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Abstract: Agents interacting with an incompletely known dynamic world need to
be able to reason about the effects of their actions, and to gain further information
about that world using sensors of some sort. Unfortunately, sensor information is
inherently noisy, and in general serves only to increase the agent’s degree of confi-
dence in various propositions. Building on a general logical theory of action formal-
ized in the situation calculus, developed by Reiter and others, we propose a simple
axiomatization of the effect on an agent’s state of belief of taking a reading from a
noisy sensor. By exploiting Reiter’s solution to the frame problem, we automatically
obtain that these sensor actions leave the rest of the world unaffected, and further,
that non-sensor actions change the state of belief of the agent in appropriate ways.
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1 Introduction
Folk wisdom in AI used to have it that when it came to modeling perception and ac-
tion (for robotics applications, for example), there was a fundamental decision that
needed to be made, which determined to a large extent the character of the work
to follow: Do we treat the uncertainty that results from noisy sensors and effectors
quantitatively, using, for example, a probabilistic formalism such as Bayesian nets
[Pea88], or do we use a logical model, and end up with formalisms such as STRIPS,
the situation calculus, or some sort of modal logic? More recently, however, it is
becoming increasingly clear that we can combine both probabilistic and logical rea-
soning in a single framework [Bac90, Hal90].

In this paper, we show how a logical account of perception and action, in partic-
ular, an account based on the situation calculus [MH69], can be augmented to deal
quantitatively with the uncertainty that arises from noisy sensors. The type of rea-
soning we hope to capture includes the increase in confidence that is obtained by
taking multiple sensor readings, and the progression of beliefs when ordinary ac-
tions (such as moving or grasping) are performed. There are standard probabilistic
models that deal with the fusion of multiple sensor readings, and similarly, once a
method is found for dealing with the frame problem, the situation calculus can deal
quite well with ordinary actions. What interests us here is the integration of these
notions.

An enriched version of the situation calculus, augmented with a solution to the
frame problem proposed by Reiter [Rei91], has proved to be a very convenient for-
malism for modeling actions, their prerequisites, and effects. Although Reiter’s pro-
posal is limited in a number of ways, it has been extended to handle aspects of the
ramification problem [LR94], agent ability [LLLS95], and continuous time [Pin94].
Another extension of the theory to deal with complex actions (sequence, iterations,
concurrency, non-determinism, etc.), briefly described in Section 2, has led to a novel
logic programming language called GOLOG. GOLOG has proven to be useful for de-
scribing high-level robot and softbot control [LLR95]. An implementation of GOLOG

exists at the University of Toronto, and a number of small sample programs (in-
cluding an elevator controller and a mail delivery robot) currently run in simula-
tion mode. Whether or not the situation calculus will continue to be useful in a non-
simulated robotic context, as additional extensions become necessary, or to what ex-
tent other representational formalisms can be put to similar use, remains to be seen.
Nevertheless, by casting our work within this framework we hope to take advantage
of these parallel developments.

Independently of the situation calculus, however, our formalism demonstrates an
interesting interaction between ordinary actions and noisy perceptual actions. And
as should be clear from our presentation, much of what we do here could be carried
out in other logical frameworks.

The format of the rest of the paper is as follows. In the next section, we briefly
review the theory of action in terms of which our account is formulated: the situ-
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ation calculus, the solution to the frame problem proposed by Reiter [Rei91], and
the extension, proposed by Scherl and Levesque [SL93], for dealing with knowl-
edge. In Section 3, we consider how knowledge is affected by readings from noisy
sensors. In Section 4, we augment the framework with probabilities, and present a
simple formalization within the situation calculus of the degree of belief an agent has
in propositions expressed as logical formulas. This allows us to formalize in more
quantitative terms the changes in belief that arise from readings of noisy sensors. Ex-
amples of the formalism at work are presented in Section 5, and some conclusions
are drawn in Section 6.

