Non-Markovian Control in the Situation Calculus

Alfredo Gabaldon

Department of Computer Science
University of Toronto

Toronto, Canada M5S 3G4

alfredo@cs.toronto.edu

September 28, 2000

Abstract

The property that the executability and the effects of an action are determined
entirely by the current state or situation is known as the Markov property and is
assumed in most formalizations of action. The fact is, however, that it is not difficult
to run into scenarios where the Markov property is not present. We consider removing
this assumption from the situation calculus based formalization of actions of Reiter,
which forms the basis of the programming language GOLOG, and define an operator
for regressing formulas that quantify over past situations with respect to such non-
Markovian basic action theories.

1 Introduction

At the core of research in Cognitive Robotics and the logic approach to AT in general is the
problem of reasoning about the effects of actions and its accompanying frame, qualification,
ramification problems, etc. During the last decade a considerable amount of effort was
devoted to this problem and several proposals have been put forward. There are the Situation
Calculus [7, 8], the Event Calculus [5], the action language A [4] and its extensions, and the
Features and Fluents approach [12] among others.

All of these proposals assume what is known in systems and control theory as the Markov
property: whether an action can be executed and what are its effects is determined entirely
by the current state or situation. The fact is, however, that it is not difficult to run into
scenarios when the Markov property is not present and the executability and effects of an
action depend not only on what holds in the current situation, but also on whether some
conditions held and some actions occurred at points arbitrarily far into the past. For example,
a robot can only attempt a login into a computer if it hasn’t performed the same action in
each of the previous few situations. Or the effect of entering a pin number at an ATM
machine will be that the bank card is confiscated if an incorrect pin number was used three
times in a row. Of course, one can represent this with a Markovian theory by introducing

more fluents, but the resulting theory can be considerably larger. In the ATM example, for
instance, one would need to introduce fluents pin Atternptl and pin Attempt2 and axioms to
define when they change truth value.

In this paper, we consider relaxing the requirement of the Markov property from the
situation calculus based formalization of actions of Reiter [10] and modifying the regression
operator to work with non-Markovian basic action theories and formulas that quantify over
past situations. The situation calculus based programming language GOLOG [6] can then be
extended to take advantage of the additional flexibility. As an example, consider a scenario
where a robot is not supposed to start cleaning an office unless the student that inhabits it
has gotten out of the room sometime in the past since the robot arrived. This information
can be incorporated into the action precondition axioms of the robot’s non-Markovian action
theory.

An additional strong motivation behind this work is the need to accommodate qualifi-
cations on actions expressed in the form of temporal logic constraints. These constraints
are intended to further reduce the number of actions available to the robot at a particular
situation based on whether the resulting history satisfies the constraints in some sense. In
the case of the cleaning robot mentioned above, for modularity and other reasons, it may be
better to incorporate the precondition on the action of start-cleaning in the form of a tempo-
ral constraint. In planning, domain dependent knowledge expressed as temporal constraints
has been used for search control with very good results [1, 2]. Furthermore, not surprisingly,
this problem has a Database analog: dynamic integrity constraint checking (see e.g. [11, 3]).
We believe our work can lead to contributions in these areas as well.

2 The language of the Situation Calculus

In this section we briefly review the language of the situation calculus. For a complete
description see [9].

The language Lgtcarc 1s a second order language with equality and with three disjoint
sorts: action, situation and object. In addition to A, —, 3 and definitions in terms of these
for the other standard logical symbols, the alphabet of Lgtcq1- includes a countably infinite
number of variable symbols of each sort and predicate variables of all arities. A constant
symbol Sy and a function do of sort : action x situation — situation, a binary predicate
symbol C used to define an ordering relation on situations, a binary predicate symbol Poss :
action X situation, and for each n > 0 a countably infinite number of function symbols of sort
(action Uobject)” — action called actions, a countably infinite number of predicate symbols
of sort (actionUobject)™ x situation called relational fluents, and a countably infinite number
of function symbols of sort (action U object)” x situation — action U object.

Intuitively, situations are finite sequences of actions (sometimes referred to as histories)
and this intuition is captured by a set of four Foundational Axioms [9]':

do(ay, s1) = do(asz, s2) D ay = as A s1 = sy, (1)

(VP).P(S0) A (Va,s)[P(s) D P(do(a,s))] O (Vs) P(s), (2)

TLower case Roman characters denote variables. Free variables are implicitly universally prenex quantified.

