .

����������
� ��� ���I�J��� � (32)
BCBVB

����������
� ��� �2��, 3�45,5,�#� �?> 6 ��,5�	)�� ��� � (33)

Axiom (33) states that if it is possible to turn on the manual
filling then the alarm must be off.
Step 3c. D "�$T& , a set of unique names axioms for actions.
They state that identical actions have identical arguments,
and every action name refers to a distinct action. For each
different action prototype \ and \VU ,

7 � 0 W � BVBCB � 0 �	� � 7 �NW W � BCBCB �!W �	�
> 0 W � W W : BVBCB : 0 � � W=� (34)

7 � 0 W � B�BCB � 0 �	� �� 7 U � 0 W � BCBCB � 0 	�� (35)

Example: The following axioms compose some of �%X�Y Q .


� ��� ���I���� 
�� ��3�3 ���I���� BCBCB �� 
�� �!303 ��,5�	)�� (36)

Step 4. Provide what is known of the initial state, D E�Z .
Example: The following axioms might compose � � Z .
6;7 +<����(*)G� ��� ��: 6 �A��, 3�45,5,� ��� ��: 6;7 +<��������� ��� � (37)

6 (-�	
 ./��
 1��	)�� ��� ��: 6 ������+�,�)C� ��� � (38)
6 �!�=��������� � ����: 6;7 +<��+�,�)C� � ��� (39)

The Frame and Ramification Problems
In the previous section, we axiomatized a DPS domain. The
resultant theory comprises the following sets of axioms:

�����3[;� H�I [\��� H�S [\� X�Y Q [;��� Z B (40)

The job of the axiomatizer is done, but unfortunately, these
axioms do not provide a solution to the frame, ramification
and qualification problems. In this section, we propose
a solution to the frame and ramification problems for a
typical class of DPS theories. The qualification problem is
discussed in a subsequent section.

(Lin & Reiter 1994) gave a semantic definition for a
solution to the frame and ramification problems using cir-
cumscription and minimal model semantics. This solution
has its limitations. Sometimes there is no minimal model.
In other cases, there are multiple minimal models, some of
which do not reflect the intended interpretation of the ram-
ification and effect axioms. Most importantly, there is no
guaranteed procedure to produce a closed-form solution.

Our contribution is to provide an automatic procedure for
generating a closed-form solution to the frame and ramifica-
tion problems for a class of state constraints that is common
to DPS domains. This solution is distinguished because it
captures the intended interpretation of DLE�F with respect to
the theory of actions.



The Problem
We illustrate our problem with a subset of the feedwater
system example. Consider the ramification constraints, (3)
and (4) above. The effect axioms, necessary conditions for
actions and initial conditions are as defined in the previous
section. Assume for the sake of simplicity that ��������������� � ,
i.e., that all actions are possible in all situations.
Assume the action 
�� �!� ����� is performed in � � , resulting
in the situation � W � ��� ��
�� �!� ���I�J� ��� � . From effect axiom
(15), we infer that ���������I�J� � W � . What do our ramification
constraints tell us about the indirect effect of this action?
Under Lin and Reiter’s minimization policy to maximize
persistence, three minimal models � are apparent.
� W���� 6;7 +<����(*)G� � W � � 6;7 +<��������� � W � �#(@�	
 ./��
 1��	)�� � W ���� Y���� 7 +9����(�)C� � W � � 687 +9�����I�J� � W � � 6 (@�	
 ./��
 1��	)�� � W ����
	 ��� 6;7 +<����(*)G� � W � � 7 +9�����I�J� � W � � 6 (@�	
 ./��
 1��	)�� � W ���
Clearly, the intended model is

� W . Turning on the pump
results in water entering the header. It does not result in
an abnormal power supply, or an abnormal pump. We intu-
itively know that this is the intended model, because we have
a basic understanding of machinery. More importantly, the
axiomatizer has communicated the intended interpretation
through the syntactic form of the ramification constraints.

In the context of reasoning about action and change, state
constraints serve two purposes. On the one hand, they de-
fine consistent states of our system, and the world. In this
role, state constraints have traditionally been used to gen-
erate model-based diagnoses. In the context of a theory
of action and change, state constraints have an additional
role. They also serve as ramification and qualification con-
straints, indirectly constraining the effects of actions and
further constraining the preconditions for actions.

When employing the ramification constraints to infer the
indirect effects of actions, the implication connective is in-
terpreted as causal or definitional, in the logic programming
sense. Following(Levi 1994), we say that a fluent is defined
in an axiom or set of axioms if it appears on the right-hand
side of an implication connective in that axiom or set of
axioms. Thus, it follows that an effect axiom for fluent (
also serves to define fluent ( .