2 A Theory of Action
Our account of sensors is formulated as a logical theory

�
in an extended version

of the situation calculus [MH69]. The situation calculus is a many-sorted dialect of
the predicate calculus, containing sorts for (among other things) situations, which
are like the possible worlds of modal logic; for primitive deterministic actions; and,
since we will be dealing with probabilities, for real numbers. We assume the reader
is familiar with the basic intuitions underlying the situation calculus; we briefly re-
view the main ideas here.

2.1 The situation calculus and the frame problem
In this formalism, the world is taken to be in a certain state (or situation). Changes
to the world arise only as the result of actions. This is modeled by having actions
map situations to new situations using a special binary function symbol do. This
function maps action-situation pairs to new situations, i.e., ����� do ���
	��� means that
��� is the new situation that is the outcome of performing � in situation � . Predicates
and functions whose values vary from situation to situation are called fluents and, by
convention, take a situation as their last argument. We read, e.g., ������ 	��� as “ �� has
property � in situation � ”. �

The background theory
�

will contain axioms for the usual arithmetic operations
on the real numbers, unique name axioms for actions, and various other foundational
axioms for the situation calculus that need not concern us here. The domain depen-
dent part of

�
consists of axioms characterizing the initial state of the world ��� , and

the following: for every action type � , a precondition axiom of the form

POSS ����	���������������	
where � is the only situation term mentioned in the formula ��� �!��� ; for every fluent" 	 a successor state axiom of the form

POSS �!�#	����%$'& " ���� 	 do ���
	���(�)�+*�,)���� 	��
	����-!	
.
Of course, in a modal logic, the possible worlds, / , are not part of the syntax, and we would write/10 24365(78:9 instead of 365(78<; / 9 .
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where � is the only situation term mentioned in the formula * , ���� 	��
	��� . �
For example, the precondition axiom for the drop action might assert that it is

possible for the agent to drop an object � in situation � iff the agent is holding � in � :
POSS � drop � � ��	��� � Holding � � 	��� . For the fluent Broken, a successor state axiom
might assert that � is broken after the action � iff � was fragile and the agent dropped
it, or � was broken and the agent did not repair it: POSS �!�#	���� $ Broken � � 	 do �!�#	��� �%�
�!� � drop � � � � Fragile � � 	���(��� � Broken � � 	��� � ���� repair � � � ���

These axioms incorporate a treatment of the classic frame problem [MH69] pro-
posed by Reiter [Rei91], extending previous proposals by Pednault [Ped89], Schu-
bert [Sch90] and Haas [Haa87]. In particular, Reiter shows how the successor state
axioms above can be automatically generated from a collection of simple effect ax-
ioms describing only the changes that result from performing an action. Frame ax-
ioms need not be enumerated since they are entailments of the successor state axioms. �

Reiter’s solution to the frame problem applies only to primitive deterministic ac-
tions. However, Levesque et al. [LLR95] show how, as in dynamic logic [Har79],
primitive actions can be composed in various ways to generate an expressive class of
complex actions. Specifically, they show that there is a situation calculus formula,
which we abbreviate by Do �!�#	�� 	�� � � , that expresses the proposition that � � is one of
the possible outcomes of doing complex action � starting in situation �	� Here we only
need one type of complex action: the nondeterministic choice of an action from a
parameterized family of actions. Let �#� � � be a family of primitive actions parame-
terized by � . For example, � might be the action “approach the wall” and � might
be a numeric parameter specifying the distance to be moved. The complex action
��
 � ��� �
	 can be read as “perform primitive action �
� � � for some nondeterministically
selected value of � ”. In this case, Do �(��
 � �� �
	��<	�� � � stands for � � � POSS ���
� � ��	��� �
� � � do �!�#� � ��	����� Note that since complex actions ultimately reduce to primitive
ones, their preconditions, effects and non-effects are automatically entailed.