-8 C So, (3>
sCdo(a,s)=sCsVs=5s". (4)

The initial situation or empty history is denoted by constant So. Non-empty histories
are built by means of the function do.

3 Basic Non-Markovian Theories of Action

In this section we introduce the notion of situation-bounded formulas. Intuitively, an Lgseare
formula is bounded by situation term o if all the situation variables it mentions are restricted,
through equality or the C predicate, to range over subsequences of o. This notion is useful
because in order to apply regression on a formula, one needs to know how many actions there
are in each situation, i.e. how many regression steps to apply. A formula that mentions a
situation variable can be regressed provided that the variable is restricted to be a subsequence
of some situation term with a known number of actions in it.

The following notation is used through out: for n > 0, we write do([e, ..., a,],A) to
denote the term of sort situation do(a,,do(a,—1,...,do(ai,)...)) where aq,...,q, are
terms of sort action and) stands for a variable s of sort situation or the constant Sg.

Definition 1 For n > 0, define the length of the situation term do([a, ..., a,], A) to be n.

Definition 2 For n > 0, let aq,...,a, be terms of sort action. A term do([ov, ..., a,),s) is
rooted at s iff s is the only variable of sort situation mentioned by aq, ..., a, or no variable
of that sort is mentioned. A term do([ay, ..., a,], So) is rooted at Sy iff aq,. .., @, mention

no variables of sort situation.

Definition 3 For n > 0, let o be a term do([ev,. .., a,],A) rooted at A. The formulas of
Liicale bounded by o are the smallest set of formulas such that:

1. If 1,1, are terms of the same sort whose subterms of sort situation (if any) are all
rooted at A, then ¢; = {3 is a formula bounded by o.

2. If ¢/ is a term of sort situation rooted at some situation variable or constant Sg, then
o' C o is a formula bounded by o.

3. For each n > 0, each n-ary non-fluent predicate P, each n+1-ary fluent F' and each
n-ary action function symbol A, if ¢,...,1, are terms of sort action or object whose
subterms of sort situation are all rooted at A, then P(ty,...,1,), F(t1,...,l,,0) and
Poss(A(ty,...,t,),0) are formulas bounded by o.

4. If ¢’ is a term of sort situation rooted at A" and W is a formula bounded by a possibly
different term of sort situation also rooted at A, then ¢’ C o AW and ¢/ = o AW are
formulas bounded by o.

5. If Wi, W, are formulas bounded by situation terms rooted at A, then =W, W; A W,
and (Jv)Wji, provided o is not rooted at v, are formulas bounded by o.

Example 1 The sentence
(Elav s).do(a, S) (i do([Blv B27 B3]7 SO) N P((]O([Cl, 02]7 S))

is bounded by do([By, Bz, B3], So), with subformula P(do([Cy, (3], s)) bounded by do([Cy, (], s).

Here, variable s is restricted to be equal to one of the situations Sy or do(Bj, So).

Example 2 Let o, ¢’ be two different terms of sort situation rooted at two different variables,
and let do(d, s’) and do(3,s"”) be terms of the same sort rooted at s’ and s” respectively.
The formula

(0! T do(d@,s") Vo' T do(3,s")) Ado(d@,s') T o Ado(B,s") C o
is bounded by ¢ with subformulas

~(0' T do(d,s") A do(d,s') C o Ado(3,s") C o)
and

~(0" T do(3,s") A do(G,s') C o A do(B,s") C o)
bounded by o.

Definition 4 Let W be a formula of L;.0. bounded by o rooted at s. Then W is strictly
bounded by o if

o the only term of sort situation rooted at s that is mentioned by W and is different to
o is S.

o for every maximal?term o' of sort situation mentioned by W that is different to o, W
mentions an atom ¢’ C ¢” or ¢/ = o”.

o W does not mention the situation constant 5.

The intuition behind the above definition is that the situation terms mentioned by a
formula strictly bounded by a term o be restricted to subhistories of . The sentence
in Example 1 for instance is not strictly bounded by do([B, Bs, B3], So) since the term

do([Cy, (%), s) does not satisfy the second condition and in fact it is not a subhistory of
dO([Bl, Bg, Bg], S())

Example 3 The Past Temporal Logic connectives of Chomicki [3] can be expressed in the
situation calculus with the following strictly bounded formulas:

1. Previously a: (Ja,s’).s = do(a, s") A a(s').

2. asince B: (3s').s' T sAB(s") AN(Vs").s' Cs"CsDals").

