
Representing Knowledge within the Situation Calculus using
Interval-valued Epistemic Fluents

John Funge
Microcomputer Research Lab

Intel Corporation
www.cs.toronto.edu/ ˜funge

Abstract

The ability of interval arithmetic to provide a finite (and succinct) way to represent uncertainty about a
large, possibly uncountable, set of alternatives turns out to be useful in building “intelligent” autonomous
agents. In particular, consider the two important issues of reasoning and sensing in intelligent control
for autonomous agents. Developing a principled way to combine the two raises complicated issues in
knowledge representation. In this paper we describe a solution to the problem. The idea is to incorpo-
rate interval arithmetic into the situation calculus. The situation calculus is a well known formalism for
describing changing worlds using sorted first-order logic. It can also be used to describe how an agent’s
knowledge of its world changes. Potentially, this provides a sound basis for incorporating sensing into
logic programming. Previous work has relied on a possible worlds approach to knowledge. This leads to
an elegant mathematical specification language. Unfortunately, there have been no proposals on how to
implement the approach. This is because the number of possible worlds is potentially uncountable. We
propose an alternative formalization of knowledge within the situation calculus. Our approach is based
on intervals. The advantage is that it is straightforward to implement. Moreover, we can prove that it is
sound and (sometimes) complete with respect to the previous possible worlds approach.

1 Introduction

The work described in this paper grew out of an attempt to build an “intelligent” autonomous agent. Inspired by new
work in the area, we choose to use the situation calculus as the foundation of our approach. The situation calculus is a
well-known formalism for representing changing worlds. Our intention was to use the situation calculus to represent
the agent’s knowledge. The logical basis of the situation calculus meant that the agent would be able to reason about
the effect of its actions. It would, therefore, be able to choose a course of action that it believed would result in a
desired effect. Unfortunately, the world the agent was to be situated in was highly complex. To some degree, the result
of its actions would be unpredictable. It was clear that we needed to incorporate sensing into our framework.

Fortunately, the issue of sensing had already been looked at in the context of the situation calculus, but there was
a problem. The previous approach to sensing was based on the idea ofpossible worlds, borrowed from modal logic.
The theory was elegant and powerful, but it wasn’t clear how to implement it. It seemed that in order to specify the
agent’s knowledge of its world we would be expected to list out an uncountable number of possible worlds!

One possible recourse would, perhaps, to have used a modal logic theorem prover. However, modal logic theorem
provers are not widely available, or widely understood. In addition, we didn’t want our approach to sensing to be
inextricably bound up to the notion of theorem proving. That is, an important aim of ours was to make our approach
to intelligent control simple and practical. We wanted our ideas to be useful to programmers whose job it is to build
autonomous agents. In particular, we hoped to provide a rapid-prototyping tool that employed specifications that were
amenable to gradual refinement to production code.

At this point, it occurred to us that what the notion of possible worlds was allowing us to express was the agent’s
uncertaintyabout aspects of its world. It struck us that interval arithmetic also provides a way to express uncertainty.

1



Moreover, intervals provide a finite (and succinct) way to represent uncertainty about a large, possibly uncountable,
set of alternatives. The rest of our task (and the remainder of this paper) involved working out the details of how all
this fits together. We begin with some necessary background on the situation calculus.

2 Background

The situation calculus [12, 16] is a way of describing change in sorted first-order logic. In this section we shall give
the mathematical details required to understand the situation calculus and how we use it. We necessarily assume
some familiarity with mathematical logic and the reader is referred to [4] for any additional background information
required.

We shall use the following simple example, after [8], to illustrate various points about the situation calculus:

Suppose we have two agents, called them Dognap and Jack. Let us suppose that Dognap is armed with a
gun, and that Dognap wants to kill Jack. Let us further suppose that Jack is initially alive and that the gun
is initially empty.

2.1 Sorts

A situation, of sort SITUATION, is a “snapshot” of the state of the world. A domain-independent constantS0, of sort
SITUATION, denotes the initial situation.

We want to use various number systems in our theory of action. Logical accounts of numbers are, however,
problematic. Consequently, to avoid becoming embroiled in a task that would be at odds with the purpose of this
paper we employ the following artifices to eschew the messy details:

• A collection of sorts for various number systems:

B , Boolean numbers,

N , Natural numbers,

Z , Integer numbers,

Q , Rational numbers,

R , Real numbers.

To avoid misunderstanding, we briefly clarifyB.1 In particular, there are two constants of sortB, namely0 and
1. There is one unary function¬, and two binary functions∧,∨.

Later on, we shall want to ensure that all our number systems have maximal and minimal elements. We shall in-
dicate these augmented number systems with a?, for example the extended real numbers:R? = R∪{−∞,∞}.
We shall also denote subsets of our number systems with appropriate designators, for example the non-negative
realsR+.

• For each number system sort, we will only consider standard interpretations. That is, we shall work with
interpreted theories in which the various functions and constants, associated with the sort, are fixed. There are
functions and predicates corresponding to all the standard mathematical functions and predicates for the sort.

• For each number system sort, we assume the existence of an “oracle” that is capable of determining the truth or
falsity of sentences about relationships between objects of that sort.2

All other objects are of sortOBJECT.

1See [9] for further detailed discussion on the subject.
2From a practical point of view, we might use mathematical software packages (such as Maple) to handle a wide range of useful queries.

2



2.2 Fluents

Any property of the world that can change over time is known as a fluent. Afluentis a function, with a situation term
as (by convention) its last argument. We shall restrict fluents to taking on values in one of the number system sorts.
For any functional fluentsfoo that take on values inB, we shall adopt the standard abbreviation thatFoo(s) is just
shorthand forfoo(s) = 1. We may refer to such fluents asrelational fluents.

Let us now introduce some fluents to capture the salient details of our example. This will enable us to formalize
the scenario within the situation calculus.

Alive(s) − Jack is alive in states.
Aimed(s) − The gun is aimed at Jack in states.
Loaded(s) − The gun is loaded in states.

Actions, of sortACTION, are the fundamental instrument of change in our ontology. The situations′ resulting from
doing actiona in situations is given by the distinguished functiondo : ACTION × SITUATION → SITUATION, such that,
s′ = do(a, s). In our example, we introduce the following actions:

load − Load the gun.
aim − Aim the gun at Jack.
shoot − Shoot the gun.

The possibility of performing actiona in situations is denoted by a distinguished predicatePoss : ACTION ×
SITUATION. Sentences that specify what the state of the world must be before performing some action are known as
precondition axioms. We can give such axioms for the actions in our example:3

Poss (load, s) − The gun can always be loaded.
Poss (aim, s) − The gun can always be aimed at Jack.
Poss (shoot, s) ⇒ Loaded(s) − The gun can only be shot if it’s loaded.

2.3 The Qualification Problem

The qualification problem[11] is that of trying to infer when an action is possible. In our example, we only wrote
down certain necessary conditions, we did not enumerate all the things that may prevent us from shooting the gun. For
instance, we cannot shoot if the trigger is too stiff, or if the gun is encased in concrete, etc. By employing aclosed-
world assumption, we may obviate this problem and assume that our set of necessary conditions is also a sufficient
set. For instance, under this assumption our precondition axiom forshoot now becomes:

Poss (shoot, s) ⇔ Loaded(s).

