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Despite the existence of programs that are able to generate
so-called conditional plans, there has yet to emerge a clear
and general specification of what it is these programs are
looking for: what exactly is a plan in this setting, and when
is it correct? In this paper, we develop and motivate a speci-
fication within the situation calculus of conditional and iter-
ative plans over domains that include binary sensing actions.
The account is built on an existing theory of action which
includes a solution to the frame problem, and an extension
to it that handles sensing actions and the effect they have on
the knowledge of a robot. Plans are taken to be programs
in a new simple robot program language, and the planning
task is to find a program that would be known by the robot
at the outset to lead to a final situation where the goal is sat-
isfied. This specification is used to analyze the correctness
of a small example plan, as well as variants that have redun-
dant or missing sensing actions. We also investigate whether
the proposed robot program language is powerful enough to
serve for any intuitively achievable goal.
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However, see [10] for some ideas on how to generate plans
containing loops (when there is no sensing).
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Much of high-level symbolic AI research has been con-
cerned with planning: specifying the behaviour of intelli-
gent agents by providing goals to be achieved or maintained.
In the simplest case, the output of a planner is a sequence of
actions to be performed by the agent. However, a number of
researchers are investigating the topic of

(see for example, [3, 9, 14, 17]) where the output, for
one reason or another, is not expected to be a fixed sequence
of actions, but a more general specification involving con-
ditionals and iteration. In this paper, we will be concerned
with conditional planning problems where what action to
perform next in a plan may depend on the result of an ear-
lier .

Consider the following motivating example:

The local airport has only two
boarding gates, Gate A and Gate B. Every plane will
be parked at one of the two gates. In the initial state,
you are at home. From home, it is possible to go to the
airport, and from there you can go directly to either
gate. At the airport, it is also possible to check the
departures screen, to find out what gate a flight will be
using. Once at a gate, the only thing to do is to board
the plane that is parked there. The goal is to be on the
plane for Flight 123.

There clearly is no sequence of actions that can be shown
to achieve the desired goal: which gate to go to depends on
the (runtime) result of checking the departure screen.

Surprisingly, despite the existence of planners that are
able to solve simple problems like this, there has yet to
emerge a clear specification of what it is that these planners
are looking for: what is a plan in this setting, and when is
it correct? In this paper, we will propose a new definition,
show some examples of plans that meet (and fail to meet)
the specification, and argue for the utility of this specifica-
tion independent of plan generation.

What we will do in this paper is propose a new plan-
ning procedure. In many cases, existing procedures like the
one presented in [3] will be adequate, given various repre-
sentational restrictions. Moreover, our specification goes
beyond what can be handled by existing planning proce-
dures, including problems like the following:

We begin with a supply of
eggs, some of which may be bad, but at least 3 of which
are good. We have a bowl and a saucer, which can
be emptied at any time. It is possible to break a new
egg into the saucer, if it is empty, or into the bowl. By
smelling a container, it is possible to tell if it contains a
bad egg. Also, the contents of the saucer can be trans-
ferred to the bowl. The goal is to get 3 good eggs and
no bad ones into the bowl.

While it is far from clear how to automatically generate a
plan to solve a problem like this, our account, at least, will
make clear what a solution ought to be.
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Axioms Legal do
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do do do

Legal

Poss Poss do

sound

complete

etc.

etc.

implementation strategy

program

To be precise, what we need here (and similarly below for
robot programs) are not actions, but ground terms of the action
sort that contain no terms of the situation sort.

This definition is easily augmented to accommodate mainte-
nance goals, conditions that must remain true throughout the exe-
cution. For space reasons, we ignore them here.

In this paper, we limit ourselves to the first of these.