2A situation term is maximalif it is not a proper subterm of another situation term in the formula [9].

3. Sometime in the past oz (3s').s' T s A afs').
4. Always in the past a: (Vs').s' T s D a(s').
Definition 5 An action precondition axiom is a sentence of the form:
Poss(A(z1,...,2,),8) = Ma(zr,. .. 20, s),

where A is an n-ary function symbol and H4(z1,...,z,,s) is a first order formula with free
variables among x4, ..., %,,s that is bounded by a situation term rooted at s and does not
mention the predicate symbol Poss.

Example 4 Consider the blocks world where you have a fluent on(z, y, s) saying that block
z is on top of block y in situation s, and an action unstack(z,y) which has the effect of
making this fluent false when it is executed. Assuming that in this domain the robot’s goal
is always to build towers, this action is never used to construct part of a goal tower, but it
may be used to remove blocks from towers we don’t need. Since the robot does not construct
unnecessary towers, we can assume that if there is the need to unstack(z,y) then it must
be the case that x has always been on y and thus restrict this action to be possible only in
this case. The following Action Precondition Axiom captures this:

Poss(unstack(z,y),s) = (Vs').s' C s D on(z,y,s).

Definition 6 A successor state axiom for an (n + 1)—ary relational fluent F' is a sentence of
the form:

F(zy,...,z,,do(a,s)) = Op(x1,...,2,,0a,3),

where ®p(zy,...,2,,a,5) is a first order formula with free variables among zi,...,z,,a,s
that is strictly bounded by s and does not mention the predicate symbol Poss.
A successor state axiom for an (n + 1)-ary functional fluent f is a sentence of the form:

flzr, .., zp,do(a,s)) =y = ¢p(zy,...,2,,y,0a,),

where ¢¢(z1,...,2,, Y, a,s)is a first order formula with free variables among z4,. .., z,,y,a,s
that is strictly bounded by s and does not mention the predicate symbol Poss.

Example 5 Consider the ATM example mentioned in the introduction. A Successor State
Axiom for a fluent card_con fiscated(s) could have the form:

card_con fiscated(do(a, s)) = card_con fiscated(s) V
[(3s1, 52, p).a = enter_pin(p) A invalid_pin(p)A
do(a,s1) C do(a,sy) C s.]

Relaxing the strictly bounded condition in successor state axioms to be simply bounded,
complicates regression. Consider the following successor state axioms:

P(do(a, s)) = (3s).s' C s A Q(do([B1, Bz, B3], s'))
Q(do(a,s)) = (3s').s' C s A P(do([Cy,C4,C5], 8"))

Intuitively, “regressing” P(do[A1, A3, Sp) with respect to the above axioms would result
in Q(do([By, Bz, B3], S0)) and this in turn in P([Cy,Cy,C3],50) vV P([B1,Ch,Cz, Cs], o).

Clearly, regression is not working here since the situation terms are growing.

A Non-Markovian Basic Action Theory D is a theory of Lgjteqar. consisting of the following
set of axioms:

o the foundational axioms X.

o a set of successor state axioms Dss.

e a set of action precondition axioms D,,.

e a set of unique name axioms for actions Dy, .

o a set of first order sentences Dg, that mention no situation terms other than Sy and
represent the initial theory of the world.

D must also satisfy some consistency properties on fluents (see [9] for details).

4 Regression

In this section we define, building on the work of Reiter [10], a regression operator R for
regressing bounded formulas of L0 with respect to a non-Markovian basic action theory.

Definition 7 A formula W of Litcale is regressable iff

1. W is first order.
2. W is bounded by a term of sort situation rooted at 5.

3. For every atom of the form Poss(a, o) mentioned by W, a has the form A(ty,...,1,)
for some n-ary action function symbol A of Lgiscalc.