2.2 Knowledge and action
Scherl and Levesque [SL93] provide another extension to Reiter’s basic approach by
incorporating an epistemic state for the agent. To characterize this epistemic state in
the language of the situation calculus, they follow Moore [Moo85] and introduce
a new binary fluent � . The � fluent acts as a binary relation on situations, in an
analogue of the accessibility relation among possible worlds in modal logics. In-
tuitively, � ��� � 	���� holds if in situation �<	 the agent considers the situation �� to be
possible. � As in modal logic, knowledge is defined as truth in all accessible situa-
tions. Here, KNOW ��� 	��� is an abbreviation for the formula � �:����� ����� 	��� $�� & ��� - ,
where we assume that the situation argument has been removed from the fluents in

�
This is the axiom for predicate fluents; the axiom for functional fluents would be analogous.�
Reiter’s solution ignores the ramification problem; a treatment compatible with the approach has

been proposed by Lin and Reiter [LR94].�
For compatibilitywithother fluents, the order of arguments is the oppositeof the standard reading

in modal logic.
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� and �)& � � - is the result of introducing � � as a new situation argument. Thus, for ex-
ample, KNOW ��� Broken � � ��	��� is an abbreviation for � � � � � �!� � 	��� $�� Broken � � 	�� � � .
For simplicity, we take � to be transitive and Euclidean, which ensures that the agent
always knows whether or not it knows something (i.e., the agent has the power of
positive and negative introspection).

To characterize how knowledge is affected by actions while preserving Reiter’s
solution to the frame problem, Scherl and Levesque first assume that all primitive
actions can be divided into ordinary actions, such as drop and repair 	 and special
knowledge-producing actions that affect � alone. For example, the agent might
have available an action �����	��
������� 	 whose effect is to change the agent’s knowledge
state so that it comes to know the exact distance to the wall in front of it. Scherl and
Levesque assume that after performing an action, of either type, the agent will know
that he performed it, and thus that the action was possible. For knowledge-producing
actions like �����	��
������� , the agent will also come to know the value of some fluent as-
sociated with the action, like wallDist, the distance to the wall. If ��������
����	�	� is the
only knowledge-producing action, we end up with the following successor state ax-
iom for � : �

POSS �!�#	���1$ � �!� � 	 do �!�#	��� �)�
� ��� � � ����� do �!�#	���� � � � � ����� � 	��� � POSS ���
	���� � � �

� � �����	��
����	�	� $ wallDist ����� � ��� wallDist �!���
(1)

This entails POSS � ��������
����	�	� 	��� $ ��� � KNOW ���'� wallDist 	 do � �����	��
����	�	� 	���(� :
after doing �����	��
����	�	� 	 the agent knows the distance to the wall. To see this con-
sider the situations that are � -related to do � �����	��
����	�	� 	��� , the successor of � . All
such situations ��� have the property that they are the successor states of some other
situation � � � in which the distance to the wall is the same as it is in � . Since, exact-
Read does not change the distance to the wall, the successor state axiom for wallDist
ensures that wallDist ����� � � wallDist �!� � � � . Hence, all of the situations � -related to
do � �����	��
����	�	� 	��� have the same value for this fluent, and our observation follows.

3 Sensors and Noise
One problem with the Scherl and Levesque account, is that it is unrealistic to assume
that an agent has available an �����	��
����	�	� action that allows it to learn the exact dis-
tance to the wall. A more realistic assumption is that the agent is in possession of
a number of sensors, that give it some information about, but not exact knowledge
of, various fluents. We expect a sensor reading to be correlated with, but not a deter-
ministic function of, the quantity being measured. For example, we might imagine
that there is a sonar sensor that can be used to measure the distance to the nearest
wall. There might also be a laser range finder used to measure the distance to the
wall, but it might be correlated with the actual distance in a different way.