There are a number of ways of making the planning task
precise, but perhaps the most appealing is to put aside all
algorithmic concerns, and come up with a specification in
terms of a general theory of action. In the absence of sens-
ing actions, one candidate language for formulating such a
theory is the situation calculus [12]. We will not go over
the language here except to note the following components:
there is a special constant used to denote the

, namely that situation in which no actions have yet
occurred; there is a distinguished binary function symbol
where ( ) denotes the successor situation to resulting
from performing the action ; relations whose truth values
vary from situation to situation, are called (relational)

, and are denoted by predicate symbols taking a situa-
tion term as their last argument; finally, there is a special
predicate ( ) used to state that action is executable
in situation

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. One possibility is a theory of the follow-
ing form [15]:

Axioms describing the initial situation, .

Action precondition axioms, one for each primitive ac-
tion , characterizing ( ).

Successor state axioms, one for each fluent , stating un-
der what conditions ( ( )) holds as function of
what holds in situation These take the place of the so-
called effect axioms, but also provide a solution to the
frame problem [15].

Unique names axioms for the primitive actions.

Some foundational, domain independent axioms.

For any domain theory of this sort, we have a very clean
specification of the planning task (in the absence of sensing
actions), which dates back to the work of Green [5]:

Given a domain theory
as above, and a goal formula ( ) with a single free-
variable the planning task is to find a sequence of
actions such that

= ( ) ( ( ))

where ([ . . . ] ) is an abbreviation for

( ( . . . ( ) . . .))

and where ([ . . . ] ) stands for

( ) . . . ( ([ . . . ] ))

In other words, the task is to find a sequence of actions that
is executable (each action is executed in a context where
its precondition is satisfied) and that achieves the goal (the

goal formula holds in the final state that results from per-
forming the actions in sequence). A planner is if
any sequence of actions it returns satisfies the entailment;
it is if it is able to find such a sequence when one
exists.

Of course in real applications, for efficiency reasons, we
may need to move away from the full generality of this spec-
ification. In some circumstances, we may settle for a sound
but incomplete planner. We may also impose constraints
on what what sorts of domain theories or goals are allowed.
For example, we might insist that be described by just
a finite set of atomic formulas and a closed world assump-
tion, or that the effect of executable actions not depend on
the context of execution, as in most -like systems.

However, it is clearly useful to understand these moves
in terms of a specification that is unrelated to the limitations
of any algorithm or data structure. Note, in particular, that
the above account assumes nothing about the form of the
preconditions or effects of actions, uses none of the termi-
nology of (add or delete lists ), and none of the
terminology of “partial order planning” (threats, protecting
links ). It is neutral but perfectly compatible with a wide
range of planners. Indeed the representation can be
viewed as an for a class of planning
tasks of this form [6].

In classical planning, it is assumed that what conditions hold
or do not hold at any point in the plan is logically determined
by the background domain theory. However, agents acting
in the world may require sensing for a number of reasons:

There may be incomplete knowledge of the initial state.
In the Airport example above, nothing in the background
theory specifies where Flight 123 is parked, and the agent
needs to check the departure screen at the airport to find
out. The Omelette example is similar.

There may be exogenous actions. The agent may know
everything about the initial state of the world, but the
world may change as the result of actions performed by
other agents or nature. For example, a robot may need to
check whether or not a door is open, in case someone has
closed it since the last time it checked.

The effects of actions may be uncertain. For example, a
tree-chopping robot may have to check if the tree went
down the last time it hit it with the axe.

This then raises an interesting question: is there a specifica-
tion of the planning task in a domain that includes sensing
actions like these which, once again, is neutral with respect
to the choice of algorithm and data structure?

Informally, what we expect of a plan in this setting is that
it be some sort of that leads to a goal state no mat-
ter how the sensing turns out. For the Airport example, an
expected solution might be something like
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et al

valid

redundant

plan-
ner et al

must
Know

bi-
nary sensing actions

sensed fluent axiom

SF

SF Poss

SF check departures Parked Flight123 gateA

SF smell Bad egg Contains

SF

Poss do
do Poss
SF SF

/* Assuming the bowl and saucer are empty initially */

It may be possible to fix their definition to handle these [4].
Later we discuss other types of sensing, especially sensing that

involves a sensor reading.

go to the airport;
check the departures screen;

Flight 123 is boarding at Gate A
go to Gate A

go to Gate B;
board the plane.