Definition 8 (Regression) Let W be a regressable formula of Lgcqzc-
1. If W is a regressable atom?® of one of the following forms:

e an equality atom of the form

dO([O/I, R ,Oé;n], SO) = dO([O{h .- .,Oén], SO)u

3Note that a regressable atom that is not an equality or a C-atom mentions only situation terms rooted
at So.

e a [-atom of the form
do([ay,...,al.],S0) C do([ax,. .., ax],S),

e an atom Poss(A(1), o) where A() and ¢ are terms of sort action and situation
respectively,

e an atom whose only situation term is So,

e an atom that mentions a functional fluent term of the form g(f, do(a, o)) and
is not of the form ¢’ = ¢” or ¢/ C ¢” where ¢’ is rooted at a variable of sort
situation,

e a relational fluent atom F(t_; do(a, o)),

then R[W] is defined exactly as it was in [9] for theories with the Markov property.

. Suppose W is a regressable formula of the form
do([aq,...,an],s) C do([ay, ..., al],So) A W'

where W’ may be empty.
If m > n, then R[W]| = false.
If m < n, then

RIW] =
—{ = R[do([ea, - .., an],s) = do([a),...,al,_1],5) AN W] A
—Rldo([en, ..., anl],s) C do([ef, ... ol _1],50) AN W'] }.

. Suppose W is a regressable formula of the form
do([aq,...,an],s) = do([e], ..., al], So) AN W'

where m > 1 and W’ may be empty.
If m > n, then R[W] = false.
If m < n, then

RW]l= Rl(ar =0l _, oy Ao ANy = al, A
s=do([ef,...,al_,.],5) NW"].

. Suppose W is a regressable formula of the form
s=do([ar,...,a,],5) As =do([af,...,al],S0) AW’

where W' may be empty.

If n # m then R[W] = false.
If n = m then

RIW] = Rldo([a, ..., ay], Se) = do([a], ..., al.],So) N W]

5. Suppose W is a regressable formula of the form
s =do([ar, ... ,an],S0) N W'

such that W’ may be empty and it does not mention any other equality atoms between
s and a situation term rooted at S,. Then

RIW] = RIW[3oiar.anl50))-
6. For the remaining possibilities, regression is defined as follows:

R[-W] = -R[W],
RIW, A Wa] = RIWA] A R[WS).

For a variable v of any sort other than situation:
R[(Fo)W] = (30)R[W].

For a variable s of sort situation:
R[(Is)W] = R[W].

Theorem 1 Suppose W is a regressable formula of L0401 and D is a basic non-Markovian
action theory. Then,

1. R[W]is a formula uniform in Sp.*

2. D (V)W = R[W].

Proof 1 We adapt the proof of soundness and completeness of regression for Markovian
theories of action from [9]. The proof is by induction based on a binary relation < similar
to that in [9] whose definition we omit here.

Given a bounded regressable formula W, let L(W) be the sum of the lengths of all
situation terms o rooted at some situation variable such that W does not mention any atom
oc=o0c" oroC o, and define

index(W) = ((C,E, I, \,)s,...),P)

where (' is the total number of connectives and quantifiers in W, F is the number of equality
atoms on situation terms in W, I is the number of C-atoms on situation terms in W, for

*A formula is uniform in o iff it is first order, does not mention Poss, [, situation variables, equality on
situations, and ¢ is the only situation term mentioned by fluents in their situation argument. For the formal
definition see [9].

m > 1, A, is the number of occurrences in W of maximal situation terms of length m — L(W/)
rooted at Sy, and P the number of atoms of the form Poss(a, o) mentioned by W.

Our definition of index(W) differs from the one used by Reiter and Pirri in two ways.
Parameters F/ and I appear now before the As because regressing a fluent may introduce
new equality and C-atoms. More noticeably, the As here are “shifted” right by L(W), e.g.
if there is one term of length k then Ay ;) = 1. The reason behind this is that after a
regression step on a formula with a situation variable, it is possible that a situation term is
replaced by a longer one. For instance, the formula s = do(A, Sp) A P(do(B, s)) would be
regressed to P(do([A, B], So)).

If W has index ((0,0,...),0), then W must be an atom which does not mention Poss,
C or equality between situation terms, and W must be uniform in Sy, which implies by
definition of R that R[W] = W, and hence the theorem holds.

Consider W such that v = index(W) > ((0,0,...),0) and assume the theorem for all

regressable formulas with index < v.

1. Inthe cases when W is an equality atom of the form do([ev, . ..,], So) = do([af, ..., o], So),
a C-atom of the form do([en, ..., a], S0) C do([ef, ..., al], So) or an atom whose only
situation term is Sy, the argument is identical to that in [9] so we omit it here.