If we assume that a fluent only changes value according
to the effect axioms and the ramification constraints that
define it, then the ramification constraints above only pro-
vide information about changes in the truth value of fluent
(@�	
 ./��
 1��	)���� � . With this assumption, we can conclude that
the consequence of performing 
� ��� ���I� in �0� is captured
by model

� W .
In the section to follow, we use the intuitionabove to gen-

erate successor state axioms that reflect the intended inter-
pretation of the ramification constraints and effect axioms,
for a syntactically restricted class of theories.

A Closed-Form Solution
In this section we provide a closed-form solution to the
frame and ramification problems for axiomatizations whose	

We only list the relevant portion of the models here.

syntactic representation of ramification constraints and ef-
fect axioms, collectively form a solitary stratified theory.

We combine the notionof solitary theory (Lifschitz 1985)
and stratified logic program (e.g., (Levi 1994)) to define
the notion of a solitary stratified theory. Note that unlike
stratified logic programs, we use a strictly � relation to
distinguish the strata of our theories. Intuitively, a soli-
tary stratified theory is a stratified logic program that allows
negation in the consequent. If such a theory were repre-
sented as a dependency graph, the graph would have no
cycles. The stratification of a solitary stratified theory need
not be unique and we could write a procedure to determine
a stratification automatically.

Definition 1 (Solitary Stratified Theory)
Suppose � is a theory in the language of the situation

calculus with domain fluents, � . Then � is a solitary strati-
fied theory with stratification � � W � � Y � BCBVB � ��� � , and partition
�� W ��� Y � BCBCB ���@� � if,M for ����� ?�������?�� , � � is the set of fluents 1#� that are

defined in stratum �5� , and � W [�� Y [ B�BCB [��#� � � , andM � is the union � W [\� Y [ BVBCB ��� of sets of axioms �5� where
for each stratum, �5� is solitary with respect to � � ; i.e.,
each � � can be written as the union �� ��� 6 � ��� [�� � �!� � ��� ,

1. �@� is the set of fluents, 1 � such that " 6$# 1 � is defined
in � � ;

2. � � � 6 �#� , is a set of formulae of the form � �;� > 6 1 � � ,
– at most one for each fluent 1#��% � � . Each � � is
a formula containing no fluents drawn from � � [ BCB�B
[&�#� .

3. �K� � �#� , is a set of formulae of the form �'T� >21 � � ,
– at most one for each fluent 1 � % �@� . Each ' � is a
formula containingno fluents drawn from � � [ BRBVB [(� � .

Example: In our feedwater example, � � � ���B	 [*��H�I is a
solitary stratified theory with stratification � � W ��� Y ��� 	 ).) � W comprises Effect Axioms ��*,+ � – �-�. � ,) � Y comprises Ramification Constraints � / � – � 0 � ,

and Effect Axiom �-10 � .) � 	 comprises Ramification Constraints � 2 � – ��*43 � ,
and Effect Axioms �-12 � and � /�3 � .
In what follows, we define a seven step syntactic manip-

ulation procedure which results in a closed-form solution to
the frame and ramification problems for solitary stratified
theory D5� D � �76 D�NVOCP . The solution is predicated on an
appeal to a completeness assumption which enables us to
generate explanation closure axioms.

Transformation Procedure
Let D8� D NVOGP 6 D � � be a solitary stratified theory, with
stratification : D '

? D G ?������ ? DJ$ E .
Step 1. For every fluent ( U defined in an effect axioms of
D U , generate general positive and negative effect axioms, in
the form of axioms (13) and (14) above.

Step 2. For every fluent ( U defined in a ramification con-
straint of D�U , generate general positive and negative ram-
ification axioms, relativized to situation ::9<; : A�?
D=E E .



� +-�� �����	������� �K�?>P1 ������ �����H� �K� � (41)
� 4-�� �����	������� �K�?> 6 1 � �����	������� �K� (42)

� 89 � :9<; : A�?BD E�E and � F9 � :9<; : A�?BD E�E are formulae whose free
variables are among A�?BD , and any state or action arguments.

Step 3. Combine the above sets of axioms, to define ex-
tended positive and negative effect axioms, at most one
for every fluent ( U .

���!���!�����#� ��: � ) +-�� �����V� ��� � + -�� �����	�����K� �K�K�->21%� ����� ������� �K� (43)

��������������� ��: � ) 4-�� ������� ��� � 4-�� ����� ������� �K�K�?> 6 1 ������� ������� �K� (44)

Example: Extended positive and negative effect axioms for
the fluent ���!�������I������� �����#� �K� , defined in � W .