Similarly, in the case of the Omelette, we might expect a
plan like

there are 3 eggs in the bowl
there is an egg in the saucer

break an egg into the saucer;
smell the saucer;

the saucer has a bad egg
discard its contents

;
transfer the contents of the saucer to the bowl

Note that in either case, the plan would not be correct with-
out the appropriate sensing action.

The closest candidate that I could find to a formal speci-
fication of a plan in this setting is that of Etzioni in [3].
In addition to a partial-order plan-generation procedure in
the style of SNLP [11], they propose a definition of a plan,
and what it means for a plan containing sensing actions to
be (achieve a desired goal for a given initial state).

Unfortunately, as a specification, their account has a num-
ber of drawbacks. For one thing, it is formulated as a rather
complex refinement of the account. It deals only
with atomic conditions or their negations, assumes that we
will be able to “match” the effects of actions with goals to
be achieved, and so on. There are also other representa-
tional limitations: it does not allow preconditions on sens-
ing actions, and does not handle iteration (and so could not
deal with the Omelette example). While limitations like
these may be perfectly reasonable and even necessary when
it comes to formulating efficient planning procedures, they
tend to obscure the logic behind the procedure.

There are other problems as well. In describing plan
validity, they insist that every branch of a plan must be
valid, where a branch is one of the possible executions paths
through any if-then-else in the plan. But this is overly strict
in one sense, and not strict enough in another. Imagine a
plan like the Airport one above except that it says that if
Flight 123 is at Gate A, the agent should jump off the roof
of the airport. Suppose however, that the sensing happens to
be because the agent already knows that the gate
for Flight 123 is Gate B. In this context, the plan should be
considered to be correct, despite what appears to be a bad
branch. Next, imagine a plan like the Airport one above,
but without the sensing action. Even though both branches
of the if-then-else are handled properly, the plan is now in-
correct since an agent executing it would not know the truth
value of the condition. This is not to suggest that the

developed by Etzioni is buggy; they may never end
up generating plans like the above. However, as a procedure

independent specification, we should be able to evaluate the
appropriateness of plans with extra or missing sensing ac-
tions.

Instead of building on a -like definition of plan-
ning, we might again try to formulate a specification of the
planning task in terms of a general theory of action, but this
time including sensing actions and the effect they have on
the knowledge of the agent or robot executing them.

As it turns out a theory of this sort already exists. Build-
ing on the work of Moore [13], Scherl and Levesque have
provided a theory of sensing actions in the situation calculus
[16]. Briefly, what they propose is a new fluent whose
first argument is also a situation: informally, ( ) holds
when the agent in situation , unsure of what situation it is
in, thinks it could very well be in situation Since different
fluents hold in different situations, the agent is also implic-
itly thinking about what could be true. Knowledge for the
agent, then, is what be true because it holds in all of
these so-called accessible situations: ( ) is an ab-
breviation for the formula [ ( ) ( )] Beyond
this encoding of traditional modal logic into the situation
calculus, Scherl and Levesque provide a successor state ax-
iom for that is an axiom which describes for any action
(ordinary or sensing) the knowledge of the agent after the
action as a function of its knowledge and other conditions
before the action.

Assume for simplicity that we have two types of primi-
tive actions: ordinary ones that change the world, and

, that is, sensing actions that tell the
agent whether or not some condition holds in the cur-
rent situation. For each sensing action , we assume the
domain theory entails a of the form

( ) ( )

where is a distinguished predicate like , relating the
action to the fluent. For the Airport example, we might have

( ) ( )

which says that checking the departure screen will tell the
agent whether or not Flight 123 is parked at Gate A. Simi-
larly,

( ( ) ) ( ) ( )

says that smelling a container tells the agent whether or
not contains a bad egg . We also assume that the domain
theory entails [ ( ) ] for every ordinary non-
sensing action . Under these assumptions, we have the
following successor state axiom for :

( ) ( ( ))
= ( ) ( ) ( )

[ ( ) ( )]