�
With additional knowledge-producingactions additional clauses are introduced into � ’s succes-

sor state axiom, one clause for each knowledge-producing action. These clauses will be very similar
to that given for ��2������ �"!"#$�%� & .
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There are various ways of modeling this. We present one here, motivated by
our desire to have the basic actions be deterministic (and thus preserve the simple
solution to the frame problem). Assume we have an action of the form observe � � � ,
that occurs whenever the agent observes reading � on the sonar. If we assume that
the sonar reading is always within � units of the true distance to the wall (rather than
being equal to the distance to the wall, as in the previous example), then we get the
following precondition axiom: �

POSS � observe � � ��	���)���wallDist ������ � ����� �
If we now assume, as did Scherl and Levesque, that an agent learns that an action
is possible by successfully performing it, it will follow that after an observe action,
the agent will learn the distance to the wall to within � units. In other words, the
Scherl and Levesque successor state axiom for � from the previous section entails
POSS � observe � � ��	��� $ KNOW �	�wallDist � � ����� 	 do � observe � � ��	���(��	 by an ar-
gument analogous to the one for �����	��
���	�	� 	 but now using the POSS predicate. In
this case, with a precondition axiom as above, it is not necessary to treat observe,
or similar observation actions from other sensors, as a special knowledge-producing
action; it is instead treated like ordinary actions such as drop and repair.

Of course it is somewhat odd to say that the agent performs an action such as
observe ��
 ��:� , as if it had the choice of performing, say, observe ��
 ���<� instead. What
we would prefer to say is that the agent decides to read the sonar, and that what hap-
pens, is that 3.7 is observed.

This can be modeled by using a nondeterministic composition of the primitive
observe � � � actions. We define a complex action read as follows:

read ������ ��
 � ��� observe � � ��
Given the abbreviation Do defined above, this means that

Do � read 	��<	�� � ��� � � ���wallDist �!����� � ����� � � � � do � observe � � ��	�����
Using the successor state axiom for � , we get the following:

Do � read 	��<	�� � � $ � � � KNOW �	�wallDist � � ����� 	�� � ��
So reading the sonar in � entails getting to a state where the agent has observed a
(non-deterministically selected) consistent sonar value � . Moreover, the agent knows
in that state the appropriate bound on the true distance to the wall. It is easy to check
that doing several consecutive sonar readings can increase the agent’s knowledge
about the true distance to the wall (i.e., tighten the interval that the agent knows con-
tains the true distance to the wall) and never decrease it. Similar considerations apply
to other sensors whose read actions would be defined analogously.

�
This particular precondition axiom only mentions the error bound, but other conditions can be

included here as well.
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4 Probability
Suppose we have a sensor with an error bound of � ��� , and we make a number
of readings of a particular fluent using the sensor, all of which are clustered around
the value 3. For concreteness, suppose they are all between 2.8 and 3.1. As far as
knowledge goes, all the agent will be able to conclude is that he knows the fluent to
have a value in the range [1.1,4.8]. Getting numerous readings of 3 will not change
this knowledge. Yet, even if the agent is using a cheap sensor, we might hope that
getting such readings would increase the agent’s degree of belief that the true value
of the fluent is very close to 3.

To formalize these intuitions, we introduce a probability distribution over the
agent’s set of � -related states. In particular, we associate with each situation in this
set a relative weight. Intuitively, the relative weight measures the degree to which
the agent believes that situation is in fact the real situation. However, it is more con-
venient to avoid forcing this weight to be a probability; instead we only require that
these weights be positive and that their sum over all of the � -related states be finite.
To obtain a true probability, we will simply normalize these weights so that they do
in fact sum to 1.