In general, we have the following definition:

Definition 2.1 (Action precondition axioms). Action precondition axioms give necessary and sufficient conditions
πa(~x, s) for when an actiona(~x) is possible. They are of the form:

Poss (a(~x), s) ⇔ πa(~x, s).

In [6, 10], some additional subtleties, including those that arise when we allow state constraints, are discussed.

2.4 Effect Axioms

Effect axioms give necessary conditions for a fluent to take on a given value after performing an action. We can use
effect axioms to state the effects of the actions on the defined fluents in our example:

Loaded(do(load, s)) − The gun is loaded after loading it.
Aimed(do(aim, s)) − The gun is aimed at Jack after aiming it.
Poss (shoot, s) ∧ Aimed(s) ⇒ ¬Alive(do(shoot, s))

− If the gun is aimed at Jack and it can be
shot then he is dead after shooting it.

3Throughout, all unbound variables are implicitly assumed to be universally quantified.

3



All that now remains to complete our first pass at formalizing our example is to specify the initial situation:

Alive(S0) − Initially Jack is alive.
¬Aimed(S0) − Initially the gun is not aimed at Jack.
¬Loaded(S0) − Initially the gun is not loaded.

2.5 The Frame Problem

Unfortunately, there are still some impediments to using the situation calculus in real applications. The most notable
of these is the so calledframe problem[12]. The frame problem is that of trying to infer what remains unchanged by
an action. In our example, we only wrote down what changed after an action; we did not write down all the things that
stayed the same. For instance, the gun stayed loaded after aiming it, or the gun did not turn into a horse after loading
it, etc. In common-sense reasoning about actions, it seems essential to assume that, unless explicitly told otherwise,
things stay the same. To formally state this “law of inertia”, without changing our effect axioms, causes problems. In
particular, if we haveA actions andF fluents, then we must write down a set ofA×F “frame” axioms. The problem
is exacerbated by the planner having to reason efficiently in the presence of all these axioms.

At this point it is worth commenting on how the frame problem is dealt with in other fields that tackle related
problems. Notably in control theory. In control theory we have the notion of a state vector. Each component of the
state vector is similar to a fluent. The frame problem is tackled by simply assuming that the state vector completely
characterizes the system in question and that values for all the components are explicitly specified. That is, if part of
the state vector is unchanged then we must explicitly say so. Usually state vectors are chosen to be short so that this
task is not too irksome. It does, however, put our approach into context. We do not want to be constrained to have
to give our state vector at the outset. Moreover, we do not want (for reasons given in the preceding paragraph) to
list out all the things that don’t change. In our approach we can, at any point, mention some new fluent and have the
system infer its value with respect to its value in the initial situation. Furthermore, if so desired, we can leave the initial
situation underspecified. For example, suppose in the initial situation we say that the car iseitherblueor yellow. Now
further suppose we perform no actions to affect the color. Then, after the action sequence, we will be able to infer that
the car’s color is still either blue, or yellow.

In [16], it is shown how we can avoid having to list out all the frame axioms. The idea is to assume that our
effect axioms enumerate all the possible ways that the world can change. This closed world assumption provides the
justification for replacing the effect axioms withsuccessor stateaxioms. For instance, the successor state axiom for
Alive(s) states that Jack is alive, if and only if, he was alive in the previous state and he was not just shot:

Poss (a, s) ⇒ [Alive(do(a, s)) ⇔ Alive(s) ∧ ¬(a = shoot ∧ Aimed(s))]. (1)

In general, we have the following definition:

Definition 2.2 (Successor state axioms).Supposeγf (~y, z, a, s) is a first-order formula whose free variables are
among~y, z, a, s. Assume it states all the necessary conditions under which actiona, if performed ins, results in
f(~y, s) becoming equal toz. Then, the corresponding successor state axiom, that assumes the given conditions are
also sufficient ones, is of the form:

Poss (a, s) ⇒ [(f(~y, do(a, s)) = z) ⇔ (γf (~y, z, a, s)) ∨ (f(~y, s) = z ∧ ¬∃z′ γf (~y, z′, a, s))]. (2)

It is instructive to consider what this definition means for a relational fluentF . Let γ+
F (~y, a, s) be a disjunction of

all the positive effects of the actiona, andγ−
F (~y, a, s) be a disjunction of all the negative effects. Then the successor

state axiom forF is:

Poss (a, s) ⇒ [F (~y, do(a, s)) ⇔ (γ+
F (~y, a, s) ∨ (F (~y, s) ∧ ¬γ−

F (~y, a, s)))].

2.6 Exogenous Actions

It will often be the case that there are aspects of the domain that we can not, or do not want to, formalize. For example,
suppose we are interested in the position of a ball floating in the ocean. It is all but impossible to attempt to formalize
the motion of the waves, wind, etc. This will often be the case for phenomena that are outside the agent’s ability to

4



control. We should like to simply define an action likemoveBall(x) and say that it is caused by mysterious external
forces. Such actions are referred to asexogenousactions. While the cause of an exogenous action is difficult to state
its effect need not be. For example, themoveBall(x) simply moves the ball to the positionx.

3 Knowledge producing actions

Up until now we have thought of actions as having effects on the world. We can, however, imagine actions whose
only effect is to change what the agent knows about its world. A good example is an agent trying to make a phone
call. The agent needs to know the number before dialing. The action of looking up the phone number has no effect
on the world, but it changes the agent’s knowledge. Sensing actions are therefore referred to asknowledge producing
actions.

Figure 1: Before sensing, worlds where the light is on, or off, are possible.

In [17], an approach to incorporating knowledge producing actions into the situation calculus is described. The
idea behind the approach is to define an epistemic fluent to keep track of all the worlds an agent thinks it might possibly
be in. In figure 1, we depict an agent unable to decide which world it was in. That is, whether in its world the light
is on or off. Figure 2 shows the agent turning around to see that the light is in fact turned on. The result of this
sensing action is shown in the figure as the agent discarding some of the worlds it previously thought were possible.
In particular, since it now knows that the light is on in its world, it must throw out all the worlds in which it thought
the light was turned off. In this section we give the mathematical details of how this notion is modeled in the situation
calculus.

3.1 An epistemic fluent

The way an agent keeps track of the possible worlds or, as the case may be, possible situations is to define an epistemic
fluentK. The fluent keeps track of all theK-related worlds. TheseK-related worlds are precisely the ones in the bubbles
above the agent’s head in above mentioned figures. They are the situations that the agent thinks might be its current
situation. So we writeK(s′, s) to mean that in situations, as far as the agent can tell, it might be in the alternative
situations′. That is, the agent’s knowledge is such thats ands′ are indistinguishable. It can only find out if it is or not
by sensing the value of certain terms, for example terms such aslight(s).