Roughly speaking, this says that after doing any action in
situation , the agent thinks it could be in a situation iff
is the result of performing in some previously accessible
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Consider, for example, the program that says (the equivalent
of) “find a plan and then execute it.” While this program is easy
enough to generate, figuring out how to execute it sensibly is as
hard as the original planning problem.

check departures

Parked

check departures

sequence of actions

program

know
how

nil exit
seq

branch
loop

robot programs

nil

exit loop
seq

branch

loop
nil

exit

seq(go(airport),
branch(check departures,

seq(go(gateA),seq(board plane(Flight123),nil))
seq(go(gateB),seq(board plane(Flight123),nil))));

loop(body,
seq(transfer(saucer,bowl),

loop(body,
seq(transfer(saucer,bowl),

loop(body,
seq(transfer(saucer,bowl),nil)))))),

body

seq(break new egg(saucer),
branch(smell(saucer),

seq(dump(saucer),nil),
exit)).

, provided that action is possible in and is identical
to in terms of what is being sensed, if anything. For ex-
ample, if is , this would have the effect
of ensuring that any such would have Flight 123 parked
at the same gate as in Assuming the successor state ax-
iom for is such that where a plane is parked is unaf-
fected by sensing, any accessible would also have Flight
123 parked at the same gate as in Thus, the result is that
after , the agent will know whether or not
Flight 123 is parked at Gate A. More generally, the set of ac-
cessible situations after performing any action is completely
determined by the action, the state of the world, and the ac-
cessible situations before the action. This therefore extends
Reiter’s solution to the frame problem to the fluent.

While the above theory provides an account of the relation-
ship between knowledge and action, it does not allow us
to use the classical definition of a plan. This is because, in
general, there is no that can be shown to
achieve a desired goal; typically, what actions are required
depends on the runtime results of earlier sensing actions.

It is tempting to amend the classical definition of plan-
ning to say that the task is now to find a (which
may contain conditionals or loops) that achieves the goal, a
sequence of actions being merely a special case.

But saying we need a program is not enough. We need a
program that does not contain conditions whose truth value
(nor terms whose denotations) would be unknown to the
agent at the required time: that is, the agent needs to

to execute the program. One possibility is to develop
an account of what it means to know how to execute an ar-
bitrary program, for example, as was done by Davis in [2].
While this approach is certainly workable, it does lead to
some complications. There may be programs that the agent
“knows how” to execute in this sense but that we do not want
to consider as plans. Here, we make a much simpler pro-
posal: invent a programming language whose programs
include both ordinary and sensing actions, and which are all
so clearly executable that an agent will trivially know how
to do so.

Consider the following simple programming language,
defined as the least set of terms satisfying the following:

1. and are programs;
2. If is an ordinary action and is a program, then ( )

is a program;
3. If is a binary sensing action and and are programs,

then ( ) is a program;
4. If and are programs, then ( ) is a program.

We will call such terms and the resulting set
of terms , the robot programming language.

Informally, these programs are executed by an agent as
follows: to execute the agent does nothing; to execute

it must be executing a , in which case see below;
to execute ( ), it executes primitive action , and then
; to execute ( ) it executes which is sup-

posed to tell it whether or not some condition holds,
and so it executes if it does, and otherwise; to exe-
cute ( ), it executes the body , and if it ends with

, it repeats again, and continues doing so until it ends
with , in which case it finishes by executing

The reason a loop-exit construct is used instead of the
more “structured” while-loop, is that to ensure that an agent
would always know how to execute a robot program,
does not include any conditions involving fluents. Thus,
although we want robot programs to contain branches and
loops, we cannot use the traditional if-then-else or while-
loop constructs. is a minimal language satisfying our cri-
teria, but other designs are certainly possible. Note that it
will not be our intent to ever write programs in this lan-
guage; it should be thought of as an “assembly language”
into which planning goals will compile.

Here are two example robot programs. The first, air, is
from the Airport domain:

the second, egg, is from the Omelette domain:

where stands for the program

There is an equivalent formulation of robot programs as
finite directed graphs. See the regrettably tiny figures
squeezed in after the references.