Syntactically, we introduce a new functional fluent p ��� � 	��� whose value is the
weight the agent assigns to situation � � when it is in situation � . This weight is un-
normalized, and we introduce an abbreviation BEL ��� 	���� to refer to the agent’s prob-
abilistic degrees of belief. Specifically, BEL ��� 	��� is a number from � to � that is in-
tended to stand for the agent’s degree of belief in the assertion expressed by � , when
it is in situation � . As with KNOW, the first argument to BEL will be a formula con-
taining fluents that are missing a situation argument, and we use the notation �)& �<� -
as before for the formula that results when � � is introduced as the new situation ar-
gument. Informally, BEL ��� 	���� will be defined to be the sum of the p weights of the
accessible situations where � holds, divided by the sum of the p weights of all ac-
cessible situations:

�
���	� 
������� ��������� ����� p ��� � 	���

� �
���	� 
������� ��� p �!� � 	�����

These summations can be formalized within the situation calculus. In conjunction
with Equation 2, below, the logical consequence of this formalization is that BEL is a
probability distribution. The details of this development will be provided in a latter
full report on this work. � For now, what matters is that we have something of the
form

BEL ��� 	���� � � ��� �� � � � formula involving p � � �
and that BEL ��� 	��� is a probability distribution over the situations � -related to � .

To ensure that the normalized sums of p, i.e., BEL, are in fact probabilities re-
quires a constraint on the values of p in the initial state � � . The following constraint 

Technically, we are assuming that we have discrete probability functions. This means, for ex-
ample, that only countably many possible distances to the wall have probability greater than 0.
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must be added to the background theory
�

:

� �	��� ���<	 � � ��$ & p �!� 	 � � ��� � � � � � � p ��� � 	����� � -�� (2)

Since p is a fluent, we need to say how it is affected by actions. As with our
treatment of every other fluent, we want to develop a successor state axiom for p �
Many actions will have only an indirect effect on the agent’s beliefs; the agent will
only come to know that the action was successfully performed and this will affect
its beliefs about the fluents changed by the action. For such actions, we want

p ��� � 	 do ���
	���(�)� If � � � do ���
	�� � � � then p ��� � � 	���� else � ���
This simply projects the relative degree of belief in �:� � to its successor � � .

Notice that in making the projection we are transferring the agent’s beliefs to
situations with different properties. (This is somewhat related to Lewis’s notion of
imaging [Lew76]). In these new situations, all of the changes due to action � have
occurred. For example, say that approachW � � � is the action “move � units towards
the wall”. In this case, the above equation will imply

BEL � wallDist ����	 do � approachW � � ��	���(��� BEL � wallDist ����� � 	���
Thus, if the agent believed it highly likely that she was 10 units from the wall in
situation � , then she would believe it just as likely that she was 9 units from the wall
after moving towards the wall 1 unit.

Things are a little more complicated when we have to deal with primitive actions
like observe � � � . As we mentioned before, we do not really think of this as an action
that the agent performs; the agent is actually performing the read action. Although
we have modeled read as a nondeterministic choice among observe � � � actions, it is
actually better thought of as a probabilistic choice. Moreover, the probability of get-
ting � as the reading depends on the situation and the accuracy of the sensor. In the
simplest case, we would expect that in situation � , the smaller �wallDist ������ � � , the
greater the probability of observe � � � ; the exact distribution, however, will depend
on the sensor.

To make this precise, we propose that for every sensor 	 , there is a likelihood
function 
�� , where 
�� � � 	��� denotes the probability of obtaining a reading of � from
sensor 	 in situation � . Different applications will want to characterize these likeli-
hood functions values differently, dependent on how complicated a model of sensor
error is desired; here we simply assume that for each sensor 	 , the background theory�

contains a sensor noise axiom of the form


� � � 	���)�����!� � 	����	
where ��� � � 	��� is a term whose value is always between � and �	 and is equal to �
when � exceeds the error bounds of the sensor (if there are any error bounds).