When we say an agentknowsthe value of a termτ , in a situations, is some constantc, we mean thatτ has the
valuec in all theK-related worlds. For convenience, we introduce the following abbreviation:

Knows (τ = c, s) , ∀s′ K(s′, s) ⇒ τ [s′] = c, (3)

5



Figure 2: After sensing, only worlds where the light is on are possible.

whereτ [s′] is the termτ with the situation arguments inserted. For example, ifτ = phoneNo(Jack) thenτ [s] =
phoneNo(Jack, s). Note that for simplicity we are considering the case where we only have one agent. For more than
one agent we simply need to make it clear which agent knows what. For example,Knows (Dognap, τ = c, s) indicates
thatDognap knows the value ofτ .

When an agent knows the value of a term, but we do not necessarily know the value of the term, we use the notation
Kref (τ, s) to say that the agentknows the referentof τ :

Kref (τ, s) , ∃z Knows (τ = z, s). (4)

We now introduce some special notation for the case whenτ takes on values inB. In particular, since there are
only two possibilities for the referent, we say weknow whetherτ is true or not:

Kwhether (τ, s) , Knows (τ = 1, s) ∨ Knows (τ = 0, s). (5)

3.2 Sensing

As in [17], we shall make the simplifying assumption that for each termτ , whose value we are interested in sensing,
we have a corresponding knowledge producing actionsenseτ . In general, if there aren knowledge producing actions:
senseτi , i = 0, . . . , n − 1, then we shall assume there aren associated situation dependent terms:τ0, . . . , τn−1. The
corresponding successor state axiom forK is then:

Poss (a, s) ⇒ [K(s′′, do(a, s)) ⇔
∃s′ (K(s′, s) ∧ (s′′ = do(a, s′))) ∧
((a 6= senseτ0 ∧ · · · ∧ a 6= senseτn−1)
∨ (a = senseτ0 ∧ τ0(s′) = τ0(s))

...

∨ (a = senseτn−1 ∧ τn−1(s′) = τn−1(s)))]. (6)

The above successor state axiom captures the required notion of sensing and solves the frame problem for knowl-
edge producing actions. We shall explain how it works through a simple example. In particular, let us consider the
problem of sensing the current temperature. Firstly, we introduce a fluenttemp : SITUATION → R+, that corresponds to
the temperature (in Kelvin) in the current situation. For now let us assume that the temperature remains constant:

Poss (a, s) ⇒ temp(do(a, s)) = temp(s). (7)

6



We will have a single knowledge producing actionsenseTemp. This gives us the following successor-state axiom for
K:

Poss (a, s) ⇒ [K(s′′, do(a, s)) ⇔ ∃s′ (K(s′, s) ∧ (s′′ = do(a, s′))) ∧
((a 6= senseTemp) ∨ (a = senseTemp ∧ temp(s′) = temp(s)))]. (8)

The above axiom states that for any action other thansenseTemp the set ofK-related worlds is the set of images of the
previous set ofK-related worlds. That is, ifs′ wasK-related tos, then the images′′ = do(a, s′), of s′ after performing
the actiona is K-related todo(a, s). Moreover, when the agent performs asenseTemp action, in some situations,
the effect is to restrict the set ofK-related worlds to those in which the temperature agrees with the temperature in the
situations. In other words,senseTemp is the only knowledge producing action, and its effect is to make the temperature
denotation known:Kref (temp, do(senseTemp, s)). The reader is referred to [17] for any additional details, examples or
theorems on any of the above.

3.3 Discussion

The formalization of knowledge within the situation calculus using the epistemic fluentK makes for an elegant math-
ematical specification language. It is also powerful. For example, suppose we have an effect axiom that states that if a
gun is loaded then the agent is dead after shooting the gun:

Loaded(s) ⇒ Dead(do(shoot, s)).

Furthermore, suppose we know the gun is initially loadedKnows (Loaded, S0), then we can infer that we know the
agent is dead after shooting the gunKnows (Dead(do(shoot, S0)).

Unfortunately, there are some problems. One set of problems is associated with implementation, the second applies
to reasoning about real numbers, both in theory and in practice.

3.3.1 Implementation

The implementation problems revolve around how to specify the initial situation. For example, if we choose an
implementation language like Prolog, specifying the initial situation may involve having to list out an exponential
number of possible worlds. For example, if we do not initially know if the gun is loaded then we might consider
explicitly listing the two possible worldss_a , ands_b , such that:

k(s_a,s0).
k(s_b,s0).
loaded(s_a).

As we add more relational fluents, that we want to be able to refer to our knowledge of, the situation gets worse. In
general, if we haven such fluents, there will be2n initial possible worlds that we have to list out. Once we start using
functional fluents, however, things get even worse: we cannot, by definition, list out the uncountably many possible
worlds associated with not knowing the value of a fluent that takes on values inR.

Intuitively, we need to be able to specify rules that characterize, without having to list them all out, the set of initial
possible worlds. It may be possible to somehow coerce Prolog into such an achievement. Perhaps, more reasonably, we
could consider using a modal, or full first-order logic theorem prover. However, such theorem provers are inefficient
and experimental. In addition, in the introduction we advanced the idea that our approach can be used for rapid
prototyping. This claim relies on the possibility of gradually removing the non-determinism from our specifications.
In this way we might hope to eventually refine a specification so that it can be run without the need for an underlying
theorem prover. This idea must, sadly, be forsaken if we are to ingrain the need for a theorem prover into our approach
to sensing.

Ignoring all the above concerns let us assume that we can specify rules that characterize the set of initial possible
worlds. For example, suppose that initially we know the temperature is between10 and50 Kelvin. We might express
this using inequalities:

∀s′ K(s′, S0) ⇒ 10 6 temp(s′) 6 50.

This, however, brings us to our second set of problems related to reasoning about real numbers.

7



3.3.2 Real numbers

We just wrote down the formula that corresponds to:

Knows (10 6 temp 6 50, S0). (9)

Suppose, we are now interested in what this tells us about what we know about the value of the temperature squared.
In general, if we know a termτ lies in the range[u, v] we would like to be able to answer questions about what we
know about some arbitrary functionf of τ . Such questions take us into a mathematical minefield of reasoning about
inequalities. Fortunately, a path through this minefield has already been charted by the field of interval arithmetic.

4 Interval arithmetic

To address the issues we raised in section 3.3 we turn our attention to interval arithmetic [13, 14, 18]. Some of the
immediate advantages interval arithmetic affords us are listed below:

• Interval arithmetic enables us to move all the details of reasoning about inequalities into the rules for combining
intervals under various mathematical operations.

• Interval arithmetic provides a finite (and succinct) way to represent uncertainty about a large, possibly uncount-
able, set of alternatives. Moreover, the representation remains finite after performing a series of operations of
the intervals. In [15] interval arithmetic is compared to probability as a means of representing uncertainty.

• Writing a sound oracle for answering ground queries about interval arithmetic is a trivial task. Moreover, we
can answer queries in time that is linear in the length of the query. Returning valid and optimal intervals is more
challenging (see section 7). This should, however, be compared to the vastly unrealistic assumption we (and
others) made earlier about the existence of oracles for answering queries about the real numbers.

• There is no discrepancy between the underlying theory of interval arithmetic, and the corresponding implemen-
tation. Thus we re-establish our claims about using our approach for rapid prototyping.