���!� ��������� ��: � � 
� ��� ���I� > �������������K���	�����K� �K� (45)

���!���!�����#� ��: � � 
� ��3�3 ���I� > 6 �������������K���	�����K� �K� (46)

For the fluent (@�	
 ./��
 1��	)������ �����V� �K� , defined in � Y .
� 687 +9����(�)C����	������� �K��: 687 +9�����I���H��� �����H� �K�

: ���������I�J�K��� ������� �K�K�	� �A��, 3�45,5,�����	������� �K�
> (-�	
 ./��
 1��	)������ ������� �K� (47)

���!� ��������� ��: � � � 
 � ��4 ��1��!�
> 6 (-�	
 ./��
 1��	)������ ������� �K� (48)

Step 4. Make the following completeness assumption re-
garding the effects and the ramifications.
All the conditions underwhich an action A can lead, directly
or indirectly, to fluent ( becoming true or false in the suc-
cessor state are characterized in the extended positive and
negative effect axioms for fluent ( .

Step 5. From the completeness assumption, generate ex-
planation closure axioms.

We argue that if action A is possible in D and if the truth
value of fluent ( U changes from 
����� to � A��MD � upon do-
ing action A in situation D , then either 7#F9 � : AC?BD=E is 
����� or� F9 � :9<; : A�?BD E�E is 
����� . An analogous argument can be made
when the truth value of fluent ( changes from � A��ND � to

����� upon doing action A in situation D . This assumption is
captured in the following positive and negative explanation
closure axioms. For every fluent (?U ,
��������������� ��: 1%� ��� ��: 6 1%� �����	������� �K�?>P)54-�� ������� ��� � 4-�� �����	������� �K�
��������������� ��: 6 1%� ��� ��:*1%� �����	������� �K�?>P) +-�� ������� ��� � + -�� �����	������� �K�
Step 6. From the extended positive and negative effect

axioms and the explanation closure axioms, define inter-
mediate successor state axioms for each fluent ( U .

We distinguish them as intermediate because, in the next
step, we simplify them through a further syntactic transfor-
mation. For every fluent ( U ,

���!���!�����H� �@> " 1 ������ ������� �K����� �-�� # (49)
�
Henceforth, action and state arguments, .0 will not be explicitly

represented in canonical formulae.

� �-�� � ) +-�� ������� �	� � +-�� ����� �����H� �K�
� � 1 ��� �0: 6 � ) 4-�� �����V� �	� � 4-�� ����� ������� �K�K�K�

The set of intermediate successor state axioms, D���E�E ��
U�� '�������� � $ D���E&E � , where D���E&E � is the set of axioms for every

fluent ( U! #"*U .
Example: Intermediate successor state axioms for fluents
���������I�J�K��� ������� �K� and (-�	
 ./�0
 1��	)������ ������� �K� follow.

�������������K� �-> " �!�=���������K���	�����K� �K�$� � � 
� ��� ���I�
� �����������I�J�K� ��: � �� 
�� ��3�3 ���I� � # (50)

��������������� �?> " (@�	
 .���
 1&�	)!�����	������� �K�%�
�2��, 3�45,5,�����	������� �K�
� � 687 +9����(�)C����	������� �K��: 6;7 +<������������� ������� �K�

: �������������K���	������� �K�K�
� (-�	
 ./��
 1��	)���� ��: � �� ��
 � ��4 ��1&��� # (51)

Step 7. By regressing & the intermediate successor state
axioms, generate (final) successor state axioms. These ax-
ioms are simple formulae containing no reference to fluents
indexed by the situation 9<; : AC?BD=E . For every fluent ( U ,

���!� �������H� �@> " 1 ������ �����H� �K�$��� -�� # (52)

where ' 9 � is the following simple formula.

� -�� � ) +-�� �����V� �	�)( � 4 W��� " � + -�� ����� ������� �K� #
� � 1 ��� ��: 6 � )54-�� ������� ���*( � 4 W��� " � 4-�� �����	������� �K� # �K�

where ( � 4 W��� " + # is the regression of formula , under succes-
sor state axioms D;E�E�- ?������B? D=E�E �/. - .

The set of successor state axioms, DLE�E � �
U�� '�������� � $ D=E�E � ,where D8E�E � is the set of axioms for every fluent (?U  #" U .

Example: Transformation of intermediate successor state
axiom (51) into its corresponding successor state axiom.