�
This, of course, is an abbreviation for the formula p 5 /�� ; do 5 � ; / 9 9 2���� 5�����/������ /��:2 do 5 � ; /���� 9 �

��2�! 9#" 5���/����$� /��:2 do 5 � ; /���� 9#� ��2 p 5 /%��� ; / 9 9 . We continue to use such abbreviations below.
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For example, we might want to say that the likelihood of getting a sonar reading
of � depends only on the difference between � and the current wallDist, and that this
difference, i.e., the sonar’s noise, is normally distributed with mean � and standard
deviation � . In this case, we would have an axiom of the form


��������
	 � � 	����� Normal

�
wallDist ������ �� � 	

where Normal � � � is a (discrete version of) the normal density function with mean 0
and standard deviation 1. This function could be defined in

�
by a simple table of

values. 
Given such a function, for a situation � �)� do � observe � � ��	�� � � � accessible from

do � observe � � ��	��� , we want to weigh the degree of belief in �:� by 
���������	 � � 	���� � � . That
is, we want

p �!� � 	 do � observe � � ��	���(� � If � �
� do � observe � � ��	�� � � �
then p ����� � 	����� 
���������	�� � 	���� � �
else � �

To get this property for observe actions, and the one above for ordinary actions, we
use the following general successor state axiom for p 	 which we include as part of
the background theory

�
:

p ��� � 	 do ���
	���(��� If � � � do ���
	�� � � �
then p ��� � � 	�������1���
	�� � � �
else � 	

(3)

where �1���
	��� ������ If � � observe � � � � then 
 � � � 	��� else
...

If � � observe � � � � then 
��:� � 	���
else �

This completes our formal characterization of adding probability to the situation
calculus. So apart from the abbreviations noted above, we have exactly 3 situation
calculus axioms: the Scherl and Levesque successor-state axiom for � , a constraint
on p in the initial state, and a successor-state axiom for p.

5 Properties of the Formalization
Our formalization of noisy sensors in the situation calculus is extremely simple, yet
it has some very interesting consequences. In this section we explore some of these
consequences, mostly through example. Before turning to the examples, however,�

Here we are using the standard transformation: Normal 5 5������ 9�� �<9 is the density function of a
normal distribution with mean � and standard deviation � .
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we discuss in more detail one aspect of our approach that might at first glance seem
puzzling.

We have modeled the agent reading its sensors as the execution of read, a nonde-
terministic choice among observe � � � actions. It would seem to be more appropriate
to model read as a probabilistic action. And, in particular, it is not immediately ob-
vious that a nondeterministic action is sufficient for our purpose.

Probabilistic actions were used in an approach explored by Halpern and Tuttle
[HT93]. There, a general model of knowledge and probability in systems is pro-
vided, based on the framework of [FHMV95]. Roughly speaking, a system in [HT93]
is identified with a set of runs or executions, where a run is a function from the nat-
ural numbers to situations. In the context of the situation calculus, we can think of
a run as a sequence � � 	�� � 	�� � 	 � � � of situations, such that � ��� � � do ���
	�� � � for some
primitive action � . In [HT93], the actions were allowed to be probabilistic, not just
nondeterministic. Probabilistic actions induce probabilities over the runs. From the
probabilities on runs, we get, at each situation � , a probability on other situations, by
conditioning on what the agent knows at that situation.

Here we also have probabilities at situations, but instead of being generated di-
rectly by the probabilities of actions, our probabilities are generated by our treatment
of likelihoods in the definition of the successor-state axiom for p. Nevertheless, we
can show that, at each situation, the agent places the same probabilities on other sit-
uations in the model we provide here as in the corresponding model of [HT93]. In
the full version of the paper, we will show that for all formulas in our language, we
get the same answer as we would using the framework of [HT93]. This shows that
in our context non-deterministic read actions are sufficient, and that they yield the
same answers that one would get from probabilistic read actions.

Belief Update. One of the standard probabilistic models of sensors is to assume
that we have two pieces of probabilistic information: a prior distribution

��� ����� on the
value � being sensed, and a conditional distribution

��� � � � ��� that gives us the prob-
ability of sensing � given that the true value is � . Furthermore, the standard model
requires the assumption that the value read from the sensor is only dependent on the
true value, and is thus independent of other factors given this value.