We construct interval arithmetics from our previously available number systems as follows:

• For each number systemX, we add a new number system sortIX. The constants ofIX are the set of pairs
〈u, v〉 such thatu, v ∈ X andu 6 v. There are functions and predicates corresponding to all the functions and
predicates ofX.

• For an intervalx = 〈u, v〉, we use the notationx = u for the lower bound, andx = v for the upper bound.

• The functionwidth, returns the width of an intervalx, i.e. width(x) = x − x.

• When we have a numberx and an intervalx = 〈u, v〉, such thatu 6 x 6 v we say thatx containsx, we write
x ∈ x. Similarly for two intervalsx, y such thaty 6 x andx 6 y, we say thaty containsx, we writex ⊆ y.

• For two intervalsx0, x1 we say thatx0 ≤ x1 if and only if x0 6 x1.

• When we do not want to specify which particular number system we are using we will use⊥ and> to represent,
respectively, the minimum and maximum elements. For example, inR?, 〈⊥,>〉 = 〈−∞,∞〉.

As an example, consider the case of the number systemIB. There are three numbers in this number system:〈0, 0〉,
〈0, 1〉 and〈1, 1〉. Note that we have〈0, 0〉 6 〈0, 1〉 6 〈1, 1〉, 〈0, 0〉 ⊂ 〈0, 1〉, and〈1, 1〉 ⊂ 〈0, 1〉. In B, 1 and0 can
be used to represent, respectively, “true” and “false”. Similarly,〈1, 1〉, 〈0, 1〉 and〈0, 0〉 in IB can be used to represent,
respectively, “known to be true”, “unknown”, and “known to be false”. We thus get what amounts to athree-valued
logic which, by way of example, we develop further in section 5.

Complex numbers are also made up of a pair of (real) numbers, and operations on them are defined in terms of
operations on the reals. However, it would lead to confusion, if when reading a text on complex analysis we could
not comprehend complex numbers as a separate entity, distinct from pairs of real numbers. We therefore forewarn

8



the reader against making the same mistake for intervals. That is, although numbers inIX are made up of a pair of
numbers fromX it is important to treat them as “first-class” numbers in their own right.

Traditionally, interval arithmetic was used to address the innumerous problems with the ability of floating point
arithmetic to accurately represent real arithmetic. For example, consider the real number

√
2. This real number cannot

be represented exactly by any finite decimal. However, it can be represented by theexactinterval〈1.41, 1.42〉. What
this interval can be used to express is that the

√
2 lies somewhere between1.41 and1.42. That is, it expresses our

uncertainty about the exact value of the
√

2 when expressed as a decimal. With modern computers our degree of
uncertainty can be made miniscule and this is part of the appeal of interval arithmetic. Of course, the other part of
interval arithmetic has to do with the arithmetic of intervals. We shall, however, delay any such discussion until section
7.

5 Interval-valued fluents

The epistemicK-fluent that we discussed previously allowed us to express an agent’s uncertainty about the value of a
fluent in its world. Unfortunately, in section 3.3 we saw there were implementation problems associated with trying
to represent an agent’s knowledge of the initial situation. Fortunately, in the previous section we saw that intervals
also allow us to express uncertainty about a quantity. Moreover, they allow us to do so in a way that circumvents the
problem of how to represent infinite quantities with a finite number of bits. It is, therefore, natural to ask whether we
can also use intervals to replace the troublesome epistemicK-fluent.

The answer, as we shall seek to demonstrate in the remainder of this paper, is a resounding “yes”. In particular, we
shall introduce new epistemic fluents that will be interval-valued. They will be used to represent an agent’s uncertainty
about the value of certain non-epistemic fluents.

We have previously used functional fluents that take on values in any of the number systems:B, R, etc. There is
nothing noteworthy about now allowing fluents that take on values in any of the interval numbers systems:IB, IR.
Firstly, let us distinguish those regular fluents whose value maybe learned through a knowledge-producing action. We
term such fluentssensory fluents. Now, for each sensory fluentf , we introduce a new corresponding interval-valued
epistemic (IVE ) fluentIf .

For example, we can introduce an IVE fluentItemp : SITUATION → IR?+ . We can now use the intervalItemp(S0) =
〈10, 50〉 to state that the temperature is initially between 10 and 50 Kelvin. Similarly, we can even specify that the
temperature is initially completely unknown:Itemp(S0) = 〈0,∞〉.

Our ultimate aim is that in an implementation we can use IVE fluents to completely replace the troublesomeK-
fluent. Nevertheless, within our mathematical theory, there is nothing to prevent our IVE fluents co-existing with our
previous sole epistemicK-fluent. Indeed, if we define everything correctly then there are many important relationships
that should hold between the two. These relationships take the form of state constraints and, as we shall show, can be
used to express the notion of validity and optimality of our IVE fluents. If these state constraints are maintained as
actions are performed then the IVE fluents completely subsume the troublesomeK-fluent. This will turn out to be true
until we consider knowledge of general terms. In which case we can maintain validity but may have to sacrifice our
original notion of optimality (see section 8).

Seeking to make IVE fluent ubiquitous necessitates an alternative definition forKnows that does not mention the
K-fluent. To this end, we introduce a new abbreviation,IKnows such that for any termτ , IKnows (τ, s) = 〈u, v〉 means
thatτ ’s interval valueis 〈u, v〉. By “interval value” we mean the value we get by evaluating the expression according
the set of rules that we shall discuss in section 8. For now, let us just consider the case whenτ is some fluentf . When
f is a sensory fluent thenIKnows is the value of the corresponding IVE fluent, otherwise it is completely unknown:

IKnows (f, s) =
{ If (s) if f is a sensory fluent,

〈⊥,>〉 otherwise.
(10)

We now take the important step of redefiningKnows to be the special case whenIKnows (τ, s) has collapsed to a
thin interval:

Knows′ (τ = c, s) ⇔ IKnows (τ, s) = 〈c, c〉. (11)

The definitions ofKref , andKwhether are now in terms of the new definition forKnows′ . As required, this new
definition does not involve the problematic epistemicK-fluent.

We are now in a position to define what it means for an IVE fluent to be valid:

9



Definition 5.1 (Validity). For every sensory fluentf , we say that the corresponding IVE fluentIf is a valid interval
if f ’s value in all of theK-related situations is contained within it:

∀s, s′ K(s′, s) ⇒ f(s′) ∈ If (s).

Note that since we have a logic of knowledge (as opposed to belief) we have that every situation isK-related to
itself: ∀s K(s, s). Thus, as an immediate consequence of definition 5.1, we have that if an IVE fluentIf is valid then
it contains the value off : ∀s f(s) ∈ If (s).

The validity criterion is a state constraint that ensures the interval value of the IVE fluents is wide enough to contain
all the possible values of the sensory fluents. It does not however prevent intervals from being excessively wide. For
example, the interval〈−∞,∞〉 is a valid interval for any IVE fluent that takes on values inIR? . The notion of narrow
intervals is captured in the definition of optimality:

Definition 5.2 (Optimality). A valid IVE fluentIf is alsooptimalif it is the smallest valid interval:

∀ y, s, s′ K(s′, s) ⇒ (f(s′) ∈ y ⇒ If (s) ⊆ y).