Intuitively at least, the following should be clear:

An agent can always be assumed to know how to execute
a robot program. These programs are completely deter-
ministic, and do not mention any fluents. Assuming the
binary sensing actions return a single bit of information
to the agent, there is nothing else it should need to know.

The example robot programs above, when executed, re-
sult in final situations where the goals of the above plan-
ning problems are satisfied: air gets the agent on Flight
123, and egg gets 3 good eggs into the bowl.

In this sense, the programs above constitute a solution to the
earlier planning problems.

To be precise about this, we need to first define what sit-
uation is the final one resulting from executing a robot pro-
gram in an initial situation . Because a robot program
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We are requiring the agent to to achieve the goal, in
that the desired must be known initially to achieve . A variant
would require an that achieved starting in , but perhaps un-
beknownst to the agent. A third variant might require not merely

but that the agent know that at the end. So many variants; so
little space.

We omit here unique name axioms for constants, as well as
domain closure axioms, including one saying that Gate A and Gate
B are the only gates.
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loop nil nil
Rdo

Rdo

Rdo

nil

exit

Poss do
seq

Poss SF do
branch

Poss SF do
branch

loop

loop
loop

Rdo least

exit
nil loop

loop

de-
terministic
Rdo

The following formulas are logically valid:

1. Rdo nil .
2. Rdo seq Poss Rdo do .
3. Rdo branch Poss

SF Rdo do
SF Rdo do .

4. Rdo loop
Rdo loop

where is defined recursively by
(a) exit
(b) nil

(c) seq seq
(d) branch

branch
(e) loop

loop

loop branch exit seq nil

branch seq loop branch exit seq nil

Rdo

Axioms

Axioms Rdo

Axioms

seq seq nil

go
board plane check departures

At On plane
Parked home airport
gateA gateB

could conceivably loop forever (e.g. ( , )), we will
use a formula ( ) to mean that terminates legally
when started in , and is the final situation. Formally,
is an abbreviation for the following second-order formula:

( ) = [. . . ( 1)]

where the ellipsis is (the conjunction of the universal closure
of) the following:

1. Termination, normal case:
( 1);

2. Termination, loop body:
( 0);

3. Ordinary actions:
( ) ( ( ) )

( ( ) );

4. Sensing actions, true case:
( ) ( ) ( ( ) )

( ( ) );

5. Sensing actions, false case:
( ) ( ) ( ( ) )

( ( ) );

6. Loops, exit case:
( 0) ( )

( ( ) );

7. Loops, repeat case:
( 1) ( ( ) )

( ( ) )

By using second-order quantification in this way, we are
defining recursively as the predicate satisfying
the constraints in the ellipsis. Second-order logic is neces-
sary here since there is no way to characterize the transitive
closure implicit in unbounded iteration in first-order terms.

Within this definition, the relation ( 0) is in-
tended to hold when executing starting in terminates at

with ; ( 1) is the same but terminating with
. The difference shows up when executing ( ): in

the former case, we exit the loop and continue with ; in
the latter, we continue the iteration by repeating ( )
once more.

It is not hard to show that these robot programs are
, in that there is at most a single such that

( ) holds. Less trivially, we also get:

( ) ( = )
( ( ) ) ( ) ( ( ) )
( ( ) ) ( )
[ ( ) ( ( ) )]
[ ( ) ( ( ) )]
( ( ) )

(unwind( ( )) )
unwind( )

unwind( ) =
unwind( ) =

unwind( ( ) ) = ( unwind( ))
unwind( ( ) ) =

( unwind( ) unwind( ))
unwind( ( ) ) =

( unwind( ))

This theorem tells us how to build an interpreter for robot
programs. For example, to execute

( ( ( )) )

we can unwind the loop and execute

( ( ( ( ( )) )))

Note that we should not try to define “axiomatically”
using axioms like these (as in [13], for example) since they
are first-order, and not strong enough to characterize loop
termination.