We can now apply Bayes Rule to obtain a posterior probability
��� ��� � � � over the

values � given that the sensor read the value � :
��� ��� � � �)� ��� � � � ��� ��� �����	� ��� � � � . The

denominator is the only expression we do not know, but this is just a normalizing
factor equal to 
 �� ��� � � � � � � ��� ��� � � . The key factor is the numerator

��� � � � � � ��� ����� that
describes the relative probability of different values of � given the observation � .

If we make a similar set of assumptions in our framework we obtain exactly this
probabilistic model of the effect of sensing on the agent’s beliefs. Let  be a set of
sensor noise axioms of the form 
 � � � 	���� ���������!� � 	�����!��� � , where �� is the fluent that
is sensed by sensor 	 , and ����� � � � 	���� is some expression with just two free variables
(both numeric), � and � � A sensor noise axiom of this form captures, in the language
of the situation calculus, the assumption that the probability of obtaining a reading
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of � from sensor 	 in situation � , i.e., 
 � � � 	��� , is dependent only on the true value of
the fluent being sensed. That is, no other properties of � affect this probability.

Proposition 1 Let
�

be the background theory that includes the axioms given in
Eq. 1–3. Then

���  � �
BEL � �� � � 	 ��� � observe ��� � ��	���(� � BEL � � � � � 	���	����� � � � 	�� � �!��� ��

� � BEL � ���� � � 	���	��������� � 	���� �!��� � 	
(4)

where the denominator is simply a normalizing factor.

If the sensor is informative, i.e., if it is more likely to read values closer to the true
value than values further away, then this proposition ensures that the agent’s beliefs
about the fluent he is sensing will become sharpened about the sensed value.

Example 5.1: Say that the agent is sensing the distance to the wall, wallDist, using a
read of its sonar sensor. Let 
 �������
	 � � 	���)� � ���� � � wallDist �!��� � . That is, not only do
we assume that the sonar’s error is dependent only on the true value of the fluent be-
ing sensed (assumption  above), but we also assume that this error is characterized
by a simple additive noise model. The sonar reads the true value plus a noise com-
ponent. Hence, the probability of obtaining the reading � given that the true value
is wallDist �!��� is a function of the difference between the two (i.e., a function of the
noise). For definiteness, let ����� � � ��� � ��� , � ���� � � ��� � ����� , and ������ ��� � � � ��� .
(The probability is zero that the sonar will read a value that is more than 1 unit away
from the true value). Let the agent’s beliefs about wallDist in � � , for � ��� � , 12,
8, and 9, be BEL � wallDist �	�#	 � � ��� � ��
 , and BEL � wallDist � � � 	 � � ��� � � � .
(The agent has zero belief in the distance being any other value). This distribution
of beliefs for the various values of wallDist in � � are shown in Figure 1.

Suppose that the agent reads its sonar, and observes the value 11. In the new
situation � � � do � observe � � ����	 �
��� , a simple calculation using the above formula
shows how the agent’s beliefs have been altered. The new distribution is shown in
the figure. Since the sonar has probability zero in being more than 1 unit away from
the true value, the agent now has zero degree of belief in the values 8 and 9. � �

Note that the diagram shows that the agent still believes that wallDist � � � is
the most likely value, even though its sonar returned the value 11. This arises from
the agent’s high prior belief in wallDist � � � .

Sequences of sensor readings of the same fluent, including sequences of readings
from different sensors, are also handled correctly in our framework. Such sequences
.�

If the agent knows these error bounds, i.e., if these bounds are part of the preconditions for the
sonar, it will come to know that wallDist is in the range 10–11. On the other hand, if the agent only
has zero degree of belief in these outcomes, it will come to believe with degree 1 that wallDist is in
that range. That is, our framework can distinguish between full belief and knowledge.
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observe(11)

observe(11)

Figure 1: Example of Belief Update

correspond to sequences of sensing actions, and thus are handled by a simple itera-
tion of Eq. 4. The independence of a sensor reading from all of the previous readings
is implied by assumption  and by the fact that the sensors do not change the value
being observed (this is captured in the successor-state axiom for the sensed fluent).
As a result, after a sequence of sensing actions, the agent will come to have greater
or less certainty about the value of the sensed fluent, dependent on whether or not
the sequence of readings agree or not.