6 Correctness

In this section we shall consider some of the consequences and applications of interval-valued fluents to formalizing
sensing under various different assumptions. Our goal will be to show that we can maintain valid and optimal intervals
as we perform actions. This leads to the soundness and completeness result given at the end of the section.

The first step will be to define successor state axioms for IVE fluents. This is done in much the same way as it was
for regular fluents. For example, suppose we have a perfect sensor, then the following successor-state axiom states
that after sensing, we “know” the temperature in the resulting situation

Poss (a, s) ⇒ [Itemp(do(a, s)) = y ⇔
(a = senseTemp ∧ y = y = temp(s)) ∨ (a 6= senseTemp ∧ Itemp(s) = y)]. (12)

Now let us consider the case in general. Firstly, we note that there is always an initial valid IVE fluent.

Lemma 6.1. For any initial situationS0 and sensory fluentf we have thatIf = 〈⊥,>〉 is a valid interval.

Proof. The proof of the theorem is immediate from the fact that, by definition,〈⊥,>〉 bounds any possible value for
f . So in particular it bounds all the valuesf can take in all the initialK-related situations.

It is also reasonable to assume that there will also be an initial optimal interval. If there is no such initial optimal
interval then all the correctness results in this section still hold, but the completeness results won’t hold until after the
first sensing action.

Lemma 6.2. If the initial set ofK-related situations is either completely unspecified or specified with inequalities that
are as tight as possible (i.e. maximally restrictive) then we can find an initial optimal IVE fluent for each of the sensory
fluents.

Proof. Case (i) The initial set ofK-related situations is completely unspecified. That is, we are initially completely
ignorant of a sensory fluentf ’s value. Then, the maximal interval is also clearly optimal. That is,〈⊥,>〉 is the
only interval that bounds all possible values forf in the initial K-related situations. Since it is the unique valid
interval it must, by definition, be an optimal interval.

Case (ii) We have a specification such as

(∀s′ K(s′, S0) ⇒ u 6 f(s′) 6 v) ∧
¬∃ u′, v′ [u < u′ ∧ v′ < v ∧ (∀s′ K(s′, S0) ⇒ u′ 6 f(s′) 6 v′)]

Then, considerIf (S0) = 〈u, v〉. As required, this is clearly the smallest valid interval.

10



In what follows we make the three following assumptions about all sensory fluentsf :

1. The value ofIf , in the initial situation, is optimal and valid. This assumption is justified by lemma 6.1 and 6.2.

2. The successor-state axiom forf is such thatf remains constant:

Poss (a, s) ⇒ [f(do(a, s)) = f(s)]. (13)

3. The successor-state axioms for each of the corresponding IVE fluentsIf are of the form:

Poss (a, s) ⇒ [If (do(a, s)) = y ⇔
(a = sensef ∧ y = y = f(s)) ∨ (a 6= sensef ∧ If (s) = y)]. (14)

In later sections, we will discuss how to relax some of these constraints. For now let us state our main correctness
result.

Theorem 6.1. With the above assumptions, for all situationss, and sensory fluentsf , every IVE fluentIf is valid and
optimal.

Proof. We shall prove the result by induction ons. We note that the base case follows by assumption 1. Therefore,
we need only consider the case whens? = do(a, s).

By induction we may assume that

∀s′ K(s′, s) ⇒ f(s′) ∈ If (s),

and thatIf (s) is optimal. We seek to prove that

∀s′′ K(s′′, s?) ⇒ f(s′′) ∈ If (s?), (15)

and thatIf (s?) is optimal.

Case (i) Consider the case whena 6= sensef . Let us fix as′′ such thatK(s′′, s?). Note that sinceK is reflexive we can
be sure that such as′′ exists. Therefore, by the successor state axiom forK (equation 6) there is ans′ such that

s′′ = do(a, s′) ∧ K(s′, s).

By induction we can thus infer that

f(s′) ∈ If (s).

Now by the successor state axiom forf (equation 13) we have thatf(s′′) = f(s′), which gives us that

f(s′′) ∈ If (s).

Then by the successor state axiom forIf (equation 14)If (s?) = If (s), we have that

f(s′′) ∈ If (s?),

as required for validity. This also shows that to be a valid interval forIf (s?) the interval must also be a valid
interval forIf (s). Now by the assumption of optimality any interval narrower thanIf (s) would no longer be
valid. Therefore,If (s) is also the narrowest valid interval forIf (s?).

Case (ii) Similarly, whena = sensef then by the successor state axiom forK (equation 6), there is ans′ such that

s′′ = do(a, s′) ∧ K(s′, s) ∧ f(s′) = f(s).

Therefore,

f(s′) ∈ 〈f(s), f(s)〉.

11



Now by the successor state axiom forf (equation 13) we have thatf(s′′) = f(s′), which gives us that

f(s′′) ∈ 〈f(s), f(s)〉.
Then by the successor state axiom forIf (equation 14)If (s?) = 〈f(s), f(s)〉, we have that

f(s′′) ∈ If (s?).

as required for validity. To show optimality consider that the width of〈f(s), f(s)〉 is 0. Therefore, there can be
no narrower interval and so the interval must also be optimal.

As a corollary we have that the definition ofKnows given in equation 3 is equivalent to the one given in equation
11.

Corollary 6.1. For any sensory fluentf we have that:

Knows (f = c, s) ⇔ Knows′ (f = c, s).

Proof. Let us assumeKnows (f = c, s). By equation 3 this is equivalent to:

∀s′ K(s′, s) ⇒ f(s′) = c.

Now by theorem 6.1,If is valid and optimal, thereforeIf (s) = 〈c, c〉, which by equation 11 is the definition of
Knows′ (f = c, s).

Now let us assumeKnows′ (f = c, s), then by equation 11 we have thatIf (s) = 〈c, c〉. Once again by applying
theorem 6.1 we must have that

∀s′ K(s′, s) ⇒ f(s′) ∈ 〈c, c〉.
Since〈c, c〉 has width0 we can re-write this as:

∀s′ K(s′, s) ⇒ f(s′) = c,

which by equation 3 is the definition ofKnows (f = c, s), as required.

In [17] a number of correctness results are proven forKnows . The above equivalence means that under the current
set of assumptions the correctness results carry over forKnows′ .

7 Operators for interval arithmetic

Back in section 3.3.2 one of our original motivations for introducing intervals was the promise of being able to con-
veniently calculate what we know about a term from our knowledge of its subcomponents. For example, suppose in a
situations we know the value of a fluentf(s), what do we know about(f(s))2?

The answer to this question leads us to the large and active research area of interval arithmetic. The fundamental
principle used is that interval versions of a given function should be guaranteed to bound all possible values of the
non-interval version. For example, let us consider a functionφ : R → R. The interval version of this function is
Iφ : IR → IR. The result of applyingIφ to some intervalx is another intervaly = Iφ(x). We say that they is a
valid interval if for every pointx ∈ x, we have thatφ(x) ∈ y. Note also that for any valid intervaly, if y ⊆ y′ then,
y′ is also a valid interval. If, for every intervalx, Iφ(x) gives a valid interval then we say thatIφ is asound interval
versionof φ.