With the definition of a plan as a robot program, we are now
ready to generalize the classical planning task:

Given a domain theory
and a goal formula ( ) with a single free-variable ,
the planning task is to find a robot program in the
language such that:

= ( ) [ ( ) ( )]

where can be similar to what it was, but now
covering sensing actions and the fluent.

To paraphrase: we are looking for a robot program such
that it is known in the initial situation that the program will
terminate in a goal state. This reduces to the classical defi-
nition when there are no sensing actions, and ( ) holds
iff ( = ). In this case, it is sufficient to find an of the
form ( ( . . . )).

Note that we are requiring that the program lead to a goal
state starting in any such that ( ); in different
may produce very different sequences of actions.

To show this definition in action, we will formalize a ver-
sion of the Airport problem and establish the correctness of
the above robot program and a few variants.

For our purposes, there are two ordinary actions ( )
and ( ), one sensing action ,
and three relational fluents ( ), ( ) and

( ), where is a location, either , ,
, or , and is a plane. We have the following

domain theory:
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0

0

1 1

1 1

1 1

1 1 1

2 2 1 1 1

2 2 2

2

2 2

2

2

1 2 2 2 2

3 3 2 2 2

3 3

3

3 3

3

2 3 3 3 3

4 4 3 3

3 4

4

4

4 4

3 4 4 4

0

In the following, for convenience, we will systematically be
confusing use with mention: we will be saying that where is a
logical sentence, meaning that it is true in any interpretation satis-
fying the above axioms.
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Poss board plane Parked At
Poss check departures At home
Poss go airport At airport

Poss At do
go At go

Poss On plane do
board plane On plane

Poss Parked do Parked

SF go SF board plane
SF check departures

Parked Flight123 gateA

On plane Flight123

Rdo On plane Flight123

Parked Flight123 gateA

go airport
seq

Poss Rdo
Rdo do

check departures do
branch

At At airport
Poss

Parked Parked Flight123 gateA
SF check departures

Rdo Rdo do

go gateA do
seq At

At airport
Poss

Parked Parked Flight123 gateA
Rdo Rdo do

board plane Flight123 do
seq nil

At At gateA
Parked

Parked Flight123 gateA
Poss

Rdo do
On plane

On plane Flight123

Parked Flight123 gateA
Rdo On plane Flight123

do go airport check departures go gateA
board plane Flight123

Parked Flight123 gateB

do go airport check departures go gateB
board plane Flight123

check departures

both

Parked Flight123 gateB

seq go gateA

On plane Flight123
Know On plane Flight123

Poss go gate
At airport Know Parked

At

seq go airport seq check departures
seq go gate Flight123

seq board plane Flight123 nil

plan critic

Precondition axioms:
( ( ) ) ( ) ( )
( ) ( )
( ( ) ) = ( );

Successor state axioms: the one above for and
( ) ( ( ))

= ( ) ( ( ) = ( ))
( ) ( ( )

= ( ) ( )
( ) ( ( )) ( ) ;

Sensed fluent axiom:
( ( ) ) ( ( ) )

[ ( )
( )]

The goal ( ) to be satisfied is ( ) We
claim that a solution to this planning problem is the earlier
robot program air. Using the above theorem, the proof is
straightforward: We need to show

( )
[ ( air ) ( )]

So let us imagine that ( ) and show that there is
an appropriate There are two cases: first suppose that

( )

1. Let = ( ) and = . The program air is of
the form ( ) By a precondition axiom, we have

( ) So by the Theorem above, ( air )
if ( ( ) ).

2. Let = and = ( ). is of
the form ( ) By the successor state ax-
iom for , we have ( ), and so by a precondi-
tion axiom, we have ( ) By the successor state
axiom for , we have ( ),
and so ( ) So by the Theorem,

( ) if ( ( ) ).

3. Let = ( ) and = ( ). is of the
form ( ) By the successor state axiom for ,
we have ( ), and so by a precondition axiom,
we have ( ) By the successor state axiom for

, we have ( ) So by the
Theorem, ( ) if ( ( ) ).