Example 5.2: Suppose that the agent executes another read action in the state
� � . Further, suppose that the agent observes the same value as before 11, and let
� � � do � observe � � � ��	 � � � . Then, another application of Eq. 4 (applied to the agent’s
beliefs in � � ), yields the belief distribution shown in Figure 1. That is, the agent’s
beliefs have converged more tightly around the value 11, since it has now sensed that
value twice.

As mentioned briefly in the previous section, the manner in which probability
mass is transferred when ordinary actions like approachW also yields appropriate
changes to the agent’s beliefs.
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Example 5.3: Suppose that the agent is in state � � , and then moves 2 units closer
to the wall. Let � � � do � approachW � �<��	 � � � . Then, the successor state axiom for p
and wallDist imply that the agent’s beliefs are shifted to worlds in which it is 2 units
closer to the wall. Hence, for all � , BEL � wallDist � � � � 	 � � �6� BEL � wallDist �
�
	 � � � . The agent’s shifted beliefs are shown in the diagram. This is exactly how one
would expect the agent’s beliefs to change after moving closer to the wall.

Furthermore, changes in the agent’s beliefs due to ordinary actions integrate cor-
rectly with sensing actions.

Example 5.4: Suppose that the agent again executes a read action in � � , and ob-
serves the value 9. Let � � � do � observe � � ��	 � � � . This reading is consistent with
its previous readings of 11 since the agent has moved 2 units closer to the wall.
Hence, as shown in the diagram, it results in a further tightening of the agent’s be-
liefs, around the value 9. If the agent subsequently moves back from the wall by
2 units, executing an approachW � � � � action ( � � � do � approachW � � �<��	 � � � ), its
beliefs will then be clustered around 11, as shown on the diagram.

Intuitively, since the agent’s approachW action incurs no error, we would expect
that if the agent had sensed the value 11 in situation � � without moving forward and
then backward an equal amount, then its beliefs about the distance to the wall should
be identical. Our model respects this intuition, as indicated in the diagram by the
diagonal arrow from � � to � � .

Finally, we can observe that if the agent executes an action that has no effect on
a particular fluent, then that action will cause no change in the agent’s beliefs about
that fluent. For example, if the agent executes a drop action that has no effect on its
distance to the wall, it will have exactly the same beliefs about the distance to the
wall in the successor state. This again arises from the direct transfer of probability
mass to the successor states, all of which have exactly the same distance to the wall
as before.

6 Conclusion
We have demonstrated that noisy perception can be modeled in the situation calculus
by a simple extension of previous work. Although the resulting formalism is limited
in some ways, e.g., noisy effectors would require a non-trivial extension to our cur-
rent approach, it does succeed in providing an interesting integration of noisy per-
ception and ordinary actions. Most importantly, it succeeds in capturing some key
features of this interaction that any more extensive formalism would also have to
capture.

Much of our approach can be exported to alternate formalisms. For example,
instead of the situation calculus a modal logic could have been used. Similarly, the
probabilistic component could be replaced with an alternate formalism, like Dempster-
Schafer belief functions, or fuzzy measures. All that would be required is to replace
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the functional fluent p and axioms for BEL with fluents and axioms to support an
alternate measure of belief. The likelihood functions could then be replaced with
non-probabilistic functions to support an alternate rule of belief update.

As for future work, apart from addressing limitations of the formalism, there is its
application in high-level agent control. In the GOLOG work mentioned in the intro-
duction, the ability of an agent to execute a program depends on what it knows about
the truth value of the test conditions in that program [LLLS95]. When an agent only
has a degree of belief in the truth of a test condition in a program, it is much less
clear what it ought to do. A suitable programming formalism in this case remains to
be developed.
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