���!� �������H� �@> " (-�	
 ./��
 1��	)������ ������� �K���
� � 
�� �!� �A��, 3�45,5,
� ���A��, 3�45,5,��� ��: � �� 
�� �!3�3 �A��, 3�45,5, �
� " ��� �� ��(�) 3��	45,

: � 6;7 +<����(*)G�H� ��� � � �K 0 ��(*)
� � � ��(*) 3�4 0 �K�

: ��� �� ����� J
�)�� ���

: � 6;7 +<����������� �	� � � ���I� 3�4 0 �K�

: ��� � 
� �!� ���I�
� �����������I�J��� �0: � �� 
� ��3�3 ����� �K� #

� ��(-�	
 ./��
 1&�	)!��� ��: � �� � 
 � � 4 �&1���� � # (53)

Our successor state axioms provide a closed-form solu-
tion to the frame and ramification problems. Since we have

0
Regression (e.g., (Waldinger 1977)) is a recursive rewrit-

ing procedure used here to reduce the nesting of the ��� func-
tion in situation terms. If 1 is a fluent with successor state
axiom �������������K� � > 1 �6.0 �K���	������� �K�1�2� - in ����� then
( ��� " 1 ��
 W � BCBCB ��
M���K��� ��3?�54 �K� #�� � -76 8 -�9 : : :�9 8�; 9 � 9 <= ->9 : : :?9 = ; 9 @�9 A .



compiled D � � and D�NVOGP into D8E&E , we can replace D � � and
D�NVOCP by D8E�E and D E�ZNVOCP in (40). D E�ZNVOCP is the set of ramifica-
tion constraints, relativized to 	�� . Note that our closed-form
solution to the frame and ramification problem loosely ap-
peals to a completeness assumption in order to generate
explanation closure axioms. In (McIlraith 1997), we pro-
vide an independent semantic justification via prioritized
circumscription. From those results we show that our so-
lution is predicated on the following consistency condition.
In particular, that

��X�Y Q [\� � H�S 6 � � � ���C� � B �������������K� �?>
6 " � ) +-�� ������� ���*(*��� " � + -�� �����	������� �K� # �
: � ) 4-�� ������� ���)( ���<" � 4-�� ����� �����#� �K� # � # B (54)

This condition ensures that either an action is impossible, or
if it is possible, that it is never the case that the direct effects
or ramifications of an action( 7 ’s and � ’s, respectively) can
make a fluent both false and true in the same situation.

Qualification Problem
Our theory now provides a solution to the frame and ram-
ification problems. It remains to address the qualification
problem. As previously observed the qualification con-
straints in D Q�"	OCS can further restrict those situations D in
which an action A is � ; D=D -ible. We propose to use the
solution proposed by (Lin & Reiter 1994). It transforms
the necessary conditions for actions, D $ �� and the qualifi-
cation constraints, D=QR"	OCS into a set of action precondition
axioms D�&�� , one for each action prototype 7 of the do-
main. Following their results, we add one more step to our
transformation procedure.

Step 8. Define one action precondition axiom for each
action prototype 7 as follows.

���!� ��� 7 �/.0 � ��� �%��� Q : �

�
	���������
� � (55)

� � � ( ���<" �X����� � 7 �6.0 � ��� �K� # (56)

� Q � O WQ � BVBCB ��O �Q for each O �Q of (31) in D $ �� . ( ��� is the
regression operator under the successor state axioms, D E&E .

Example: Consider (11) of �5���/�B� , and (33) and (32) of
��� H�S , the action precondition axioms for 
� ��� �2��, 3�4 , , and

� �!� ���I� are:

����������
� �!� �2��, 3�45,5,��� �$� 6 ��, �	) � ��� ��: 6 ��������������� � (57)

����������
� ��� ��������� �$� 6 �2��, 3�45,5,��� � (58)

The action precondition axioms provide a closed-form
solution to the qualification problem. Since we have com-
piled D�$ �� and D�Q�"	OCS into D�&�� , we can replace D�$ �! and
D�Q�"	OCS by DC&�� and D E ZQ�"	OCS in our theory. Lin and Reiter’s
solution also requires a domain closure axiom for actions,
D��*F%& .

Discussion
The results of the previous sections yield the following the-
ory which integrates 	�
 and a theory of action,

� X�Y Q [;���#� Q [\����� [\� Q�� [;��� Z [;� � Z��� [\��� ��	��B� � B
This representation can be viewed as an executable spec-

ification because it is easily realized in Prolog by exploit-
ing Prolog’s completion semantics and simply replacing the
equivalence signs by implication connectives. The Lloyd-
Topor transformation (Lloyd 1987) must then be applied to
convert this theory into Prolog clausal form.