4. Let = ( ) and = ( ).
is the robot program ( ) By the succes-

sor state axiom for , we have ( ), and
by the successor state axiom for , we have

( ) Thus, by a precondition
axiom, we have ( ) So by the Theorem,

( ) if = ( ). Moreover, for this
we have by the successor state axiom for that

( ).

Putting all the pieces together, we can see that for any
such that ( ) there is an such
that ( air ) and ( ) namely

= ([ ( ) ( )
( )] )

The case where ( ) is completely
analogous, but leads to

= ([ ( ) ( )
( )] )

Note that in each case there also exists a sequence of ac-
tions not containing that puts the agent
on Flight 123. However, no robot program without sens-
ing would be able to generate cases.

We can also consider what happens if the agent knows
initially where the plane is parked:

Initial State:
( ) ( )

The argument above shows that air continues to work in
this context even with the redundant sensing (there is only
one case to consider now). The same argument also shows
that if we replace the ( ( ) . . .) part in air by any-
thing at all, the program still works. Of course, the program
with no sensing would work here too.

Observe that the derivation above does not make use
of the successor state axiom for . This is because
the agent was not required to know anything in the fi-
nal state. It is not hard to prove that not only does air
achieve the goal ( ) it also achieves

( ( ) ) We can also imagine new
primitive actions that depend on knowledge preconditions,
such as “going to the gate of a flight,” which can only be
executed if the agent knows where the plane is parked:

( ( ) )
( ) ( ( ) )

With a suitable modification to the successor state axiom
for to accommodate this new action, an argument like
the one above shows that the robot program

( ( ), ( ,
( ( ),

( ( ), )))),

with no conditional branching, achieves the goal. This
shows that whether a plan containing sensing needs to be
conditional depends on the primitive actions available.

One clear advantage of a specification like ours is that in
being independent of any planner, it gives us the freedom to
look at plans like these that might never be generated by a
planner. This is especially useful if we are using a
of some sort to modify an existing plan to reduce cost, or
risk, or perhaps just to make sensing actions happen as early
as possible. Plan correctness is not tied to any assumptions
about how the plan was produced.
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The Odd Good Eggs Example

The More Good Eggs Example

Planning Procedure
repeat with

if

then

while do end
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memory

left right mark erase read mark
Marked pos

Poss left Poss right Poss mark
Poss erase Poss read mark

erase mark Marked
Poss Marked do

mark pos
Marked erase pos

left right pos
Poss pos do

left pos
right pos

pos left right

read mark

SF left SF right SF erase SF mark
SF read mark Marked pos

TM
TM

Axioms
Rdo

Axioms Rdo

Rdo

Rdo

Axioms

Given the extreme simplicity of the robot program language
, and given that the planning task is defined in terms of

the existence of robot programs, one might reasonably won-
der if the restriction to rules out goals that are intuitively
achievable. Consider the following two examples:

The setup is exactly
like the Omelette example, except that there is an ad-
ditional sensing action, which tells you when the sup-
ply of eggs is exhausted. The goal is to have a single
good egg in the bowl, but only if the supply contains an
odd number of good eggs; otherwise, the bowl should
remain empty.

The setup is as above.
The goal now is to have a single good egg in the bowl,
but only if the supply contains more good eggs than
bad; otherwise, the bowl should be empty.

These are unusual goals, admittedly. But they do show that
it is possible to encode language-recognition problems (over
strings of eggs!) in a robotic setting. Informally, both goals
are achievable in that we can imagine physical devices that
are able to do so. The formal claim here is this: there is a
robot program that achieves the first goal (which we omit
for space reasons), but there is provably none that achieves
the second. The proof is essentially the proof that a finite
automaton cannot recognize the language consisting of bi-
nary strings with more 1’s than 0’s. To do so, you need the
equivalent of a counter.