As we might expect from our previous discussions defining a sound interval version of any function is trivial. In
particular, we just let the interval version return the maximal interval of the relevant number system. For example, the
function that, for any argument, returns〈−∞,∞〉 is a sound interval version of any functionφ : R → R.

Hence, we see that once again we also need to be concerned about returning intervals that are as narrow as possible.
Theoptimal interval versionof a functionφ is thus defined to be thesound interval versionthat, for every argument,
returns the smallest valid interval. Unfortunately, for most interesting functions, no such interval versions are known
to exist. There are three basic approaches that have been found to address this shortcoming:

12



Special Forms Consider the expressiont+(50− t). If we naı̈vely evaluate this expression for the interval〈0, 50〉 we
get back the interval〈0, 100〉. It is clear, however, that the expression simplifies to50 and the optimal interval is
thus〈50, 50〉. Therefore, researchers have looked at various standard forms for expressions in an attempt to give
better results when evaluating the expression using intervals. In general, however, not only is there no known
optimal form but there is also no known single form that is always guaranteed to give the best result. The closest
researchers have been able to do so far is the so called “centered forms” [1].

Subdivision The standard tool in the interval arithmetic arsenal is subdivision. Suppose we have an intervalx and we
evaluateIφ(x) to give us an interval that is too wide. Then we subdividex into xl andxr such thatx = xl∪xr.
We then evaluate each half separately in the hope thatIφ(xl)∪Iφ(xr) ⊂ Iφ(x). In practice this usually works
well although in theory the functions can be noncomputable in which case any hopes of refining our intervals
vanish.

Linear intervals The final approach we mention is a new approach that was recently invented by Jeffrey Tupper
[18]. The idea is that instead of using constants to bound an interval we use linear functions. Thus for linear
expressions, such ast + (50 − t), we can define operators that are guaranteed to return optimal intervals. Of
course, we can then recreate similar problems by considering quadratic expressions but Tupper also shows how
we can generalize interval arithmetic all the way up to intervals that use general Turing machines as bounds!

8 Knowledge of terms

Back in section 5 we introduced the abbreviationIKnows . In equation 10 we definedIKnows for fluents and in what
follows we shall show how to defineIKnows for general terms. We begin by stating what it means for our definitions
to be valid.

Definition 8.1 (Validity for terms). For every termτ , we say that the corresponding interval value of the term given
byIKnows (τ, s) is avalid interval if τ ’s value in all of theK-related situations is contained within it:

∀s, s′ K(s′, s) ⇒ τ [s′] ∈ IKnows (τ, s).

Fortunately, the general notion of soundness for interval arithmetic carries over into our notion of validity for a
IKnows .

Theorem 8.1. SupposeIφ is a sound interval version of ann-ary functionφ : Xn → X. Furthermore, letx0, . . . ,
xn−1 ∈ IX be, respectively, valid intervals forIKnows (τ0, s), . . . , IKnows (τn−1, s). Then,Iφ(x0, . . . , xn−1) is a
valid interval forIKnows (φ(τ0, . . . , τn−1), s).

Proof. Suppose the theorem is false. ThenIφ(x0, . . . , xn−1) is not a valid interval forIKnows (φ(τ0, . . . , τn−1), s).
That is,

∀s′ K(s′, s) ⇒ φ(τ0[s′], . . . , τn−1[s′]) ∈ Iφ(x0, . . . , xn−1),

is false. That is, for someK-related situations′ we have that

φ(τ0[s′], . . . , τn−1[s′]) /∈ Iφ(x0, . . . , xn−1).

This, however, violates the assumption thatIφ is a sound interval version ofφ.

The important consequence of this theorem is that our definition ofIKnows for terms can stand upon the shoulders
of previous work in interval arithmetic. That is, we can defineIKnows recursively in terms of sound interval versions
of functions. Assuming the same assumptions as in theorem 8.1 we have that

IKnows (φ(τ0, . . . , τn−1), s) = Iφ(x0, . . . , xn−1).

Note that some of our functions may be written usinginfix notation, in which case we may refer to them asoperators.
The important aspect of this definition is that we do not have to redesign a plethora of operators for interval arithmetic
and prove each of them sound. In the previous section we noted the difficulties associated with defining optimal
versions of operators. We also noted that there are a number of ways to deal with the problem. Each of the methods
we outlines maintains validity and is thus appropriate for us to use. Which particular method we choose to narrow our
intervals can be thought of as an implementation issue for our approach.

13



9 Usefulness

For a long list of useful operators for interval arithmetic the reader could do no better than to consult [18]. By way of
example, however, we shall list some useful operators forIB. Interval versions of operators, and relations, are given
in bold. Elsewhere, we rely on context to imply the intended meaning.

Definition 9.1 (Operators for IB).

τ = 〈u, v〉 ⇔ ¬τ = 〈¬v,¬u〉
τ0 = 〈u0, v0〉 ∧ τ1 = 〈u1, v1〉 ⇒ τ0 ∧ τ1 ⊆ 〈u0 ∧ u1, v0 ∧ v1〉

τ0 ∧ τ1 = 〈u, v〉 ⇒ τ0 ⊆ 〈u, 1〉
τ0 = 〈u0, v0〉 ∧ τ1 = 〈u1, v1〉 ⇒ τ0 ∨ τ1 ⊆ 〈u0 ∨ u1, v0 ∨ v1〉

τ0 ∨ τ1 = 〈u, v〉 ⇒ τ0 ⊆ 〈0, v〉
[∃x τ(x)] = 〈u, v〉 ⇒ τ(c) ⊆ 〈0, v〉, for any constantc

For some constantc, τ(c) = 〈u, v〉 ⇒ [∃x τ(x)] ⊆ 〈u, 1〉
[∀x τ(x)] = 〈u, v〉 ⇒ τ(c) ⊆ 〈u, 1〉, for any constantc

For some constantc, τ(c) = 〈u, v〉 ⇒ [∀x τ(x)] ⊆ 〈0, v〉
These definitions enable us to evaluateIKnows for terms taking on values inB. Notice however that most of the

definitions are in terms of⊆. This is because we can, in general, only guarantee valid results, not optimal ones. For
example, if we assumeτ = 〈0, 1〉 then we get thatτ ∨ ¬τ ⊆ 〈0, 1〉. While this is valid, it is clearly not optimal. Since
there are only two numbers inB we can subdivide to perform an exhaustive search for the optimal value. That is, let
τ = τ0 ∪ τ1, whereτ0 = 〈0, 0〉, andτ1 = 〈1, 1〉. Now we get thatτ0 ∨¬τ0 = 〈1, 1〉, andτ1 ∨¬τ1 = 〈1, 1〉. With more
variables the exhaustive search approach has worst case exponential complexity. In general it may be observed that if
each variable occurs only once in an expression then evaluating it will yield an optimal result. Also if we start with
thin intervals then we will also get an optimal result. Finally, for a propositional formula in Blake canonical form [3]
evaluation with intervalsalwaysyields an optimal result [7]. Moreover, all propositional formulas can be converted
to this form. Thus we can evaluate propositional formulas in linear time and get optimal results. The catch is that
converting propositional formulas to Blake canonical form is NP-hard.