2. Suppose W is a regressable atom of the form Poss(A(f), o) for terms A(ﬂ and o of sorts
action and situation respectively. Then there must be an action precondition axiom (5)
in D for action A. By definition, Il 4(Z, s) does not mention predicate Poss. Therefore,
inde;c(HA(t_; o)) < index(W). Furthermore, since Poss(A(f), o) is a regressable atom,
o and all subterms of sort situation mentioned by ¢ must be rooted at Sy. From this
and the definition of action precondition axioms it follows that HA(t_; o) is regressable.
The argument then follows as in [9].

3. Suppose W mentions a functional fluent term f(tj do(a, o)), with corresponding suc-
cessor state axiom

f(fa dO(CI,,S)) =Yy= ¢f(£7y7a73)7

in Dss, that is to be regressed by the primality criterion described in [9]. Let us show
that

(Fy)-d(Ly, @, 0) A W | o)) (5)

is regressable and has index < index(W). First, since W is an atom and it is bounded
by a situation term rooted at Sg, then either o is rooted at So or W is an atom of the
form oy C o, where oy and o are rooted at the same variable and oy 1s rooted at Sy.
Since, by definition, ¢;(Z,y, a, s) is bounded by s, in either case formula (5) is bounded
by a situation term rooted at Sp and hence is regressable.

Second, ¢¢(Z,y,a,s) does not mention the predicate Poss and since f(t_; do(a,0)) is a
prime functional fluent term (see [9]) the only term of sort situation mentioned by ¢, o
is So. Moreover, since ¢¢(Z,y, a, s) is strictly bounded by s, all terms of sort situation

9

mentioned by qb(t_; y,a,c) which are different to o are rooted at a situation variable
and appear in an equality or C-atom. Therefore,

indew((fly).qb(f;y, a,o) A\ W|£(F’d°(a’o))) < index(W).

The argument then follows as in [9].

4. Suppose W is a relational fluent atom of the form F(f_; do(a, o)) that does not mention
any functional fluent term of the form g¢(¢, do(e, o)), and with the following successor
state axiom:

F(Z,do(a,s)) = ®p(Z,a,s).

Since F(1,do(a,a)) is regressable, ¢ and all subterms of sort situation mentioned by
£ must be rooted at Sy. Since, by definition, ® (7, a,s) is bounded by s, ®(f, a, o) is
regressable. Furthermore, ®5(Z,a,s) does not mention the predicate Poss and, since
it is strictly bounded by s, all terms of sort situation mentioned by ‘I)(t_; a, o) which are
different to o are rooted at a situation variable and appear in an equality or C-atom.
Therefore,

index(®(1, o, 0)) < index(W). The argument then follows as in [9].

5. The only remaining cases are when W is an atom ¢’ C o and ¢’ = o where ¢’ is rooted
at some situation variable and o is rooted at Sy.° These cases are covered below.

6. Suppose W is a regressable formula of the form do([aq, ..., an],s) C do([ef, ..., al], So)A
W/
where W’ may be empty. If m > n, R[W] = false and the theorem is immediate. For
m < n, it 1s easy to see that the indices of formulas

do([ar, ...,y 8) = do([ay, ... al_],S0) AN W' (6)
do([ay, ..., an,],s) C do([ay, ... al_1],S0) A W' (7)

are < index(W). Furthermore, since W is regressable, W’ is bounded by a situation
term rooted at Sy or by one rooted at s. Therefore, formulas (6) and (7) are regressable.
This concludes part 1 of the theorem. Part 2 follows from the induction hypothesis
and Foundational Axiom (4).

7. Suppose W is a regressable formula of the form do([ay, ..., anl, s) = do([cf, ..., al], So)A
W/
where W’ maybe empty. If m > n, R[W] = false and the theorem is immediate. In the
case m < n, theformulaa; = af,_ A... Aoy, = al, A s =do([a],...,al_.],5) AW

clearly has an index < index(W) and is regressable and equivalent to W.

5Tf o is also rooted at some situation variable, the atom is not regressable.

10

8. Suppose W is a regressable formula of the form s = do([ay,...,an],5) A s =
do([ofy, ..., al], So) N W'

where W’ maybe empty. If m # n, then R[W] = false and the theorem is immediate.
If m = n, it is easy to see that the formula do([a1, ..., an], S) = do([af, ..., al.], So) A
W' has index < index(W) and is regressable and equivalent to W.