To preserve the simple structure of , we augment our set
of primitive actions to give the robot a . Thus, we
assume that apart from those of the background theory, we
have 5 special actions, , , , , ,
and two special fluents , , characterized by the
following axioms:

1. Precondition: the 5 actions are always possible
( ) ( ) ( )

( ) ( );

2. Successor state: only and change
( ) ( ( ))

= ( ) =
( ) [ = ( ) = ] ;

3. Successor state: only and change the fluent
( ) ( ( )) =

= ( ) = + 1
= ( ) = 1

( ) = = = ;

4. Sensed fluent: tells the agent whether the cur-
rent position is marked

( ) ( ) ( ) ( )
[ ( ) ( ( ) )].

These axioms ensure that the 5 special actions provide the
robot with what amounts to a Turing machine tape. The idea
is that when solving a planning task wrt a background theory

, we look for a robot program that works wrt ( ),
where is the set of axioms above. We can then prove

that the More Good Eggs example is now solvable (again,
we omit the program).

We believe that no further extensions to will be needed.
However, to prove this, we would want to show that any “ef-
fectively achievable” goal can be achieved by some robot
program. But this requires an independent account of effec-
tive achievability, that is, an analogue of computability for
robots over a domain-dependent set of actions whose effects
are characterized by a set of axioms. To our knowledge, no
such account yet exists, so we are developing one.

One limitation of the work presented here is that it offers no
suggestions about how to automatically generate plans like
those above in a reasonable way. Of course, our specifica-
tion does provide us with a planning procedure (of sorts):

( )

= ( )
[ ( ) ( )]

return
We can also think of the as being returned by answer ex-
traction [5] from an attempt to prove the following:

= ( ) [ ( ) ( )]

Either way, the procedure would be problematic: we are
searching blindly through the space of all possible robot pro-
grams, and for each one, the constraint to check involves
using the fluent explicitly as well as the (second-order!)

formula. However, we do not want to suggest that a
specification of the planning task ought to be used this way
to generate plans. Indeed, our criticism of earlier accounts
was precisely that they were overly tied up with specific
planning procedures.

In our own work in Cognitive Robotics, we take a slightly
different approach. Instead of planning tasks, we focus on
the execution of high-level programs written in the GOLOG
programming language [7]. GOLOG programs look like
ordinary block-structured imperative programs except that
they are nondeterministic, and they use the primitive actions
and fluents of a user-supplied domain theory. There is a
formula of the situation calculus ( ), analogous to

, which says that is one of potentially many terminat-
ing situations of GOLOG program when started in initial
situation . To execute (when there are no sensing ac-
tions), a GOLOG processor must first find a legal sequence
of primitive actions such that

= ( ( ))

which it can then pass to a robot for actual execution. This
is obviously a special case of planning. Furthermore, when

contains sensing actions, an argument analogous to the
one presented here suggests that instead of , the GOLOG
processor would need to find a robot program [8].

With or without sensing, considerable searching may be
required to do this type of processing. To illustrate an ex-
treme case, the GOLOG program

( )[ ( )?; ]
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repeatedly selects an appropriate action and performs it un-
til some goal is achieved. Finding a sequence of actions in
this case is simply a reformulation of the planning problem.
However, the key point here is that at the other extreme,
when the GOLOG program is fully deterministic, execu-
tion can be extremely efficient since little or no searching
is required. The hope is that many useful cases of high-
level agent control will lie somewhere between these two
extremes.

A major representational limitation of the approach pre-
sented here concerns the binary sensing actions and the de-
sire to avoid mentioning fluents in a robot program. Sens-
ing actions that return one of a small set of values (such as
reading a digit on a piece of paper, or detecting the colour of
an object) can be handled readily by a case-like construct.
Even a large or infinite set might be handled, if the values
can be ordered in a natural way.

But suppose that sensing involves reading from a noisy
sensor, so that instead of returning (say) the distance to the
nearest wall, we get a number from a sensor that is only
correlated with that distance. An account already exists of
how to characterize in the situation calculus such sensing
actions, and the effect they have not on knowledge now, but
on degrees of belief [1]. However, how robot programs or
planning could be defined in terms of this account still re-
mains to be seen.
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