The state constraints that play the role of ramification
constraints with respect to our theory of actions are com-
piled into successor state axioms, one for every fluent in our
theory. When state constraints are absent, as in the case of
Reiter’s solution to the frame problem (Reiter 1991), suc-
cessor state axioms provide a parsimonious representation
for frame and effect axioms. In the presence of ramifi-
cation constraints, the successor state axioms can, under
certain conditions, grow exceedingly long. This presents
the problem of trying to find the best trade-off between pre-
compilation and runtime computation; a problem that many
AI researchers face, and one that is often best addressed
with respect to the specific domain. Fortunately, in our case
we have an ideal compromise in those cases where DLE�E
proves to be unwieldy, that is to employ the intermediate
successor state axioms as our representation. The axioms in
D���E�E capture the intended interpretation of our domain but
are only partially compiled, and thus don’t risk the length
concerns associated with the axioms in D E�E . Further, D ��E�E
preserves the compositionality of our representation, which
is a hallmark of model-based representations.

The purpose of this paper was to address the knowledge
representation issues associated with integrating a DPS sys-
tem description and a theory of action. In (McIlraith 1997)
we used this representation to characterize the tasks of diag-
nosis, testing, and repair. Integrating a theory of action with
	�
 provides for a broad definition of diagnosis. The tradi-
tional notions of consistency-based and abductive diagnosis
map seemlessly into our representation framework, with
the distinction that diagnoses are now relativized to a situa-
tion. Further we can employ actions both as observations to
project what will be wrong with a system, and as diagnoses
to explain what has happened to result in some observed
behaviour. Computationally, many aspects of diagnosis,
achieving tests, and achieving repairs are simply instances
of the planning problem, and can be achieved through some
combination of logical consequence finding, database pro-
gression, regression, theorem proving, and abductive plan-
ning techniques. That said, computing diagnoses without a
representation of action is already computationally taxing.
The real challenge is to exploit the benefit of our rich declar-
ative representation and to approach DPS differently. We
believe that part of the answer to this challenge lies in the
purposive nature of DPS, and in exploiting our representa-
tion to generate and/or verify high-level control procedures
that can in turn provide timely runtime response to our DPS
problems.



Contributions and Related Work
This paper provides research contributions in two rather
distinct areas: model-based diagnosis/qualitative reason-
ing, and knowledge representation/nonmonotonic reason-
ing. For the MBD community, this paper addresses an im-
portant representation issue, namely how to integrate 	�

with a theory of action. For the knowledge representation
community, this paper contributes a semantically justified,
closed-form solution to the frame, ramification and qualifi-
cation problems, for a commonly occurring class of theories.

The author knows of no work in the diagnosis commu-
nity that addresses the problem of integrating 	�
 and a
theory of action, save some preliminary work in (Forbus
1989), examining the problem of integrating actions and
qualitative process theory. Forbus’ action-augmented envi-
sionment, ( ��� ) captures computationally some aspects of
the intuition found in this paper, while neglecting to address
a number of fundamental knowledge representation issues.
It is interesting to note that the ATMS, the computational
machinery that underlies the qualitative process engine, can
provide a runtime mechanism for compiling and caching a
relevant subset of the closed-form representation proposed
here. While we do not discuss continuous systems in this pa-
per, the work presented here provides a formal foundation
for integrating continuous systems with discrete systems
whose specification includes state constraints.

Within the knowledge representation community, related
work is more abundant. The intuition behind our solu-
tion to the frame and ramification problems – the notion
of interpreting our ramification constraints as definitional
in nature, was influenced by research on the semantics of
normal logic programs and deductive databases (e.g., (Przy-
musinski 1989)), and is related to preliminary work on this
problem by Pinto (Pinto 1994). Indeed the spirit of this
solution – the notion of imposing a directional interpreta-
tion on our implication connective in our ramification con-
straints, is akin to the intuition behind proposed solutions
to the ramification problem that advocate minimizing an
explicitly represented notion of causality (e.g., (Lin 1995),
(McCain & Turner 1995), (Thielscher 1995), (Giunchiglia
1996)). Indeed the author suspects that for the syntacti-
cally restricted case studied here, all our different proposed
solutions may produce the same results, just as many of
the independent solutions to the frame problem prove to be
identical under certain conditions. What distinguishes this
work in particular is that it provides an axiomatic closed-
form solution; it retains the dual role played by our state
constraints; and finally it provides a solution (sometimes)
to the general problem of integrating a theory of action with
an existing set of state constraints.
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