9. Suppose W is a regressable formula of the form s = do([en, ..., a,], So) AW’ where
W’ maybe empty.

If W' does not mention variable s, then the theorem is immediate. If W’ mentions vari-
able s then it mentions a term o of sort situation rooted at s which does not appear in an
equality atom or an atom o C o’ of W. This implies that L(W) > L(W'[3,a,, . an),50))-
Therefore, index(W'|3,(a,.....an,50)) = tndex(W). The two formulas are clearly equiva-
lent.

10. The cases when W is a regressable formula of the form —W;, Wi AW, and (3v)W; are
straightforward.

Corollary 1 Suppose W is a regressable formula of L1041 and D is a basic non-Markovian
theory of actions.

D = W iff Ds, U Duna |= R[W].

The proof of this corollary requires a Relative Satisfiability Theorem similar to Theorem 1
in [9], establishing that a non-Markovian basic action theory D is satisfiable iff D,,, U Ds,
is satisfiable.

5 Conclusion

As we mentioned in the introduction, most of the proposals that have been introduced for
representing dynamical systems assume the Markov Property. Removing this assumption
from the version of the situation calculus discussed throughout this paper without major
changes to the formalism was possible thanks to the fact that histories are first order objects
in these theories. Removing this assumption from other formalizations where this is not
the case would require considerable more effort. The action languages based on A [4] have
semantics based on transition systems. This makes it difficult to refer to paths of the
transition system when defining the transition system itself, although once it is defined, one
can refer to histories in queries. Event calculus formulas can refer to the past by means of
time points, but additional machinery is necessary to extract a sequence of actions from the
information given in terms of time points.

We have extended Reiter’s situation calculus based formalization of actions [10, 9] to
allow non-Markovian action theories, i.e. theories where action precondition and successor
state axioms may refer to situations that precede the current situation, defined a class of
formulas bounded by a finite history and which may quantify over situation variables ranging
over the subhistories of the binding situation, and defined a sound and complete regression

11

operator which can be used to obtain a logically equivalent formula whose only situation
term is Sy from a formula from this class.

In the future, we plan to implement regression of formulas based on the non-Markovian
action theories introduced here, analyze the complexity of regression based on such theories,
extend GOLOG with the added functionality of non-Markovian control, and consider the
use of temporal logic constraints within this framework.

Acknowledgements: Special thanks to Ray Reiter for many suggestions and advice on
this work. T am also grateful to Fahiem Bacchus, Gero Iwan and Lucia Moura for useful
discussions related to the subject of this paper. Thanks also to the anonymous reviewers for
their comments.

References

[1] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in a
forward chaining planner. In M. Ghallab and A. Milani, editors, New Directions in
Planning, pages 141-153. T1OS Press, 1996.

[2] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control

knowledge for planning. Artificial Intelligence, 16:123-191, 2000.

[3] Jan Chomicki. Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Transactions on Database Systems, 20(2):148-186, 1995.

[4] Michael Gelfond and Vladimir Lifschitz. Representing Actions and Change by Logic
Programs. Journal of Logic Programming, 17:301-322, 1993.

[5] R.A. Kowalski and M.J. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, 1986.

[6] Hector J. Levesque, Raymond Reiter, Ives Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A logic programming language for dynamic domains. Journal of Logic
Programming, 31(1-3):59-83, April-June 1997.

[7] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University,
1963. Reprinted in Semantic Information Processing (M. Minsky ed.), MIT Press,
Cambridge, Mass., 1968, pp. 410-417.

[8] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence /, pages 463—

502. Edinburgh University Press, 1969. Also appears in N. Nilsson and B. Webber
(editors), Readings in Artificial Intelligence, Morgan-Kaufmann.

[9] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the Situation

Calculus. Journal of the ACM, 46(3):325-364, 1999.

12

[10] R. Reiter. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In V. Lifschitz, editor, Artificial Intelli-
gence and Mathemaltical Theory of Computation, pages 359-380. Academic Press, 1991.

[11] G. Saake and U. W. Lipeck. Foundations of Temporal Integrity Monitoring. In C. Rol-
land, F. Bodart, and M. Leonard, editors, Proc. of the IFIP Working Conf. on Temporal
Aspects in Information Systems, pages 235-249, Amsterdam, 1988. North-Holland.

[12] E. Sandewall. Features and Fluents: The Representation of Knowledge about Dynamical
Systems. Oxford University Press, 1994.

13