When we consider quantifiers the above rules would not form the basis of a particularly useful procedure for
evaluating expressions. We recall that the simplest correct procedure would be the one that always just returns the
interval〈0, 1〉. For queries containing quantifiers the procedure that follows from the above rules is almost as useless,
except that it works adequately when tell it about a specific instance. It is important to bear in mind however that,
in general, we are dealing with problems that are not even computable. Consequently foranyfinite set of rules there
will always be problems for which we can do no better than return the maximal interval. One immediate consequence
of this is that designers of interval arithmetic packages never need worry about unemployment! Regardless, the rules
given above certainly suffice as a simple starting point.

Therefore, as we should expect, intervals do not provide us with a means to magically circumvent complexity
problems. What they do provide, however, is the ability to track our progress in solving a problem. For the majority
of real world problems, where exact knowledge is not imperative, this will often allow us to stop early once we have a
“narrow enough” interval. At the very least we can give up early if convergence is too slow. This should be contrasted
to other methods of evaluating expressions where we can never be sure whether the method is completely stuck, or is
just about to return the solution.

Let us now consider some more examples in which our interval arithmetic approach can be shown to be useful and
valid. We begin with a simple example. Suppose we have two relational fluentsP , andQ, and that we knowP is true
or we knowQ is true:

Knows (P, s) ∨ Knows (Q, s).

Using theK-fluent it is not hard to see that this implies that we knowP or Q:

Knows (P ∨ Q, s).

14



Proof. The proof involves expanding out the definition ofKnows :

Knows (P, s) ∨ Knows (Q, s) , (∀s′ K(s′, s) ⇒ P (s′)) ∨ (∀s′′ K(s′′, s) ⇒ Q(s′′)),

and then proceeding by case analysis. First consider the case when:

∀s′ K(s′, s) ⇒ P (s′).

Then we can weaken the postcondition to give:

∀s′ K(s′, s) ⇒ P (s′) ∨ Q(s′).

The other case is symmetrical, and the result follows from the definition ofKnows given in equation 3.

It is also not hard to see that the implication doesnot hold the other way around. As a counter example, consider the
case when we have exactly twoK-related situations:sa andsb, such that:P (sa), ¬Q(sa), ¬P (sb) andQ(sb).

Now consider the same example using interval-fluents. Once again we can easily prove that:

Knows′ (P, s) ∨ Knows′ (Q, s) ⇒ Knows′ (P ∨ Q, s).

Proof. We begin by expanding out definitions:

IKnows (P, s) = 〈1, 1〉 ∨ IKnows (Q, s) = 〈1, 1〉,

and proceed by case analysis. When:

IKnows (P, s) = 〈1, 1〉,

from definitions 9.1 we have that:

IKnows (P ∨ Q, s) = 〈1, 1〉.

The other case is symmetrical, and the result follows from the definition ofKnows′ given in equation 11.

Conversely, if we start from the assumption:

Knows′ (P ∨ Q, s) , IKnows (P ∨ Q, s) = 〈1, 1〉.

Then, all the definitions 9.1 allow us to conclude is tautologies, namely thatIKnows (P, s) ⊆ 〈0, 1〉 andIKnows (Q, s)
⊆ 〈0, 1〉. That is we can say nothing about our knowledge ofP or our knowledge ofQ. So, as we should hope, the
implication doesnothold the other way around.

Let us now consider some more examples. Consider knowingP to be false:Knows (¬P, s) versus not knowing
P : ¬Knows (P, s). Firstly, if we assume thatK is reflexive, then we have that:

Knows (¬P, s) ⇒ ¬Knows (P, s)

Proof. The proof is straightforward: We don’t knowP if in at least one of theK-related worldsP is false. So, ifP is
false in all theK-related worlds the result follows. We just have to be careful that there are anyK-related worlds at all.
This can be inferred from the fact thatK is reflexive, soK(s, s).

The implication clearly does not hold in the other direction.
Likewise, we have that:

Knows′ (¬P, s) ⇒ ¬Knows′ (P, s)

15



Proof.

Knows′ (¬P, s)
, IKnows (¬P, s) = 〈1, 1〉
⇒ IKnows (P, s) = 〈0, 0〉
⇒ IKnows (P, s) 6= 〈1, 1〉
⇒ ¬IKnows (P, s) = 〈1, 1〉

And conversely

¬Knows′ (P, s)
, ¬IKnows (P, s) = 〈1, 1〉
⇒ IKnows (P, s) = 〈0, 0〉 ∨ IKnows (P, s) = 〈0, 1〉

case (i)

IKnows (P, s) = 〈0, 0〉
⇒ IKnows (¬P, s) = 〈1, 1〉

but for case (ii)

IKnows (P, s) = 〈0, 1〉
⇒ IKnows (¬P, s) = 〈0, 1〉

so as we should hope the implication does not hold the other way around.
Now, consider the example of∃x Knows (P (x), s), versusKnows (∃x P (x), s).

Firstly we have that

∃x Knows (P (x), s) ⇒ Knows (∃x P (x), s)

Proof. Knows (∃x P (x), s) holds if in eachK-related situations′ there is a constantcs′ such thatP (cs′ , s′) holds.
Note, the constantcs′ that makesP (x, s) true can be a different constant in eachs′. Our assumption, however, is that
there is some constantc such thatP (c, s′) holds in everyK-related situations′. Therefore, in eachK-related situation
s′, we can simply setc = cs′ , and the result follows.

The implication clearly does not hold in the other direction.
Now consider the same example using intervals. We also have that:

∃x Knows′ (P (x), s) ⇒ Knows′ (∃x P (x), s)

Proof.

∃x Knows′ (P (x), s)
, ∃x IKnows (P (x), s) = 〈1, 1〉

Then, for some constantc, we have that

IKnows (P (c), s) = 〈1, 1〉
⇒ IKnows (∃x P (x), s) ⊆ 〈1, 1〉
⇒ IKnows (∃x P (x), s) = 〈1, 1〉

16



In the other direction we have that:

Knows′ (∃x P (x), s)
, IKnows (∃x P (x), s) = 〈1, 1〉
⇒ IKnows (P (c), s) ⊆ 〈0, 1〉

Which is a tautology, from which we can (rightly) conclude nothing.
Finally, in section 3.3 we saw that we could make deductions based onmodus ponens. Fortunately, we can perform

similar reasoning with intervals.

Theorem 9.1. Let τ0 and τ1 be terms for that take on values inB, such that〈u, v〉 is a valid interval value for
IKnows (τ0, s), andτ0[s] ⇒ τ1[s]. Then,IKnows (τ1, s) ⊆ 〈u, 1〉.
Proof. Since〈u, v〉 is a valid value forIKnows (τ0, s), by definition 8.1, we have that

IKnows (τ0, s) = 〈u, v〉 , ∀s′ K(s′, s) ⇒ τ0[s′] ∈ 〈u, v〉.

In particular,uτ0[s′]. Also, by the assumption thatτ0[s] ⇒ τ1[s] we have thatτ0[s′] 6 τ1[s′]. Hence,u 6
τ0[s′]τ1[s′] 6 1, to give us that

∀s′ K(s′, s) ⇒ τ1[s′] ∈ 〈u, 1〉.

Therefore, by definition 8.1,〈u, 1〉 is a valid interval forIKnows (τ1, s), as required.

10 Inaccurate Sensors

In [2], theK-fluent approach is extended to handle noisy sensors. It is worth noting that by redefiningKnows we can
also easily extend our approach to allow for inaccurate sensors. We may say that we know a fluent’s value to within
some∆, if the width of the interval is less than twice∆:

Knows (∆, f = z, s) , If (s) ⊆ 〈z − ∆, z + ∆〉. (16)

If we have a bound of±∆ on the greatest possible error for the sensor that recorded yesterday’s temperature then
we can state that the value sensed for the temperature is within±∆ of the actual value:

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = max(Itemp(s), temp(s) − ∆) ∧ v = min(temp(s) + ∆, Itemp(s))) ∨

(a 6= senseTemp ∧ Itemp(s) = 〈u, v〉)]. (17)

11 Sensing Changing Values

Until now, we only considered sensing fluents whose value remains constant. In [17] once a fluent becomes known
then it stays known. That is, if the value of a known fluent changes then the agent will automatically know the fluents
new value. In many cases this is somewhat counterintuitive. For example, if one has checked the temperature once
then it is quite natural to assume that after a certain period of time the information may be out of date. That is, we
would expect to have to sense the temperature periodically.

Using the epistemicK-fluent to model information becoming out of date corresponds to adding possible worlds
back in. Unfortunately, theK-fluent keeps track of an agent’s knowledge of all the sensory fluents all at once. It can
therefore be hard to specify exactly which worlds the agent should be adding back into its consideration. In contrast,
with intervals there is nothing noteworthy about allowing the particular relevant interval to expand. We must simply
ensure that our axioms maintain the state constraint that the interval bounds the actual value of the fluent.

17



At the extreme we can extend our approach to handle fluents that are constantly changing in unpredictable ways.
We can model this with exogenous actions. We assume that the current temperature changes in a completely erratic
and unpredictable way, according to some exogenous actionsetTemp. Then, we can write a successor-state axiom for
temp that simply states that the temperature is whatever it was set to:

Poss (a, s) ⇒ temp(do(a, s)) = z ⇔
[(a = setTemp(z)) ∨ (a 6= setTemp ∧ temp(s) = z)].

We can, also, write a successor state axiom forItemp. In particular, if we again assume accurate sensors, we can state
that the temperature is known after sensing it, otherwise, it is completely unknown:

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = v = temp(s)) ∨ (a 6= senseTemp ∧ u = 0 ∧ v = ∞)]. (18)

Note that this definition works because, by definition,∀s temp(s) ∈ 〈0,∞〉. At first glance it may appear strange that
we have, for example,Itemp(do(setTemp(2), s)) = 〈0,∞〉. Upon reflection, however, the reader will hopefully recall
that our intention is to use the IVE fluents to model an agent’s knowledge of its world. Therefore, until sensing, the
agent rightly remains oblivious as to the effect of the exogenous actionsetTemp. For the fluent that keeps track of the
temperature in the virtual world we of course get thattemp(do(setTemp(2), s)) = 2.

If we have a bound on the maximum rate of temperature change, per unit time, to be∆temp, and we add the ability
to track the time to our axiomatization, then we can do a lot better. Suppose we have an actiontick that occurs once
per unit of time. Moreover, we limit exogenous actions to only occurring directly before a tick action. Then we can
have a successor-state axiom that states the temperature is known after sensing; or after a period of time it is known to
have changed by less than some maximum amount; otherwise it is unchanged:

Poss (a, s) ⇒ [Itemp(do(a, s)) = 〈u, v〉 ⇔
(a = senseTemp ∧ u = v = temp(s)) ∨

(a = tick ∧ ∃up, vp Itemp(s) = 〈up, vp〉 ∧
u = max(0, up − ∆temp) ∧ v = vp + ∆temp) ∨

(a 6= senseTemp ∧ a 6= tick ∧ Itemp(s) = 〈u, v〉]. (19)

This type of axiom can be used to “plan to replan”. That is, the degradation in our knowledge level is predicatable
and can be used as the basis for a replanning action.

12 Conclusion

In the introduction, we mentioned that what started us on the work we have described in this paper was a desire to build
an “intelligent” autonomous agent. Happily, and thanks in large part to the work described herein, we have indeed
successfully developed autonomous agents that can reason, act and perceive in changing, incompletely known, unpre-
dictable environments. In particular, we have applied our approach to computer animation, computer games, and cin-
ematography. Some frames from some corresponding animations can be found atwww.cs.toronto.edu/˜funge .
Additional documentation on the work can be found in [5].

References

[1] G. Alefeld and Jurgen Herzberger.Introduction to Interval Computations. Academic Press, 1983.

[2] F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning about noisy sensors in the situation calculus. In C.S.
Mellish, editor,Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI–
95), pages 1933–1940, Montreal, August 1995.

18



[3] A. Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago, 1938. Published by
University of Chicago Librarries, 1938.

[4] Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.

[5] J. Funge.Making Them Behave: Cognitive Models for Computer Animation. PhD thesis, Department of Com-
puter Science, University of Toronto, Toronto, Canada, 1998.

[6] M.L. Ginsberg and D.E. Smith. Reasoning about action ii: the qualification problem.Artificial Intelligence,
35:311–342, 1988.

[7] H. Levesque, University of Toronto.Personal communication, August 1997.

[8] S. Hanks and D. McDermott. Temporal reasoning and default logics. Technical report, Yale University, 1985.
Computer Science Research Rept. No. 430.

[9] E.C.R. Hehner. Boolean formalism and explanations. InInternational Conference on Algebraic Methods and
Software Technology, July 1996.

[10] Fangzhen Lin and Raymond Reiter. State constraints revisited.Journal of Logic and Computation, Special Issue
on Actions and Processes, 4(5):655–678, 1994.

[11] J. McCarthy. Epistemological problems of artificial intelligence. InProceedings of the International Joint
Conference on Artificial Intelligence (IJCAI–77), pages 1038–1044, Cambridge, MA, 1977.

[12] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 463–502. Edinburgh University Press, Ed-
inburgh, 1969.

[13] R. E. Moore.Interval Analysis. Prentice-Hall, 1966.

[14] R. E. Moore.Methods and Applications of Interval Analysis. SIAM, 1979.

[15] J. Pesonen and E. Hyvonen. Interval approach challanges monte carlo simulation. InScientific Computing,
Computer Arithmetic and Validated Numerics, 1995.

[16] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression. In Vladimir Lifschitz, editor,Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honour of John McCarthy, pages 359–380,418–420. Academic Press, 1991.

[17] R. Scherl and H. Levesque. The frame problem and knowledge-producingactions. InProceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI–93), Menlo Park, CA., 1993. AAAI Press.

[18] J. Tupper. Graphing Equations with Generalized Interval Arithmetic. MSc thesis, Department of Computer
Science, University of Toronto, Toronto, Canada, January 1996.

19


